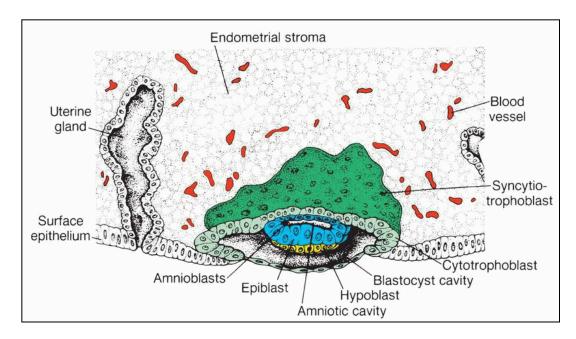
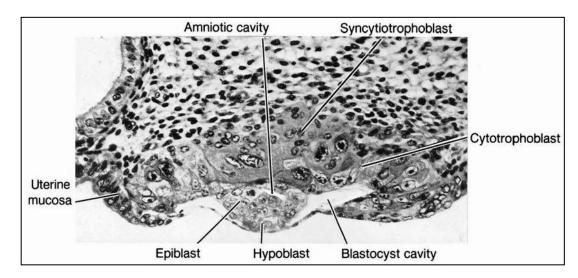
Chapter 4 Second week of development bilaminar germ disk

TROPHOBLAST:

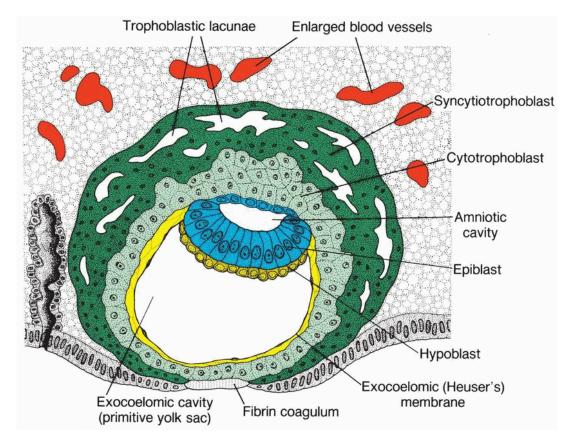

- **1. Cytotrophoblast**: inner, mononucleated cells
- 2. Syncytiotrophoblast: outer multinucleated zone

Cells in the cytotrophoblast divide and migrate into the syncytiotrophoblast.


EMBRYOBLAST:

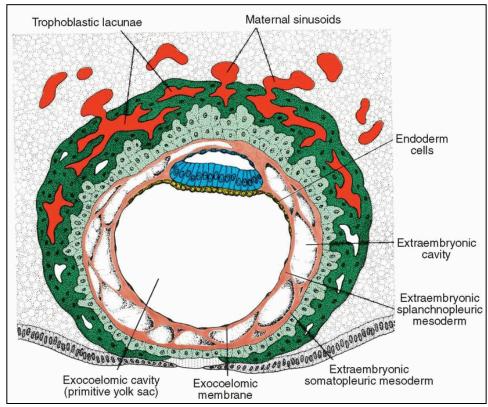
- 1. Epiblast
- 2. Hypoblast
- **1. AMNIOTIC CAVITY**: a small cavity within the epiblast .
- 2. BLASTOCYST CAVITY

8-day human blastocyst

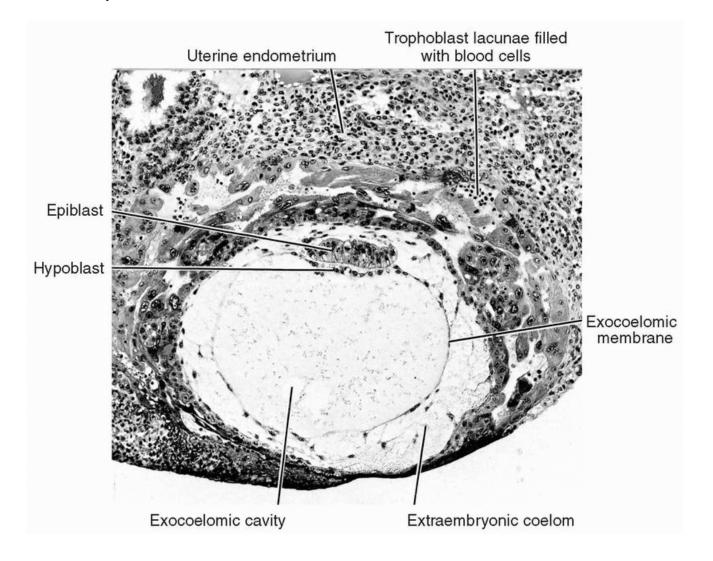


Section of a 7.5-day human blastocyst

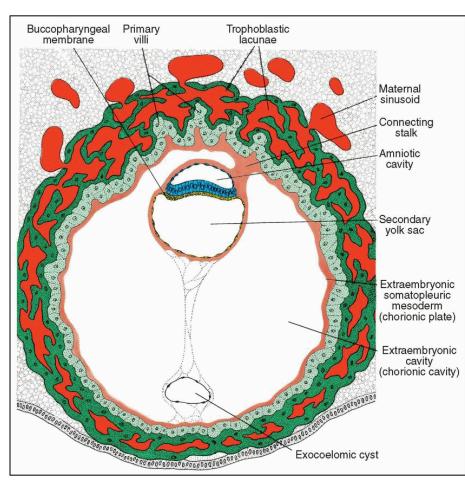
DAY 9 - LACUNAR STAGE


- Syncytiotrophoblast: lacunae.
- **Primitive yolk sac (Exocoelomic cavity):** Exocoelomic membrane (Hauser's membrane): originate from hypoblast, line cytotrophoblast.
- The bilaminar disc :epiblast cells & hypoblast cells.
- **Endometrium:** the penetration defect in the surface epithelium is closed by a fibrin coagulum.

Human blastocyst at day 9

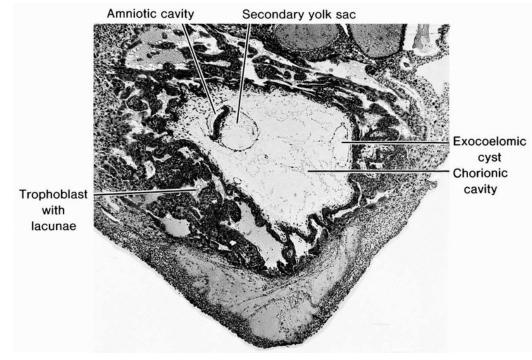

Day 11 and 12

- Surface epithelium: completely closed.
- Trophoblastic lacunae: connection with maternal sinusoids → uteroplacental circulation.
- Extraembryonic mesoderm (originates from yolk sac), proliferates and fills the space between the exocoelomic (yolk sac) cavity and the inner aspect of the cytotrophoblast.
- The extraembryonic coelom (chorionic cavity) forms within the extraembryonic mesoderm.
- The extraembryonic somatopleuric mesoderm: covering the cytotrophoblast and amnion.
- The extraembryonic splanchnopleuric mesoderm: covering the yolk sac.
- The decidua reaction: endometrial cells are loaded with glycogen and lipids; intercellular spaces are filled with extra vasate, and the tissue is



Human blastocyst at DAY 12

Fully implanted 12-day human blastocyst (_100). Note maternal blood cells in the lacunae, the exocoelomic membrane lining the primitive yolk sac, and the hypoblast and epiblast .


- Defect of endometrium healed.
- Increased blood flow into lacunar spaces → Bleeding at implored site → confused with menstrual bleeding (at day 28) → inacuracy of EDD.
- Primary villi: cytotrophoblast columns covered by syncytiotrophoblast.
- Secondary (definitive) yolk sac (originate from hypoblast cells) forms within exocoelomoic cavity.
- Exocoelomic cysts: remnants of exocoelomic cavity.
- Chorionic (extraembryonic) cavity : enlarged.
- Chorionic plate: mesoderm lining chorionic cavity (and cytotrophoblast).
- The extraembryonic somatopleuric mesoderm: lining of the cytotrophoblast and amnion.
- The extraembryonic splanchnopleuric mesoderm: mesoderm covering the yolk sac.
- The only place where extraembryonic mesoderm traverses the chorionic cavity is in the connecting stalk (that will become the umbilical cord with development of blood vessels).

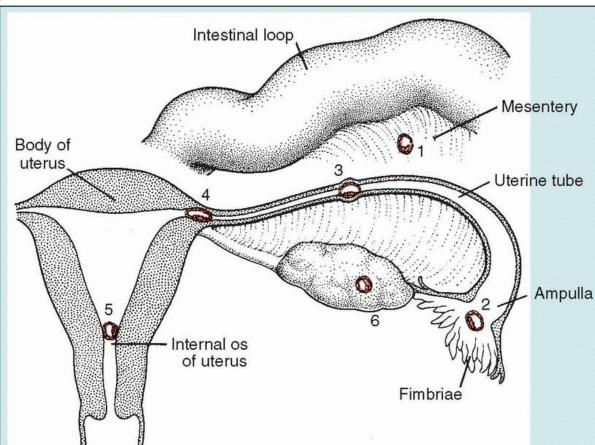
Human blastocyst at Day 13

<u>DAY 13</u>

Section through the implantation site of a 13-day embryo. Note the amniotic cavity, yolk sac, and exocoelomic cyst in the chorionic cavity. Most of the lacunae are filled with blood .

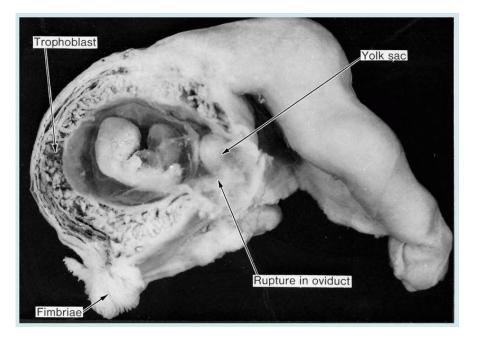
CLINICAL CORRELATES

hCG

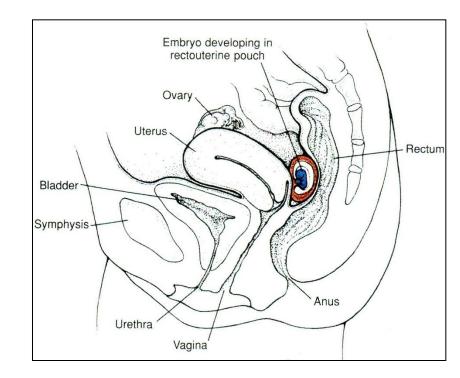

- The syncytiotrophoblast is responsible for hormone production including human chorionic gonadotropin (hCG).
- By the end of the second week, quantities of this hormone are sufficient to be detected by radioimmunoassays, which serve as the basis for **pregnancy testing**.

Abnormal implantation sites

- Normally, the human blastocyst implants along the anterior or posterior wall of the body of the uterus.
- Placenta previa: blastocyst implants close to the internal os of the cervix→ later in development the placenta bridges the opening→ severe, even lifethreatening bleeding in the second part of pregnancy and during delivery


EXTRAUTERINE (ECTOPIC) PREGNANCY

- Rectouterine cavity [pouch of Douglas]
- Ampullary region of uterine tube
- Tubal implantation
- Ovarian implantation.



Tubal pregnancy

Embryo is approximately 2 months old and is about to escape through a rupture in the tubal wall.

Midline section of bladder, uterus, and rectum shows an abdominal pregnancy in the rectouterine (Douglas) pouch.

• In most ectopic pregnancies the embryo dies about the second month of gestation and may result in sever hemorrhaging in the mother.

Hydatidiform mole

- Trophoblast develops but no embryonic tissue is present.
- Moles secrete high levels of human chorionic gonadotropin, **hCG**, and may produce benign or malignant (invasive mole, choriocarcinoma) tumors.
- Genetic analysis of hydatidiform moles :
- 1. Although cells of moles are diploid, the **entire genome is paternal**. Thus, most moles arise from fertilization of an oocyte lacking a nucleus followed by duplication of the male chromosomes to restore the diploid number.
- 2. Paternal genes regulate most of the development of the trophoblast, because in moles this tissue differentiates even in the absence of a female pronucleus.
- 3. Genomic imprinting.

WEEK OF TWOS

- The second week of development is the week of twos:
- **The trophoblast**: the cytotrophoblast and syncytiotrophoblast.
- **The embryoblast**: the epiblast and hypoblast.
- The extraembryonic **mesoderm**: the **somatopleure** and **splanchnopleure**.
- Two cavities, the **amniotic** and **yolk sac cavities**.