مواضيع المحاضرة:
background image

500

  CHAPTER 10

 

the condyles of the tibia and their cartilaginous menisci 

Above are the rounded condyles of the femur; below are 

Articulation

Note that the fibula is not directly involved in the joint.

between the patella and the patellar surface of the femur. 

the corresponding condyles of the tibia, and a gliding joint, 

between the medial and lateral condyles of the femur and 

in the body. Basically, it consists of two condylar joints 

The knee joint is the largest and most complicated joint 

The hip joint is fully described on page 467.

articular branches to the joints of the foot.

sor digitorum brevis muscle. Both terminal branches give 

ond toes (Fig. 10.60). The lateral branch supplies the exten

supplies the skin of the adjacent sides of the big and sec

terminal, medial, and lateral branches. The medial branch 

of the dorsalis pedis artery (see page 485). It divides into 

The Lower Limb

-
-

Joints of the Lower Limb

Knee Joint

(Fig. 10.35); in front is the articulation between the lower 

tellar bursa

suprapa

beneath the quadriceps tendon, forming the 

permitting the synovial membrane to pouch upward 

the joint. On the front of the joint, the capsule is absent, 

surfaces and surrounds the sides and posterior aspect of 

The capsule is attached to the margins of the articular 

vial joint of the plane gliding variety.

possible. The joint between the patella and femur is a syno

the hinge variety, but some degree of rotatory movement is 

The joint between the femur and tibia is a synovial joint of 

Type

tibial plateaus

referred to clinically as the medial and lateral 

faces of the medial and lateral condyles of the tibia are often 

covered with hyaline cartilage. Note that the articular sur

The articular surfaces of the femur, tibia, and patella are 

end of the femur and the patella.

-

.

-

Capsule

-

 (Fig. 

h side of the patella, the 

10.35). On eac

above to the lateral condyle of the femur and below to the 

 is cordlike and is attached 

lateral collateral ligament

The 

the common tendon of the quadriceps femoris muscle.

10.35). It is, in fact, a continuation of the central portion of 

der of the patella and below to the tuberosity of the tibia (Fig. 

 is attached above to the lower bor

ligamentum patellae

The 

Extracapsular Ligaments

capsule and those that lie within the capsule.

The ligaments may be divided into those that lie outside the 

Ligaments

permits the tendon of the popliteus to emerge (Fig. 10.35).

An opening in the capsule behind the lateral tibial condyle 

 (Fig. 10.35). 

oblique popliteal ligament

muscle called the 

is strengthened by an expansion of the semimembranous 

vastus lateralis and medialis. Behind the joint, the capsule 

capsule is strengthened by expansions from the tendons of 

-

head of the fibula (Fig. 10.35). The tendon of the  popliteus 

and below to the medial surface of the shaft of the tibia 

attached above to the medial condyle of the femur 

medial collateral ligament

The 

meniscus (Fig. 10.61).

muscle intervenes between the ligament and the lateral 

 is a flat band and is  

(Fig. 10.35). 

popliteal bursa

popliteus, forming the 

longed downward on the deep surface of the tendon of the 

At the back of the joint, the synovial membrane is pro

 muscle (Fig. 10.35).

articularis genus

called the 

ment of a small portion of the vastus intermedius muscle, 

. This is held in position by the attach

suprapatellar bursa

cle for three fingerbreadths above the patella, forming the 

which extends up beneath the quadriceps femoris mus

10.61). On the front and above the joint, it forms a pouch, 

to the margins of the articular surfaces (Figs. 10.35 and 

The synovial membrane lines the capsule and is attached 

Synovial Membrane

it is relatively immobile.

meniscus is also attached to the medial collateral ligament, 

tibia by anterior and posterior horns. Because the medial 

Each meniscus is attached to the upper surface of the 

cushions between the two bones.

to receive the convex femoral condyles; they also serve as 

tion is to deepen the articular surfaces of the tibial condyles 

surfaces are in contact with the tibial condyles. Their func

faces are in contact with the femoral condyles. The lower 

forms a free edge (Figs. 10.35 and 10.61). The upper sur

capsule, and the inner border is thin and concave and 

tilage. The peripheral border is thick and attached to the 

 The menisci are C-shaped sheets of fibrocar

Menisci

being pulled posteriorly.

With the knee joint flexed, the PCL prevents the tibia from 

prevents anterior displacement of the femur on the tibia. 

medial femoral condyle (Figs. 10.35 and 10.61). The PCL 

be attached to the anterior part of the lateral surface of the 

of the tibia and passes upward, forward, and medially to 

ament (PCL) is attached to the posterior intercondylar area 

 The posterior cruciate lig

Posterior Cruciate Ligament

from being pulled anteriorly.

tibia. With the knee joint flexed, the ACL prevents the tibia 

ACL prevents posterior displacement of the femur on the 

the lateral femoral condyle (Figs. 10.35 and 10.61). The 

be attached to the posterior part of the medial surface of 

of the tibia and passes upward, backward, and laterally, to 

ment (ACL) is attached to the anterior intercondylar area 

 The anterior cruciate liga

Anterior Cruciate Ligament

tibia throughout the joint’s range of movement.

ligaments are the main bond between the femur and the 

to their tibial attachments (Fig. 10.61). These important 

10.35). They are named anterior and posterior, according 

ments that cross each other within the joint cavity (Fig. 

 are two strong intracapsular liga

cruciate ligaments

The 

Intracapsular Ligaments

strengthens the posterior aspect of the capsule (Fig. 10.35).

sion derived from the semimembranosus muscle. It 

 is a tendinous expan

oblique popliteal ligament

The 

 (Fig. 10.61).

meniscus

It is firmly attached to the edge of the medial 

-

-

-

-

-

-

-

-

-

-

. A bursa is  

osed 

interp


background image

 Basic Anatomy 

501

infrapatellar pad of fat

infrapatellar fold

of synovial membrane

alar fold

anterior cruciate

ligament

medial

collateral

ligament

medial

meniscus

sartorius

gracilis

saphenous nerve

great saphenous vein

semimembranosus

semitendinosus

oblique popliteal ligament

gastrocnemius (medial head)

small saphenous vein

tibial nerve

popliteal artery

gastrocnemius (lateral head)

posterior cruciate ligament

popliteal vein

plantaris

common peroneal nerve

deep fascia

biceps femoris

popliteus

tendon

lateral collateral

ligament

lateral

meniscus

capsule

synovial membrane

transverse ligament

ligamentum patellae

prepatellar bursa

FIGURE 10.61

  Relations of the right knee joint.

ceps muscle and communicates with the joint cavity 

 lies beneath the quadri

suprapatellar bursa

The 

Anterior Bursae

 may communicate with the joint.

membranosus bursa

semi

 always communicate with the joint, and the 

bursa

popliteal 

suprapatellar bursa

behind the joint. The 

Four are situated in front of the joint and six are found 

found wherever skin, muscle, or tendon rubs against bone. 

Numerous bursae are related to the knee joint. They are 

Bursae Related to the Knee Joint

 (Fig. 10.61).

alar folds

borders of the fold are termed the 

 the free 

infrapatellar fold;

mentum patellae to form the 

is reflected backward from the posterior surface of the liga

In the anterior part of the joint, the synovial membrane 

behind the synovial cavity and are not bathed in synovial fluid.

ligaments (Fig. 10.61). As a result, the cruciate ligaments lie 

posterior part of the capsule around the front of the cruciate 

The synovial membrane is reflected forward from the 

quently communicates with the synovial cavity of the joint.

 and it fre

semimembranosus bursa,

this is termed the 

medial femoral condyle and the semimembranosus tendon; 

between the medial head of the gastrocnemius and the 

-

-

 and the 

-

-

(Fig. 10.35). It is described above.

communicate with the joint cavity. It was described 

insertion of the semimembranosus muscle and may 

 is found related to the 

semimembranosus bursa

The 

cavity. It was described previously.

don of the popliteus and communicates with the joint 

 is found in association with the ten

popliteal bursa

The 

Posterior Bursae

tum patellae and the tibia (Fig. 10.35).

 lies between the ligamen

deep infrapatellar bursa

The 

part of the ligamentum patellae (Fig. 10.35).

neous tissue between the skin and the front of the lower 

 lies in the subcuta

superficial infrapatellar bursa

The 

(Figs. 10.35 and 10.61).

patella and the upper part of the ligamentum patellae 

between the skin and the front of the lower half of the 

 lies in the subcutaneous tissue 

prepatellar bursa

The 

-

-

-

 previously.

nerves supply the knee joint.

The femoral, obturator, common peroneal, and tibial 

Nerve Supply

medial head of origin of the gastrocnemius muscle.

of origin of the gastrocnemius muscle; and beneath the 

pass to their insertion on the tibia; beneath the lateral head 

the sartorius, gracilis, and semitendinosus muscles as they 

of insertion of the biceps femoris; related to the tendons of 

The remaining four bursae are found related to the tendon 


background image

502

  CHAPTER 10

 

sus muscles, assisted by the gracilis, sartorius, and popliteus 

The biceps femoris, semitendinosus, and semimembrano

The following muscles produce movements of the knee joint.

especially the cruciate ligaments, are slack in this position. 

on the femur. This is possible because the major ligaments, 

the tibia can also be moved passively forward and backward 

erable range of rotation is possible. In the flexed position, 

When the knee joint is flexed to a right angle, a consid

being pulled backward also.

popliteus to the lateral meniscus results in that structure 

ing contour of the femoral condyles. The attachment of the 

again, the menisci have to adapt their shape to the chang

muscle, which laterally rotates the femur on the tibia. Once 

ing or untwisting process is accomplished by the popliteus 

permit movements between the joint surfaces. This unlock

tial that the major ligaments be untwisted and slackened to 

Before flexion of the knee joint can occur, it is essen

The extended knee is said to be in the locked position.

rubber cushions between the femoral and tibial condyles. 

rigid structure; the cartilaginous menisci are compressed like 

ligaments of the joint, and the knee becomes a mechanically 

the femur results in a twisting and tightening of all the major 

 medial rotation of 

assumes the position of full extension,

The knee joint can flex, extend, and rotate. As the knee joint 

Movements

The Lower Limb

1

-

-

-

-

Flexion

-

(Fig. 10.61)

 Biceps femoris and common peroneal nerve 

Laterally:

cles (Fig. 10.61)

 Sartorius, gracilis, and semitendinosus mus

Medially:

taris (Fig. 10.61)

oris, the two heads of the gastrocnemius, and the plan

semimembranosus, the semitendinosus, the biceps fem

form the boundaries of the popliteal fossa, namely, the 

peroneal nerves; lymph nodes; and the muscles that 

 The popliteal vessels; tibial and common 

Posteriorly:

 The prepatellar bursa (Fig. 10.61)

Anteriorly:

Important Relations

knee joint.

especially the quadriceps femoris, after injury to the 

otherapist to build up the strength of these muscles, 

cles is the most important, and it is the job of the physi

of the ligaments. Of these factors, the tone of the mus

the strong muscles acting on the joint and the strength 

The stability of the knee joint depends on the tone of 

The biceps femoris produces lateral rotation.

Lateral Rotation

rotation.

The sartorius, gracilis, and semitendinosus produce medial 

Medial Rotation

limited by the tension of all the major ligaments of the joint.

The quadriceps femoris produces extension. Extension is 

of the back of the leg with the thigh.

muscles, produce flexion. Flexion is limited by the contact 

may be laterally rotated on the femur to lock the knee joint.

lize the knee joint. However, if the foot is raised off the ground, the tibia 

is standing, the femur is medially rotated on the tibia to lock and stabi

Note that when the foot is firmly planted on the ground when a person 

1

-

Extension

-
-

-
-

-

Strength of the Knee Joint

ligament in the body, for which surgery is performed. The condi

Tears of the ACL

Forced adduction of the tibia on the femur can result in injury 

whereas sprains of the medial collateral ligament result in ten

femoral or tibial attachments. It is useful to remember that tears 

of insertion of the vastus lateralis and medialis, respectively.

aged, the large synovial cavity becomes distended with fluid. The 

the quadriceps femoris; provided that this is well developed, it is 

muscles acting on the joint. The most important muscle group is 

ligaments that bind the femur to the tibia and on the tone of the 

The strength of the knee joint depends on the strength of the 

capable of stabilizing the knee in the presence of torn ligaments.

Knee Injury and the Synovial Membrane

The synovial membrane of the knee joint is extensive, and if the 

articular surfaces, menisci, or ligaments of the joint are dam-

wide communication between the suprapatellar bursa and the 

joint cavity results in this structure becoming distended also. The 

swelling of the knee extends three or four fingerbreadths above 

the patella and laterally and medially beneath the aponeuroses 

Ligamentous Injury of the Knee Joint

Four ligaments—the medial collateral ligament, the lateral col-

lateral ligament, the ACL, and the PCL—are commonly injured 

in the knee. Sprains or tears occur depending on the degree of 

force applied.

Medial Collateral Ligament
Forced abduction of the tibia on the femur can result in partial 

tearing of the medial collateral ligament, which can occur at its 

of the menisci result in localized tenderness on the joint line, 

-

derness over the femoral or tibial attachments of the ligament.

Lateral Collateral Ligament

to the lateral collateral ligament (less common than medial liga-

ment injury).

Cruciate Ligaments
Injury to the cruciate ligaments can occur when excessive force 

is applied to the knee joint.

 are common. It is the most frequently injured 

-

tion is more common in women and this may be explained by the 

different alignment of the thigh on the leg in women associated 

with the wider pelvis. There is also an increased risk in women 

during the preovulatory phase of the menstrual cycle, possibly 

C L I N I C A L   N O T E S

(continued)


background image

 Basic Anatomy 

503

due to the influence of the female sex hormones. 

such as the cruciate ligaments and the menisci, for diagnostic 

This technique permits the direct visualization of structures, 

into the synovial cavity of the knee joint through a small incision. 

Arthroscopy involves the introduction of a lighted instrument 

wedged between the articular surfaces, further movement is 

length (Fig. 10.63). When the torn part of the meniscus becomes 

being subjected to a severe grinding force, and it splits along its 

sudden movement between the condyles results in the meniscus 

position between the femoral and tibial condyles (Fig. 10.62A). A 

the femur, and the medial meniscus is pulled into an abnormal 

taking the weight of the body. The tibia is usually abducted on 

is rotated on the femur, with the knee joint partially flexed and 

injury occurs when the femur is rotated on the tibia, or the tibia 

eral ligament of the knee joint, which restricts its mobility. The 

probably because of its strong attachment to the medial collat

damaged much more frequently than the lateral, and this is 

Injuries of the menisci are common. The medial meniscus is 

however, the capsule of the joint and the collateral ligaments be 

on the quadriceps femoris muscle is begun at once. Should, 

immobilized in slight flexion in a cast, and active physiotherapy 

torn cruciate ligaments is not always attempted. The knee is 

integrity of the collateral ligaments, operative repair of isolated 

largely on the tone of the quadriceps femoris muscle and the 

(Fig. 10.62). Because the stability of the knee joint depends 

tibia can be made to move excessively backward on the femur 

on the femur; with rupture of the posterior cruciate ligament, the 

ligament shows that the tibia can be pulled excessively forward 

len. Examination of patients with a ruptured anterior cruciate 

commonly torn, or the capsule may be damaged. The joint cavity 

damage to other knee structures; the collateral ligaments are 

Injury to the cruciate ligaments is always accompanied by 

Tears of the 

PCL are rare.

quickly fills with blood (hemarthrosis) so that the joint is swol-

torn in addition, early operative repair is essential.

Meniscal Injury of the Knee Joint

-

impossible, and the joint is said to “lock.”

Injury to the lateral meniscus is less common, probably 

because it is not attached to the lateral collateral ligament of 

the knee joint and is consequently more mobile. The popliteus 

muscle sends a few of its fibers into the lateral meniscus, and 

these can pull the meniscus into a more favorable position dur-

ing sudden movements of the knee joint.

Pneumoarthrography

Air can be injected into the synovial cavity of the knee joint so 

that soft tissues can be studied. This technique is based on 

the fact that air is less radiopaque than structures such as the 

medial and lateral menisci, so their outline can be visualized on 

a radiograph (Fig. 10.76).

Arthroscopy

purposes.

cruciate ligament

ruptured posterior

cruciate ligament

ruptured anterior

cruciate ligament

test for posterior

cruciate ligament

r anterior

foot on ground

of fall

direction of impact

direction

medial
meniscus

test fo

A

B

C

FIGURE 10.62

 

posterior cruciate ligament (PCL).

 Test for integrity of the 

 Test for integrity of the anterior cruciate ligament (ACL). 

ground between the femur and the tibia. 

of the tibia on the femur, and the medial meniscus is pulled into an abnormal position. The cartilaginous meniscus is then 

right knee joint is semiflexed and that medial rotation of the femur on the tibia occurs. The impact causes forced abduction 

 Mechanism involved in damage to the medial meniscus of the knee joint from playing football. Note that the 

A.

B.

C.


background image

504

  CHAPTER 10

 

The Lower Limb

B

C

medial meniscus

A

D

FIGURE 10.63

  Tears of the medial meniscus of the knee 

10.65). The opposed bony surfaces are roughened.

of the tibia and the lower end of the fibula (Figs. 10.64 and 

Articulation is between the fibular notch at the lower end 

Articulation

Distal Tibiofibular Joint

movements at the ankle joint.

A small amount of gliding movement takes place during 

Movements

The common peroneal nerve supplies the joint.

Nerve Supply

the margins of the articular surfaces.

The synovial membrane lines the capsule and is attached to 

Synovial Membrane

the tibia and fibula together, also greatly strengthens the joint.

 which connects the shafts of 

interosseous membrane,

The 

 strengthen the capsule. 

posterior ligaments

Anterior

Ligaments

gins of the articular surfaces.

The capsule surrounds the joint and is attached to the mar

This is a synovial, plane, gliding joint.

Type

flattened and covered by hyaline cartilage.

the head of the fibula (Fig. 10.35). The articular surfaces are 

Articulation is between the lateral condyle of the tibia and 

Articulation

Proximal Tibiofibular Joint

 Tear of the anterior portion of 

 Tear of the posterior 

torn from its peripheral attachment. 

 The meniscus is 

 Complete bucket handle tear. 

joint. A.

B.

C.

portion of the meniscus. D.

the meniscus.

Capsule

-

 and 

posterior ligament of distal tibiofi

posterior talofibular ligament

calcaneofibular ligament

anterior talofi

anterior ligament of distal tibiofi

fibula

tuberosity of navicular

calcaneonavicular

tibia

medial malleolus

medial (deltoid) ligament

calcaneum

sustentaculum tali

plantar

ligament

talus

tibia

bular joint

talus

bular ligament

bifurcated ligament

dorsal tarsal ligaments

cuboid

dorsal tarsometatarsal ligaments

calcaneum

lateral malleolus

bular joint

A

B

FIGURE 10.64

  The right ankle joint as seen from the medial aspect (A) and the lateral aspect (B).


background image

 Basic Anatomy 

505

calcaneofibular ligament

peroneus brevis

lateral plantar vessels and ner

flexor digitorum brevis

flexor digitorum longus

tibialis posterior

posterior tubercle of talus

posterior talofi

calcaneofibular ligament

inferior transverse ligament

posterior tibiofibular ligament

tibia

interosseous membrane

fibula

lateral malleolus

calcaneum

sustentaculum tali

bular ligament

medial tubercle of talus

medial (deltoid) ligament

capsule

medial malleolus

tibia

medial malleolus

medial (deltoid) ligament

medial plantar vessels and nerve

abductor hallucis

quadratus plantae

abductor digiti minimi

ve

peroneus longus

lateral malleolus

talus

interosseous membrane

fibula

A

B

flexor hallucis longus

sustentaculum tali

FIGURE 10.65

  The right ankle joint as seen from the posterior aspect 

near their articular margins.

The capsule encloses the joint and is attached to the bones 

The ankle is a synovial hinge joint.

Type

covered with hyaline cartilage.

the body of the talus fits snugly. The articular surfaces are 

the lower end of the tibia, deepens the socket into which 

between the lateral malleolus and the posterior border of 

The inferior transverse tibiofibular ligament, which runs 

malleoli, and the body of the talus (Figs. 10.64 and 10.65). 

Articulation is between the lower end of the tibia, the two 

Articulation

rounding tendons make this joint strong and stable.

of the bones and the strength of the ligaments and the sur

move on a transverse axis in a hingelike manner. The shape 

upper part of the body of the talus. The talus is able to 

lower ends of the tibia and fibula, into which is fitted the 

The ankle joint consists of a deep socket formed by the 

ments at the ankle joint.

A small amount of movement takes place during move

Movements

Deep peroneal and tibial nerves supply the joint.

Nerve Supply

terior border of the lower end of the tibia.

surface of the upper part of the lateral malleolus to the pos

 runs from the medial 

inferior transverse ligament

The 

and behind the interosseous ligament.

fibrous tissue connecting the two bones together in front 

 are flat bands of 

posterior ligaments

anterior

The 

and fibula together, also greatly strengthens the joint.

 which connects the shafts of the tibia 

osseous membrane,

inter

fibrous tissue that binds the two bones together. The 

 is a strong, thick band of 

interosseous ligament

The 

Ligaments

There is no capsule.

The distal tibiofibular joint is a fibrous joint.

Type

(A) and in coronal section (B).

Capsule

-

 and 

-

-

Ankle Joint

-

Capsule


background image

506

  CHAPTER 10

 

The Lower Limb

Ankle Joint Stability

transversely. Overinversion (without rotation), in which the talus 

by forced overeversion (without rotation), in which the talus 

still farther, its rotary movement results in its violent contact with 

off the tip of the medial malleolus. If the talus is forced to move 

fracture spirally. If the force continues, the talus moves laterally, 

by forced external rotation and overeversion of the foot. The 

Fracture dislocations of the ankle are common and are caused 

deep mortise formed by the lower end of the tibia and the medial 

The ankle joint is a hinge joint possessing great stability. The 

and lateral malleoli securely holds the talus in position.

Acute Sprains of the “Lateral Ankle”

Acute sprains of the lateral ankle are usually caused by exces-

sive inversion of the foot with plantar flexion of the ankle. The 

anterior talofibular ligament and the calcaneofibular ligament 

are partially torn, giving rise to great pain and local swelling.

Acute Sprains of the “Medial Ankle”

Acute sprains of the medial ankle are similar to but less com-

mon than those of the lateral ankle. They may occur to the medial 

or deltoid ligament as a result of excessive eversion. The great 

strength of the medial ligament usually results in the ligament 

pulling off the tip of the medial malleolus.

Fracture Dislocations of the Ankle Joint

talus is externally rotated forcibly against the lateral malleolus of 

the fibula. The torsion effect on the lateral malleolus causes it to 

and the medial ligament of the ankle joint becomes taut and pulls 

the posterior inferior margin of the tibia, which shears off.

Other less common types of fracture dislocation are caused 

presses the lateral malleolus laterally and causes it to fracture 

presses against the medial malleolus, produces a vertical frac-

ture through the base of the medial malleolus.

C L I N I C A L   N O T E S

Ligaments

tial position for major thrusting movements in walking, 

the stability of the ankle joint when the foot is in the ini

distal tibiofibular joint. This arrangement greatly increases 

them to separate slightly and tighten the ligaments of the 

forced between the medial and lateral malleoli, causing 

wider anterior part of the articular surface of the talus is 

Note that during dorsiflexion of the ankle joint, the 

talofibular ligament.

the anterior fibers of the medial ligament, and the anterior 

gus. It is limited by the tension of the opposing muscles, 

posterior, flexor digitorum longus, and flexor hallucis lon

soleus, plantaris, peroneus longus, peroneus brevis, tibialis 

 is performed by the gastrocnemius, 

Plantar flexion

the calcaneofibular ligament.

calcaneus, the posterior fibers of the medial ligament, and 

peroneus tertius. It is limited by the tension of the tendo 

extensor hallucis longus, extensor digitorum longus, and 

 is performed by the tibialis anterior, 

Dorsiflexion

at the ankle joint

inversion and eversion take place at the tarsal joints and 

(toes pointing downward) are possible. The movements of 

Dorsiflexion (toes pointing upward) and plantar flexion 

Movements

Deep peroneal and tibial nerves supply the ankle joint.

Nerve Supply

The synovial membrane lines the capsule.

Synovial Membrane

talus.

from the lateral malleolus to the posterior tubercle of the 

 (Fig. 10.64) runs 

posterior talofibular ligament

The 

the lateral surface of the calcaneum.

the tip of the lateral malleolus downward and backward to 

 (Fig. 10.64) runs from 

calcaneofibular ligament

The 

talus.

from the lateral malleolus to the lateral surface of the 

 (Fig. 10.64) runs 

anterior talofibular ligament

The 

and consists of three bands.

 is weaker than the medial ligament 

lateral ligament

The 

navicular bone.

calcaneonavicular ligament, and the tuberosity of the 

side of the talus, the sustentaculum tali, the plantar 

the talus; the superficial fibers are attached to the medial 

nonarticular area on the medial surface of the body of 

(Fig. 10.65). Below, the deep fibers are attached to the 

attached by its apex to the tip of the medial malleolus 

 is strong and is 

deltoid, ligament

 or 

medial,

The 

not 

.

-

-

 running, and jumping.

longus (Fig. 10.48)

rior tibial vessels, the tibial nerve, and the flexor hallucis 

tibialis posterior, the flexor digitorum longus, the poste

 The 

Posteromedially (behind the medial malleolus):

peroneus longus and brevis (Fig. 10.46)

 The 

Posterolaterally (behind the lateral malleolus):

 The tendo calcaneus and plantaris (Fig. 

Posteriorly:

tertius (Fig. 10.48)

nerve, the extensor digitorum longus, and the peroneus 

longus, the anterior tibial vessels, the deep peroneal 

 The tibialis anterior, the extensor hallucis 

Anteriorly:

Important Relations

possible.

small amounts of rotation, abduction, and adduction are 

the ligaments of the distal tibiofibular joint are less taut and 

Note also that when the ankle joint is fully plantar flexed, 

10.48)

-


background image

 Basic Anatomy 

 is con

joint cavity

by dorsal and plantar ligaments. The 

 is strengthened 

capsule

vial joint of the gliding variety. The 

navicular bone and the three cuneiform bones. It is a syno

 between the 

articulation

The cuneonavicular joint is the 

Cuneonavicular Joint

extensor digitorum longus also assist.

brevis, and peroneus tertius; the lateral tendons of the 

Eversion is performed by the peroneus longus, peroneus 

digitorum longus; the tibialis posterior also assists.

sor hallucis longus, and the medial tendons of extensor 

Inversion is performed by the tibialis anterior, the exten

movement of inversion is more extensive than eversion.

the foot so that the sole faces in the lateral direction. The 

 is the opposite movement of 

Eversion

sole faces medially. 

 is the movement of the foot so that the 

Inversion

joints. 

of the foot take place at the subtalar and transverse tarsal 

The important movements of inversion and eversion 

sal joints

transverse tar

 or 

midtarsal

are together referred to as the 

The talocalcaneonavicular and the calcaneocuboid joints 

and Calcaneocuboid Joints

Movements in the Subtalar, Talocalcaneonavicular, 

The synovial membrane lines the capsule.

Synovial Membrane

bone (Fig. 10.59).

of the calcaneum and to the adjoining part of the cuboid 

that is attached to the anterior tubercle on the undersurface 

 is a wide, strong ligament 

short plantar ligament

The 

into a tunnel.

the groove for the peroneus longus tendon, converting it 

fourth, and fifth metatarsal bones in front. It bridges over 

to the undersurface of the cuboid and the bases of the third, 

attached to the undersurface of the calcaneum behind and 

the lower surface of the joint (Figs. 10.58 and 10.59). It is 

 is a strong ligament on 

long plantar ligament

The 

the navicular bone.

of the cuboid, and the medial limb to the upper surface of 

calcaneum. The lateral limb is attached to the upper surface 

is attached to the upper surface of the anterior part of the 

surface of the joint (Fig. 10.64). It is Y shaped, and the stem 

 is a strong ligament on the upper 

bifurcated ligament

The 

Ligaments

The capsule encloses the joint.

The calcaneocuboid joint is synovial, of the plane variety.

Type

articular surfaces are covered with hyaline cartilage.

and the posterior surface of the cuboid (Fig. 10.37). The 

Articulation is between the anterior end of the calcaneum 

Articulation

Calcaneocuboid Joint

Gliding and rotatory movements are possible.

Movements

The synovial membrane lines the capsule.

Synovial Membrane

cartilage and supports the head of the talus.

The superior surface of the ligament is covered with fibro

the inferior surface and tuberosity of the navicular bone. 

runs from the anterior margin of the sustentaculum tali to 

 is strong and 

plantar calcaneonavicular ligament

The 

Ligaments

The capsule incompletely encloses the joint.

The joint is a synovial joint.

Type

faces are covered with hyaline cartilage.

concave surface of the navicular bone. The articular sur

upper surface of the sustentaculum tali, and the posterior 

Articulation is between the rounded head of the talus, the 

Articulation

navicular bone (Fig. 10.37).

between the talus and the calcaneum and also involves the 

The talocalcaneonavicular joint is the anterior joint 

Talocalcaneonavicular Joint

Gliding and rotatory movements are possible.

Movements

The synovial membrane lines the capsule.

Synovial Membrane

tali and below to the sulcus calcanei.

between the two bones. It is attached above to the sulcus 

(Fig. 10.65) is strong and is the main bond of union 

interosseous (talocalcaneal) ligament

the capsule. The 

 strengthen 

lateral (talocalcaneal) ligaments

Medial

Ligaments

gins of the articular areas of the two bones.

The capsule encloses the joint and is attached to the mar

These joints are synovial, of the plane variety.

Type

ered with hyaline cartilage.

the calcaneum (Fig. 10.37). The articular surfaces are cov

the talus and the facet on the middle of the upper surface of 

Articulation is between the inferior surface of the body of 

Articulation

and the calcaneum.

The subtalar joint is the posterior joint between the talus 

Subtalar Joint

Tarsal Joints

507

-

Capsule

-

 and 

 

-

Capsule

-

Capsule

 

-

.

-

-

and 4th metatarsal bones.

sal joints, between the bases of the 2nd and 3rd and the 3rd 

joints and also with the cuneometatarsal and intermetatar

tinuous with those of the intercuneiform and cuneocuboid 

-

-


background image

508

  CHAPTER 10

 

third, as in the hand.

take place from the midline of the second digit and not the 

toes, performed by the interossei muscles, are minimal and 

The movements of abduction and adduction of the 

verse ligaments connect the joints of the five toes.

resemble those of the hand (see page 412). The deep trans

The metatarsophalangeal and interphalangeal joints closely 

sal joint of the big toe has a separate joint cavity.

sal, plantar, and interosseous ligaments. The tarsometatar

joints of the plane variety. The bones are connected by dor

The tarsometatarsal and intermetatarsal joints are synovial 

Tarsometatarsal and Intermetatarsal 

ligaments.

bones are connected by dorsal, plantar, and interosseous 

continuous with that of the cuneonavicular joint. The 

vial joints of the plane variety. Their joint cavities are 

The intercuneiform and cuneocuboid joints are syno

Intercuneiform and Cuneocuboid Joints

ous ligaments.

the two bones connected by dorsal, plantar, and interosse

The cuboideonavicular joint is usually a fibrous joint, with 

Cuboideonavicular Joint

The Lower Limb

-

-

Joints

-
-

Metatarsophalangeal and 

Interphalangeal Joints

-

Later, osteoarthritic changes occur in the metatarsophalan

 which is a lateral deviation of the great toe 

Metatarsophalangeal Joint of the Big Toe

Hallux valgus,

at the metatarsophalangeal joint, is a common condition. Its 

incidence is greater in women than in men and is associated 

with badly fitting shoes. It is often accompanied by the pres-

ence of a short 1st metatarsal bone. Once the deformity is  

established, it is progressively worsened by the pull of the 

flexor hallucis longus and extensor hallucis longus muscles. 

-

geal joint, which then becomes stiff and painful; the condition 

is then known as hallux rigidus.

C L I N I C A L   N O T E S

The Foot as a Functional Unit

assist the forward propulsive action of the gastrocnemius 

and toes (i.e., the takeoff point of the foot) and greatly 

exert their action on the bones of the forepart of the foot 

long flexor muscles and the small muscles of the foot can 

able and can adapt itself to uneven surfaces. Moreover, the 

the lever is segmented with multiple joints, the foot is pli

activities of the gastrocnemius and soleus muscles. Because 

forward propulsive action would depend entirely on the 

the foot could not adapt itself to uneven surfaces, and the 

pulsion (Fig. 10.66). However, with such an arrangement, 

body weight and serve well as a rigid lever for forward pro

bone instead of a series of small bones, it could sustain the 

walking and running. If the foot possessed a single strong 

weight and to serve as a lever to propel the body forward in 

The foot has two important functions: to support the body 

The Foot as a Weight Bearer  

and a Lever

-

-

and soleus  muscles (Fig. 10.66).

the following engineering methods used for its support 

Examination of the design of any stone bridge reveals 

Mechanisms of Arch Support

bones (Fig. 10.67).

atarsal bones and the cuboid and the three cuneiform 

 This consists of the bases of the met

Transverse arch:

(Fig. 10.67).

neum, the cuboid, and the 4th and 5th metatarsal bones 

 This consists of the calca

Lateral longitudinal arch:

bones, and the first three metatarsal bones (Fig. 10.63).

neum, the talus, the navicular bone, the three cuneiform 

 This consists of the calca

Medial longitudinal arch:

graph of the foot shows the bones that form the arches.

An examination of an articulated foot or a lateral radio

The Bones of the Arches

metatarsals.

of the first metatarsal and the heads of the remaining four 

in front, namely, the two sesamoid bones under the head 

the heel behind and six points of contact with the ground 

body weight on standing is distributed through a foot via 

From this description, it can be understood that the 

the two feet are placed together, a complete dome is formed.

likened to a half-dome, so that when the medial borders of 

its summit on the foot’s medial border. The foot has been 

an arch, with its base on the lateral border of the foot and 

the cuboid and cuneiform bones. This is, in fact, only half 

transverse arch involves the bases of the five metatarsals and 

the presence of the low-lying lateral longitudinal arch. The 

5th metatarsal head and least between these areas because of 

the lateral margin of the foot is greatest at the heel and the 

longitudinal arch. The pressure exerted on the ground by 

arched above the ground because of the important medial 

gin of the foot, from the heel to the 1st metatarsal head, is 

are in contact with the ground (Fig. 10.67). The medial mar

the metatarsal heads, and the pads of the distal phalanges 

that the heel, the lateral margin of the foot, the pad under 

made with the person in the standing position, one can see 

On examination of the imprint of a wet foot on the floor 

a large amount of subcutaneous fat on the sole of the foot.

child, the foot appears to be flat because of the presence of 

 (Fig. 10.67). In the young 

transverse arches

 and 

medial longitudinal, lateral longi

are present at birth: the 

in the form of an arch. The foot has three such arches, which 

A segmented structure can hold up weight only if it is built 

The Arches of the Foot

-

tudinal,

-

-

-

-

-

(Fig. 10.68):

with the thin edge of the wedge lying inferiorly. This 

porting the arch is to make the stones wedge shaped, 

 The most effective way of sup

The shape of the stones:

-




رفعت المحاضرة من قبل: Mostafa Altae
المشاهدات: لقد قام 3 أعضاء و 132 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل