background image

Thermochemistry

Chapter 6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


background image

Energy is the capacity to do work

Radiant energy comes from the sun and is 
earth’s primary energy source

Thermal energy is the energy associated with 
the random motion of atoms and molecules

Chemical energy is the energy stored within the 
bonds of chemical substances

Nuclear energy is the energy stored within the 
collection of neutrons and protons in the atom

Potential energy is the energy available by virtue 
of an object’s position

6.1


background image

Heat is the transfer of thermal energy between two bodies that 
are at different temperatures.

Energy Changes in Chemical Reactions

Temperature is a measure of the thermal energy.

90

0

C

40

0

C

greater thermal energy

6.2

Temperature = Thermal Energy


background image

Thermochemistry is the study of heat change in chemical 
reactions.

The system is the specific part of the universe that is of 
interest in the study.

open

mass & energy

Exchange:

closed

energy

isolated

nothing

6.2


background image

Exothermic process is any process that gives off heat 

transfers thermal energy from the system to the surroundings.  

Endothermic process is any process in which heat has to be 
supplied to the system from the surroundings.  

2H

2

(g)

+ O

2

(g)

2H

2

(l)

+ energy

H

2

(g)

H

2

(l)

+ energy

energy + 2HgO 

(s)

2Hg 

(l)

+ O

2

(g)

6.2

energy + H

2

(s)

H

2

(l)


background image

Exothermic

Endothermic

6.2


background image

Thermodynamics is the scientific study of the 
interconversion of heat and other kinds of energy.

State functions are properties that are determined by the state 
of the system, regardless of how that condition was achieved.

Potential energy of 

hiker 1

and 

hiker 2

is the same even though they took 
different paths.

energy, pressure, volume, temperature

6.3

D

E

final

E

initial

D

P

final

P

initial

D

V

final

V

initial

D

T

final

T

initial


background image

First law of thermodynamics

– energy 

can be converted from one form to another, 
but cannot be created or destroyed.

D

E

system

D

E

surroundings

= 0

or

D

E

system

-

D

E

surroundings

C

3

H

8

+ 5O

2

3CO

2

+ 4H

2

O

Exothermic chemical reaction!

6.3

Chemical energy lost by combustion = Energy gained by the surroundings

system

surroundings


background image

Another form of the first law for 

DE

system

6.3

Dw
Dis the change in internal energy of a system

is the heat exchange between the system and the surroundings

is the work done on (or by) the system

= -P

D

V

when a gas expands against a constant external pressure


background image

Work Done By the System

6.3

F x d

= -

D

V

P x V =     x d

3

= F x d = w

F

d

2

DV > 0

-P

D

V < 0

w

sys

< 0

Work is 
not a 
state 
function! 

D

w

final

w

initial

initial

final


background image

A sample of nitrogen gas expands in volume from 1.6 L to 
5.4 L at constant temperature. What is the work done in 
joules if the gas expands (a) against a vacuum and (b) 
against a constant pressure of 3.7 atm?

= -

D

V

(a) 

D

= 5.4 L 

– 1.6 L = 3.8 L

= 0 atm

= -0 atm x 3.8 L = 0 L

•atm = 0 joules

(b) 

D

= 5.4 L 

– 1.6 L = 3.8 L

= 3.7 atm

= -3.7 atm x 3.8 L = -14.1 L

•atm 

= -14.1 L

•atm x  101.3 J

1L

•atm

= -1430 J

6.3


background image

Chemistry in Action: Making Snow

D

w

= 0

< 0, 

DE < 0

D

C

D

T

DT < 0, SNOW!


background image

Enthalpy and the First Law of Thermodynamics

6.4

Dw

D= DPD

D= DPD

Dand = -PDV

At constant pressure: 


background image

Enthalpy (H) is used to quantify the heat flow into or out of a 
system in a process that occurs at constant pressure.

D(products) – (reactants)

D

heat given off or absorbed during a reaction at constant pressure

H

products 

H

reactants

D> 0

H

products 

H

reactants

D< 0

6.4


background image

Thermochemical Equations

H

2

(s)

H

2

(l)

D= 6.01 kJ

Is 

Dnegative or positive?

System absorbs heat

Endothermic

D> 0

6.01 kJ are absorbed for every 1 mole of ice that 
melts at 0

0

C and 1 atm.

6.4


background image

Thermochemical Equations

CH

4

(g

+ 2O

2

(g)

CO

2

(g)

2H

2

(l)

D= -890.4 kJ

Is 

Dnegative or positive?

System gives off heat

Exothermic

D< 0

890.4 kJ are released for every 1 mole of methane 
that is combusted at 25

0

C and 1 atm.

6.4


background image

H

2

(s)

H

2

(l)

D= 6.01 kJ

The stoichiometric coefficients always refer to the number 
of moles of a substance

Thermochemical Equations

If you reverse a reaction, the sign of 

Dchanges

H

2

(l)

H

2

(s)

D

-

6.01

kJ

If you multiply both sides of the equation by a factor n
then 

Dmust change by the same factor n.

2H

2

(s)

2H

2

(l)

D

2 x 

6.01 = 12.0 kJ

6.4


background image

H

2

(s)

H

2

(l)

D= 6.01 kJ

The physical states of all reactants and products must be 
specified in thermochemical equations.

Thermochemical Equations

6.4

H

2

(l)

H

2

(g)

D= 44.0 kJ

How much heat is evolved when 266 g of white 
phosphorus (P

4

) burn in air?

P

4

(s)

+ 5O

2

(g)

P

4

O

10

(s)

D= -3013 kJ/mol P

4

266 g P

4

1 mol P

4

123.9 g P

4

x

3013 kJ

1 mol P

4

x

= 6470 kJ


background image

A Comparison of 

D

and 

D

E

2Na (s) + 2H

2

O (l)        2NaOH (aq) + H

2

(g)  

DH = -367.5 kJ/mol

D= DPD

At 25 

0

C, 1 mole H

2

= 24.5 L at 1 atm

P

D

= 1 atm x 24.5 L = 2.5 kJ

D

= -367.5 kJ/mol 

– 2.5 kJ/mol = -370.0 kJ/mol

6.4


background image

The specific heat (s) of a substance is the amount of heat (q
required to raise the temperature of one gram of the 
substance by one degree Celsius.

The heat capacity (C) of a substance is the amount of heat 
(q) required to raise the temperature of a given quantity (m
of the substance by one degree Celsius.

m x s

Heat (q) absorbed or released:

m x s x 

Dt

C x 

Dt

Dt

final

t

initial

6.5


background image

How much heat is given off when an 869 g iron bar cools 
from 94

0

C to 5

0

C?

of Fe = 0.444 J/g 

0

C

Dt

final

– t

initial

= 5

0

– 94

0

C = -89

0

C

ms

D= 869 g x 0.444 J/g 

0

C x 

–89

0

C = -34,000 J

6.5


background image

Constant-Volume Calorimetry

No heat enters or leaves!

q

sys

q

water

q

bomb

q

rxn

q

sys

= 0

q

rxn

= - (q

water

q

bomb

)

q

water

m x s x 

Dt

q

bomb

C

bomb 

x

Dt

6.5

Reaction at Constant V

Dq

rxn

Dq

rxn


background image

Constant-Pressure Calorimetry

No heat enters or leaves!

q

sys

q

water

q

cal

q

rxn

q

sys

= 0

q

rxn

= - (q

water

q

cal

)

q

water

m x s x 

Dt

q

cal

C

cal 

x

Dt

6.5

Reaction at Constant P

Dq

rxn


background image

6.5


background image

Chemistry in Action:

Fuel Values of Foods and Other Substances

C

6

H

12

O

6

(s) + 6O

2

(g)        6CO

2

(g) + 6H

2

O (l)   

DH = -2801 kJ/mol

1 cal = 4.184 J

1 Cal = 1000 cal = 4184 J

Substance

D

H

combustion

(kJ/g)

Apple

-2

Beef

-8

Beer

-1.5

Gasoline

-34


background image

Because there is no way to measure the absolute value of 
the enthalpy of a substance, must I measure the enthalpy 
change for every reaction of interest?

Establish an arbitrary scale with the standard enthalpy of 
formation 
(

DH

0

) as a reference point for all enthalpy 

expressions.

f

Standard enthalpy of formation (

DH

0

) is the heat change 

that results when one mole of a compound is formed from 
its elements at a pressure of 1 atm.

f

The standard enthalpy of formation of any element in its 
most stable form is zero.

DH

0

(O

2

) = 0

f

DH

0

(O

3

) = 142 kJ/mol

f

DH

0

(C, graphite) = 0

f

DH

0

(C, diamond) = 1.90 kJ/mol

f

6.6


background image

6.6


background image

The standard enthalpy of reaction (

DH

0    

) is the enthalpy of 

a reaction carried out at 1 atm.

rxn

aA + bB          cC + dD

DH

0

rxn

d

DH

0

(D)

f

c

DH

0

(C)

f

= [

+

] -

b

DH

0

(B)

f

a

DH

0

(A)

f

[

+

]

DH

0

rxn

n

DH

0

(products)

f

= S

m

DH

0

(reactants)

f

S

-

6.6

Hess’s Law: When reactants are converted to products, the 
change in enthalpy is the same whether the reaction takes 
place in one step or in a series of steps.

(Enthalpy is a state function.  It doesn’t matter how you get 
there, only where you start and end.)


background image

(graphite)

+ 1/2O

2

(g)

CO 

(g)

CO 

(g)

+ 1/2O

2

(g)

CO

2

(g)

(graphite)

+ O

2

(g)

CO

2

(g)

6.6


background image

Calculate the standard enthalpy of formation of CS

2

(l

given that:

C

(graphite)

+ O

2

(g)

CO

2

(g)

DH

0

= -393.5 kJ

rxn

S

(rhombic)

+ O

2

(g)

SO

2

(g)

DH

0

= -296.1 kJ

rxn

CS

2

(l)

+ 3O

2

(g)

CO

2

(g)

+ 2SO

2

(g)

DH

0

= -1072 kJ

rxn

1. Write the enthalpy of formation reaction for CS

2

C

(graphite)

+ 2S

(rhombic)

CS

(l)

2. Add the given rxns so that the result is the desired rxn.

rxn

C

(graphite)

+ O

2

(g)

CO

2

(g)

DH

0

= -393.5 kJ

2S

(rhombic)

+ 2O

2

(g)

2SO

2

(g)

DH

0

= -296.1

x2

kJ

rxn

CO

2

(g)

+ 2SO

2

(g)

CS

2

(l)

+ 3O

2

(g)

DH

0

+1072

kJ

rxn

+

C

(graphite)

+ 2S

(rhombic)

CS

(l)

DH

0

= -393.5 + (2x-296.1) + 1072 = 86.3 kJ

rxn

6.6


background image

Benzene (C

6

H

6

) burns in air to produce carbon dioxide and 

liquid water.  How much heat is released per mole of 
benzene combusted?  The standard enthalpy of formation 
of benzene is 49.04 kJ/mol.

2C

6

H

6

(l)

+ 15O

2

(g)

12CO

2

(g)

+ 6H

2

(l)

DH

0

rxn

n

DH

0

(products)

f

= S

m

DH

0

(reactants)

f

S

-

DH

0

rxn

6

DH

0

(H

2

O)

f

12

DH

0

(CO

2

)

f

= [

+

] -

2

DH

0

(C

6

H

6

)

f

[

]

DH

0

rxn

= [ 12x–393.5 + 6x–285.83] – [ 2x49.04 ] = -6534 kJ

-6534 kJ

2 mol

= - 3267 kJ/mol C

6

H

6

6.6


background image

Chemistry in Action: Bombardier Beetle Defense

C

6

H

4

(OH)

2

(aq)

+ H

2

O

2

(aq)

C

6

H

4

O

2

(aq)

+ 2H

2

(l

D

H

0

= ?

C

6

H

4

(OH)

2

(aq)

C

6

H

4

O

2

(aq)

+ H

(g

D

H

0

= 177 kJ/mol

H

2

O

2

(aq)

H

2

(l)

+ ½O

(g

D

H

0

= -94.6 kJ/mol

H

2

(g)

+ ½ O

2

(g)

H

2

(l

D

H

0

= -286 kJ/mol

D

H

0

= 177 - 94.6 

– 286 = -204 kJ/mol

Exothermic!


background image

The enthalpy of solution (

D

H

soln

) is the heat generated or 

absorbed when a certain amount of solute dissolves in a 
certain amount of solvent.

DH

soln

H

soln 

H

components

6.7

Which substance(s) could be 
used for melting ice?

Which substance(s) could be 
used for a cold pack?


background image

The Solution Process for NaCl

D

H

soln

Step 1 + Step 2 = 788 

– 784 = 4 kJ/mol

6.7




رفعت المحاضرة من قبل: abdalla Alhamdany
المشاهدات: لقد قام 4 أعضاء و 114 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل