background image

Clinical biochemistry  second stage   lipid lecture 3                       Dr.Thana Alsewedy

 

 

1

 Metabolism OF LIPOPROTEINS                                              

 

The lipoprotein system evolved to solve the problem of transporting lipids in the the 

plasma. Lipids are generally hydrophobic and therefore insoluble in water. Only the 

charged phosphate group of phospholipids (PL) and the hydroxyl group of free 

cholesterol (CHOL) are hydrophilic. 

The lipoproteins are usually abbreviated as Lp.

 

 

Lipoproteins 

The lipids transported in plasma as lipoproteins which are complex spherical structures 

that have a hydrophobic core wrapped in a hydrophilic coating. The core contains 

triglyceride and cholesterol esters, while the surface contains phospholipids, free 

cholesterol and proteins

 The protein part of lipoprotein is called apolipoprotein

.

assemble 

with phospholipids and apoproteins(apolipoproteins) to form spherical particles called 

lipoproteins with: 

Hydrophobic cores: TGs, cholesteryl esters 

Hydrophilic surfaces: cholesterol, phospholipids, apolipoproteins   

                                                                                   

 

  

  

Lipoprotein classification

  

Lipoproteins vary in size, density and electrophoretic mobility. These 

physicochemical properties are determined by their relative content of triglyceride, 

cholesterol, phospholipid and protein.

Depending on the density (by ultra 

centrifugation)or on the electrophoretic mobility, the lipoproteins in  

plasma are classified into five major types 

 


background image

Clinical biochemistry  second stage   lipid lecture 3                       Dr.Thana Alsewedy

 

 

2

1. Chylomicrons. Contains apoprotein B-48. 

2. Very low density lipoproteins (VLDL) or prebeta 

3. Intermediate density lipoproteins (IDL) or broad-beta lipoproteins 

4. Low density lipoproteins (LDL) or betalipoproteins.Major apoprotein in LDL is B-

100. 

5. High density lipoproteins (HDL) or alphalipoproteins. Major apoprotein in HDL is 

apo-A.  

 

 

Apo-lipoproteins 

All apoproteins are mainly synthesised in liver; but small quantities are produced 
from all organs. Intestinal cells have specific functions. 
1. Apo-A-I. It activates lecithin-cholesterol acyl transferase (LCAT). It is the ligand 
for HDL receptor. It is anti-atherogenic. 
2. Apo-B-100. It is a component of LDL; it binds to LDL receptor on tissues..  
3. Apo-B-48. It is synthesized in intestinal cells. It is the structural component of 
chylomicrons.  
4. Apo-C-II. It activates lipoprotein lipase. 
5. Apo-E. It is an arginine-rich protein. It is present in chylomicrons, LDL and VLDL.  

 

  

 


background image

Clinical biochemistry  second stage   lipid lecture 3                       Dr.Thana Alsewedy

 

 

3

  

Main types of apolipoproteins and functions

  

The apolipoproteins associated with lipoproteinparticles have a number of functions,  

•  Structural determinants of  lipoproteins 

•  Enzyme cofactors 

•  Ligands for binding to lipoprotein receptors 

Apolipoproteins types representing in following table 

 

1. 

CHYLOMICRONS

 

Chylomicrons are formed in the intestinal mucosal cells, and secreted into the 

lacteals of lymphatic system. Chylomicrons responsible for transport lipid 

These lipids, including triglycerides, phospholipids, and cholesterol, are assembled 

with apolipoprotein B-48 into chylomicrons. These nascent chylomicrons are 

secreted from the intestinal epithelial cells into the lymphatic circulation in a process 

that depends heavily on apolipoprotein B-48. As they circulate through the lymphatic 

vessels, nascent chylomicrons bypass the liver circulation and are drained via the 

thoracic duct into the bloodstream. 


background image

Clinical biochemistry  second stage   lipid lecture 3                       Dr.Thana Alsewedy

 

 

4

In the bloodstream, HDL particles donate apolipoprotein C-II and apolipoprotein E to 

the nascent chylomicron; the chylomicron is now considered mature. Via 

apolipoprotein C-II, mature chylomicrons activate lipoprotein lipase (LPL), an 

enzyme on endothelial cells lining the blood vessels. LPL catalyzes the hydrolysis of 

triacylglycerol (i.e. glycerol covalently joined to three fatty acids) that ultimately 

releases glycerol and fatty acids from the chylomicrons. Glycerol and fatty acids can 

then be absorbed in peripheral tissues, especially adipose and muscle, for energy 

and storage.The hydrolyzed chylomicrons are now considered chylomicron 

remnants

 Liver Takes up Chylomicron Remnants 

As the TAG content is 

progressively decreased, the chylomicrons shrink in size. These remnants 

containing apo-B-48 and apo-E are taken up by hepatic cells by receptor mediated 

endocytosis. Apo-E binds the hepatic receptors

 

2. VERY LOW DENSITY LIPOPROTEINS 

Synthesis of VLDL 

VLDLs are produced in the liver (They are composed predominantly of endogenous 

triacylglycerol (approximately 60%),and their function is to carry this lipid from the 

liver (site ofsynthesis) to the peripheral tissues.  

Release of VLDL: 


background image

Clinical biochemistry  second stage   lipid lecture 3                       Dr.Thana Alsewedy

 

 

5

 VLDL are secreted directly into the blood by the liver as nascent VLDL particles containing 

apo B-100. They must obtain apo C-II and apo E from circulating HDL (see Figure18.17). 

As with chylomicrons, apo C-II is required for activation of lipoprotein lipase. , causing 

hydrolysis of the VLDL particle and the release of glycerol and fatty acids. These products 

can be absorbed from the blood by peripheral tissues, principally adipose and muscle. The 

hydrolyzed VLDL particles are now called VLDL remnants or intermediate density 

lipoproteins (IDLs). VLDL remnants can circulate and, via an interaction between 

apolipoprotein E and the remnant receptor, be absorbed by the liver, or they can be further 

hydrolyzed by hepatic lipase. 

 

3. LOW DENSITY LIPOPROTEINS (LDL) 

LDL transports cholesterol from liver to peripheral tissues. The only apoprotein 

present in LDL is apo B100 .Most of the LDL particles are derived from VLDL, but a 

small part is directly released from liver. The half-life of LDL in blood is about 2 days.

 

LDL circulates and is absorbed by peripheral cells. Binding of LDL to its target tissue 

occurs through a interaction between the LDL receptor and apolipoprotein B-100 or 

E on the LDL particle. Absorption occurs through endocytosis, and the internalized 


background image

Clinical biochemistry  second stage   lipid lecture 3                       Dr.Thana Alsewedy

 

 

6

LDL particles are hydrolyzed within lysosomes, releasing lipids, chiefly cholesterol. 

 

Metabolism of LDL and LDL Receptors 

LDL is taken up by peripheral tissues by receptor mediated endocytosis LDL 

receptors are present on all cells but most abundant in hepatic cells. LDL receptors 

are located in specialised regions called clathrin-coated pits Binding of LDL to the 

receptor is by apo-B-100 and uptake of cholesterol from LDL is a highly regulated 

process. When the apo-B-100 binds to the apo-B-100 receptor, the receptor-LDL 

complex is internalised by endocytosis. The endosome vesicle thus formed fuses 

with lysosomes. 

Control of LDL Receptor activity:

Synthesis of LDL Receptor is suppressed by 

high intracellular cholesterol

. The decreased synthesis of LDL receptor prevents 

excessive cholesterol uptake by cells. It has the deleterious consequence that 

excess

 dietary 

cholesterol remains in the blood

 as LDL.  . As a result, the amount 

of 

circulating LDL increases

, leading to enhanced risk of developing 

atherosclerosis.

 


background image

Clinical biochemistry  second stage   lipid lecture 3                       Dr.Thana Alsewedy

 

 

7

 

 

 LDL and Clinical Applications 

LDL concentration in blood has positive correlation with incidence of cardiovascular 

diseases. LDL infiltrates through arterial walls, and is taken up by macrophages or 

scavenger cells. This is the starting event of atherosclerosis leading to myocardial 

infarction Since LDL-cholesterol is thus deposited in tissues, the LDL (low density 

lipoprotein) variety is called “bad cholesterol

 

 

4. HIGH DENSITY LIPOPROTEIN (HDL) 

HDL particles are formed in blood by the addition of lipid to apo A-1, an apolipo 

protein made by the liver and intestine and secreted into blood. Apo A-1 accounts for 

about 70% of the apoproteins in HDL. HDL perform a number of important functions, 

including the following: 

1.HDL is a reservoir of apolipoproteins:

 HDL serves as a plasma reservoir of 

Apo-C and Apo-E which can be transferred to VLDL and chylomicrons

 

2. HDL uptake of unesterified cholesterol: Nascent HDL are disk shaped particles 

containing primarily phospholipid (largely phosphatidylcholine)and apolipoproteins A, 

C, and E. They take upcholesterol from non-hepatic (peripheral) tissues and return it 

to the liver as cholesteryl esters [Note: HDL particlesare excellent acceptors of 


background image

Clinical biochemistry  second stage   lipid lecture 3                       Dr.Thana Alsewedy

 

 

8

unesterified cholesterol as a result of their high concentration of phospholipids, 

which are important solubilizers of cholesterol.] 

3. Esterification of cholesterol: When cholesterol is taken up by HDL, it is 

immediately esterified by the plasma enzyme lecithin:cholesterol acyltransferase 

(LCAT apoproteins, 

A-1

, activates the enzyme 

LCAT

 (Lecithin-Cholesterol Acyl 

Transferase), which catalyzes synthesis of cholesteryl esters using fatty acids 

cleaved from the membrane lipid lecithin (phosphatidylcholine).

 Excretion of 

cholesterol needs prior esterification with PUFA. Thus PUFA will help in lowering of 

cholesterol in the body, 

and so PUFA is anti-atherogenic. 

 

 

4. Reverse cholesterol transport: The selective transfer of cholesterol from 

peripheral cells to HDL, and from HDL to the liver for bile acid synthesis or disposal 

via the bile, and to steroidogenic cells for hormone synthesis, is a key component of 

cholesterol homeostasis. 

This, process called  REVERSE CHOLESTEROL TRANSPORT by HDL  (reverse 

cholesterol transport)

 

 .  


background image

Clinical biochemistry  second stage   lipid lecture 3                       Dr.Thana Alsewedy

 

 

9

 

metabolism of lipoproteins 

 

 

 

 

  




رفعت المحاضرة من قبل: Ahmed monther Aljial
المشاهدات: لقد قام 6 أعضاء و 116 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل