background image

Gases

Chapter 5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


background image

Elements

that exist as 

gases

at 25

0

C and 1 atmosphere

5.1


background image

5.1


background image

Gases assume the volume and shape of their containers.

Gases are the most compressible state of matter.

Gases will mix evenly and completely when confined to 
the same container.

Gases have much lower densities than liquids and solids.

5.1

Physical Characteristics of Gases


background image

Units of Pressure

1 pascal (Pa) = 1 N/m

2

1 atm = 760 mmHg = 760 torr

1 atm = 101,325 Pa

5.2

Barometer

Pressure = 

Force

Area

(

force

= mass x acceleration)


background image

Sea level

1 atm

4 miles

0.5 atm

10 miles

0.2 atm

5.2


background image

5.2

Manometers Used to Measure Gas Pressures


background image

5.3

As (h) increases

decreases

Apparatus for Studying the Relationship Between

Pressure and Volume of a Gas


background image

P

a 1/V

= constant

P

1

V

1

P

2

V

2

5.3

Boyle’s Law

Constant temperature
Constant amount of gas


background image

A sample of chlorine gas occupies a volume of 946 mL 
at a pressure of 726 mmHg.  What is the pressure of 
the gas (in mmHg) if the volume is reduced at constant 
temperature to 154 mL?

P

1

V

1

P

2

V

2

P

1

= 726 mmHg

V

1

= 946 mL

P

2

= ?

V

2

= 154 mL

P

2

P

1

V

1

V

2

726 mmHg x 946 mL

154 mL

=

= 4460 mmHg

5.3

P x V constant


background image

As increases

increases

5.3


background image

Variation of gas volume with temperature

at constant pressure.

5.3

V

T

= constant x T

V

1

/T

1

V

/T

2

(K) = (

0

C) + 273.15

Charles’ & 

Gay-

Lussac’s 

Law

Temperature must be
in Kelvin


background image

A sample of carbon monoxide gas occupies 3.20 L at 
125 

0

C.  At what temperature will the gas occupy a 

volume of 1.54 L if the pressure remains constant?

V

1

= 3.20 L

T

1

= 398.15 K

V

2

= 1.54 L

T

2

= ?

T

2

V

2

T

1

V

1

1.54 L x 398.15 K

3.20 L

=

= 192 K

5.3

V

/T

1

V

/T

2

T

1

= 125 (

0

C) + 273.15 (K) = 398.15 K


background image

Avogadro’s Law

V

a number of moles (n)

= constant x n

V

n

1

V

n

2

5.3

Constant temperature
Constant pressure


background image

Ammonia burns in oxygen to form nitric oxide (NO) 
and water vapor.  How many volumes of NO are 
obtained from one volume of ammonia at the same 
temperature and pressure?

4NH

3

+ 5O

2

4NO + 6H

2

O

1 mole NH

3

1 mole NO

At constant and P

1 volume NH

3

1 volume NO

5.3


background image

5.3


background image

5.3


background image

5.3


background image

Ideal Gas Equation

5.4

Charles’ law:  V

(at constant and P)

Avogadro’s law:  V 

a  (at constant and T)

Boyle’s law:  V 

a        (at constant and T)

1

P

V

a

nT

P

= constant x        = R

nT

P

nT

P

is the gas constant

PV nRT


background image

The conditions 0 

0

C and 1 atm are called standard 

temperature and pressure (STP).

PV = nRT

R = 

PV

nT

=

(1 atm)(22.414L)

(1 mol)(273.15 K)

= 0.082057 L 

• atm / (mol • K)

5.4

Experiments show that at STP, 1 mole of an ideal 
gas occupies 22.414 L.


background image

What is the volume (in liters) occupied by 49.8 g of HCl 
at STP?

PV = nRT

V = 

nRT

P

= 0 

0

C = 273.15 K

P = 1 atm

= 49.8 g x 

1 mol HCl

36.45 g HCl

= 1.37 mol

=

1 atm

1.37 mol x 0.0821          x 273.15 K

L

•atm

mol

•K

= 30.6 L

5.4


background image

Argon is an inert gas used in lightbulbs to retard the 
vaporization of the filament.  A certain lightbulb 
containing argon at 1.20 atm and 18 

0

C is heated to  

85 

0

C at constant volume.  What is the final pressure of 

argon in the lightbulb (in atm)?

PV nRT

n, V and are constant

nR

V

=

P

T

= constant

P

1

T

1

P

2

T

2

=

P

1

= 1.20 atm

T

1

291 K

P

2

= ?

T

2

358 K

P

2

P

1

T

2

T

1

= 1.20 atm x  358 K

291 K

= 1.48 atm

5.4


background image

Density (d) Calculations

d = 

m

V

=

P

M

RT

is the mass of the gas in g

M

is the molar mass of the gas

Molar Mass (

) of a Gaseous Substance

dRT

P

M

=

is the density of the gas in g/L

5.4


background image

A 2.10-L vessel contains 4.65 g of a gas at 1.00 atm 
and 27.0 

0

C. What is the molar mass of the gas?

5.4

dRT

P

M

=

d = 

m

V

4.65 g
2.10 L

=

2.21

g

L

M

=

2.21

g

L

1 atm

x 0.0821          x 300.15 K

L

•atm

mol

•K

M

=

54.6 g/mol


background image

Gas Stoichiometry

What is the volume of CO

2

produced at 37 

0

C and 1.00 

atm when 5.60 g of glucose are used up in the reaction:

C

6

H

12

O

6

(s) + 6O

2

(g)           6CO

2

(g) + 6H

2

O (l)

g C

6

H

12

O

6

mol C

6

H

12

O

6

mol CO

2

CO

2

5.60 g C

6

H

12

O

6

1 mol C

6

H

12

O

6

180 g C

6

H

12

O

6

x

6 mol CO

2

1 mol C

6

H

12

O

6

x

= 0.187 mol CO

2

nRT

P

0.187 mol x 0.0821              x 310.15 K

L

•atm

mol

•K

1.00 atm

=

= 4.76 L

5.5


background image

Dalton’s Law of Partial Pressures

and T

are 

constant

P

1

P

2

P

total

P

1

P

2

5.6


background image

Consider a case in which two gases, 

A

and 

B

, are in a 

container of volume V.

P

A

n

A

RT

V

P

B

n

B

RT

V

n

A

is the number of moles of 

A

n

B

is the number of moles of 

B

P

T

P

A

P

B

X

A

n

A

n

A

n

B

X

B

n

B

n

A

n

B

P

A

X

A

P

T

P

B

X

B

P

T

P

i

X

i

P

T

5.6

mole fraction (X

i

) = 

n

i

n

T


background image

A sample of natural gas contains 8.24 moles of CH

4

0.421 moles of C

2

H

6

, and 0.116 moles of C

3

H

8

.  If the 

total pressure of the gases is 1.37 atm, what is the 
partial pressure of propane (C

3

H

8

)?

P

i

X

i

P

T

X

propane

0.116

8.24 + 0.421 + 0.116

P

T

= 1.37 atm

= 0.0132

P

propane

= 0.0132 x 1.37 atm = 0.0181 atm

5.6


background image

2KClO

3

(s)           2KCl (s) + 3O

2

(g)

Bottle full of oxygen 
gas and water vapor

P

T

P

O   

P

H  O

2

2

5.6


background image

5.6


background image

Chemistry in Action:

Scuba Diving and the Gas Laws

P

V

Depth (ft)

Pressure 

(atm)

0

1

33

2

66

3

5.6


background image

Kinetic Molecular Theory of Gases

1. A gas is composed of molecules that are separated from 

each other by distances far greater than their own 
dimensions.  The molecules can be considered to be points
that is, they possess mass but have negligible volume.

2. Gas molecules are in constant motion in random directions, 

and they frequently collide with one another.  Collisions 
among molecules are perfectly elastic.

3. Gas molecules exert neither attractive nor repulsive forces 

on one another.

4. The average kinetic energy of the molecules is proportional 

to the temperature of the gas in kelvins.  Any two gases at 
the same temperature will have the same average kinetic 
energy

5.7

KE = ½ mu

2


background image

Kinetic theory of gases and …

• Compressibility of Gases

• Boyle’s Law

P

a collision rate with wall

Collision rate 

a number density

Number density 

a 1/V

P

a 1/V

• Charles’ Law

P

a collision rate with wall

Collision rate 

a average kinetic energy of gas molecules

Average kinetic energy 

T

P

T

5.7


background image

Kinetic theory of gases and …

• Avogadro’s Law

P

a collision rate with wall

Collision rate 

a number density

Number density 

n

P

n

• Dalton’s Law of Partial Pressures

Molecules do not attract or repel one another

exerted by one type of molecule is unaffected by the 

presence of another gas

P

total

SP

i

5.7


background image

Apparatus for studying molecular speed distribution

5.7


background image

The distribution of speeds

for nitrogen gas molecules

at three different temperatures

The distribution of speeds

of three different gases

at the same temperature

5.7

u

rms

3RT

M


background image

Chemistry in Action: Super Cold Atoms

Gaseous Rb Atoms

1.7 x 10

-7

K

Bose-Einstein Condensate


background image

Gas diffusion is the gradual mixing of molecules of one gas 
with molecules of another by virtue of their kinetic properties.

5.7

NH

3

17 g/mol

HCl

36 g/mol

NH

4

Cl

r

1

r

2

M

2

M

1

=


background image

Gas effusion is the is the process by which gas under 
pressure escapes from one compartment of a container to 
another by passing through a small opening.

5.7

r

1

r

2

t

2

t

1

M

2

M

1

=

=

Nickel forms a gaseous compound of the formula 
Ni(CO)

x

What is the value of given that under the same 

conditions methane (CH

4

) effuses 3.3 times faster than 

the compound?

r

1

= 3.3 x r

2

M

1

= 16 g/mol

M

2

r

1

r

2

( )

2

M

1

= (3.3)

2

x 16 = 174.2 

58.7 + 

• 28 = 174.2

= 4.1 ~ 4


background image

Deviations from Ideal Behavior

1 mole of ideal gas

PV nRT

n = 

PV
RT

= 1.0

5.8

Repulsive Forces

Attractive Forces


background image

Effect of intermolecular forces on the pressure exerted by a gas.

5.8


background image

5.8

Van der Waals equation

nonideal gas

+         (V

– nb) = nRT

an

2

V

2

(

)

}

corrected

pressure

}

corrected

volume




رفعت المحاضرة من قبل: abdalla Alhamdany
المشاهدات: لقد قام 4 أعضاء و 114 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل