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=

In milliamps, this becomes | = 3.6/35.3" | which is the result obtained earlicr
the box on p. 54.

This example illustrates that when we write impedances as complex numbg,

we handle them by applying the usual rules for resistances in series or in parally

There is no need to draw a phasor diagram because phase is taken into accoyy
by the complex representation of reactances.

v

Test yourself

1. A circuit has a voltage generator, a 47k resistor and a 220nF capacitor
series. The generator produces a pd signal, v = 8sin 100x1. Use the phasy
technique to find the pd signals across the resistor and the capacitor, wig
phase relative to the generator signal.

2. A circuit has a voltage generator, a 1202 resistor and a 10 mH inductor
series. The generator produces a signal, v = 4.5 sin 6000xt, Use the phasq
technique to find the pd signals across the resistor and the inductor, wil
phase relative to the generator signal.

3. In the circuit of question 1 the pd signal is changed to v = 6 sin 200x¢. Expres
the impedances as complex values and use these to find the total circu
impedance, the current signal and the pd signal across the capacitor. Expres
the results as phasors in rectangular form, phasors in polar form, and as equ
tions for current or pd.

4. In the circuit of question 2 the pd signal is changed to v = 5sin4000m
Express the impedances as complex values and use these to find the totd
circuit impedance, the current signal and the pd signal across the inducto
Express the results as phasors in rectangular form, phasors in polar form, av
as equations for current or pd.
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Passive filters

The function of a filter is to allow signals of a given band of frequencies to

while obstructing or reducing the amplitude of others. In this context we
are referring to sinusoidal signals, since signals of other forms are considered
to be a mixture of sinusoids of different frequencies and different amplitudes.
Figures 2.12 and 2.13 show the composition of typical sawtooth and triangular
waves. If these signals are passed through a filter, some of the frequencies may
be stopped altogether from passing while others may be attenuated (reduced in

amjilitude). The frequency spectrum has a markedly different appearance after
the signals have passed through a filter.

Before considering the effects of filters on triangular and other composite wave-
forms, we will look at what happens to a pure sine wave of a single frequency.
The essentials of this have already been described in earlier chapters but now we
represent the facts in the context of a filter circuit. This chapter deals with passive
filters, and the simplest type of filter is built from two passive components, a
resistor and a capacitor. The circuit of the filter illustrated in Fig. 5.1 is exactly
the same as that of Fig, 1.5. The pd source is drawn in dashed lines because it
is not part of the filter. It could be any device or circuit that produces a varying
Pds.Vin. It might be a microphone, a photo-cell, a circuit based on a thermistor, a
radio antenna, a pair of electrodes in an electrocardiograph, or one of thousands
of other sources of varying pd. For the purpose of this discussion, it is the source
of a sine wave signal of a single frequency.

_'l'he other special feature of this circuit is that there are connections on either
side of the capacitor to convey a signal Vo to an external circuit. It is essen-
Ual that the following circuit draws as little current as possible from the filter.
erwise, the action of the filter is degraded. The following circuit must have

2 high input impedance and we assume in the discussions below that its input
ance is so high as to draw no appreciable current from the filter. It is also
iS8umed that the pd source has a suitably low output impedance so that it is able

,/;,« ' Supply as much current as the filter can accept at any instant.
— The

filter of Fig. 5.1 is labelled with complex impedances, as discussed at

5,1 g :.El.ld of the last chapter. Only the capacitor has a complex impedance in this

The total impedance of the filter is the sum of the impedances of the
"gbr and capacitor in series: :
i Z=R-j/aC
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Figure 5.1 The circuit of Fig. 1.5 redrawn as a low-pass passive filter

For example, if the resistance is 220 Q, the capacitance is 1 uF and the frequenc,
is 1kHz, then @ = 2 f = 6283 rad/s and:

Z =220 - j159

The impedance is in ohms, as usual. Take Viy and Ve as symbols for the inpy
and output phasors. When v, is applied to the filter, the resistor and capacita
act as a potential divider. Therefore vou, the pd signal across the capacitor, beas
the same proportion to vy, as the impedance of the capacitor bears to the toi
impedance.
Yout _ -le9

Via 220 -j159

- Vin X —j159

ot ™ 220 - j159
If the source signal is Vi, = 2 sin 20007¢, and is taken to be the reference signd
with ¢ = 0°, vjp =2+ j0 = 2, and:
Ve = —j318
ot 220 - j159

The technique for dealing with a complex divisor is explained at the end ¢
Chapter 4. Converting Vo into polar form:

Vou = 1.17/=54.1"
Writing this as an equation for the output signal:
Your = 1.17 sin(2000xt — 54.1°)

Figure 5.2 shows the curves for Viy and Veu. After the initial stage while !
capacitor gains charge, it is clear that vy has the same frequency as vj,. Measu
ments on the graph show that the amplitude of Voy is 1.17V, and that its ph#
lag is 54°. The gain of the filter is 1.17/2 = 0.585. It is a characteristic of *
passive filters that the output signal has a smaller amplitude than the input sig¥
in other words, that it has a gain less than unity. This can be seen on the phs
diagram of the filter (Fig. 5.3).

or

v

= 0.686 — j0.949
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Figare 52 When the frequency is 1 kHz, the output of the filter of Fig. §
aﬁ;!hude and appreciable phase lag PRt T

Figure

P 53 A phasor diagram shows the relationship between the input and output of the

ter of Fig. 5.1 when the frequency is 1 kHz

Keeping up?

1. Gi,
iven a low-pass filter built from a 470 Q resistor and i i
a22uF
A inpyy signal vy, = 4 sin 3007, calculate the i i

_ output signal vg,, and express
%S an equation, in complex (rectangular) form and in polar ;;:-m xp
" Rthe capacitor and resistor in Fi

. g. 5.1 are exchanged, so that v, ¢« becomes
Pd across the resistor, what kind of filter does this produce:!mGiven the

gutlh
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values listed in question 1, calculate the output signal Vow and eXpress it ;
an equation, in complex (rectangular) form and in polar form.

Varlable impedance

The filter circuit of Fig. 5.1 can be thought of as a potential
divider. The capacitor is equivalent to a variable resistor controlled
by frequency (Fig. 5.4). The higher the frequency, t!ze lower the
impedance of the capacitor and the smaller the amplitude of Vout-
The action is that of a low-pass filter.

General equation

Having looked at an actual example, we will werk through ﬂ"le same problen
but without inserting actual component values. For the input signal, let:

Vip = Vosinet
Then the total circuit impedance is:
R—j/aC

The corresponding output signal is:

_ Vi X —j/oC
Yo = TR =jfaC
[ |
AR
]

vlﬂ

- o=

c Yout s Vout
i F
o— ; -0 o @ —0

Figure 5.4 Another way of looking at a low-pass resistor/capacitor filter
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ly top and bottom by jwC:

— __v- e

T jwRC +1

wo leave the equation in this form. If you substitute values of viy, @, R and
C, YO

Yout

u can confirm the equation by obtaining the same results as above. In its
pgral form, the equation shows that the output is larger if:

o input is larger

o frequency is smaller

¢ R is smaller

¢ C is smaller "

Obviously we obtain a larger output with a larger input, otherwise the outgoing
signal would not be a replica of the ingoing signal. Making w smaller increases
the. impedance of the capacitor and hence the pd across it. Making R smaller
increases the current flowing in the circuit and therefore increases the pd across
the capacitor. Making C smaller causes larger changes of pd for a given change
of charge (v = g/C, see equation (6) in Chapter 1).
¥ input, R and C are held constant, the amplitude of the output depends on w.
The 'equation shows that the output signal amplitude increases as o decreases.
This is seen in Fig. 5.5 where the results of reworking the numerical example
above for four different frequencies are shown side by side. The amplitude of the
inpgt signal and the values of R and C are left unchanged. Looking at the diagrams
in order of frequency we see that, as frequency decreases, the proportions of the
rectangle OPOR change, while the length of the diagonal (source phasor) remains
constant. With decreasing frequency the signal across the resistor becomes smaller
while that across the capacitor becomes larger. In other words Ve increases. At
the same time the output phasor swings round nearer and nearer to the source
phasor. It lags less and less far behind the source phasor. Continuing this trend
it is possible to imagine the output phasor swinging round to coincide with the
Source phasor when frequency is very low. At the limit, the amplitude of the
Output signal becomes equal to that of the input signal and is in phase with it.
signal passes unaffected through the filter. This effect can be recognized in
the equation above as w approaches a limit of O

“RC+1 1

Since ¥in has no imaginary part, neither does vey and the phase angle is zero.
Zero-frequency signal is a constant DC level. If a DC pd is applied to the

the the capacitor quickly charges to that level. There is,no fail in pd across

. tesistor (we are assuming that the following circuit is drawing no current) so
ut = Vi,
IA‘ the other extreme, at very high frequency, Vou approaches zero, with —90°

. e angle. A diagram to summarize these changes can be plotted by using a
W_ t

Vout

simulator.
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lag behind the input and do not begin their cycles until a fraction
% of a millisecond later. The graph clearly shows that the lower the
F = 1kHz \ frequency, the greater the amplitude of the output signal.
\
\
N\
Vin
2.00 Iny 0
/
,_/
- 1.5000
P
”
Tl 1.0000
500.0 m
2 o000
F = 250 Hz ~0.500 m
P
- -1.000
Vi T~
& ~~o -1.500
2.00 Vin® ~ S 0 | | J
0 i / 5000m 6.000m 7.000m 8.000m  9.000m 1000 m
/
1.89 ve g seconds
" Figare 5.6 Theseare the ousput signal.

§ corresponding to the phasor diagrams in Fig. 5.5.
The higher the [requency the lower the amplitude

Figure 5.5 Phasor diagrams for different frequencies show that the v, phasor lags les

and becomes longer as frequency decreases. This is the characteristic of a low-pass filte Transfer function

For a given circuit, its transfer function expresses the relationship

between the input and output signals. For a filter circuit of the type

Keeping up? shown in Fig. 5.1, the transfer function is:
3. A high-pass filter can be made by interchanging the resistor and capzfcitor Ul Yo 1 o f

Fig. 5.1. Derive a general equation for the output vgy of such a high-pas Vi joRC + 1

i i i — in ewt.

filter when the input signal is Viu = Vo sine 0 Remember that the terms voy and Vin are not just simple voltages.
4. In question 3, to what limits does Vow tend as « approaches (a) zero (D Each represents a sinusoidal voltage with a given frequency,

(b) infinity?

amplitude and phase angle. They have the same frequency (f =
@/2m) and the transfer fu

nction expresses the relationship between
'_-’heir amplitudes and phase angles. The reason that a single function
Output signals 15 able to express the rel

ationship between two different quantities
(amplitude and phase) is that the transfer function contains a

complex
i i i i term (in this example, jwRC + 1), which represents a phasor, and
5. hs the output signals illustrated by the phasor diagrams : m (in t ple, , wi ep y
l;:gl"l:: S.g.g;‘:;ll; graph ist[;lotted from 4 ms onward at which time the | - Which in its turn represents both amplitude and phase.
input signal is at the beginning of a cycle. The output signals all ~a
@

g
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Bode plot

The relationship between frequency and output amplitude can be plotted as ,
graph (Fig. 5.7). The range of Fig. 5.7 is from 0 Hz (DC) to 3kHz. At 0Hz, th,
output amplitude is 2V, equal to the input amplitude. As frequency increaseg
amplitude falls steadily, until it reaches about 280mV at 3kHz. Amplitudes 5
250 Hz, 500Hz, 1kHz and 2000Hz are the same as are drawn in Fig. 5.5. The
graph also shows phase lag falling from 0" at 0Hz to about —78° at 3kHz. |
Fig. 5.7, amplitude is plotted against linear voltage and frequency scales. Mor
often we use logarithmic scales, as in Fig. 5.8, such a graph being known as ;
Bode plot. The values plotted are as before but the shape of the curve is changeg
by plotung it logarithmically. A logarithmic frequency scale is often used becaus;
it is good for displaying the effects of relative frequency changes (for example,
doubling or halving frequency) over a wide frequency range.

The pd scaling is not only logarithmic but is expressed in a different unit, the
decibel. The scale runs from 0dB at the top where 0 dB corresponds to 2V, takey
as the reference pd for this plot. The amplitude at other frequencies is measure
reldtive to the reference level, in decibels. For example, at 1kHz, the graph shows
that vy is approximately —4.7 on the decibel scale. From the values quoted i
Fig. 5.7, where the amplitude of vgy = 1.17V:

201og(2/1.17) = —4.65dB

As with the frequency scale, the logarithmic plot of pd in decibels emphasizes
relative values, which are usually more important than absolute ones.

2.0000

Amplitude 180

1.7500

I

1.5000

1.2500 |-
1.0000 |~

750.0 m

500.0 m |-

250.0 m 1 1 | 1 i
500.000 1.000k 1500k 2.000k 2500k

hertz

Figure 5.7 These curves show how the low-pass filter responds to a range of frequenci®
from DC (0Hz) to 3 kHz

Power gain va > vy n is positive
Power equality vo=v; n=0
5 Power loss v2 < V] n is negative
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w 5.8 This Bode plot has a logarithmic frequency scale and a decibel output pd

scale. At the —3 dB point the frequency is 723 Hz and the phase angle is —45°

Decibels

Decibels are a way of expressing the ratio between two quantities, x;
and x;. If n is the ratio in decibels:

n =10 x logy (x2/x1)

However, in the case of filters and other electronic circuits, as well
as in some other appiications the most important consideration is the
ratio of powers. Power is proportional to the square of pds or currents,
Given pds or currents, the formula for the ratio of POWErS 1S:

n=10x logm(vz /2

The logarithm of a squared number is obtained by doubling the loga-
rithm of the unsquared number, so the easiest formula to use for
power ratios is:

n= 20 X logln{V2/V1)

In filters, v, is the amplitude of the input signal and v, is the amplitude
of the output signal. There are 3 cases:
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One way of producing a Bode plot is to take measurements on an actual circuit. A
sinusoidal signal of given amplitude, frequency and phase is applied to the input
and the amplitude and phase of the sinusoidal output signal are measured. The
frequency remains unchanged. Measurements are made at various frequencies,
from which the Bode plot is drawn. As we shall see later (Chapter 7) it is

also possible to construct a Bode plot from calculated values, given the transfer
function of the circuit.

Keeping up?

5. Find the power loss in decibels when (a) v; = 3.5 and v =2.5, (®) v =5
and v, = 0.5, (c) vy = 1.2 and v; = 1.1.

6. The input to an amplifier has amplitude 0.2 V. The output has amplitude 5.6 V.
What is the power gain, in decibels?

7. The open-loop gain of an operational amplifier is said to be 106 dB. If the

amplitude of the input signal is 2.5V, what is the amplitude of the output
signal?

Filter characteristics

The Bode plot of Fig. 5.8 illustrates the main features of a low-pass filter.
Towards the left side of the diagram vy is almost equal to vi,. This is the
pass band. Toward the right, and on toward even higher frequencies, vou is very
much smaller than vy, This is the stop band. Between the pass band and the
stop band is the transition region, in which Vg falls steeply with increasing
frequency.

By definition, the pass band of a low-pass filter extends from OHz up to a

frequency at which the power of the signal is half that of vj,. If the power is
half, then voy?/via2 = 0.5 and:

n = 10log, 0.5 = 10 x —0.3010 = —3.010dB

This level is marked in Fig. 5.8 as the ‘~3dB’ line. It is usually referred to as
the —3dB point, the cut-off point, the half-power point, or sometimes as f.
The graph shows that for this filter, the —3 dB point is at 723 Hz. Phase angle
is 0° at 1 Hz, falling through —45° at the —3 dB point and eventually reaching
—90° at high frequencies, beyond the right-hand edge of the graph. Figure 5.9
shows the corresponding phasor diagram at the —3 dB frequency, for comparison
with those in Fig. 5.5. By definition of the —3 dB point, Vou’/Vis® = 0.5. In the
phasor diagram, Pythagoras theorem tells us that:

Vln2 = "'ont2 + "rz
Dividing by viy%:
1= Vou®/Vin + V¢’ /Vin®

Passive filters

Figure 5.9 Another phasor diagram to include with those in Fig:-5.5. At 723 Hz, v, = v,
the rectangle becomes a square, the phase angle is —45°. This is when the ouiput power
is 3dB below input level

Substituting the value for Veut?/Via® at the —3 dB point: )
1=0.54+ ve2/vip?
V2 V> = 0.5
But it has already been stated that:

Vou>/Via> = 0.5

Therefore
V2 Va2 = Ve fVia?
"r2 = le2
Ve = Yomt

At the —3dB frequency, the pds across the resistor and capacitor have equal
amplitude. This means that their impedances are equal. So the —3dB is not
Just a conveniently selected point. It is the frequency at which the resistor and
Capacitor have equal impedance. In Fig. 5.9, the lengths of the two phasors are -
®qual, and vey lags 45° behind vi. Ignoring their phase angles, the equality of
the sizes of the impedances means that:

R=X.=1/wC
ltmlrraﬂgiug:

ix\_ w=1/RC
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But w=2rf
Rearranging =021
Substituting f.=1/2nRC

This equation is used for calculating the —3 dB frequency, given the values of R
and C. For example, in Fig. 5.8, R=220Q, C = 1 yF and:

1
2 x 220 x 10-6

This agrees with the value of the —3 dB frequency obtained from the graph.

f= = 723 Hz

Cut-off frequency

At the cut-off frequency, or —~3 dB point, of a resistor/capacitor low-
pass filter:

Impedances of resistor and capacitor are equal in size.
Phase angle is —45°
S =1/2nRC

.

Roll-off

The rate at which amplitude falls off in the transition region is an important
characterfstic of a filter. The steeper the slope of the curve, the more sharply does
the filter distinguish between those frequencies it passes at almost full amplitude
and those that it strongly blocks. The equation on p. 71 shows that:

Vin
_ joRC + 1
If frequency is reasonably high, as it is above the cut-off point, we can ignore

the 1 in the denominator and, since we are not concerned with phase, we can
ignore j too:

Vout =

Vin

Vout = ——

Vout i8 inversely proportional to w. If frequency is doubled, the amplitude of
Vout is halved. A doubling of frequency is often referred to as an octave, a
word borrowed from musical terminology. Hence, the ratio of two outputs for
two signals an octave apart is 0.5. In decibels, this is 2010g0.5 = —6 dB. For a

1

h

Passive filters 77

a—

doubling of frequency, the output falls by 6 dB. This rate of roll-off is the general
rule in most simple filters.

Fliter action

The action of a filter on a single sine wave is to reduce its amplitude and cause
a phase lag. If we filter a more complicated signal, such as a sawtooth wave
(p. 28), cach sinusoidal component of the signal is affected in amplitude and
phase depending on its frequency. Figure 5.10 shows a sawtooth wave before
and after passing through a low-pass filter. Like the signal of Fig. 2.8(d), the
wave has a frequency of 0.159 Hz and an amplitude of 1.58 V. Because this is a
low-frequency signal, we are using a filter with a low —3 dB point. The capacitor
is 1 uF as before but the resistor is increased to 390k$2. The —3 dB point is:

fe=1/2nRC = 1/(2m x 390000 x 1075) ~ 0.4 Hz

The effect of the filter on the triangular wave is visually obvious. The sharp
downward-pointing corners of the signal become rounded off. Some of its high-
frequency components are being lost or, at least, reduced in amplitude.

The filter action is investigated further by a Fourier analysis (Fig. 5.11).
This has a similar appearance to the analysis of the original unfiltered signal
(Fig. 2.12). But both figures have been plotted with the same vertical scale to
make it clear that the amplitudes of the fundamental and harmonics are reduced

1.5000 |-
1.0000 |-

§500.0 m

1

g 0.0000
—500 m |-

~1.000 |-

-1.500 |- 1 1 i 1 ]
0.0000 5.0000 10.000 15.000 20.000 25.000
seconds

1
30.000

Figure 5.10 7he effect of a low-pass filter on a sawtooth signal is to reduce its amplitude,
Yound off some of the corners and introduce a phase delay
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1.0000 + of distortion in the filtered signal for, not only are the harmonics attenuated by
900.0 m |- - 180 different amounts, but they arrive at the output of the filter at slightly different
SR 4 150 stages in their cycles. This effect is known as group delay. It is particularly

i 4 120 important with high-frequency pulsed signals, such as are often found in digital
7000 m p- 4 90 circuits.
4 60

g 600.0 m |- o - & o . . __ 20
i ¥ 1.0 ; High-pass filters
400.0 m |- E
300.0 m |- 3 -0 The action of high-pass filters has already been the subject of some of the ques-
—— J-120 tions in Keeping up? We found that the transfer function of a resistor/capacitor

' o o o - - 4~ 150 high-pass passive filter is:
100.0 m |- bodn o, s | " o Vout _ ijCj
] 1 L 1 N & x —_—— e
0.0000 250.0 m 500.0 m 750.0 m 1.0000 12500 1.5000 17500 2.0000 Via  joRC +1
hertz Once the action of a low-pass filter has been studied and understood, there is
little new to be learned about high-pass filters. It is easy to convert one sort

Figure 5.11 A Fourier analysis reveals the relatively greater attenuation of into the other. In the case of a passive low-pass resistor/capacitor filter, simply

high-ﬁ'equerfcy components after ﬁk'ering a sm'vto?th signal through a low-pass filter exchanging the resistor for the capacitor turns it into a high-pass filter. The Bode

(compare with Fig. 2.12). Phase lag increases with increasing frequency plot for a high-pass filter is similar to that for a low-pass filter but reversed from

left to right. Compare Fig. 5.12 with Fig. 5.8, both of which are based on the
by filtering. The effect is least for the fundamental and the first few harmonics. same values of R and C. In Fig. 5.12 the frequency range has been extended up
Measurements on the graphs confirm this effect: to 100kHz to allow more of the pass band to be plotted, Another difference in
the plots is that the decibel scale extends down to —56.58dB to cover the curve
Frequency Amplitudes (mV) Vout/Vin down to 1Hz. This represents an attenuation of x 0,06,
Vin (unfiltered) Vo (filtered) The transition region has a slope of +6dB per octave and reaches the —3 dB
Fundamental 1000 465 0.465 point at 723 Hz, the same frequency as in a low-pass filter. In the pass band, above
Lst harmonic 500 196 0.392
2nd harmonic 333 108 0.324 | * .
3rd harmonic 250 69 0.276 @ - ==
4th harmonic 200 45 0.225 g | . -
5th harmonic 167 30 0.180 g Phase - 120
6th harmonic 143 24 0.168 N 20,00 [ = = = ——— 90
" ’ —_—— e e e 60

The dashed line in the table shows where the cut-off frequency is located. The last Q i 30

column of the table shows that attenuation of amplitude increases progressively o —30.00} ' N s e 0 E

with increase in frequency. But, as illustrated in Fig. 5.7, this is a gradual effect. § é :gg

There is no sharp edge to the pass band. Ideally the pass band is flat and a sudden ~40.00 Amplitude -90

and steep roll-off begins at the —3 dB frequency. To obtain this we need a filter 5 =120

of more elaborate design. ~50.00 ~150
Figure 5.11 shows a further effect of filtering. In the original signal (Fig. 2.12) y ; =t : " i }—180

the phase of each component is either +90° or —90°. In the filtered signal there is 1.0000 10.000 100.00 1.000 K 10.00 k 100.0 k

a gradual increase in phase lag as frequency increases, This is in accordance with - hertz

the effect of frequency on filter characteristics, The result is that the components : : ;

of 8 signal areegach delayed by a different amount, This & o addilionalp:uume | Fl‘ig'!llm. 5.85'12 Compare these frequency response curves of a high-pass filter with those in
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about 10kHz, the filter transmits the signal with virtvally no loss. Changes of
phase are the opposite to those found in a low-pass filter because phase angles
are positive instead of negative. Phase angle is +90° at 1 Hz, falling to exactly

+45° at the —3dB frequency. As frequency increases beyond that, the phase
angle gradually levels out to 0°.

1.0000 |- Vin
0.0000
&2
g
-1.000 |~
-2.000 |-
B Vou
1 i 1 1 | 1
0.0000 5.0000 10.000 15.000 20.000 25.000 30.000
seconds

Figure 513 The effect of filtering a sawtooth signal through a high-pass filter

1.0000
900.0 m |- - 180
800.0 m |}~ o " - 120
2] = 120
700.0 m}- a - O3 a0
600.0 m |- q ¢
2 -4 30 i
E 500.0 m |- . 0 §
B 4 -30
400.0 m - o 3
o o © -4 —60
300.0 m |- o 3 -90
200.0 m}- —;—120
- ‘ l 4-180
Omfp <4 -180
1 L I ! I In L 4 1. 1 1.

0.0000 250.0 m 500.0 m 750.0 m 1.0000 1.2500 1.5000 1.7500 2.0000
hertz
-
Figure 5.14 The frequency spectrum loses much of its lower-frequency components aftet
high-pass filtering. Compare this spectrum with Figs 2.12 and 5.11
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The effect of the high-pass filter on a sawtooth wave is a complete distortion
of its shape (Fig. 5.13) due to the reduction in amplitude of the fundamental
and lower harmonics. In the frequency spectrum (Fig. 5.14), the fundamental is
reduced to about 0.18 of its value in an unfiltered signal (Fig. 2.12), and there
is a general ‘flattening’ of the spectrum, so that the higher harmonics become
relatively more significant and the waveform exhibits more pronounced ‘spikes’.

inductive filters

The filtering action of resistor/capacitor filters depends upon the way the
impedance of the capacitor varies with frequency. The impedance of a capacitor is

inversely proportional to frequency, n other words, increasing frequency leads to
reducing impedance. Depending on the arrangement of the resistor and capacitor,
we obtain a low-pass or high-pass filter (Fig. 5.15(a) and (b)).

(o] high I.
Vo Vin O i% O Vou
blocks low f.
blocks low f. passes high f.
passes high f. 1
¢ "= 2eRC .
X high . .
* ‘ ‘[i Ig i i
oV O~ & OO0V OVO— & — 0V
LOW PASS HIGH PASS
(a) (b)
passes low f.
blocks high f. i —
Vin O- SYYY 3 O Vo
passes low f.
A blocks high f.
R f,=— L
27l
£ 5 low f
ovo & o0V O & o]
LOW PASS HIGH PASS
(c) (d)

1

- Figure 5.15 A summary of the four types of first-order passive filters. The formula at the
&3 bottom left of each diagram gives the transfer ratio Vou /iy at any given frequency
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An inductor is also frequency dependent, but its impedance is directly propor-
tional to frequency. Increasing frequency leads to increasing impedance. This
property can be used in building a ~pass or high-pass filter from a resistor
and an inductor (Fig, 5.15(c) and (d)). The main reason why inductors are seldom

used in practical filters is that fillering frequencies in the audio range and below
requires the inductor to be unduly lar ¢ and heavy, This 5 against the present-
day trend toward lxgﬁt, small and portable equiEmemﬁotﬁer reason for the
unpopularity of inductors is that they generate magnetic fie

which may inter-
fere with nearby circuits, Converse Y, they may also pick up magnetic interference

uniess they are very thotoughly shielded. It is only in high-frequency circuits,
such as high-frequency radio or microwave circuits, that inductors can be small
enough to be practicable,

Figure 5.15 summarizes the structure and properties of filters in which there
is just one reactance, either a capacitor or an inductor. These are known as first-
order filters. The figure includes the formulae for f. and for the ratio Yout/Vin
for each type of filter. These ratios may be deduced from the geometry of phase
diagrams like those of Figs 5.5 and 5.9,

Test yourself

1. Design a passive low-pass resistor/capacitor filter with a —3dB point of
500Hz, using a 10k resistor, Calculate the attenuation of a 600Hz sine
wave signal when passed through this filter.

2. Design a passive high-pass resistor/capacitor filter with a —3dB point of
2kHz, using a 2.2nF capacitor. Calculate the attenuation of a 1 kHz sine
wave signal when passed through this filter,

3. Design a passive high-pass resistor/inductor filter with a —~3dB point of
10MHz, using a 10k resistor. Calculate the attenuation of a 9 MHz sine
wave signal when passed through this filter.

¥

6

Second-order passive
filters

The filters described in Chapter 5 each have a single reactive component, either
a capacilor or an inductor. Because of this, they are known as first-order filters.

Although a first-order filter is adequate for many purposes, it has two important
drawbacks:

1. The pass-band merges with the transition region, so that there is no sharp

differentiation between frequencies that are to be passed and those that are to
be attenuated.

2. The slope of the fesponse curve in the transition region is only —6dB per
octave, with the result that frequencies several octaves away from the nominal
cut-off point are present in the output from the filter.

Improved filtering is obtained by using a second-order filter, which contains two
reactive components. The ‘knee’ of the response curve between the pass-band
and the transition region can be made sharper in such a filter. A second-order
filter usually has a steeper response curve in the transition region. A further
possibility in a second-order filter is to combine the low-pass function with the

high-pass function to produce band-pass and band-stop filters, as described later
in this chapter.

Two-capacitor filters

Two low-pass resistor/capacitor filters may be connected in cascade (Fig. 6.1).
The output from the first filter is fed to the second filter. Suppose that R1 = R? —
220Q and C1 =2 = 1, making both stages the same as the circuit analysed
in Fig. 5.2, We also use the same input signal, v = 2 sin 2000x:. Figure 6.2 plots
the result of filtering. In order of decreasing amplitude, the curves are the original
signal (vy,), the output of the first stage (v;), and the output of the second stage
(vou). Although vy, has an amplitude of 2V, the same as that in Fig. 5.2, the
Output of the first stage v, of Fig. 6.2 is only 0.81 v contrasted with 1,17V for

i:3%ow of Fig, 5.2. This is because the first stage of the two-stage filter has had

Supply current to the second Stage, causing a drop in pd across C1. There
83
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F=T] R2
c1
l v, - Vou
O T o]

Figure 6.1 © Cascading two low-pass filters increases roll-off but reduces output amplitude

1.5000
1,0060
500.0 m

2 o000
—500 m
~1.000

-1.500

|

] i J
0.0000 1.000 m 2.000 m 3.000 m 4.000 m 5.000 m

seconds

Figure 6.2 In a cascaded low-pass filter (Fig. 6.1) the amplitude is reduced at each stage
and the phase angle is increased

is a further drop in amplitude in the second stage so that v, for Fig. 6.2 is
only 0.47V. Overall, the second-order filter causes amplitude to fall from 2 V to
0.47 V. This cascading effect makes the behaviour of the filter depart from the
theoretical predictions, which assume that the output of a filter stage is fed to a
high impedance input al the next stage. This is something that cannot be done
with passive components.

Looking at phase changes, the first stage of the second-order filter produces a
phase lag bf 51°. This is slightly less than that produced by the first-order filter.
But the overall effect of the second-order filter is a lag of 106°. Summing up, the
second-order filter has greater attenuation and bigger phase lag at 1 kHz than the
first-order filter. But the action of the filter at any particular frequency is not of
primary interest. The essential point about a filter is that it operates over a wide
range of frequencies, and we should study its action over an appropriate range.
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Figure 6.3 A cascaded low-pass filter has a roll-off of —12 dB per octave

To do this, we use a Bode plot (Fig. 6.3). This demonstrates that the second-
order filter is an improvement on the first-order filter in that the rate of fall in
the transition region is doubled to —12dB per octave or slightly more, due to
the cascading effect. This effect also causes the —3 dB point to occur at a lower
frequency.

When the resistors and capacitors of Fig. 6.1 are exchanged, the filter becomes
a second-order high-pass filter. Again there is greater attenuation than in a first-

order filter but the cut-off is sharper. It is also possible to cascade resistor/inductor
filters with similar results.

Capacitor/inductor filters

When a capacitor and an inductor are present in the same filter, as in Fig. 6.4,
there are two reactive devices responding in opposite ways to changes of

L
c ‘28 a & *=0
100 mH
Vm c lvl:lll
220 pF .
o . -0

hlre 6.4  This low-pass filter comprises two devices which have opposite reactions to

Ilency
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86 Secong-order passive filters ; !

frequency. The inductor blocks high frequencies and passes low frequencies. The

capacitor passes high frequencies to the 0'V line but blocks low frequencies. Thejr 17800 r—
combined effect in this circuit is to produce a low-pass filter with enhanced action, 150.00 -
The Bode plot produces some surprises (Fig. 6.5). Far from there being a gentle
‘knee’ on the frequency Tesponse curve, there is a very sharp spike at 33.9 Hz, L
To gain a full appreciation of this, we replot the response with actual voltages 100.00 |-
on the y-axis (Fig. 6.6). Output amplitude remains close to input amplitude 2v) g
at low frequencies, but rapidly rises to 181V at 33.9Hz. Then it falls very 75.000 |-
steeply with increasing frequency, Phase shows similarly striking behaviour. A
low frequencies, the phase angle is 0°, but at 33.9Hz, it swings very rapidly Ll
to —180°, 25.000 |-

A clue to this behaviour may be understood by calculating the reactances a

i = = itor: 0.0000 I 1 1 T T Y o

33.9Hz. First of all, w = 27 f = 213 rad/s. For the capacitor I _{1’;_‘&: 10000 30000 10,000 0500 1o e o

Xc=-j/(213 x 220 x 10~6) = —j21.3 hertz

- Dw
. ) - % Figure 6.6  Plotting Fig. 6.5 on linear scales makes the filter's amplitude response seem
For the inductor: et

A €Ven more impressive
XL=jx213x100x 1073 = j21.3 *

: ing u
When the frequency is 33.9 Hz, the inductances are equal in magnitude, but Keeping up?

opposite in dircction. Because of the sign of j, pds across them are exactly 180° 1. In a capacitor/inductor filter there is a peak in the response at 500 Hz. What
out of phase. At any instant the pds are of opposite signs and the total pd across

can we say about the capacitor and inductor?
the capacitor and inductor is zero. In this state, the circuit is resonant. The

. : 2. In what ways does the frequenc response of two cascaded first-order low- ass
frequency at which this occurs is known as the resonant frequency. filters diﬂ'e!: S it ofi ﬁrst)jo rdf::)ﬁlter? P

i | 3 180 Resonance
-10.00 n 3 140
—20.00 ,\ E ;% The effect is like that of pushing a child on a swing. A swing, being
S 3000 / \ 1 80 a pendulum, has a natural frequency of swinging. Even if we push
D 40,00 = = = e = =~ 4 60 the swing gently every time the child is swinging away from us, we
" _50.00 N N E gg g supply a little energy to the swing at each push. This energy, though
8 ~60.00 N 4 o 8 small, is greater than that lost from the swing by air resistance and
4 -70.00 N E :428 friction. Gradually the amount of energy in the system increases and
é B0 ) N % 3 -60 the child swings higher and higher. The swing resonates at its natural
g Jesssend N E_;gg frequency. If we push at a different rate, there are times when we
A ! \\ J-120 are adding energy to the s_wing, but there are also times when we
g 10.0 : a3 :;gg push the swing as it is coming towards us. Then we are reducing the
. 1 ] 1 J ] 1 L energy of the swing and it swings less high; there is no resonance.
1.0000 3.0000 10.000 30-00(’“9';00-00 30000  1.000 k 3.000 k A similar effect is noticed in a room, such as a bathroom, when the
walls, floor, ceilings and furnishings are reflective of sound. There
Figure 6.5 The filter of Fig. 6.4 has a dramatic response to frequency, both in the ampli- are several frequencies at which the air of the room vibrates. If we
tude and the phase of the output signal

5 sing a note at one of these frequencies, we supply energy to the air
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in phase with its natural vibrations. The amplitude of the vibrations
builds up and the air ‘booms’ loudly at that frequency.

In the filter, a small amount of energy supplied from the input
source at each cycle soon builds up to a large oscillating pd.

At resonance we have:

or s

Here we are concerned only with the magnitudes of the signals, so we can omit
j. Rearranging this equation:

office -L‘E
= 1
= - /o)
1
= f = 5@

Substituting C = 220uF and L = 100mH into this equation yields the result
f = 33.9 Hz, which confirms the value in Fig. 6.5. At this frequency the current
drawn ffom the source is limited only by the output impedance of the source, the
resistances of the inductor coil and the leads of the capacitor. Such impedance is
likely to be low; call it R. The current to the capacitor is i = vin/R. The current
i is the same through both capacitor and inductor and we are interested in the
pd across the capacitor, for that is where we are acquiring the output from the
filter. If the current through the capacitor is i and its impedance at resonance is
X¢y, the pd across it is:

Vout = iXcr = Via/R - Xcr = Vin/(&xCR)
where @, is the value of @ at the resonant frequency. The gain of the filter is:

At the resonant frequency and for a given value of C, the gain of the filter
is inversely proportional to R. If R is small enough, the gain is more than 1.
In other words, Veu is greater than Via. This is why it is possible to obtain an
output amplitude of 181V when the input amplitude is only 2V, as in Fig. 6.6.
Remember that Fig. 6.6 shows only the amplitude of the pd signal across the
capacitor. At any instant the pd across the inductor is equal and opposite to the
pd across the capacitor, S0 this large pd never appears across the pd generator.

w
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The combination of capacitor and inductor has introduced a new feature into
the filter. This is the possibility of producing resonance at a required frequency
and so sharpening the knee of the frequency response curve. In Fig. 6.6 the
knee 15 Tar t00 sharp to make a satisfactory filter but, by increasing the value

“of R, we_can Tashion the knee to the shape we require. Since w; is fixed by

the value of L and C and since C itself is fixed, the gain can be controlled

selecting a suitable value for a resistor placed in series with the inductor
(Fig. 6.7). In Fig, 6.8 the curves show the frequency response with resistors of
different values. From top to bottom, the values of R are 0, 20, 40, 60, 80 and
100 ohms. The resistor introduces damping into the system. There is virtually
go damping when R = 0, and we say that the filter is underdamped. When

R L
O~ B iy | FYYY & =)
Vin C Vou
o- b

Figure 6.7 Adding a resistor to the inductor/capacitor filter of Fig. 6.4 allows critical
damping to be achieved

0.0000 [~ o

-10.00 180
=200 ER™
§ -30.00 —; =0
8 '5 90
§ TH00E Recs 4 %
g -50.00 = 30 -?r
e q.< 4
g -60.00} 4 a0

~70.00}- 1%
s . - -9

-80.00 |- H-120

-90.00}- : ¢ 2128

-100.0 I 1 ) |

1.0000 10.000 100.00 1.000 k
hetz

Figure 6.8 These curves illustrate the effects of sweeping the damping resistor of Fig. 6.7
through a range of values from 0 §2 (tap curves) to 100 £2 in steps of 20 2

il
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R =100Q the knee of the curve is no more prominent than in an ordinary
Tesistor/capacitor filter (Fig. 5.15(a)) and the beneficial effect of the inductor ig
lost. The filter is overdamped. Somewhere between these extremes there is g
value for R which produces critical damping. Judging from the figure, it looks
as if the filter is slightly underdamped when R = 20, and is overdamped whep,
R = 409Q. Further experimenting within this range shows that R = 30 results
in a curve that remains level in the lower frequencies, then drops sharply, but
without a hump. The filter is critically damped. Measurement on the transition
region of the curve reveals that the —3 dB point is at 34 Hz and that amplitude
falls by 12dB per octave, which is typical of second-order filters.

The combination of capacitor and inductor, together with a resistor for the
control of damping, produces a filter with a sharper knee and a more rapid roll-
off in the transition region. The same principles can be applied to filters of other
designs. We can build high-pass filters, and can cascade several low-pass filters or
several high-pass filters for even sharper cut-off and steeper roll-off (though with
considerable attenuation). In the case of cascaded filters containing inductors, the
chief limitation is the physical size (and often weight) of the inductors required.

It is only at high frequencies that capacitor/inductor filters are really practicable
(see p. 82).

Keeping up?

3. What is the resonant frequency of a capacitor/inductor low-pass filter in which
C =22pF and L = 15uH?

4. What is the reason for including a series resistor in a capacitor/inductor filter?

Band-pass fliters

The idea of cascading two filters makes it possible to build a band-pass filter.
Basically, all we need to do is to cascade a low-pass filter (for example,
Fig. 5.15(a)) with a high-pass filter (Fig. 5.15(b)). If the cut-off points are chosen
correctly, the combination cuts out low frequencies and high frequencies, leaving
a pass-band of intermediate frequencies. There are several ways in which this
can be done, with combinations of resistors, capacitors and inductors in various
configurations. The same principles apply to all, so we shall study only one, which
is similar to the low-pass filter we have just studied. It has an inductor, capacitor
and resistor in series as in Fig. 6.7, but now the output is the pd across the
resistor (Fig. 6.9). Giving the inductor and capacitor the same values as before,
and making R = 30 Q2 to produce critical damping, the frequency response shows
a peak at 33.9Hz (Fig. 6.10). In a band-pass filter, this is known as the centre
frequency. The roll-off is +6 dB per decade on the low-fmquency side and —6dB
per decade on the high-frequency side. Second-order low-pass and high-pass
filters normally have a roll-off of —12dB per octave but in a band-pass filter the

 Laceow b
'f—:l"b:::\.ﬁ R-:,&On'

A B
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O

Figure 6.9 An inductor and capacitor in series produce a band-pass filter. The resistor
acts to dampen the response at the resonant Jrequency °
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Figure 6.10 A Bode plot of the action of the band-pass filter of Fig. 6.9. The 3 dB line
cuts the amplitude curve at 19.4Hz and 59.1 Hz, giving a bandwidih of 39.7 Hz

roll-off is distributed equally on both sides
cach side,

The two important characterist
Selectivity. By .deﬁnition, the bandwidth is the difference between th

of the centre frequency, —6dB on

8auges the extent of the pass-band. In Fig. 6.10 the —3 dB ints are at 59.1 Hz
nd 19.4 Hz, so the bandwidth is given by: P -
BW =591-194= 39.7Hz

The size of ti}e bandwidth does not indicate how effective the filter is in any
&iven application. A bandwidth of 39.7Hz is very narrow if the frequencies we

il
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are dealing with are of the order of hundreds of kilohertz. We would rank such
performance as highly selective. But with frequencies of only a hundred or so
hertz, a pass-band of 9.7 Hz is relatively wide and the filter is considered to be
unselective. :

The selectivity of the filter, O, relates bandwidth to the resonant frequency fr
of the filter:

.
BW
For example, in the filter of Fig. 6.9, BW = 39.7 and f, = 339, and:
339
0= %7 = 0.85

Since Q is a ratio it has no units. Q appears in various guises in electronic circuits,
often being referred to a8 the quality factor.

Although the response curve of Fig. 6.10 looks symmetrical, this is because
it is plotted on a logarithmic frequency scale. With actual values, the resonant
frequency does not lic half-way between the lower and upper —3dB points. In
other words f is not the arithmetic mean of the lower and upper points. Instcad,
it is the geometric mean:

fo = /(19.4 x 59.1) = 33.9Hz

Keeping up?

5. The upper and lower —~3dB points of 2 band-pass filter are 2420kHz and
2300 kHz. What are its bandwidth and its selectivity or quality factor?

6. A band-pass filter has a bandwidth of 250Hz and a Q of 15. What are its
resonant frequency and its upper and lower —3dB points?

Band-stop filter

When a capacitor and inductor are wired in series, they act as a band-pass filter.
When wired in parallel (Fig. 6.11) the capacitor passes high frequencies and the
inductor passes low frequencies. All frequencies are passed except those which
are too low to pass through the capacitor and too high w0 pass through the
inductor. In this way we obtain a filter which passes all frequencies except those
within an intermediate band. This is a band-stop filter, sometimes known as 3
notch filter if the band is narrow. A typical response is illustrated in Fig. 6.12,
using components of the same values as used in the previous band-pass filter.
The output amplitude is constant at 2V over most of the frequency range bu!
plunges sharply 0 reach a minimum value of —25dB at the resonant frequency
33.9 Hz. Calculations of bandwidth and Q are the same for this filter as for 3
band-pass filter.

Second-order passive filters Y3
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Figure 6.11  This band-stop filter is based on a capacitor and inductor connected in
parallel
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Figure 6.12 The Bode plot of the filter in Fi
; 2. 6.11. If C = 220uF, L =100 nd
R = 30 2 the curve dips sharply to —25 dB at 33.9Hz e

us:dh; band-stop oombixfation of a capacitor and inductor in series may also be
- or band-pass ‘ﬁlter}ng. As an example, take the filter of Fig. 6.13. This has
0 band_-pass sections in cascade. Between these two sections there is a band-
: :’Orhsecmn: Very high and very low frequencies are passed through this section
e OV line, thus enhancing the action of the two band-pass filters. There are

many other filter designs based on this principle.
&ol::llters operating at frequencies of 2 few hundred megahertz may be built
pies capacitors of a f_ew picofarads and inductors of a few tens of nanohenries.
ough their capacitances and inductances are sO small, the high frequency

il
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Figure 6.13 The series-connected capacitors and inductors acr as band-pass filters. Thei,
action is enhanced by the parallel-connected capacitor and inductor which constitute

a band-siop filter, which prevents intermediate frequencies Jrom passing through 1,
the OV line

play an unduly large part in affecting circuit behaviour, Instead of inductors ang

microstrip. A microstrip is a strip of conductor
coated on a board of insulating material, with a continuous coating of conductor

(the ground plane) on the reverse side. Iy is similar in appearance to one of

VII'\ ——

- Vnu[

Figure 6.14 The action of this seventh-order low-pass capacitorfinductor Jfilter can be
duplicated ar ultra-high frequency by a length of microstrip shaped as shown

v

very low magnitude. In Fig.

equivalent to that of a low-pass inductor/capacitor
capacitances are determined
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6.14, the shape of the microstrip produces an cffect

filter. The inductances and
by the dimensions of the fhicrostrip. In this way we

can produce filters with the very small inductances and Capacitances required for

filtering at ultra-high frequencies.

Summary

When a passive filter includes IWo or more
to design band-pass and band-stop filters in addition to

and its selectivity, or quality factor. The main disadvantage

filters is that the signal is severely attenuated.

Test yourself

L. Identify the filter types in Fig. 6.15(a) and (b).

2. Given that the capacitors in Fig. 6.15(a) are 47nF
needed to produce resonance at 25kHz?

3. What roll-off would You expect in the filter of Fig. 6.

4. Describe the behaviour of (a) capacitors and
low and high frequency are passed through them,

A4 5 o W

Q__

reactive devices, it makes it possible

low-pass and high-pass

of multi-stage passive

» What inductances are

15(b)?

(b) indfictors when signals of

o
LT

(@

Figure 6.15  These filter designs are the subjects of question 1

1

y

(b)
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