مواضيع المحاضرة:
background image

background image

80

  CHAPTER 3

 

The Thorax: Part II—The Thoracic Cavity

Pericarditis

Pericardial fluid can be aspirated from the pericardial cavity 

etrated. The blood escapes into the pericardial cavity and can 

shot wounds when the chambers of the heart have been pen

heart during diastole. This compression of the heart is called 

In inflammation of the serous pericardium, called pericarditis

pericardial fluid may accumulate excessively, which can com-

press the thin-walled atria and interfere with the filling of the 

cardiac tamponade.

Cardiac tamponade can also occur secondary to stab or gun-

-

restrict the filling of the heart.

Roughening of the visceral and parietal layers of serous peri-

cardium by inflammatory exudate in acute pericarditis produces 
pericardial friction rub, which can be felt on palpation and heard 

through a stethoscope.

should excessive amounts accumulate in pericarditis. This pro-

cess is called paracentesis. The needle can be introduced to the 

left of the xiphoid process in an upward and backward direction 

at an angle of 45° to the skin. When paracentesis is performed 

at this site, the pleura and lung are not damaged because of the 

presence of the cardiac notch in this area.

C L I N I C A L   N O T E S

right common carotid artery

brachiocephalic artery

right subclavian artery

right

brachiocephalic vein

superior vena cava

transverse sinus

right pulmonary veins

reflection to left

atrium

inferior vena cava

fibrous pericardium

parietal layer of serous

pericardium

reflection of serous pericardium

left pulmonary vein

bronchus

left pulmonary artery

ligamentum arteriosum

left recurrent laryngeal nerve

left vagus nerve

left phrenic nerve

arch of aorta

left subclavian artery

left common carotid artery

left brachiocephalic vein

oblique sinus

FIGURE 3.32

  The great blood vessels and the interior of the pericardium.

from each other by the vertical atrioventricular groove 

right atrium and the right ventricle, which are separated 

 is formed mainly by the 

sternocostal surface

The 

(Fig. 3.34). The right border is formed by the right atrium; 

It lies at the level of the fifth left intercostal space, 3.5 in. 

directed downward, forward, and to the left (Fig. 3.34). 

 formed by the left ventricle, is 

apex of the heart,

The 

veins (Fig. 3.35). The base of the heart lies opposite the apex.

mainly by the left atrium, into which open the four pulmonary 

 or the posterior surface, is formed 

base of the heart,

The 

forms part of this surface.

right atrium, into which the inferior vena cava opens, also 

terior interventricular groove. The inferior surface of the 

mainly by the right and left ventricles separated by the pos

 of the heart is formed 

diaphragmatic surface

The 

by the anterior interventricular groove.

cle. The right ventricle is separated from the left ventricle 

the left border, by the left ventricle and part of the left auri-

-

(9 cm) from the midline. In the region of the apex, the apex 
beat can usually be seen and palpated in the living patient.


background image

 Basic Anatomy 

81

arch of aorta left common carotid artery

pulmonary trunk

left auricle

left coronary artery

circumflex branch

great cardiac vein

left ventricle

anterior
interventricular
artery

apex

interventricular groove

right ventricle

marginal
artery

atrioventricular
groove

anterior cardiac
vein

right
atrium

right coronary
artery

right auricle

ascending
aorta

right pulmonary
artery

superior vena cava

brachiocephalic
artery

left subclavian artery

ascending aorta

pulmonary trunk

(cut)

left auricle

right auricle

left

ventricle

right

ventricle

right

atrium

apex

superior vena cava

arch of aorta 

(cut)

atrioventricular

groove

anterior 

interventricular

  groove

      filled 

          with

             fat

FIGURE 3.33

  The anterior surface of the heart; the fibrous pericardium and the parietal serous pericardium have been 

grooves. The coronary arteries are embedded in this fat.

removed. Note the presence of fat beneath the visceral serous pericardium in the atrioventricular and interventricular 

FIGURE 3.34

  The anterior surface of the heart and the great 

the cardiac veins.

blood vessels. Note the course of the coronary arteries and 

left common
carotid artery

left subclavian
artery

pulmonary
veins

left atrium

left ventricle

coronary sinus

inferior vena cava

right atrium

superior vena cava

bifurcation of pulmonary
trunk

ligamentum arteriosum

left recurrent laryngeal nerve

arch of
aorta

FIGURE 3.35

  The posterior surface, or the base, of the heart.


background image

82

  CHAPTER 3

 

secundum (Fig. 3.37).

and the anulus is formed from the lower edge of the septum 

the persistent septum primum of the heart of the embryo, 

upper margin of the fossa. The floor of the fossa represents 

 in the fetus (Fig. 3.37). The anulus ovalis forms the 

ovale

foramen 

lis is a shallow depression, which is the site of the 

right atrium from the left atrium (Fig. 3.36). The fossa ova

 which separates the 

atrial septum,

structures lie on the 

 These latter 

anulus ovalis.

fossa ovalis

cava are the 

In addition to the rudimentary valve of the inferior vena 

Fetal Remnants

the heart and open directly into the right atrium.

Many small orifices of small veins also drain the wall of 

valve (Fig. 3.36).

inferior vena caval opening and is guarded by the tricuspid 

 lies anterior to the 

right atrioventricular orifice

The 

fice. It is guarded by a rudimentary, nonfunctioning valve.

between the inferior vena cava and the atrioventricular ori

from the heart wall (Fig. 3.36), opens into the right atrium 

 which drains most of the blood 

coronary sinus,

The 

heart from the lower half of the body.

mentary, nonfunctioning valve. It returns the blood to the 

the lower part of the right atrium; it is guarded by a rudi

 (larger than the superior vena cava) opens into 

vena cava

inferior 

to the heart from the upper half of the body. The 

part of the right atrium; it has no valve. It returns the blood 

 (Fig. 3.36) opens into the upper 

superior vena cava

The 

Openings into the Right Atrium

from the primitive atrium.

to the auricle. This anterior part is derived embryologically 

 which run from the crista terminalis 

musculi pectinati,

is roughened or trabeculated by bundles of muscle fibers, 

sinus venosus. The part of the atrium in front of the ridge 

is smooth walled and is derived embryologically from the 

The main part of the atrium that lies posterior to the ridge 

crista terminalis.

which on the inside forms a ridge, the 

sulcus terminalis,

the right auricle is a vertical groove, the 

of the heart at the junction between the right atrium and 

pouching, the auricle (Figs. 3.34 and 3.36). On the outside 

The right atrium consists of a main cavity and a small out

Right Atrium

endocardium.

endothelium, the 

 and lined internally with a layer of 

epicardium;

dium, the 

 covered externally with serous pericar

myocardium;

The walls of the heart are composed of cardiac muscle, 

ventricle lies anterior to the left ventricle.

right atrium lies anterior to the left atrium, and the right 

the right and left atria and the right and left ventricles. The 

The heart is divided by vertical septa into four chambers: 

when examining a radiograph of the heart.

the left ventricle. These borders are important to recognize 

ventricle but also by the right atrium; the apex is formed by 

(Fig. 3.34). The lower border is formed mainly by the right 

border, by the left auricle; and below, by the left ventricle 

The right border is formed by the right atrium; the left 

matic (inferior) surface.

The heart does not rest on its base; it rests on its diaphrag

the heart is pyramid shaped; the base lies opposite the apex. 

 because 

Note that the base of the heart is called the 

The Thorax: Part II—The Thoracic Cavity

base

-

Borders of the Heart

Chambers of the Heart

the 

-

-

 
 

the 

-

-

 and 

-

superior vena cava

right auricle

sinuatrial node

crista terminalis

anulus ovalis

fossa ovalis

anterior wall of

right atrium

(reflected)

musculi pectinati

inferior vena cava

valve of inferior vena cava

valve of coronary sinus

chordae tendineae

septal cusp of

tricuspid valve

moderator band

right ventricle

interventricular

groove

left ventricle

right

branch of bundle

left

branch of bundle

atrioventricular bundle

infundibulum

left auricle

pulmonary trunk

ascending aorta

right coronary artery

atrioventricular node

FIGURE 3.36

  Interior of the right atrium and the right ventricle. Note the positions of the sinuatrial node and the atrioventricu-

lar node and bundle.


background image

 Basic Anatomy 

83

septum secundum

septum primum

foramen ovale

A

B

pulmonary stenosis

hypertrophy of
right ventricle

C

septal defect

displaced aortic
opening

left recurrent laryngeal
nerve

D

E

FIGURE 3.37

 

gus (Figs. 3.32 and 3.39).

and the fibrous pericardium separates it from the esopha

Behind it lies the oblique sinus of the serous pericardium, 

base or the posterior surface of the heart (see Fig. 3.35). 

behind the right atrium and forms the greater part of the 

main cavity and a left auricle. The left atrium is situated 

Similar to the right atrium, the left atrium consists of a 

Left Atrium

and close the pulmonary orifice.

cusps fill, come into apposition in the center of the lumen, 

flows back toward the heart and enters the sinuses; the valve 

nary trunk by the outrushing blood. During diastole, blood 

cusps of the valve are pressed against the wall of the pulmo

of unnecessary confusion.) During ventricular systole, the 

rotated to the left. This, unfortunately, causes a great deal 

according to their position in the fetus before the heart has 

(The cusps of the pulmonary and aortic valves are named 

rior (left cusp) and two anterior (anterior and right cusps). 

The three semilunar cusps are arranged with one poste

aortic valve

(see 

 and one is situated external to each cusp 

sinuses,

called the 

cle. At the root of the pulmonary trunk are three dilatations 

rial wall prevent the cusps from prolapsing into the ventri

cusps; the attachments of the sides of the cusps to the arte

chordae or papillary muscles are associated with these valve 

cusps are directed upward into the pulmonary trunk. No 

are attached to the arterial wall. The open mouths of the 

enclosed. The curved lower margins and sides of each cusp 

by folds of endocardium with some connective tissue 

(Fig. 3.38A) and consists of three semilunar cusps formed 

 guards the pulmonary orifice 

pulmonary valve

The 

the adjacent parts of two cusps.

chordae tendineae of one papillary muscle are connected to 

intraventricular pressure rises. To assist in this process, the 

being forced into the atrium and turning inside out as the 

the papillary muscles contract and prevent the cusps from 

 When the ventricle contracts, 

papillary muscles.

to the 

 The chordae tendineae connect the cusps 

dae tendineae.

chor

free edges and ventricular surfaces are attached to the 

ring of the skeleton of the heart (see below), whereas their 

inferiorly. The bases of the cusps are attached to the fibrous 

ventricular septum, and the inferior or posterior cusp lies 

rior cusp lies anteriorly, the septal cusp lies against the 

 (posterior) cusps. The ante

inferior

anterior, septal,

fold of endocardium with some connective tissue enclosed: 

(Figs. 3.36 and 3.38) and consists of three cusps formed by a 

 guards the atrioventricular orifice 

tricuspid valve

The 

heart. The third type is simply composed of prominent ridges.

tricular bundle, which is part of the conducting system of the 

the anterior wall. It conveys the right branch of the atrioven

 crosses the ventricular cavity from the septal to 

erator band,

mod

tricular wall, being free in the middle. One of these, the 

(Fig. 3.36). The second type is attached at the ends to the ven

) to the cusps of the tricuspid valve 

chordae tendineae

ventricular wall; their apices are connected by fibrous chords 

 which project inward, being attached by their bases to the 

cles,

papillary mus

of three types. The first type comprises the 

 The trabeculae carneae are composed 

trabeculae carneae.

the ventricular wall a spongelike appearance and are known 

ridges formed of muscle bundles. The projecting ridges give 

those of the right atrium and show several internal projecting 

The walls of the right ventricle are much thicker than 

dibulum.

funnel shaped, at which point it is referred to as the 

As the cavity approaches the pulmonary orifice, it becomes 

nary trunk through the pulmonary orifice (see Fig. 3.36). 

through the atrioventricular orifice and with the pulmo

The right ventricle communicates with the right atrium 

Right Ventricle

 Coarctation of the aorta.

relationship to the left recurrent laryngeal nerve). 

 Patent ductus arteriosus (note the close 

 Tetralogy of Fallot. 

 Atrial septal defect. 

 Normal fetal heart. 

A.

B.

C.

D:

E.

-

infun-

as 

-

(the 

-

-

-

 and 

-

-

-
-

).

-

-

-


background image

84

  CHAPTER 3

 

The Thorax: Part II—The Thoracic Cavity

pulmonary
valve

tricuspid valve

aortic sinus

A

B

D

E

C

F

G

H

LV

RV

FIGURE 3.38

 

 Fibrous skeleton 

 Path taken by the cardiac impulse from the sinuatrial node to the Purkinje network. 

 Path taken by the blood 

 Cross section of the ventricles of the heart. 

 Semilunar cusps of the aortic valve. 

 Mitral cusps with valve 

 Mitral cusps with valve open. 

 Position of the tricuspid and pulmonary valves. 

A.

B.

C.

closed. D.

E.

F.

through the heart. G.

H.

of the heart.

right atrium

left atrium

middle lobe of
right lung

right oblique
fissure

lower lobe
of right lung

esophagus

azygos vein

thoracic
duct

sympathetic trunk

splanchnic nerves

hemiazygos vein

descending aorta

oblique sinus

pulmonary vein

lower lobe of
left lung

left oblique fissure

upper lobe of left lung

pericardium

pericardial cavity

left ventricle

right ventricle

sternum

T8

FIGURE 3.39

  Cross section of the thorax at the eighth thoracic vertebra, as seen from below. (Note that all computed tomog

raphy scans and magnetic resonance imaging studies are viewed from below.)

-


background image

 Basic Anatomy 

The atrioventricular bundle (bundle of His) is the only 

Atrioventricular Bundle

tricles before the ventricles start to contract.

ficient time for the atria to empty their blood into the ven

the atrioventricular node (about 0.11 seconds) allows suf

The speed of conduction of the cardiac impulse through 

atrial myocardium.

stimulated by the excitation wave as it passes through the 

by the atrioventricular bundle. The atrioventricular node is 

From it, the cardiac impulse is conducted to the ventricles 

the septal cusp of the tricuspid valve (Figs. 3.37 and 3.38). 

lower part of the atrial septum just above the attachment of 

The atrioventricular node is strategically placed on the 

Atrioventricular Node

muscle of the atria and cause the muscle to contract.

impulses that spread in all directions through the cardiac 

The node spontaneously gives origin to rhythmic electrical 

the opening of the superior vena cava (Figs. 3.36 and 3.40). 

in the upper part of the sulcus terminalis just to the right of 

The sinuatrial node is located in the wall of the right atrium 

Sinuatrial Node

that form the conducting system of the heart).

 (specialized cardiac muscle fibers 

Purkinje fibers

plexus of 

its right and left terminal branches, and the subendocardial 

atrioventricular bundle

atrioventricular node,

sinuatrial node,

ized cardiac muscle present in the 

The conducting system of the heart consists of special

into the ventricles before the ventricles contract.

the ventricles allows time for the atria to empty their blood 

slight delay in the passage of the impulse from the atria to 

later by the contractions of both ventricles together. The 

heart, so the atria contract first and together, to be followed 

system and the impulse travels to different regions of the 

tractile process originates spontaneously in the conducting 

beats per minute in the resting adult. The rhythmic con

The normal heart contracts rhythmically at about 70 to 90 

nuity between the atria and the ventricles.

skeleton of the heart forms the basis of electrical disconti

valves from stretching and becoming incompetent. The 

rings support the bases of the valve cusps and prevent the 

but provide attachment for the muscle fibers. The fibrous 

the muscular walls of the atria from those of the ventricles 

fibrous rings around the atrioventricular orifices separate 

the membranous upper part of the ventricular septum. The 

pulmonary, and aortic orifices and are continuous with 

sists of fibrous rings that surround the atrioventricular, 

 (Fig. 3.38) con

skeleton of the heart

The so-called 

nous and attached to the fibrous skeleton.

The smaller upper part of the septum is thin and membra

lower part of the septum is thick and formed of muscle. 

by the anterior and posterior interventricular grooves. The 

the left. Its position is indicated on the surface of the heart 

ward and to the right and the other facing backward and to 

The septum is placed obliquely, with one surface facing for

 into the right and left ventricles. 

(interventricular) septum

ventricular 

the heart has thick walls and is divided by the 

heart backward and to the right. The ventricular portion of 

and left atria. The septum runs from the anterior wall of the 

 into the right 

atrial (interatrial) septum

divided by the 

atrial portion of the heart has relatively thin walls and is 

epicardium and lined internally by the endocardium. The 

diac muscle, the myocardium, covered externally by the 

The walls of the heart are composed of a thick layer of car

the left coronary artery.

coronary artery, and the left posterior sinus gives origin to 

 The anterior aortic sinus gives origin to the right 

tic sinus.

aor

Behind each cusp, the aortic wall bulges to form an 

are located on the posterior wall (left and posterior cusps). 

cusp is situated on the anterior wall (right cusp) and two 

similar in structure to the pulmonary valve (Fig. 3.38). One 

 guards the aortic orifice and is precisely 

aortic valve

The 

the papillary muscles is similar to that of the tricuspid valve.

The attachment of the chordae tendineae to the cusps and 

intervenes between the atrioventricular and aortic orifices. 

of the tricuspid valve. The anterior cusp is the larger and 

posterior, which have a structure similar to that of the cusps 

(Fig. 3.38). It consists of two cusps, one anterior and one 

 guards the atrioventricular orifice 

mitral valve

The 

aortic vestibule.

aortic orifice is called the 

but no moderator band. The part of the ventricle below the 

developed trabeculae carneae, two large papillary muscles, 

the cavity of the right ventricle (Fig. 3.38). There are well-

tic because of the bulging of the ventricular septum into 

section, the left ventricle is circular; the right is crescen

times higher than that inside the right ventricle.) In cross 

ventricle. (The left intraventricular blood pressure is six 

(Fig. 3.38) are three times thicker than those of the right 

through the aortic orifice. The walls of the left ventricle 

through the atrioventricular orifice and with the aorta 

The left ventricle communicates with the left atrium 

Left Ventricle

valve.

The left atrioventricular orifice is guarded by the mitral 

through the posterior wall (Fig. 3.35) and have no valves. 

The four pulmonary veins, two from each lung, open 

Openings into the Left Atrium

auricle possesses muscular ridges as in the right auricle.

The interior of the left atrium is smooth, but the left 

85

-

 

-

Structure of the Heart

-

-

-

-

 

-

Conducting System of the Heart

-

-

 the 

 the 

 and 

-
-

band, where it crosses to the anterior wall of the right 

side of the ventricular septum to reach the moderator 

The right bundle branch (RBB) passes down on the right 

tum, it divides into two branches, one for each ventricle. 

tum. At the upper border of the muscular part of the sep

border of the membranous part of the ventricular sep

septal cusp of the tricuspid valve to reach the inferior 

The atrioventricular bundle then descends behind the 

dle descends through the fibrous skeleton of the heart.

travel from the atria to the ventricles (Fig. 3.40). The bun

thus the only route along which the cardiac impulse can 

of the atria and the myocardium of the ventricles and is 

pathway of cardiac muscle that connects the myocardium 

-

 

-
-

 

 


background image

86

  CHAPTER 3

 

The Thorax: Part II—The Thoracic Cavity

sinuatrial
node

right atrium

internodal
pathways

right branch
of atrioventricular
bundle

Purkinje
plexus

Purkinje
plexus

left branch of
atrioventricular
bundle

atrioventricular
bundle

atrioventricular
node

FIGURE 3.40

  The conducting system of the heart. Note the 

the superior vena caval opening. It descends on the atrial 

posterior end of the sinuatrial node and passes posterior to 

 leaves the 

middle internodal pathway

tricular node. The 

descends on the atrial septum and ends in the atrioven

and passes anterior to the superior vena caval opening. It 

 leaves the anterior end of the sinuatrial node 

pathway

anterior internodal 

ordinary cardiac muscle cells. The 

a structure consisting of a mixture of Purkinje fibers and 

special pathways in the atrial wall (Fig. 3.40), which have 

phenomenon has been explained by the description of 

can travel by passing along the ordinary myocardium. This 

travel to the atrioventricular node more rapidly than they 

Impulses from the sinuatrial node have been shown to 

Internodal Conduction Paths

have the opposite effect.

rate of conduction of the impulse; the sympathetic nerves 

parasympathetic nerves slow the rhythm and diminish the 

enced by the autonomic nerve supply to the heart. The 

The activities of the conducting system can be influ

chambers contract in a coordinated and efficient manner.

throughout the myocardium of the heart so that the different 

impulses, but also for conducting these impulses rapidly 

is responsible not only for generating rhythmic cardiac 

It is thus seen that the conducting system of the heart 

Purkinje plexus of the left ventricle.

which eventually become continuous with the fibers of the 

usually divides into two branches (anterior and posterior), 

passes down on its left side beneath the endocardium. It 

The left bundle branch (LBB) pierces the septum and 

the Purkinje plexus (Fig. 3.40).

ventricle. Here, it becomes continuous with the fibers of 

internodal pathways.

-

*

-

Failure of the Conduction System of the Heart

likely to occur if the blow occurs during the upstroke of the T 

the young is most likely due to the compliant chest wall due 

mic contraction of the ventricles (arrhythmias) or, if complete 

spread from the atria to the ventricles. Failure of the bundle to 

The sinuatrial node is the spontaneous source of the cardiac 

impulse. The atrioventricular node is responsible for picking 

up the cardiac impulse from the atria. The atrioventricular 

bundle is the only route by which the cardiac impulse can 

conduct the normal impulses results in alteration in the rhyth-

bundle block occurs, complete dissociation between the atria 

and ventricular rates of contraction. The common cause of 

defective conduction through the bundle or its branches is 

atherosclerosis of the coronary arteries, which results in a 

diminished blood supply to the conducting system.

Commotio Cordis

This condition results in ventricular fibrillation and sudden 

death and is caused by a blunt nonpenetrating blow to the 

anterior chest wall over the heart. It occurs most commonly 

in the young and adolescents and is often sports-related. The 

sudden blow is frequently produced by a baseball, baseball 

bat, lacrosse ball, or fist or elbow. The common incidence in 

to the flexible ribs and costal cartilages and the thin undevel-

oped chest muscles. Apparently, timing of the blow relative 

to the cardiac cycle is critical; ventricular fibrillation is most 

wave of the electrical activity of the cardiac muscle.

C L I N I C A L   N O T E S

septum to the atrioventricular node. The 

Branches

and left ventricle and the atrioventricular septum.

right atrium and right ventricle and parts of the left atrium 

lowing branches from the right coronary artery supply the 

nary artery in the posterior interventricular groove. The fol

the atrioventricular groove to anastomose with the left coro

the inferior border of the heart it continues posteriorly along 

almost vertically in the right atrioventricular groove, and at 

pulmonary trunk and the right auricle (Fig. 3.34). It descends 

sinus of the ascending aorta and runs forward between the 

 arises from the anterior aortic 

right coronary artery

The 

face of the heart, lying within subepicardial connective tissue.

arteries and their major branches are distributed over the sur

immediately above the aortic valve (Fig. 3.41). The coronary 

left coronary arteries, which arise from the ascending aorta 

The arterial supply of the heart is provided by the right and 

valve of the inferior vena cava to the atrioventricular node.

node and descends through the crista terminalis and the 

 leaves the posterior part of the sinuatrial 

nodal pathway

posterior inter-

The Arterial Supply of the Heart

-

-
-

1.

 The 

ventricle.

and the upper part of the anterior wall of the right 

pulmonary conus (infundibulum of the right ventricle) 

 supplies the anterior surface of the 

right conus artery

 
 

conduction.

ordinary atrial myocardial fibers that are responsible for the more rapid 

some researchers, who claim that it is the packaging and arrangement of 

*The occurrence of specialized internodal pathways has been dismissed by 


background image

 Basic Anatomy 

87

right

coronary

artery

left coronary artery

circumflex branch

anterior
interventricular
branch

posterior interventricular branch

marginal branch

great cardiac
vein

middle
cardiac
vein

coronary sinus

small cardiac vein

anterior

cardiac

vein

FIGURE 3.41

  Coronary arteries and veins.

2.

 The 

the lower margin of the costal surface to reach the apex.

 is the largest and runs along 

marginal branch

tricle. The 

number and supply the anterior surface of the right ven

 are two or three in 

anterior ventricular branches

-

3.

 The 

right ventricle.

number and supply the diaphragmatic surface of the 

 are usually two in 

posterior ventricular branches

4.

 The 

is replaced by a branch from the left coronary artery.

In 10% of individuals, the posterior interventricular artery 

atrioventricular node.

A large septal branch supplies the 

rior interventricular branch of the left coronary artery. 

the apical part, which receives its supply from the ante

the posterior part of the ventricular septum but not to 

cles, including its inferior wall. It supplies branches to 

groove. It gives off branches to the right and left ventri

runs toward the apex in the posterior interventricular 

posterior interventricular (descending) artery 

-

-

 
 
 

5.

 The 

Branches

rior interventricular branch and a circumflex branch.

enters the atrioventricular groove and divides into an ante

the pulmonary trunk and the left auricle (Fig. 3.34). It then 

tic sinus of the ascending aorta and passes forward between 

and ventricular septum. It arises from the left posterior aor

including the greater part of the left atrium, left ventricle, 

right coronary artery, supplies the major part of the heart, 

 which is usually larger than the 

left coronary artery,

The 

coronary artery.

and left atria; in 35% of individuals it arises from the left 

 supplies the node and the right 

of the sinuatrial node

artery 

terior surface of both the right and left atria. The 

faces of the right atrium. One branch supplies the pos

 supply the anterior and lateral sur

atrial branches

-
-

-

-

1.

 The 

 supplies the pulmonary conus.

left conus artery

A small 

arise directly from the trunk of the left coronary artery. 

 may 

(left diagonal artery)

of these ventricular branches 

supply the anterior part of the ventricular septum. One 

and left ventricles with numerous branches that also 

The anterior interventricular branch supplies the right 

one third of individuals, it ends at the apex of the heart. 

the terminal branches of the right coronary artery. In 

posterior interventricular groove and anastomoses with 

it then passes around the apex of the heart to enter the 

to the apex of the heart (Fig. 3.41). In most individuals, 

runs downward in the anterior interventricular groove 

anterior interventricular (descending) branch 

2.

 The 

(except for the small area to the right of the anterior inter

 supplies all of the right ventricle 

right coronary artery

The 

Heart in Most Individuals

Summary of the Overall Arterial Supply to the 

sustain the muscle.

although sometimes the collateral circulation is enough to 

ally leads to myocardial death (myocardial infarction), 

one of the larger branches of either coronary artery usu

branches become blocked by disease. A sudden block of 

blood supply to the cardiac muscle should one of the large 

 to provide an adequate 

not large enough

they are usually 

and left coronary arteries (collateral circulation) exist, but 

Anastomoses between the terminal branches of the right 

Coronary Artery Anastomoses

left coronary artery (10%).

tricular artery is a branch of the circumflex branch of the 

 the posterior interven

left dominance,

viduals (90%). In 

coronary artery. Right dominance is present in most indi

terior interventricular artery is a large branch of the right 

 the pos

right dominance,

artery are variable (Fig. 3.42). In 

gin, size, and distribution of the posterior interventricular 

the diaphragmatic surface of both ventricles. Here the ori

the most common variations affect the blood supply to 

Variations in the blood supply to the heart do occur, and 

Variations in the Coronary Arteries

 supply the left atrium.

Atrial branches

the left ventricle. 

 supply 

posterior ventricular branches

 and 

ventricular

Anterior 

margin of the left ventricle down to the apex. 

 is a large branch that supplies the left 

marginal artery

left 

margin of the heart in the atrioventricular groove. A 

terventricular artery (Fig. 3.41). It winds around the left 

 is the same size as the anteriorin

circumflex artery

-

-

-

-
-

-

-

ventricular groove), the variable part of the  diaphragmatic 


background image

88

  CHAPTER 3

 

The Thorax: Part II—The Thoracic Cavity

circumflex

branch of

left coronary

artery

 branches of posterior

interventricular artery

sinuatrial

node

right coronary artery

anterior

interventricular

artery

atrioventricular bundle

atrioventricular node

left coronary artery

branches of posterior

interventricular artery

right

coronary

artery

circumflex branch

of left coronary

artery

right

coronary

artery

A

B

C

FIGURE 3.42

 

(Fig. 3.42).

LBB is supplied by the right and left coronary arteries 

ular bundle is supplied by the left coronary artery; the 

the right coronary artery. The RBB of the atrioventric

lar node and the atrioventricular bundle are supplied by 

sometimes by the left coronary artery. The atrioventricu

The sinuatrial node is usually supplied by the right but 

Arterial Supply to the Conducting System

LBB.

tricular septum, most of the left atrium, the RBB, and the 

interventricular groove, the anterior two thirds of the ven

tricle, a small area of the right ventricle to the right of the 

 supplies most of the left ven

left coronary artery

The 

node and bundle. The LBB also receives small branches.

atrium, and the sinuatrial node and the atrioventricular 

ventricular septum, the right atrium and part of the left 

surface of the left ventricle, the posteroinferior third of the 

 Anterior view of the heart showing the relationship of the blood supply to the conducting system.

the left dominance. 

 Posterior view of the heart showing the origin and distribution of the posterior interventricular artery in 

 Posterior view of the heart showing the origin and distribution of the posterior interventricular artery in the 

A.

right dominance. B.

C.

-

-

-

-

Coronary Artery Disease

blockage are caused by an acute thrombosis on top of a chronic 

The myocardium receives its blood supply through the right 

and left coronary arteries. Although the coronary arteries have 

numerous anastomoses at the arteriolar level, they are essen-

tially functional end arteries. A sudden block of one of the large 

branches of either coronary artery will usually lead to necrosis 

of the cardiac muscle (myocardial infarction) in that vascular 

area, and often the patient dies. Most cases of coronary artery 

atherosclerotic narrowing of the lumen.

C L I N I C A L   N O T E S

(continued)


background image

 Basic Anatomy 

89

Arteriosclerotic disease of the coronary arteries may pres

that have been carried out before treatment. For this reason, a 

coronary artery stenting are now commonly accepted methods 

Because coronary bypass surgery, coronary angioplasty, and 

infarction, the artery involved, and the electrocardiographic 

be helpful when attempting to correlate the site of myocardial 

the different areas of the myocardium. This information can 

Table 3.1 shows the different coronary arteries that supply 

 occurs when coronary flow is suddenly 

Myocardial infarction

that myocardial ischemia occurs on exertion but not at rest. (3) 

rest. In this condition, the coronary arteries are so narrowed 

 is cardiac pain that occurs on exertion and is relieved by 

the myocardium occur over many years and are caused by a 

lumina of the arteries: (1) General degeneration and fibrosis of 

ent in three ways, depending on the rate of narrowing of the 

-

gradual narrowing of the coronary arteries. (2) Angina pecto-
ris

reduced or stopped and the cardiac muscle undergoes necro-

sis. Myocardial infarction is the major cause of death in indus-

trialized nations.

signature.

of treating coronary artery disease, it is incumbent on the student 

to be prepared to interpret still- and motion-picture angiograms 

working knowledge of the origin, course, and distribution of the 

coronary arteries should be memorized.

Coronary Artery

Infarct Location

ECG Signature

Proximal LAD

Large anterior wall

ST elevation: I, L, V1–V6

More distal LAD

Anteroapical

Inferior wall if wraparound LAD

ST elevation: V2–V4

ST elevation: II, III, F

Distal LAD

Anteroseptal

ST elevation: V1–V3

Early obtuse, marginal

High lateral wall

ST elevation: I, L, V4–V6

More distal marginal branch, circumflex

Small lateral wall

ST elevation: I, L, or V4–V6, or no  abnormality

ECG, electrocardiographic; LAD, left anterior descending (interventricular); RCA, right coronary artery.

Circumflex

Posterolateral

ST elevation: V4–V6; ST depression: V1–V2

Distal RCA

Small inferior wall

ST elevation: II, III, F; ST depression: I, L

Proximal RCA

Large inferior wall and posterior wall

Some lateral wall

ST elevation: II, III, F; ST depression: I, L, V1–V3

ST elevation: V5–V6

RCA

Right ventricular

Usually inferior

ST elevation: V2R–V4R; some ST elevation: V1; 

or ST depression V2, V3

ST elevation: II, III, F

Coronary Artery Lesions, Infarct Location, and ECG Signature

T A B L E   3 . 1

reflexes.

ning with the vagus nerves take part in cardiovascular 

consciousness via this pathway. Afferent fibers run

myocardium become impaired, pain impulses reach 

sciousness. However, should the blood supply to the 

carry nervous impulses that normally do not reach con

Afferent fibers running with the sympathetic nerves 

arteries.

traction of the heart and a constriction of the coronary 

nerves results in a reduction in the rate and force of con

coronary arteries. Activation of the parasympathetic 

on the sinuatrial and atrioventricular nodes and on the 

The postganglionic parasympathetic fibers terminate 

coronary arteries.

contraction of the cardiac muscle, and dilatation of the 

nerves results in cardiac acceleration, increased force of 

fibers, and on the coronary arteries. Activation of these 

sinuatrial and atrioventricular nodes, on cardiac muscle 

The postganglionic sympathetic fibers terminate on the 

pathetic supply comes from the vagus nerves.

racic portions of the sympathetic trunks, and the parasym

sympathetic supply arises from the cervical and upper tho

 situated below the arch of the aorta. The 

thetic fibers of the autonomic nervous system via the 

The heart is innervated by sympathetic and parasympa

that open directly into the heart chambers.

 (Fig. 3.41) and by small veins 

anterior cardiac vein

by the 

The remainder of the blood is returned to the right atrium 

 are tributaries of the coronary sinus. 

middle cardiac veins

small

atrium to the left of the inferior vena cava. The 

 It opens into the right 

great cardiac vein.

tinuation of the 

posterior part of the atrioventricular groove and is a con

through the coronary sinus (Fig. 3.41), which lies in the 

Most blood from the heart wall drains into the right atrium 

Venous Drainage of the Heart

-

 and 

Nerve Supply of the Heart

-

car-

diac plexuses

-
-

-

-

-


background image

90

  CHAPTER 3

 

The Thorax: Part II—The Thoracic Cavity

Cardiac Pain

matic surface of the heart often gives rise to discomfort in the 

costobrachial nerve communicates with the medial cutaneous 

areas supplied by the upper four intercostal nerves and by the 

Pain originating in the heart as the result of acute myocardial 

ischemia is assumed to be caused by oxygen deficiency and the 

accumulation of metabolites, which stimulate the sensory nerve 

endings in the myocardium. The afferent nerve fibers ascend to 

the central nervous system through the cardiac branches of the 

sympathetic trunk and enter the spinal cord through the poste-

rior roots of the upper four thoracic nerves. The nature of the 

pain varies considerably, from a severe crushing pain to nothing 

more than a mild discomfort.

The pain is not felt in the heart, but is referred to the skin 

areas supplied by the corresponding spinal nerves. The skin 

intercostobrachial nerve (T2) are therefore affected. The inter-

nerve of the arm and is distributed to skin on the medial side of 

the upper part of the arm. A certain amount of spread of nervous 

information must occur within the central nervous system, for 

the pain is sometimes felt in the neck and the jaw.

Myocardial infarction involving the inferior wall or diaphrag-

epigastrium. One must assume that the afferent pain fibers from 

the heart ascend in the sympathetic nerves and enter the spinal 

cord in the posterior roots of the seventh, eighth, and ninth tho-

racic spinal nerves and give rise to referred pain in the T7, T8, 

and T9 thoracic dermatomes in the epigastrium.

Because the heart and the thoracic part of the esophagus 

probably have similar afferent pain pathways, it is not surprising 

that painful acute esophagitis can mimic the pain of myocardial 

infarction.

C L I N I C A L   N O T E S

Action of the Heart

opposite the 3rd intercostal space.

 lies behind the left half of the sternum 

aortic valve

The 

sternum.

third left costal cartilage and the adjoining part of the 

 lies behind the medial end of the 

pulmonary valve

The 

opposite the 4th costal cartilage.

 lies behind the left half of the sternum 

mitral valve

The 

num opposite the 4th intercostal space.

 lies behind the right half of the ster

tricuspid valve

The 

(Fig. 3.14):

56. The surface markings of the heart valves are as follows 

The surface projection of the heart was described on page 

Surface Anatomy of the Heart Valves

aortic and pulmonary orifices.

The cusps float into apposition and completely close the 

and immediately fills the pockets of the semilunar valves. 

systole, blood begins to move back toward the ventricles 

is ejected from the heart. At the conclusion of ventricular 

the semilunar valve cusps are pushed aside, and the blood 

present in the large arteries (aorta and pulmonary trunk), 

Once the intraventricular blood pressure exceeds that 

the same time throughout the ventricles.

fibers, ensures that myocardial contraction occurs at almost 

(Fig. 3.38) and its terminal branches, including the Purkinje 

of the cardiac impulse along the atrioventricular bundle 

tracting and the atrioventricular valves close. The spread 

chordae tendineae. Meanwhile, the ventricles start con

muscles then begin to contract and take up the slack of the 

tricular bundle and its branches (Fig. 3.38). The papillary 

node, is conducted to the papillary muscles by the atrioven

The cardiac impulse, having reached the atrioventricular 

this means, blood does not reflux into the veins.

large veins and milks the blood toward the ventricles. By 

in the atria, which commences around the openings of the 

tricles. The sinuatrial node initiates the wave of contraction 

forces the remainder of the blood in the atria into the ven

When the ventricles are nearly full, atrial systole occurs and 

passively flows from the atria to the ventricles (Fig. 3.38). 

ation) occurs, the atrioventricular valves open, and blood 

in the large veins and atria. Once ventricular diastole (relax

valves are closed, the blood is temporarily accommodated 

ventricular systole (contraction), when the atrioventricular 

Blood is continuously returning to the heart; during 

150 times per minute in the newborn child.

70 to 90 times per minute in the resting adult and 130 to 

 The normal heart beats 

cardiac cycle.

referred to as the 

take place within it as it fills with blood and empties is 

The heart is a muscular pump. The series of changes that 

 

-

-

-

-

 

-

Auscultation of the Heart Valves

produced at each valve with the minimum of distraction or 

the chest wall so that he or she will be able to hear sounds 

for a physician to know where to place the stethoscope on 

closure of the aortic and pulmonary valves. It is important 

and mitral valves. The second sound is produced by the sharp 

contraction of the ventricles and the closure of the tricuspid 

 The first sound is produced by the 

lu¯b-du˘p.

two sounds: 

On listening to the heart with a stethoscope, one can hear 

 

interference.

C L I N I C A L   N O T E S

(continued)




رفعت المحاضرة من قبل: Mostafa Altae
المشاهدات: لقد قام 7 أعضاء و 147 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل