background image

 

 

Industrial Engineering (IE) 

Dr. Khallel Ibrahim Mahmoud 

 

 

 

University of Technology 

Electro-mechanical Engineering Dept. 

 

 

 

 

 Introduction 
   Production and 

Productivity 

   Break Even Analysis(B.E) 

 

Lec.N

o(1) 

2011

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

 

Introduction: 

1.1 Concept of Industrial Engineering (IE)

Industrial Engineering is concerned with the design, 
Improvement, and installation of integrated system of men, 
material, and machines for the benefit of mankind .It draws 
upon specialized knowledge and skills in the mathematical 
and physical sciences together with the principles and 
methods of engineering analysis and design to specify, 
predict and evaluate the results to be obtained from such 
systems. 

1.2 IE Objectives

The basic objectives of Industrial Engineering are: 

1- Improving operating methods and controlling costs. 

2- Reducing these costs through cost reduction programs. 

The aim of IE department is to provide specialized services 
to production departments, such as methods improvement, 
time study, Job evaluation and merit rating and to head new 
projects if required. 

1.3 IE Activities  

Basic activities of industrial engineering as stated to 
American Institute of industrial engineering as follows: 

1- Processes (and methods) selection. 

2- Selection and design of tools and equipment. 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

3- Facilitates planning, plant location, materials handling and 
storage facilities. 

4- System design for planning and control of production 
inventory, quality, and plant maintenance and distribution. 

5- Cost analysis and control. 

6- Develop time standards and performance standards. 

7- Value engineering and analysis system design and install. 

8- Mathematical tools and statistical analysis technia. 

9- Performance evaluation. 

10- Project feasibility studies. 

1.4 IE Approach

Industrial engineering department uses scientific 
approaching identifying and solving the problems .It collects 
factual information regarding the problem analysis the 
problem, prepares alternative solutions taken into account all 
the internal and external constraints, selects the best 
solution for implementation. 

This stage is called problem identification .It consists of the 
following steps: 

1) Collect all details about the job, using standard recording 
techniques like charts, diagrams, models and templates. 

2) Recorded facts are subjected to critical examination using 
a series of questions. 

3) Find alternative solutions for the problem. 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

4) Evaluate the alternatives and find the best solution. 

Next the industrial engineering department makes 
recommendation for the implementation of the best 
alternatives so that the

   

1.5 Techniques of Industrial Engineering  

The main aim of tools and techniques of industrial 
engineering is to improve the productivity of the organization 
by optimum utilization of organizations resources: men, 
materials, and machines. The major tools and techniques 
used in industrial engineering are: 

1) Production planning and control. 

2) Inventory control. 

3) Job evaluation. 

4) Facilitates planning and material handling. 

5) System analysis. 

6) Linear programming. 

7) Simulation. 

8) Network analysis (PERT, CPM). 

9) Queuing models. 

10) Assignment. 

11) Sequencing and transportation models. 

12) Games theory and dynamic programming. 

13) Group technology. 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

14) Statistical techniques. 

15) Quality control. 

16) 

17) Decision making theory. 

18) Replacement models. 

19) Assembly line balancing. 

20) MRP-JIT-ISO-TQM.etc. 

1.6   The six standards phases of IE:-

1- Formulating the problem. 

2- Constructing a mathematical model to represent the 
system under study. 

3- Deriving a solution from the model. 

4- Testing the model and the solution derived from it. 

5- Establishing controls over the solution. 

6- Putting the solution to work: Implementation. 

2- Productivity 

The standard of living of industrialized nations depends upon 
the economic efficiency of all its industrial enterprise great or 
small. 

 

2.1 Introduction/Definition of productivity

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

Productivity can be defined as the ratio of output in a period 
of time to the input in the same period time. Productivity can 
thus be measured as: 

Productivity = 

 

In simple terms productivity is the quantitative relationship 
between what we produce (output) and the resources 
(inputs) which we used. 

2.2 Productivity and production: 

Production is the process of converting the raw materials 
into finished products by performing a set of manufacturing 
operations in a predetermined sequence. Production refers 
to absolute output. Thus, if the input increases the output will 
normally increase in the same proportion. The productivity 
remains unchanged if however the output increases with the 
input of the resources, the productivity increases production 
means the output in terms of money without any regard to 
the input of resources , which productivity is a human 
attitude to produce more and more with less input of 
resources. There are six cases to increase the productivity 
as shown 

  

output + 

c  ++% -% 

input -  c  -  +% --% 

 

2.3 Types of production systems: 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

A production system consists of plant facilitates, equipment 
and operating methods arranged in a systematic order. This 
arrangement depends upon the type of product and the 
strategy that a company employs to serve its customers. 
There are two major types of production systems: 

i) Make to stock production. 

ii) Make to order production. 

In make to stock production the products are manufactured 
kept as ready stock and supplies to customers as orders are  

operatio

input

output

system 

 Examples of such items are nuts, bolts, bearings, screws, 
etc. 

In make to order production the products are made only  

Types of production 

The production or manufacturing systems are classified as 
follows: 

a) Job type production. 

b) Batch production. 

c) Continuous or mass production. 

a) Job type production. 

It is characterized by high variety, low volume production, 
producing one or a few products specially designed and 
produced according to customer specifications like aircraft, 
ships, special train. 

b) Batch production. 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

Here the product similar in design but different in size and 
capacities are produced in batches of one size and capacity 
at one time, at regular interval and stocked at warehouses a 
waiting sales. Examples as pumps, motor etc, of different 
capacities and types manufactured in batches. 

c) Mass (Repetitive) production. 

This production is characterized by high volume low variety 
in this system several standard products are produced in 
large quantity and stocked in warehouse awaiting dispatch 
examples of such production, nuts bearings, t-shirts, etc. 

The following fig. shows volume variety relation for different 
types of manufacturing systems. 

 

 

 

 

 

 

         Low                Production volume               
High 

Job type 

Batch production 

Mass 

Production 

High 

Variet

Low 

After this brief introduction to types of production system and 
productivity let us discuss how the productivity measured 
and improved. 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

2.4 

Measurement of productivity

Productivity measures: 

There are three major types of productivity measures as 
listed below: 

1- Partial productivity 

 

 

 

2- Total factor productivity 

It is the ratio of net output to the sum of associate ….. 

 

3- Total productivity: 

 

Tangible means measurable for total tangible input =value of 
human, material, capital, energy and other inputs used. 

Man power                  material 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

                                                                                             

              Machines 

5- Factors affecting productivity: 

1. Raw material, its nature and quality. 

2. Utilization of manpower. 

3. Utilization of plant, equipment and machinery. 

4. Basic nature of manufacturing processes employed. 

5. Efficiency of plant. 

6. Volume, capacity, and uniformity of production. 

6- The ways in which the productivity can be increased 
summarized as under: 

1) Increase manpower effectiveness at all levels. 

2) Method improvement. 

3) Improve basic production processes by research and 
development. 

4) Use better production equipment. 

5) Improve / simplify product design and reduce variety. 

6) Better production planning and control

 

2.1 

Productivity Improvement Techniques

10 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

1) Technology based 

a. CAD/CAM/CIMS 

b. Robotics. 

c. Laser technology. 

d. Modern maintenance technology. 

e. Energy technology. 

f. Flexible manufacturing system (FMS). 

 

2) Employee based 

a. Incentives 

b. Promotion 

c. Job design 

d. Quality circle 

3) Material based 

a. Material planning and control 

b. waste elimination 

c. Recycling and reuse of waste materials 

d. Purchasing Logistics 

4) Process based 

a. Method engineering and work simplification 

b. Process design 

11 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

c. Human factors engineering 

5) Product based 

a. Reliability engineering 

b. Product mix and promotion 

c. Value analysis/value engineering. 

6) Management based 

a. Management technique 

b. Communication 

c. Work culture 

d. Motivecation 

e. Promoting group activity

 

 

Questions: 

1. Write short notes on: 

a) Techniques of Industrial engineering     (Ans. 1.5) 

b) Productivity measurement models         (Ans. 2.4) 

2. Define the term productivity. How is it different from 
production? Give examples using your own numb   (Ans. 
2.1, 2.2) 

3. There are six cases to increase the production. Explain in 
brief.    (Ans. 2.2) 

12 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

4. Summarize the ways in which the productivity can be 
increased. (Ans. 2.6) 

5. Discuss the factors that affect productivity. (Ans. 2.5) 

6. Write short notes on productivity improvement techniques. 
(Ans. 2.7) 

3- Break-Even analysis (B-E) 

Break even production ……. 

At which the production cost equals income from sales. By 
this value the company sets profit and below this value 
suffers a loss. 

 

  

 

 

 

 

 

 

Fig. Break-Even Point (B.E.P) 

Cost 

Production 

volume

Revenue 

curve 

Profit 

Loss 

Total 

cost 

Total 

v.cos

F.cos

t

Cost 

curve 

B.E.

P

3.1 Steps in B.E.P 

To construct break-even point, we must know: 

13 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

-  Total fixed expenses at a certain target production. 
-  Total variable cost at the same target production. 
-  Total sales value at the same target production. 

We find that the initially zero production rate, fixed cost will 
remain as it is variable cost will be zero. The company still 
suffers a loss equal to its fixed cost. As production volume 
increases this loss decreases but the break-even point……

 

3.2 Assumptions 

a) All the units remains fixed for any production volume. 

b) Variable cost increase is linear. 

c) Selling prices will remain constant at all levels. 

d) Production and sales quantities are equal. 

3.3 Formulation of linear Break-even model

This will define the minimum quantity that should be 
produced without any loss or profit. 

Notations: 

Let Q: the quantity sold 

b: price (the income per unit) 

R: bQ (Revenue or income) 

F: fixed cost 

v: variable cost per unit 

p: profit 

Tc: total cost = F + vQ 

14 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

P= R-Tc 

Quantity increase in price by making:  

- Better 

product. 

- Advertisement. 
-  New product limited by market price. 

Increase in planned quantity: Increase share of market 
and increase those products with high profit or increase 
share of market with the increase price according to 
quantity of market. 

 

Ref: - M.I.Khan , Industrial Engineering ,2

nd

 

Edition ,2008 

-  Maynard,H.B ,”Industrial Engineering 

Handbook ,new York ,2004 

 

15 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Industrial Engineering 
(IE)

 

Dr. Khallel Ibrahim Mahmoud 

 

 

 

University of Technology 

Electro-mechanical Engineering Dept. 

 

 

 

 

Lec.

N

o

(2) 

 Linear Programming 

Model 

 

2011

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

 

Linear Programming 

LP is a mathematical modeling technique designed to optimize the usage of limited 
resources, such as available materials, labour and machine time. 

The LP model includes three basic elements: 

-  Decision variables that we seek to determine. 
-  Objective (goal) that we aim to optimize. 
-  Constraints that we need to satisfy. 

Steps in formulating LP problems: 

1-  Define the objective. 
2-  Define the decision variables. 
3-  Write the mathematical function for the objective (objective function). 
4-  Write a one- or two- word description of each constraint. 
5-  Write the right – hand side (RHS) of each constraint, including the unit of 

measure. 

6-  Write ≤, = or ≥ for each constraint. 
7-  Write all the decision variables on the left-hand side of each constraint. 
8-  Write the cofficient  for each decision variable in each constraint. 

Formulation of linear programming model (LP) 

The general form of each model will be: 

Z= c

1

x

1

+ c

2

x

2

+……. c

k

x

Subject to: 

a

11

x

1

+ a

12

x

2

+……. a

1k

x

k

  b

1

a

21

x

1

+ a

22

x

2

+……. a

2k

x

k

  b

2

 

a

m1

x

1

+ a

m2

x

2

+……. a

mk

x

k

  b


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

 

where: C

j

 is a known (cost or profit) coefficient  X

j

X

j

 is an  unknown variable. 

a

ij

 is a known constant. 

b

j

 is a known constant. 

≤, = or ≥ for each constraint. 

Example: A manager wants to know many units of each product to produce on a 
daily basis in order to achieve the highest contribution to profit. Production 
requirement for the products are shown in the following table 

Production Departments 

 I II 

Processing time required 

for the first product 

(Hours) 

4 2 

Processing time required 

for the second product 

(Hours) 

2 4 

Production capacity 

available (Hours) 

60 48 

The profit is £8 for each unit of the first product and £6 for each unit of the second 
product 

Solution: 

1-  Define the objective. The problem is a maximum problem. 
2-  Define the decision variables. We need to determine the number of units to 

be produced. 

Let: X

i

 be the number of units of type i (i= 1,2) 

Therefore : X

1

= number of units of the first product. 

X

2

= number of units of the second product. 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

X

1,

 X

2

 are the decision variables, when we know their values the problem will be 

solved. 

3-  The objective function for the LP is:  

Maximize Z = 8X

1

+6X

2

This means the profit Z depend on how many units (X

1,

 X

2

) are manufactured. Z= 

c

1

x

1

+ c

2

x

2

 where c

1

, c

2

 are the respective profits for each type of product. c

1

=£8    

c

2

=£6    and     Z = 8X

1

+6X

2

  and we should select values of the decision variables 

X

1,

 X

2

 that result in the maximum value of Z. 

4-  There are two constraints : 

Maximum production capacity for Dep.I ≤ 60 hours 

Maximum production capacity for Dep.II ≤ 48 hours 

( Note: because all the constraints in this problem are maximum capacity , all 
constraints are the ≤ type) 

Now we have to write the coefficient for each decision variable in each constraint. 

The two constraints can be expressed as: 

4X

1

+2X

2

 ≤ 60                 constraint Dep.I 

2X

1

+4X

2

 ≤ 48                 constraint Dep.II 

Consider the first constraint ( Dep.I) what is the coefficient of X

1

 in this constraint? 

It is the processing time (Hours) required per unit of X

1

. In other word, it is the 

processing time used in manufacturing each unit, first product, or 2 hours. 
Similarly, the coefficient of X

2

 in this first constraint is 1 hour. 

Therefore the two constraints can be expressed as : 

4X

1

+2X

2

 ≤ 60 

2X

1

+4X

2

 ≤ 48 

And the no. negatively restriction is all X

j

≥ 0   ,     X

1,

 X

2

 ≥ 0 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

 

 

Graphical LP solution: 

Steps in the graphical method  

1-  Formulate the objective and constraint functions. 
2-  Draw a graph with one variable on the horizontal axis and one on the 

vertical axis. 

3-  Plot each of the constraints as if they were lines or equlities. 
4-  Outline the feasible solution space. 
5-  Circle the potential solution points .These are the intersections of the 

constraints or axes on the inner (minimization) or outer (maximization) 
perimeter of the feasible solution space. 

6-  Substitute each of the potential solution point values of the two decision 

variables into the objective function and solve for Z. 

7-  Select the solution point that optimizes Z. 

Solution of maximization model 

To demonstrate the steps of the graphical solution of a maximization problem we 
use the previous example: 

Z = 8X

1

+6X

Subject to: 

4X

1

+2X

2

 ≤ 60 

2X

1

+4X

2

 ≤ 48 

X

1

 ≥ 0     ,      X

2

 ≥ 0 

Solution:  

1-  Plot the constraints (shown in the following figure) change constraints to 

equalities: 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

4X

1

+2X

2

 ≤ 60                    4X

1

+2X

2

 = 60    

2X

1

+4X

2

 ≤ 48                    2X

1

+4X

2

 = 48 

For each constraint ( set X

1

=0 and solve for X

2

 , then set X

2

=0 and solve for X

1

the graph the constraint as if it were an equality  

4X

1

+2X

2

 = 60                     X

1

=15    X

2

=0 

                                            X

1

=0      X

2

=30 

2X

1

+4X

2

 = 48                     X

1

=24    X

2

=0 

                                            X

1

=0      X

2

=12 

2-  Outline the feasible solution space the values of X

1

 and X

2

 at points M,A,B 

and C are four potential solutions to problem. 

Note: point B can be determined as follow: 

             4X

1

+2X

2

 = 60    

    (2X)  2X

1

+4X

2

 = 48 

                  4X

2

+2X

2

 = 60    

                 4X

2

+8X

2

 = 96    

                    6X

2

=36 

                   X

2

=36/6 = 6 

Then: 4X

1

+2X

2

 = 60   

          4X

1

+2(6) = 60  

           4X

1

 = 48 

           X

1

= 48/4 = 12 

Points X

1

X

2

M 0  0 

Z=8(0)+6(0)=0 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

A 15  0 

Z=8(15)+6(0)=120

B 12 16 

Z=8(12)+6(6)=132

C 0 12 

Z=8(0)+6(12)=72 

To maximize Z, the optimal solution is point B, where X

1

=12 and X

2

=6 and 

Z=£132 profit. 

 

X

1

A

X

Feasible 

solution space 

4X

1

+2X

2

 ≤ 60 

2X

1

+4X

2

 ≤ 48 

 

 

 

C

 

 

 

 

 

Minimization case: 

Consider the following LP problem: 

Min Z = 3X

1

+8X

2

Subject to: 

X

1

≤ 80 

X

2

≥ 60 

X

1

+ X

2

=200 

X

1

, X2 ≥ 0 

Solved problem:  X

1

=80    X

2

=60 

                                  X

1

=0      X

2

=200 

                                 X

1

=200      X

1

=0 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

B/ X

1

+ X

2

=200 

X

1

=80 

Then X

2

=200-80 

             =120 

Point X

1

X

2

A 0 200 

3(0)+8(200)=1600 

B 80 120 

3(80)+8(120)=1200

 

Min Z=1200 

X

1

=80        X

2

=120 

 

X

2

≥60 

X

20

16

12

40 

40 

80 

80 

12

16

X

X

1

≤80 

X

1

+ X

2

=200 

B

20

 

 

 

 

 

 

 

 

Special cases in LP 

Five special cases and difficulties arise at times when using the graphical approach 
to solve LP problems: 

1) 

Infeasibility: infeasibility is a condition that arises when 

there is no solution to LP problem that satisfies all of constraints given. 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

Graphically, it means that no feasible solution region exists- a situation that 
might occur if the problem was formulated with conflicting constraints. 

Let us consider the following three constraints:  X

1

+2X

2

 ≥6    

                                                                            2X

1

+X

2

 ≥8 

                                                                               X

1

 ≥7 

  

X

 

Region satisfying 

3rd constraint 

Region satisfying 

first 2 constraints 

X

 

 

 

 

 

 

 

As seen in the figure there is no feasible solution region for this problem because 
of the presence of conflicting constraints. 

2) 

Unboundedness: 

Sometimes a linear program will not have a finite solution. This means that in a 
maximization problem, for example, one or more solution variables, and the profit, 
can be made infinitely large without violating any constraints. If we try to solve 
such a problem graphically, we will note that the feasible region is open-ended. 

Let us consider a simple example to illustrate the situation. 

Z = 3X

1

+5X

Subject to: X

1

≥ 5 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

X

2

≤ 10 

X

1

+2 X

2

≥10 

X

1

, X2 ≥ 0 

 

 

X

            

X

2

≤10 

Feasible Region  

X

1

≥ 5 

X

1

+2 X

2

≥10 

 

 

15 

 

10 

 

 

 

X

10 

15 

20 

 

As you see, because this is a maximization problem and the feasible region extends 
infinitely the right, there is unboundedness or unbounded solution. 

3) 

Redundancy: The presence of redundant constraints 

occurs in large LP formulations, a redundant  constraint is simply on that 
does not affect the feasible solution region. 

Let us kook at the following example: 

Max Z= X

1

+2X

2

Subject to: X

1

+X

2

≤ 20 

2X

1

+X

2

≤ 30 

X

1

≤ 25 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

X

1

, X2 ≥ 0 

 

 

 

 

 

X

X

1

≤25 

Redundan

Feasibl

X

1

+ X

2

≤20 

2X

1

+ X

2

≤30 

X

 

35 

 

30 

 

 

25 

 

20 

 

15 

 

 

10 

 

 

10 

15 

20 

25 

30 

 

The third constraint, X1≤25 is redundant and unnecessary in the formulation and 
solution of the problem because it has no effect on the feasible region set. 

4)  Alternate Optimal Solutions: 

An LP problem may on occasion, have two or more alternate optimal solutions. 
Graphically, this is the case when the objective function’s isoprofit or isocost 
line runs perfectly parallel to one of the problem’s constraints. 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

Ex: Max Z= 3X

1

+2X

2

Subject to: 6X

1

+4X

2

≤ 24 

X

1

≤ 3 

      X

1

, X2 ≥ 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Isoprofit line for 

12/line segment AB 

B

Optimum solutions consists of all 

combinations of X

1

,X

2

 along the AB 

X

Isoprofit 

line for 8 

X

As you see any point along the line between A and B provides an optimal X

1

 

and X

2

 combination Z=12 

5)  Degenercy: 

Degenercy is a condition that arises when one of the decision variable equal zero. 
Look to the following example: 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

Max Z = 3X

1

+9X

2

Subject to: X

1

+4X

2

≤ 8 

X

1

+2X

2

≤ 4 

      X

1

, X2 ≥ 0 

Solution: X

1

=8    X

2

=2 

                      X

1

=4     X

2

=2 

 

Then: at point A 

X

1

=0    X

2

=2     Max Z=18 

 

 

 

 

 

 

 

 

 

X

B

Problems: 

Q1/ Montana wood products manufacturers two high-quality products, chairs and 
bookshelf units. Its profit is $15 per chair and $21 per bookshelf unit. Next week’s 
production will be constrained by two limited resources, labor and wood. The labor 
available next week is expected to be 920 labor hours, and the amount of wood 
available is expected to be 2400 board feet. Each chair requires 4 labor hours and 8 
board feet of wood. Each bookshelf unit requires 3 labor hours and 12 board feet of 
wood. Management would like to produce at least 100 units of each product. 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

a- 

To maximize total profit, how many chairs and bookshelf 

units should be produced next week? 

b- 

How much profit will result? 

Q2: solve graphically the following linear programming problem: 

Max Z = 60X

1

+40X

2

Subject to: 2X

1

+X

2

≤ 60 

X

1

≤ 25,   X

2

≤ 35 

      X

1

, X2 ≥ 0 

Q3: solve graphically: 

Max Z = 10X

1

+15X

2

Subject to: 2X

1

+X

2

≤ 26 

2X

1

+4X

2

≤ 56 

X

1

-X

2

≥-5 

      X

1

, X2 ≥ 0 

Q4: Consider the following problem and solve graphically: 

Minimize Z = 2X

1

+4X

2

Subject to: X

1

+X

2

≤ 14 

3X

1

+2X

2

≥ 30 

2X

1

+X

2

≤18 

      X

1

, X2 ≥ 0 

Q5: Tellitell Television company operates two assembly lines, line I and line II. 
Each line is used to assemble the components of three types of televisions: colour, 
standard and Economy. The expected daily production on each line is as: 

TV Model 

Line I 

Line II 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

Colour 3 

Standard 1 

Economy 2 

 

The daily running costs for two lines average £6000 for line I and £4000 for line II. 
It is given that the company must produce at least 24 colour, 16 standard, and 48 
economy TV sets for which an order is pending. 

You are required to formulate the above problem as (LP) taking the objective 
function as minimization of total cost. Also determine the number of days that the 
two lines should be run to meet the requirements. 

Q6: Suppose two types of television sets are produced with a profit of 6 units from 
each television of type II. In addition 2 and 3 units of raw materials are needed to 
produce one television of type I and II respectively. And 4 and 2 units of time are 
required to produce one television of type I and II respectively. If 100 units of raw 
materials and 120 units of time are available. How many units of each type of 
television should be produced to maximize profit? 

Q7: A wood product firm uses available time at the end of each week to make 
goods for stocks. Currently two products on the list of items are produced for 
stock: a chopping board and a knife holder. Both items require three operations: 
cutting, gluing, and finishing. 

The manager of the firm has collected the following data on these products: 

Time per unit (minutes) 

Item Profit/unit 

Cutting Gluing Finishing 

Chopping 

board 

$2 1.4  5  12 

Knife 

holder 

$6 0.8 13  3 

 

The manager has also determine that during each week, 56 minutes are available 
for cutting, 650 minutes are available for gluing and 360 minutes are available for 
finishing. 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

a- 

Determine the optimal quantities of decision variables. 

b- 

Which resources are not completely used by your solution? 

How much of each resource is unused? 

Q8: solve the following problem using graphical linear programming. 

Minimize Z = 2X

1

+3X

2

Subject to: 4X

1

+2X

2

≥ 20 

2X

1

+6X

2

≥ 18 

X

1

+2X

2

≤12 

      X

1

, X2 ≥ 0 

Solutions: Lec. No.2 

Q1: Let X

1

: number of chairs to produce next week. 

X

2

: number of bookshelves to produce next week. 

Max Z = 15X

1

+21X

2

Subject to: 4X

1

+3X

2

≤920 …….. (1) 

8X

1

+12X

2

≤ 2400 …….. (2) 

X

1

≥100            X

2

≥100 

      X

1

, X2 ≥ 0 

X

1

=0   X

2

=306.6 

      X

2

=0    X

1

=230 …………….. (1) 

 X

1

=0    X

2

=200 

       X

2

=0     X

1

=300 …………… (2) 

 

Z= 4350  with X

1

=150    X

2

=100 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

 

Point X

1

X

2

A 100 100 

3600 

B 100 

133.3 

4299.3 

C 150 100 

4350 

 

 

 

 

 

50 

10

15

20

25

C

X

30

 

350 

 

300 

 

250 

 

20

 

15

 

 

100 

 

50 

X

 

 

Q2: Max Z = 60X

1

+40X

2

Subject to: 2X

1

+X

2

≤60  

X

1

≤25          X

2

≤35 

      X

1

, X2 ≥ 0 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

X

1

=0   X

2

=306.6 

      X

2

=0    X

1

=30 

Point X

1

X

2

M 0  0  0 

A 0 35 

1400 

B 12.5 35 2150 
C 25 10 

1900 

D 25 0 1500 

B: 2X

1

+X

2

= 60       X

2

=35     X

1

= (60-35)/2 = 12.5 

It is clear that Z equal to 2150 is Maximum at B when X

1

=12.5    X

2

=35. 

 

X

 

X

2

≤35 

X

1

≤25 

C

B

2X

1

+X

2

≤60 

D

X

 

60 

 

50 

 

40 

30 

 

 

 

20 

 

10 

 

10 

15 

20 

25 

30 

 

Q3: Max Z = 10X

1

+15X

2

Subject to: 2X

1

+X

2

≤26 

2X

1

+4X

2

≤ 56 

X

1

-X

≥-5                -X

1

+X

2

 ≤5 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

      X

1

, X2 ≥ 0 

X

1

=-5   X

2

=5 

Point X

1

X

2

M 0 0 0 

A 0 5 75 

B 6 11 

225 

C 8 10 

230 

D 13  0 130 

Hence, Z is Maximum (230) at C. 

 

 

 

12 

12 

16 

16 

18 

20 

X

-8 

-4 

28 

X

24 

2X

1

+4X

2

≤ 56 

C

2X

1

+X

2

≤26 

-X

1

+X

2

 ≤5 

D

20 

 

 

 

 

 

 

 

 

 

24 

28 

 

Q4:  Min Z = 2X

1

+4X

2

Subject to: X

1

+X

2

≤14  

3X

1

+2X

2

≥30 

2X

1

+X

2

≤18 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

      X

1

, X2 ≥ 0 

Point X

1

X

2

A 2 12 52 

B 4 10 48 
C 6 6 36 

 

Thus,  Z is Minimum at point C when X

, X

2

=6  Z=36 . 

 

 

 

 

10 

10 

12 

12 

14 

18 

16 

X

C

X

1

+X

2

≤14 

3X

1

+2X

2

≥30 

2X

1

+X

2

≤18 

14 

 

 

 

 

 

 

 

 

 

 

 

X

 

16 

18 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

Q5: Let X

1

= the number of days the line I is run. 

              X

2

= the number of days the line II is run. 

Min Z = 6000X

1

+4000X

2

Subject to: 3X

1

+X

2

≥24 

                  X

1

+X

2

≥16                  Production Requirement 

                 2X

1

+6X

2

≥48 

      X

1

, X2 ≥ 0 

 

 

Point X

1

X

2

A 0 24 

96000 

B 4 12 

72000 

C 12 4 

88000 

D 24 0 

144000 

 

Thus, to Minimize cost, line I should be run for 4 days and line II for 12 days. 

12 

16 

20 

24 

X

1

+X

2

≥16

 

3X

1

+X

2

≥24

 

28 

X

C

 

 

 

 

 

 

 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

 

2X

1

+6X

2

≥48

 

D

X

 

12 

16 

20 

24 

 

Q6: let X

1

: be the number of units of type I produced. 

X

2

: be the number of units of type II produced. 

Max Z = 6X

1

+4X

2

Subject to: 2X

1

+3X

2

≤100    (raw material time) 

4X

1

+2X

2

≤ 120 

      X

1

, X2 ≥ 0 

The optimum solution at point C (X

1

=20,  X

2

=30) Hence, 20 units of type I and 20 

units of type II should be produced to yield a maximum profit of 
Z=6(20)+4(20)=200 

 

10 

20 

30 

40 

50 

60 

80 

D

70 

X

 

 

 

 

 

 

 

 

 

 

X


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

 

1

2

30 

50 

40 

70 

60 

80 

 

Q7: Let board = X

1

        holder= X

2

Max = 2X

1

+6X

2

Subject to: 1.4X

1

+0.8X

2

≤56 …………… (1) 

5X

1

+13X

2

≤ 650 ………………. (2) 

12X

1

+3X

2

≤ 360 ………………. (3) 

a)  The solution at point A             X

1

=0   X

2

=50 

                                                           Z= 2(0) +6(50) = 300 

b)  Cutting: 56- 0.8(50) = 15 minutes.   (40,0)  (0,70) ………… (1) 

Gluing: 13X50=650   650-650=0     (130,0) (0,50) …………… (2) 

Finishing:  3X50=150   360-150=210 minutes.  (30,0)  (0,120) ………… (3) 

 

X

 

20 

40 

60 

80 

10

120 

140 

 

 

 

 

 

 

 

 

X


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

 

20 

4

60 

10

80 

14

12

16

 

 

Q8: The optimum solution X

1

=4.2   and    X

2

=1.6 

Minimum Z=2(4.2)+3(1.6) = 13.2 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Industrial Engineering 
(IE)

 

Dr. Khallel Ibrahim Mahmoud 

 

 

 

University of Technology 

Electro-mechanical Engineering Dept. 

 

 

 

 

Lec.

N

o

(3) 

 Linear Programming 

Model 

       Simplex Method 

 

2011

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

Simplex Method 

The linear programming situation with two decision variables 
is easy tackled by a graphical method of solution. However 
most practical linear programming problem contain more 
than two decision variables. Graphic representation is 
difficult (three dimensional) and requires more time for the 
determination of an optimal solution. The solution method in 
such cases is the simplex method. The simplex method is an 
iterative procedure that consists of moving from one basic 
feasible solution to another in such a way that the value of 
the objective function does not decrease (in the 
maximization problem). This process continue until an 
optimal solution is reached, if one exist. 

The steps required to solve the problem – maximizing 
are: 

Step 1

: Define the problem in standard form. This indicates 

the construction of a linear programming model. 

Step 2

: convert the inequalities into equation by insert slack 

variables. 

Step 3

: Construct a matrix of the coefficients of these 

equations. 

Step 4

: This step amends the previous feasible solution so 

as to improve the profit. 

The simplex method will be illustrated with the following 
example. 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

 

Example

/ Consider the following LP: 

Maximize Z= 6X

1

+8X

2

Subject to: 

2X

1

+5X

2

≤ 40 

8X

1

+4X

2

≤ 80 

X

1

,X

2

 ≥ 0 

Step 1

/ Conversion of inequalities into equations Add slack 

variables to remove inequalities 

2X

1

+5X

2

 +S

1

 = 40 

8X

1

+4X

2

 + S

2

= 80 

Where S

1

,S

2

 slack variables (surplus) putting  X

1

 =0 and X

2

 

=0 we get 

S

1

 = 40  ,  S

2

= 80 

Max Z =6X

1

+8X

2

 +oS

+ oS

2

Subject to: 

2X

1

+5X

2

 +S

1

 + oS

2

= 40 

8X

1

+4X

2

 + oS

+ S

2

= 80 

 

 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

Step 2/

 Construct the simplex tableau. The standard form 

can be summarized in a compact tableau form as: 

Coefficient 

of OF 

variables 

in basis 

Basic 

variables 

Values of 

basic 

variables 

Coefficient of OF 

variables 

(Cj) 

( Cj) 

(A) 

(q) 

X

1

X

2

S

1

S

2

0 S

1

40 2 

0 S

2

80 8 

 Zj 0 

 Cj-Zj  6 

 

Initial solution:                            X

1

 = 0 

X

2

 = 0 

S

1

 = 40 

S

2

 = 80 

Z = 0 

Zj: 

Zj (q) = 40(0) + 80(0) = 0 

Zj (X

1

) = 2(0) + 8(0) = 0 

Zj (X

2

) = 5(0) + 4(0) = 0 

Zj (S

1

) = 1(0) + 0(0) = 0 

Zj (S

2

) = 0(0) + 1(0) = 0 

 

Cj – Zj : 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

(Cj – Zj) X

1

 = 6-0 =6     ,     (Cj – Zj) S

1

 = 0-0 =0 

(Cj – Zj) X

2

 = 8-0 =8     ,     (Cj – Zj) S

2

 = 0 

 

Step 3/

 identify the pivot column 

X

2

 has max positive value (8) Thus the entering variable will 

be X

2

 in the new solution 

Step 4/

 identify the pivot row  

 , 

, the smallest value = 8 

Thus, S

1

 , is the leaving variable. Replacing the leaving 

variable S

1

 with the entering variable X

2

 produces the new 

basic solution (X

2

, S

2

) and the pivot  element = 5 

Types: 

1. Pivot row : new pivot row = current pivot row ÷ pivot 
element 

2. All other rows , including Z:  

new row = (Current row) – (its pivot column 
coefficient)X(new pivot row) 

Type 1

: computation is divide the pivot row (S

1

 – row) by the 

pivot element (5) .Thus the new row: 

                           

                            

  

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

Type 2

: Computation is applied to the remaining row (S

2

row) as follow: 

80 – (4X8) = 48 

8 – (4X 2/5) = 32/5 

4- (4X1) = 0 

0 – (4X1/5) = -4/5 

1 – (4X0) = 1 

The new tableau corresponding to the new basic solution 
(X

2

,S

2

) thus becomes: 

( Cj) 

(A) 

(q) 

X

1

X

2

S

1

S

2

8 X

2

 

 

0 S

2

48 

 

 

 Zj 

64 

 

 

 Cj-Zj  

 

 

 

Observe that the new tableau yields the new basic solution 
(X

2

 =8 , S

2

= 48 ) with the new value of Z = 64 . An 

examination of the last tableau shows that it is not optimal 
solution because the variable X

1

 has a positive coefficient in 

the (Cj-Zj) row ( )  


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

An increase in X

1

 is advantageous because it will increase 

the value of Z. Thus , X

1

 is the entering  variable. 

Next, we determine the leaving variables as follow : 

8 ÷   = 20 , 48 ÷   =   ,  Thus the pivot element  =   

S

2

 is the leaving variable , X

1

 is the entering variable . and 

the new pivot row : 

48 ÷   =     ,       ÷   =  1 ,  0   , 

  ÷   = 

 

 

new X

2

 – row : 8- (  X   )= 5 

 - (  X 1) = 0 

1- ( X0 ) = 1 

 - (  X   ) = 

 

These Computations produce the following tableau: 

( Cj) 

(A) 

(q) 

X

1

X

2

S

1

S

2

8 X

2

5 0 

 

6 S

2

 

1 0 

 

 

 Zj 

85 6 

 

 

 Cj-Zj   0 0 

 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

Since none of the C

j

-Z

j

 row coefficient associated with the 

basic variables is positive , the last tableau is optimal. 

The optimum solution can be read from the simplex tableau 
in the following manner 

Decision variables 

Optimum value 

X

1

15/2 = 7.5 

X

2

Z 85 

 

The M- Method ( Big – M) 

In the previous example , starting the simplex iterations at a 
basic feasible . For the LP

s

 in which all the constraints are of 

the (≤) type, the stacks offer a convenient starting basic 
feasible solution. A natural question then arises : How can 
we find a starting basic solution for models that involve (=) 
and (≥) constraints? 

The most common procedure for starting LP

s

 that do not 

have convenient slacks is to use artificial variables and the 
closely related method is proposed for effecting this result : 
the M-Method (Big- M). 

The M-Method starts with the LP

 

in the standard form. For 

any equation (i) that does not have a slack , we augment an 
artificial variable (A

i

) and assign them a penalty in the 

objective function to force them to zero level at a later 
iteration of the simplex algorithm. 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

Given M is a sufficiently large positive value, the variable A

i

 

is penalized in the objective function using  -MA

i

 in the case 

of maximization and +MA

i

 in the case of minimization. 

 

The following example provides the details of the method: 

Min Z = 3X

1

 + 8X

2

Subj. to: 

X

1

≤ 80,   X

2

 ≥ 60  ,  X

1

+ X

2

 = 200 ,   X

1

, X

2

 ≥ 0 

Step1

/ for convenient inequalities into equalities: 

X

1

+ S

1

= 80 

X

2

- S

2

 = 60 

X

1

+ X

2

 = 200 

Putting X

1

, X

2

 = 0    we get    S

1

= 80       S

2

 =- 60 

Therefore, we introduce artificial variables and the above 
constraints can be written as: 

X

1

+ S

1

= 80 

X

2

- S

2

 + A

1

 = 60 

X

1

+ X

2

 + A

2

 = 200                  A

, A

2

 Artificial variables 

Now addition of this artificial variable destroy the equality 
required by the L.p model . Therefore, A

, A

2

 must not 

appear in the final solution . To achieve this it is assigned a 
very large penalty (TM) since Z is to be minimized in the 
objective function . Therefore we get: 

X

1

+ S

1

+0S

2

+0A

1

+0A

2

= 80 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

X

2

+ 0S

1

-S

2

+A

1

+0A

2

= 60 

X

1

+ X

2

+0S

1

+0S

2

+0A

1

+A

2

= 200 

Min Z = 3X

1

+ 8X

2

+0S

1

+0S

2

+MA

1

+MA

2

( Cj) 

(A) 

(q) 

X

1

X

2

S

1

S

2

A

1

A

2

0 S

2

80 1 0 1 

M A

1

60 0 1 0 

-1 

 

A

2

200 1 1 0 0 

M Z 

260M 

2M 

-M 

 Cj-

Zj 

 3-M 

8-2M

 

Step 2

/ identify the pivot column: 

This is done by selecting the none basic variable having the 
largest negative value in Cj-Zj . 

When all the elements in the Cj-Zj row are positive or zero 
the optimal solution is reached . 

Step3

/ identify the pivot row: 

80/0 = 0    ,    60/1 = 60   ,    200/1 =  200 

Pivot = 1     A

1

         X

1

X

2

/ 60/1 , 0 , 1/1 , 0 , -1/1 ,  1, 0 

Row S

1

: will be remain   ,   Row A

2

 /200-(1X60) = 140 

1- (1X0) = 1 

1-( 1X1) = 0 

0- (1X0) = 0 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

0-(1X-1) = 1 

0-(1X1) = -1 

1-(1X0) = 1 

( Cj) 

(A) 

(q) 

X

1

X

2

S

1

S

2

A

1

A

2

0 S

1

80 1 0 1 

8 X

2

60 0 1 0 

-1 

M A

2

140 1 0 0 1 

-1 

 Zj 

480+ 

140M 

M 8  0 

M-8 

8-M 

 Cj-

Zj 

 3-M 

0 0 

8-M 

2M-

 

As Cj-Zj is positive under same column the current basic 
feasible solution is not optimal and needs to be improved . 

Step4

/ Identify the pivot row after identify the pivot column 

80/1 = 80 ,   1   ,   0  ,  1   ,   0  ,   0 ,   0 

Row X

2

 will remain  

Row A

2

: 140 – (1X80) = 60 

1- (1X1) = 0 

0 – (1X0) = 0 

0 – (1X1) = -1 

1 – (1X0) = 1 

-1 – (1X0) = -1 

1 – (1X0) = 1 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

 

 

Step5

/ create the new tableau 

( Cj) 

(A) 

(q) 

X

1

X

2

S

1

S

2

A

1

A

2

3 X

1

80 1 0 1 

8 X

2

60 0 1 0 

-1 

M A

2

60 0 0 

-1 

-1 

 Zj 

720+ 

60M 

3 8 

3-M 

M-8 

8-M 

 Cj-

Zj 

 0 

M-3 

8-M 

2M-

 

As Cj-Zj is positive under same column the current solution 
is not optimal and need to improve. 

Step6

/ identify the pivot column , and pivot row. 

80/0   ,    60/-1    ,    60/1 = 60        A

2

         S

S

2

: 60 , 0 , 0 , -1 , 1 , -1 , 1 

Row X

1

 : will be remain 

Row X

2

:60- (-1X60) = 120 

0- (-1X0) = 0 

1- ( -1X0) = 1 

0- (-1X-1) = -1 

-1 – (-1X1) = 0 

1- (-1X-1) = 0 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel 
Ibrahim Mahmoud 
 

0 – (-1X1) = 1 

( Cj) 

(A) 

(q) 

X

1

X

2

S

1

S

2

A

1

A

2

3 X

1

80 1 0 1 

8 X

2

120 0 1 -1 

0 S

2

60 0 0 

-1 

-1 

 Zj 

1200 

-5 

 Cj-

Zj 

 0 

M-

 

As Cj-Zj is either positive or zero under all column, the 
solution is an optimal solution. 

X

= 80   ,    X

2

 =  120    ,   S

2

 = 60    ,   Z= 1200 

 

 

 

 

 

 

 

 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Industrial Engineering (IE) 

Dr. Khallel Ibrahim Mahmoud 

 

 

 

University of Technology 

Electro-mechanical Engineering Dept. 

 

 

 

 

Lec.N

o(4) 

  The Dual Model 
   The assignment model  

 

2011

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

 

The dual Problem 

The LP model we develop for a situation is referred to as the primal problem. The 
dual problem is a close relates mathematical definition that can be derived directly 
from the primal problem. 

Consider a linear programming problem concerned with the maximization of an 
objective function Z with n decision variables and M constraints (primal). The dual 
this problem is concerned with minimization of the value of the objective function 
Ź with M decision variables and n constraints. Thus a maximization problem 
becomes minimization in the dual and vice verse. 

In the mathematical form the primal can be stated as: 

Max Z= C

1

X

1

+ C

2

X

2

+ ………. +C

n

X

Subject to: 

a

11

x

1

 +a

12

x

2

+ ……………….. + a

1n

x

n

≤ b

1

a

21

x

1

 +a

22

x

2

+ ……………….. + a

2n

x

n

≤ b

2

 

a

m1

x

1

 +a

m2

x

2

+ ……………….. + a

mn

x

n

≤ b

m

X

1

≥ 0        X

2

≥ 0  …………     X

n

 ≥ 0         

The dual of this problem may be expressed in the following form: 

Min Ź= b

1

y

1

+ b

2

y

2

+ ………. +b

m

y

Subject to: 

a

11

y

1

 +a

12

y

2

+ ……………….. + a

m1

y

n

≥ c

1

a

12

y

1

 +a

22

y

2

+ ……………….. + a

m2

y

m

≥ c

2

 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

a

1m

y

1

 +a

2n

y

2

+ ……………….. + a

mn

y

m

≥c

n

y

1

≥ 0        y

2

≥ 0  …………     y

m

 ≥ 0    

the variables and constraints of the dual problem can be constructed symmetrically 
from the primal problem as follows: 

1-  A dual variable is defined for each of the m primal constraint equations. 
2-  A dual constraint is defined for each primal of the n primal variables. 
3-  The left-hand-side coefficients of the dual constraint equal the constraint 

(column) coefficient of the associated primal variable. Its right – hand side 
equals the objective coefficient of the same primal variable. 

4-  The objective coefficient of the dual equal the right- hand side of the primal 

constraint equations. 

The following examples demonstrate the implementation of these rules. 

Ex/ Consider the primal model: 

Max Z =6X

1

 + 8X

2

St.to: 2X

1

+5X

2

≤40 

      8X

1

+4X

2

≤80 

X

1 ,  

X

2  

≥ 0 

The dual of this problem as: 

Min Ź = 40Y

1

+80Y

2

St. to: 2Y

1

+8Y

2

≥6 

5Y

1

+4Y

2

≥8 

Y

1  

,  Y

2

 ≥ 0 

The solution of the dual problem can be obtained by using simplex minimization 
procedures. 

Min Z = 40 Y

1

+80 Y

2

+oS

1

+oS

2

+MA

1

+MA

2

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

Subject to: 2y

1

+8y

2

- s

1

+A

1

 = 6 

5y

1

+ 4y

2

- s

2

+ A

2

 = 8 

40 80  0  0 M  M 

C

j

A q 

Y

1

Y

2

S

1

S

2

A

1

A

2

M A

1

6 2  8  -1 0 1  0 

M A

2

8 5  4  0 -1 0  1 

 

Z

j

14M 7M  12M  -M  -M  M 

 

C

j

-Z

j

 40-7M 

80-12M

M  M  0 

80 Y

2

¾ ¼  1  -1/8 0 1/8  0 

M A

2

5 4  0  ½ -1 

-1/2 1 

 

Z

j

60+5M 20+4M

80 

1/2M-10

-M  10-1/2M 

 

C

j

-Z

j

 20-4M 0 10-1/2M

1/2M-10 0 

80 Y

2

7/16 0  1  -5/32 

1/16 

5/32 -1/16 

40 Y

1

5/4 1  0  1/8 

-1/4 

-1/8 1/4 

 

Z

j

85 40  80  -7.5 -5 7.5  5 

 

C

j

-Z

j

 0 0 7.5 

M-7.5 

M-5 

 ﺣﻞ اﻟﻨﻤﻮذج اﻷوﻟﻲ

)

primal

 (

آﺎن آﻤﺎ ﻳﻠﻲ

:

  

6 8 0 0 

C

j

A q 

X

1

X

2

S

1

S

2

8 X

2

5 0 1 ¼ -1/16 

6 X

1

7.5 

1 0 -1/8 

5/32 

 

Z

j

85 6 8 5/4 

7/16 

 

C

j

-Z

j

  0 0 -5/4 

-7/16 

 

Dual Primal 

S

= 7.5 

X

= 7.5 

S

= 5 

X

= 5 

Y

= 5/4 

S

= 5/4 

Y

= 7/16 

S

= 7/16 

Ź = 85 

Z = 85 

Ex1/ Obtain the dual of the following LP: 

Max Z =5X

1

 + 10X

2

+8X

3

St.to: 3X

1

 + 5X

2

+2X

3

≤60 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

      4X

1

 + 4X

2

+4X

3

≤72 

      2X

1

 + 4X

2

+5X

3

≤100 

X

1 ,  

X

2

,X

3  

≥ 0 

Solution: Min Ź = 60Y

1

+72Y

2

+100Y

3

St. to: 3Y

1

+4Y

2

+2Y

3

≥5 

5Y

1

+4Y

2

+4Y

3

≥10 

2Y

1

+4Y

2

+5Y

3

≥8 

Y

1  

,  Y

2

 , Y

3

 ≥ 0 

Ex2/ Consider the following LP and write the associated dual problem: 

Max Z =7X

1

 + 5X

2

St.to: 3X

1

+X

2

≤48 

      2X

1

+X

2

≤40 

X

1 ,  

X

2  

≥ 0 

Min Ź = 48Y

1

+40Y

2

St. to: 3Y

1

+2Y

2

≥7 

Y

1

+Y

2

≥5 

Y

1  

,  Y

2

 ≥ 0 

Ex3/ Write the dual for each of the following primal problem: 

Max Z =10X

1

 + 12X

2

St.to: X

1

+X

2

≥15 

      X

= 6 

X

2  

≤ 8 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

 

Solution: X

1

+X

2

≥15 

      X

≤ 6             -X

1

≥ -6 

X

1

≥6 

X

2

 ≤ 8              -X

2

≥-8 

Min Z = 10X

1

 + 12X

2

Sub. To: X

1

+X

2

≥15 

X

1

≥6 

-X

1

≥ -6 

-X

2

≥-8 

X

1 ,  

X

2  

≥ 0 

Thus, the dual : Max Ź = 15Y

1

+6Y

2

-6Y

3

- 8Y

4

St. to: 3Y

1

+4Y

2

+2Y

3

≥5 

Y

1

+Y

2

-Y

3

≤10 

Y

1

-Y

4

≤12 

Problems 

Write the dual for each of the following problems: 

1)   Min Z = 10X

1

 + 16X

2

 

Sub. To: X

1

+X

2

=100 

X

1

≤800 

X

2

≥400 

2)  Min Z = 3X

1

 + 8X

2

 

Sub. To: X

1

+X

2

=200 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

X

1

≤80 

X

2

≥60 

3)  Max Z = 23X

1

 + 32X

2

 

Sub. To: 10X

1

+6X

2

≤2500 

5X

1

+10X

2

≤2000 

X

1

+2X

2

≤500 

4)  Write the primal problem for the following: 

Min Ź = 60Y

1

+72Y

2

+100Y

3

St. to: 3Y

1

+4Y

2

+2Y

3

≥5 

5Y

1

+4Y

2

+4Y

3

≥10 

2Y

1

+4Y

2

+5Y

3

≥8 

Y

1  

,  Y

2

 , Y

3

 ≥ 0 

The assignment model  

Suppose a company has M jobs that must be completed and it has at least n 
workers who can perform any of the M jobs but possibly in a different amount of 
time. Which worker should be assigned to each job to minimize the overall time to 
complete all M jobs, if each worker is assigned to one and only one job. This is the 
classical assignment problem. 

The general assignment model with n workers and M jobs is represented in the 
following matrix: 

jobs 

 1 2 M b

j



C

11 

C

21 

C

n1

C

12 

C

22 

C

n2

C

1m 

C

2m 

C

nm



 
 
 

workers 

ai 1  1  1   

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

 

 

The element C

ij

 represents the cost of assigning worker i  to job j (i= 1,2,…..,n) 

(j= 1,1,…..,m). 

 

 

If we let: 

X

ij 

=         0 if worker i is not assigned to job j 

                 1 if worker i is assigned to job j 

     C

ij

 = efficiency associated with assigning worker i to job j. 

Then mathematically the assignment problem can be stated as: 

Minimize (maximize): Z=

ij

 X

ij

Subject to: 

 for j= 1,2,………, m 

 for i= 1,2,………, n 

X

ij

 = 0 or 1 for al i and j 

The following is a step by step algorithm that uses the Hungarian method to solve 
the general assignment problem. 

Step 1: for the original cost matrix, identify each row’s minimum, and subtract it 
from all the entries of the row. 

Step 2: For the matrix resulting from step 1, identify each column’s minimum, and 
subtract it from all the entries of the column. 

Step 3: Draw the minimum number of horizontal and vertical lines in the last 
reduced matrix that will cover all the zero entries. If the number is equal the 
columns or rows the feasible assignment can be found, otherwise go to step 4. 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

Step 4: Select the smallest uncover element, and subtract it from every uncovered 
element, then add it to every element at the intersection of two lines. And repeat 
step 3 until the feasible assignment found. 

For example, suppose that three jobs must be assigned to three machines, each 
machine must be assigned to only one job, and each job must be assigned to only 
one machine. 

The costs are shown below. Solve the problem by using the Hungarian algorithm. 

  

Machines 

Jobs 

M1 M2 M3 

A  25 31 35 

B  15 20 24 
C  22 19 17 

 

Solution: 

 M1 

M2 

M3 

 M1 

M2 

M3 

A 10 12 18 

A  0  2  8 

B 0 1 7 

B 0 1 7 

C 7 0 0 

 

C 7 0 0 

 

 M1 

M2 

M3 

 M1 

M2 

M3 

A 0 1 7 

A 0 2 8 

B 0 0 6 

B 0 

 

 

1 7 

C 8 0 0 

 

C 7 0 0 

 

The assignment A-M

1

      ,   B-M

2

   20   ,    C-M

3

     

Min Z = 62 

Maximization case: 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

Use the Hungarian method to solve the same problem for the maximum 
productivity. 

 

 

Job  

M1 

M2 

M3 

 A 

25 

31 

35 

B 15 20 24 
C 22 19 0 

 M1 

M2 

M3 

 M1 

M2 

M3 

A 10 4 0 

A 0 0 0 

B 20 15 11 

B 10 11 11 

C 13 16 18 

 

C 3 12 18 

 M1 

M2 

M3 

 M1 

M2 

M3 

A 0 0 0 

A 1 0 0 

B 0 1 1 

B 0 0 0 

C 0 9 15 

 

C 0 8 14 

C

ij: 

No. of units produced per hour

 

Max C

ij

= 35 

 

The final assignment :( two solution) 

      First                                              Second 

A          M

3

                                     A         M

2

      

B           M

2

 20                                  B         M

3

   24   

C           M

1

                                     C         M

1

     

 

Unbalanced cases 

If M≠N                        When M > N  added dummy column with C

ij

 = 0 

Max or Min                 When M < N added dummy row with C

ij

 = 0 

Example 1: 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

Use the Hungarian algorithm to solve the assignment problem having the following 
time table. 

 

Solution: 

Job M1  M2  M3 M4 

J1 80 110 120 

100 

J2 50 160 130 80 
J3 50 100 230 

150 

 

M1 M2 M3 M4 

  M1 M2 M3 M4 

J1 80 

110 

120 

100 

J1 0 30 40 

20 

J2 50 

160 

130 

80 

J2 0 110 

80 

30 

J3 50 

100 

230 

150 

J3 0 50 

180 

100 

Dummy

 

J4 

0 0 0 

 

J4 0  0  0  0 

 

M1 M2 M3 M4 

  M1 M2 M3 M4 

J1  10 10 20 0 

J1  0  10 20  0 

J2 0 80 

50 

J2 

0 90 

60 

10 

J3 0 20 

150 

70 

J3 

0 30 

160 

80 

 

 J4 

30 

J4 20  0  0  0 

 

 

 M1 M2 

M3 

M4 

J1 0  0 10 

 

J2 0  70 40 0 
J3 0  10 140 

 

70 

J4 40  0  0  10 

 

 

The optimal assignment: 
J1 – M2   110 
J2 – M4    80 
J3 – M1    50 
J4 – M3     0 
            _________ 

                240 

Note: M<N  
So we added dummy row with 
C

ij

= 0 

Example 2: Use the Hungarian algorithm to solve the following assignment 
problem for the total maximum productivity. 

 Machines 

Task M1 M2 M3 M4 

T1 20 60 50 55 
T2 60 30 80 75 
T3 80 100 90 80 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 
 

 

T4 65 80 75 70 
T5 70 65 60 65 

 

Example 3/ suppose four people can each perform any one of four different jobs 
but possibly in different amount of time. The following table gives the 
corresponding time to perform the various jobs. Which person should be assigned 
to each job to minimize the total time to perform all four jobs? 

 

Time to perform jobs 

Person 

1 2 3 4 

A 2 10 9  7 

B 15 4 14 8 
C  13 14 16 11 

D 4 15 13 9 

 

Solution: 

Ex 2: first solution,       Cij 

                                     320 

                                    ____ 

                   T5 – M1      70 

                   T4 – M3      75 

                   T3 – M2     100 

 Second solution,           Cij 

                    T1 – M5      0 

                   T2 – M4      75 

                    T1 – M5      0 

                   T2 – M3      80 

                   T3 – M2     100 

                   T4 – M4     70 

                   T5 – M1     70 

                                    ____ 

                                     320 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Industrial Engineering (IE) 

Dr. Khallel Ibrahim Mahmoud 

 

 

 

University of Technology 

Electro-mechanical Engineering Dept. 

 

 

 

 

 Transportation Model 

 

Lec.N

o(5) 

2011

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 

 

 

Transportation Model 

Introduction 

The transportation model is a special class of the linear programming problem. It 
deals with the solution in which an item is shipped from sources (e.g. factories) to 
destinations (e.g. warehouses). The objective is to determine the amounts shipped 
from each source to each destination that minimize the total shipping cost while 
satisfying both the supply limits and the demand requirements. 

The Mathematical Model 

The general problem can be presented by the network. 

There are M sources.         S

1

,S

2

…………..S

m

 

And n destinations.         D

1

,D

2

…………..D

n

 

The arcs linking the sources and destinations represent the routes between 
the sources and the destinations. 

The transportations cost per unit = C

ij

 and the amount shipped = X

ij

 

The amount of supply at source i is ai and the amount of demand at 
destination j is bj. 

The objective of the model is to determine the unknown X

ij

 that will minimize the 

total transportation cost, while satisfying all the supply and demand restrictions. 

 

a

a

a

Units of supply

 

a

 

S

S

S

S

 

Sources

 

 

D

D

D

x

m

x

13 

c

m

c

13 

c

12 

x

12 

x

11 

D

c

11 

 

 

 

Destination

 

b

b

b

b


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 

 

 

 

Objective Function: 

Min Z: 

C

ij    

X

ij

  

Units of demand

 

Subject to: 

 

j = 1,2,………………n 

 

i = 1,2,………………m 

1) 

Determination of the starting 

solution. The transportation model is always balanced ( 

 = 

 ) i.e. the 

sum of supply= the sum of the demand. Thus, the model has Mth-1 basis 
variables. 

The special structure of the transportation problem allows securing a nonartificial 
starting basic solution using one of three methods: 

a- 

North-west- corner method. 

(N.W.C) 

b- 

Least-cost method. (L.C.M) 

c- 

Vogal method. 

A) 

N.W.C. method: 

The method starts at the North West – corner cell of the tableau (variable X

11

). 

Step 1: Allocate as much as possible to the select cell, and adjust the associated 
amounts of supply and demand by subtracting the allocated amount. 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 

 

Step 2: Cross out the row or column with zero supply or demand to indicate that no 
further assignments can be made in that row or column. If both the row and 
column net to zero simultaneously, cross out one only, and leave a zero supply 
(demand) in the uncrossed-out row (column). 

Step3: If exactly one row or column is left uncrossed-out, stop. Otherwise, move to 
the cell to the right if a column has just been crossed or the one below if a row has 
been crossed out. Go to step1. 

Example1: 

In the following transportation problem use the north west- corner  method 
(N.W.C) to find the starting solution. 

S/D D

1

D

2

D

3

Supply 

S

1

5 3 10 

150 

S

2

3 9 8 70 

S

3

11 10 7 80 

S

4

6 13 6 40 

Demand 160  120 

60  340/340 

Solution: 

S/D D

1

D

2

D

3

ai 

5 3 10

S

1

 

 

150 

 

 

 

 

   150 

3 9  8 

 

S

2

 

 

 

10 

 

 

 

60 

 

 70 

11 10 

 

 

S

3

 

 

 

 

60 

 

 

20 

80 

6 13  6 

 

S

4

 

 

 

 

 

 

40 

40 

bj 160  120 

60 340/340 

Z= 5X150 + 3X10 + 9X60 + 10X60 +7X20 + 6X40 

   = 2300                      M+N-1=6 

B) 

Least-Cost method: 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 

 

The Least-cost method finds a better starting solution by concentrating on the 
cheapest routes. Instead of starting with the North West cell, we start by assigning 
as much as possible to cell with the smallest unit cost (ties are broken arbitrary). 
We then cross out the satisfied row or column, and adjust the amounts of supply 
and demand accordingly. If both a row and a column are satisfied simultaneously, 
only one is crossed out. Next, we always look for the uncrossed-out cell with the 
smallest unit cost and repeat the process until we are left at the end with exactly 
one uncrossed out row or column. 

 

Example 2: the least -cost is applied to example (1) 

S/D D

1

D

2

D

3

ai 

5 3 10

S

1

 

 

        30 

 

 

 

120 

 

   150 

3 9  8 

S

2

 

 

        70 

 

 

 

 70 

11 10  7 

S

3

 

 

 
20 

 

 

 

 

60 

80 

6 13  6 

S

4

 

 

        40 

 

 

 

 40 

bj 160  120 

60 340/340 

Z= 5X30 + 3X120 + 3X70 + 11X20 + 7X60 + 6X40 

   = 1600 

C) 

Vogal Method 

Vogal method is an improved of version of the least cost method that generally 
produces better starting solutions. 

Step 1: For each row (each column) determine a penalty measure by subtracting 
the smallest unit cost element in the row (column) from the next smallest unit cost 
element in the same row (column). 

Step 2: Identify the row or column with the largest penalty. Break ties arbitrarily. 
Allocate as much as possible to the variable with the least unit cost in the selected 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 

 

row or column. Adjust the supply and demand and cross out the satisfied row or 
column. 

Step 3: a) If exactly one row or column with supply or demand remains uncrossed 
out, stop. 

b) If one row or column with positive supply (demand) remains uncrossed out, 
determine the basic variables in the row (column) by the least-cost method, stop. 

c) If all the uncrossed out rows and columns have (remaining) zero supply and 
demand, determine the zero basic variables by the least-cost method. 

d) Otherwise, go to step 1. 

 

Example 3: Solve the transportation model of example (1) by using vogal method. 

S/D D

1

D

2

D

3

ai V

1

V

2

V

3

V

4

V

5

V

6

5  

10

S

1

 

 

30 

 

 

120 

 

 150 

 

 

 

 

3  

S

2

 

 

70 

 

 

 

 70 

 

 

 

11  

10 

S

3

 

 

20 

 

 

 

 

 

60 

80  3 4 4 4 

 

6  

13 

S

4

 

 

40 

 

 

 

 

 

40  0 0 0 0 0   

bj 160  120 

60 340/340

V

1

V

2

2  1 

V

3

3  1 

V

4

 

 

V

5

 

 

 

Z= 5X30 + 3X120 + 3X70 + 11X20 + 7X60 + 6X40  

  = 1600 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 

 

This solution happens to have the same objective value (1600) as in the Least-cost 
method (L.C). usually, however vogal method is expected to produce better 
starting solutions for the transportation method. 

Stepping Stone Method (S.S) 

After determining the starting ( using any of the three methods) we use one of the 
following method : 

1. 

Stepping stone method. 

2. 

Modified distribution method. 

So to solve a transportation problem, we first find an initial solution ( values of X

ij

and then improve the initial solution by reducing the cost through successive 
iterations until the minimum cost solution is found. 

Example: 

S/D D

1

D

2

ai 

6 3 

S

1

 

 

 

 70 

8 7 

S

2

 

 

 

 100 

bj 90  80 

170/170 

By using the N.W.C 

S/D D

1

D

2

ai 

6 3 

S

1

 

 

70 

 

 70 

8 7 

S

2

 

 

 

20 

 

 

80 

100 

bj 90  80 

170/170 

 

Z= 60X70 + 8X20 + 7X80 

80

6 -

70 

S

1

D

  = 1140 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 

 

 

 

 

 

 

S/D D

1

D

2

ai 

6 3 

S

1

 

 

 

 

 

70 

70 

8 7 

S

2

 

 

 
90 

 

 

10 

100 

bj 90  80 

170/170 

Z= 1140 – 2X70 = 1000 

3X70 + 8X90 + 7X10 = 1000 

Unbalanced transportation problems 

 ≠ 

 ) 

Demand less than supply                 or             demand greater than supply 

        ( 

 < 

 )                                                     ( 

 > 

 ) 

From/To A  B 

Dummy Factory 

capacity 

ai 

5 4  3

 

 

 

250   

 

 

 

 

 250 

8 4  3

 0 

 

   

50 

 

 

 

200 

 

 

50 

 

 300 

9 7  5

 0 

 

 

 

 

 

 

150 

 

 

 

150 

300 

Requirement 

bj 

300 200  200 

150  700\850 

-7


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 

 

Z = 3350 

 

From/To A  B  C Plant 

supply 

 ai 

6 4 9

Plant W 

 

 

200 

 

 

 

 200 

10 5 

 

8

 

Plant X 

 

 

50 

 

 

100

 

 

15 

175 

12  

6

Plant Y 

 

 

 

 

 

 

 

75 

75 

0 0 0

Dummy 

plant 

 

 

 

 

 

 

 

 

50 

50 

Requirement 

bj 

250 100 150 

500\450 

 

Z= 2850 

Problems: 

Q1/ Consider the following transportation problem. Find the starting solution by 
using the following methods: 

1- 

N.W.C method. 

2- 

L.C method. 

3- 

Vogal method. 

From/To C

1

C

2

C

3

C

4

Supply ai 

V

1

2 2 2 1 3 

V

2

10 8  5 4  7 

V

3

7 6 6 8 5 

Demand bj 

15\15 

Solutions: 

1- 

N.W.C = 93 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 

 

2- 

L.C = 79 

3- 

Vogal = 68 

Q2 / Use the north west-corner method to find the starting solution (the initial 
solution) for the following problem: 

Warehouse 

From/To D

1

D

2

D

3

D

4

Supply ai 

S

1

0 4 0 2  5 

S

2

1 2 5 6 10 

S

3

5 3 7 9 15 

Factory 

Demand bj 

20 

10 

15 

15 

60\30 

Solution: Z= 65 

Q3/ determine the initial solution for the following problem(use the three 
methods). 

Markets 

From/To 1  2  3

 

4

Supply ai 

A 10 8 6 4 

2000 

B 14 

17 5 2 

1300 

C  18  7  11 9 1700 

Warehouse 

Demand bj 

1000 

2000 

500 

1500 

5000\5000 

Solutions: 

1- 

N.W.C   Z= 52200 

2- 

L.C    Z= 30700 

3- 

Vogal   Z= 30700 

Q4/ Use the northwest corner method to find the starting solution, then determine 
the optimum solution by using (S.S) method for the following problem. 

S/D D

1

D

2

D

3

ai 

S

1

5 3 10 150 

S

2

3 9 8 70 

S

3

11 10  7  80 

S

4

6 13 6  40 

bj 160 

120 

60 

340\340 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 

 

Z

0

 = 2300 

Z

1

 = 2300 – 8X60 = 1820 

Z

2

 = 1820 – 5X40 = 1620 

Z

3

 = 1620 – 1X20 = 1600 

 

 

 

 

 

Solutions for transportation method: 

Q1/ N.W.C method 

From\To C1  C2  C3  C4  ai 

2 2 2

V1 

 

 

 

 

 

 

 

 3 

10 8 

 

5

 4 

V2 

 

 

 

 

 

 

 

 7 

7  

6

V3 

 

 

 

 

 

 

 

 

 

bj 4 3 4 

15\15 

4+3-1 = 6 

Z= 2X3 + 1X10 + ……. +8X4 = 93 

L.C.method 

From\To C1  C2  C3  C4  ai 

2 2 2

V1 

 

 

 

 

 

 

 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 

 

10 8 

 

5

 4 

V2 

 

 

 

 

 

 

 

 

7  

6

V3 

 

 

 

 

 

 

 

 

 5 

bj 4 3 4 

15\15 

4+3-1 =6 

Z = 1X3 + 1X4 + …… + 6X3 = 79 

 

 

 

 

 

Vogal method 

From\To 

C1 

C2 

C3 

C4 

ai  U1 U2 U3 U4 U5

2 2 2

1

V1 

 

 

 

 

 

 

 

 
 

3 1     

10 8 

 

5

4

V2 

 

 
 

 

 

 

 

 

 

7 1 

3   

7  

6

8

V3 

 

 

 

   

 

 

 1 

 

  5  0 0 0 0 1 

bj 4 3 4 

15\15 

U1 5 4 3 

U2 3 2 1 

U3 3 2 1  
U4      

Z = 2X3 + 5X3 +…… + 6X1 = 68 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 

 

Q2: ∑ ai ≠ ∑ bj 

From 

\To 

D1 D2 D3 D4  ai 

S1 0 4 0 2 5 
S2 1 2 5 6 10 
S3 5 3 7 9 15 

bj  20 10 15 15 

60\30 

 

 

 

 

 

 

 

 

N.W.C method         ∑ bj - ∑ ai = 30 

From\To D1  D2  D3  D4  ai 

0 4 0

S1 

 

 

 

 

 

 

 

 5 

1 2 

 
 

5

 

S2 

 

 

10 

 

 

 

 

 

 10 

5  

7

S3 

 

 

 

 

10 

 

 
 

 

 
 

15 

0 0 

0

Dummy S4 

 

 

 

 

 

 

15 

 

 

15 

30 

bj 20 10 

15 

15 

60\60 

Z = 0X5 + 1X10 +…….. + 0X15 = 56 

 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 

 

 

Q3:  

L.C.M 

Market  

From\To 1 

2  4 

ai 

10 8 

6 4 

 

 

1000

 

 

300 

 

 

500   

 

200 

2000 

14 17

 5 

 

 

 

 

 

 

 

 

 

1300 

1300 

18  

11

 

 

 

 

1700

 

 

 
 

 

 1700 

 
 
 
 
 

warehouse 

bj 1000 2000 500 

1500 

5000\5000

Z= 10X1000 + ……. + 7X1700 = 30700 

 

 

 

N.W.C 

Market  

From\To 1 

2  4  ai 

10 8  6 4 

 

 

1000

 

 

1000

 

 
 

 

 
 

2000 

14 17  

 

 

 

     

1000

 

 300 

 

 

 
 

1300 

18  

11

 

 

 

 

 

 

 

200 

 

 

1500 

1700 

 
 
 
 
 

warehouse 

bj 1000 

2000 500 

1500 

5000\5000

Z = 10X1000 + …………….. + 9X1500 = 52200 


background image

Industrial Engineering (IE)                                                                 -     Dr. Khallel Ibrahim 
Mahmoud 

 

Vogal method 

From\To 

ai  V1 V2 V3 V4 V5

10 8 

6 4

 

 

1000 

 

300 

 

500 

 

200 

 

2000 2 2 2 2   

14 17 

 5 

 

2

 

 
 

 

 

 

 
 

 

 

1300

1300 

3 3    

18  

11

9

 

 

 

 

1700  

 

 
 

 

  1700 2 2 2 4   

bj 4  3  4 4 

15\15 

V1 4  1  1 2 

V2   1  1  

V3   1  5 5 

V4   1  5  

V5   1     

Z = 10X100 + ………. + 7X1700 = 30700 




رفعت المحاضرة من قبل: ضرغام العزاوي
المشاهدات: لقد قام 7 أعضاء و 161 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل