background image

Chemical Kinetics

Chapter 13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


background image

Chemical Kinetics

Thermodynamics 

– does a reaction take place?

Kinetics 

– how fast does a reaction proceed?

Reaction rate is the change in the concentration of a 
reactant or a product with time (M/s).

A          B

rate = -

D[A]

Dt

rate = 

D[B]

Dt

D[A] = change in concentration of A over

time period 

Dt

D[B] = change in concentration of B over

time period 

Dt

Because [A] decreases with time, 

D[A] is negative

.

13.1


background image

A          

B

13.1

rate = -

D[A]

Dt

rate = 

D[

B

]

Dt

time


background image

Br

2

(aq)

+ HCOOH 

(aq)

2Br

-

(aq)

+ 2H

+

(aq)

+ CO

2

(g)

time

393 nm

light

Detector

D[Br

2

a DAbsorption

13.1


background image

Br

2

(aq)

+ HCOOH 

(aq)

2Br

-

(aq)

+ 2H

+

(aq)

+ CO

2

(g)

average rate = -

D[Br

2

]

Dt

= -

[Br

2

]

final

– [Br

2

]

initial

t

final

t

initial

slope of

tangent

slope of

tangent

slope of

tangent

instantaneous rate = rate for specific instance in time

13.1


background image

rate 

a [Br

2

]

rate = [Br

2

]

rate

[Br

2

]

13.1

rate constant

= 3.50 x 10

-3

s

-1


background image

2H

2

O

2

(aq)          2H

2

O (l) + O

2

(g)

PV nRT

=      RT = [O

2

]RT

n

V

[O

2

] =        P

RT

1

rate = 

D[O

2

]

Dt

RT

1

DP

Dt

=

measure 

Dover time

13.1


background image

13.1


background image

Reaction Rates and Stoichiometry

13.1

2A          B

Two moles of A disappear for each mole of B that is formed.

rate = 

D[B]

Dt

rate = -

D[A]

Dt

1
2

aA + bB          cC + dD

rate = -

D[A]

Dt

1
a

= -

D[B]

Dt

1
b

=

D[C]

Dt

1
c

=

D[D]

Dt

1
d


background image

Write the rate expression for the following reaction:

CH

4

(g)

+ 2O

2

(g)

CO

2

(g)

+ 2H

2

(g)

rate = -

D[CH

4

]

Dt

= -

D[O

2

]

Dt

1
2

=

D[H

2

O]

Dt

1
2

=

D[CO

2

]

Dt

13.1


background image

The Rate Law

13.2

The rate law expresses the relationship of the rate of a reaction 
to the rate constant and the concentrations of the reactants 
raised to some powers.

aA + bB          cC + dD

Rate = [A]

x

[B]

y

reaction is xth order in A

reaction is yth order in B

reaction is (x +y)th order overall


background image

F

2

(g)

+ 2ClO

2

(g)

2FClO

2

(g)

rate = [F

2

]

x

[ClO

2

]

y

Double [F

2

] with [ClO

2

] constant

Rate doubles

= 1

Quadruple [ClO

2

] with [F

2

] constant

Rate quadruples

= 1

rate = [F

2

][ClO

2

]

13.2


background image

F

2

(g)

+ 2ClO

2

(g)

2FClO

2

(g)

rate = [F

2

][ClO

2

]

Rate Laws

Rate laws are always determined experimentally.

Reaction order is always defined in terms of reactant 
(not product) concentrations.

The order of a reactant is not related to the 
stoichiometric coefficient of the reactant in the balanced 
chemical equation.

1

13.2


background image

Determine the rate law and calculate the rate constant for 
the following reaction from the following data:
S

2

O

8

2-

(aq)

+ 3I

-

(aq)

2SO

4

2-

(aq)

+ I

3

-

(aq)

Experiment

[S

2

O

8

2-

]

[I

-

]

Initial Rate 

(M/s)

1

0.08

0.034

2.2 x 10

-4

2

0.08

0.017

1.1 x 10

-4

3

0.16

0.017

2.2 x 10

-4

rate = [S

2

O

8

2-

]

x

[I

-

]

y

Double [I

-

], rate doubles (experiment 1 & 2)

y = 1

Double [S

2

O

8

2-

], rate doubles (experiment 2 & 3)

x = 1

rate

[S

2

O

8

2-

][I

-

]

=

2.2 x 10

-4 

M/s

(0.08 M)(0.034 M)

= 0.08/M

s

13.2

rate = [S

2

O

8

2-

][I

-

]


background image

First-Order Reactions

13.3

A          product

rate = -

D[A]

Dt

rate = [A]

rate

[A]

= 1/s or s

-1

M/s

M

=

D[A]

Dt

[A]

-

[A] is the concentration of A at any time t

[A]

0

is the concentration of A at time t=0

[A] = [A]

0

exp(-kt)

ln[A] = ln[A]

0

kt


background image

13.3

2N

2

O

5

4NO

2

(g) + O

2

(g)


background image

The reaction 2A          B is first order in A with a rate 
constant of 2.8 x 10

-2

s

-1

at 80

0

C.  How long will it take for A 

to decrease from 0.88 to 0.14 ?

ln[A] = ln[A]

0

kt

kt = ln[A]

0

– ln[A]

=

ln[A]

0

– ln[A]

k

= 66 s

[A]

0

= 0.88 M

[A]  = 0.14 M

ln

[A]

0

[A]

k

=

ln

0.88 M

0.14 M

2.8 x 10

-2

s

-1

=

13.3


background image

First-Order Reactions

13.3

The half-lifet

½

is the time required for the concentration of a 

reactant to decrease to half of its initial concentration.

t

½

when [A] = [A]

0

/2

ln

[A]

0

[A]

0

/2

k

=

t

½

ln2

k

=

0.693

k

=

What is the half-life of N

2

O

5

if it decomposes with a rate 

constant of 5.7 x 10

-4

s

-1

?

t

½

ln2

k

=

0.693

5.7 x 10

-4

s

-1

=

= 1200 s = 20 minutes

How do you know decomposition is first order?

units of (s

-1

)


background image

A          product

First-order reaction

# of 

half-lives [A] = [A]

0

/n

1

2

3

4

2

4

8

16

13.3


background image

Second-Order Reactions

13.3

A          product

rate = -

D[A]

Dt

rate = [A]

2

rate

[A]

2

= 1/M

s

M/s

M

2

=

D[A]

Dt

[A]

2

-

[A] is the concentration of A at any time t

[A]

0

is the concentration of A at time t=0

1

[A]

=

1

[A]

0

kt

t

½

when [A] = [A]

0

/2

t

½

=

1

k[A]

0


background image

Zero-Order Reactions

13.3

A          product

rate = -

D[A]

Dt

rate = [A]

k

rate

[A]

0

M/s

D[A]

Dt

k

-

[A] is the concentration of A at any time t

[A]

0

is the concentration of A at time t=0

t

½

when [A] = [A]

0

/2

t

½

=

[A]

0

2k

[A] = [A]

0

kt


background image

Summary of the Kinetics of Zero-Order, First-Order

and Second-Order Reactions

Order

Rate Law

Concentration-Time 

Equation

Half-Life

0

1

2

rate = k

rate = [A]

rate = [A]

2

ln[A] = ln[A]

0

kt

1

[A]

=

1

[A]

0

kt

[A] = [A]

0

kt

t

½

ln2

k

=

t

½

=

[A]

0

2k

t

½

=

1

k[A]

0

13.3


background image

Exothermic Reaction

Endothermic Reaction

The activation energy (E

is the minimum amount of 

energy required to initiate a chemical reaction.

13.4

A + B          AB          C + D

+

+


background image

Temperature Dependence of the Rate Constant

exp( -E

/ RT )

E

a

is the activation energy (J/mol)

is the gas constant (8.314 J/K

•mol)

is the absolute temperature

is the frequency factor

ln= -

E

a

R

1

T

+ lnA

(Arrhenius equation)

13.4


background image

13.4

ln= -

E

a

R

1

T

+ lnA


background image

13.4


background image

13.5

Reaction Mechanisms

The overall progress of a chemical reaction can be represented 
at the molecular level by a series of simple elementary steps
or elementary reactions.

The sequence of elementary steps that leads to product 
formation is the reaction mechanism.

2NO (g) + O

2

(g)          2NO

2

(g)

N

2

O

2

is detected during the reaction!

Elementary step:

NO + NO          N

2

O

2

Elementary step:

N

2

O

2

+ O

2

2NO

2

Overall reaction:

2NO + O

2

2NO

2

+


background image

2NO (g) + O

2

(g)          2NO

2

(g)

13.5


background image

13.5

Elementary step:

NO + NO          N

2

O

2

Elementary step:

N

2

O

2

+ O

2

2NO

2

Overall reaction:

2NO + O

2

2NO

2

+

Intermediates are species that appear in a reaction 
mechanism but not in the overall balanced equation.  

An intermediate is always formed in an early elementary step 
and consumed in a later elementary step.

The molecularity of a reaction is the number of molecules 

reacting in an elementary step.

Unimolecular reaction

– elementary step with 1 molecule

Bimolecular reaction

– elementary step with 2 molecules

Termolecular reaction

– elementary step with 3 molecules


background image

Unimolecular reaction

A          products

rate = [A]

Bimolecular reaction

A + B          products

rate = [A][B]

Bimolecular reaction

A + A          products

rate = [A]

2

Rate Laws and Elementary Steps

13.5

Writing plausible reaction mechanisms:

The sum of the elementary steps must give the overall 
balanced equation for the reaction.

The rate-determining step should predict the same rate 
law that is determined experimentally.

The rate-determining step is the slowest step in the 
sequence of steps leading to product formation.


background image

13.5

Sequence of Steps in Studying a Reaction Mechanism


background image

The experimental rate law for the reaction between NO

2

and CO to produce NO and CO

2

is rate = k[NO

2

]

2

.  The 

reaction is believed to occur via two steps:

Step 1:

NO

2

+ NO

2

NO + NO

3

Step 2:

NO

3

+ CO          NO

2

+ CO

2

What is the equation for the overall reaction?

NO

2

+ CO          NO + CO

2

What is the intermediate?

NO

3

What can you say about the relative rates of steps 1 and 2?

rate = k[NO

2

]

2

is the rate law for step 1 so 

step 1 must be slower than step 2

13.5


background image

CH

2

CH

2

CH

2

CH

2

CH

2

CH

2

2

CH

2

CH

2

CH

2

CH

2

CH

2

CH

2

CH

2

CH

2

CH

2

CH

2

2

Chemistry In Action: Femtochemistry

13.5


background image

catalyst is a substance that increases the rate of a 
chemical reaction without itself being consumed.

exp( -E

/ RT )

E

a

k

rate

catalyzed

> rate

uncatalyzed

E

a

E

a

13.6

Uncatalyzed

Catalyzed


background image

In heterogeneous catalysis, the reactants and the catalysts 
are in different phases.

In homogeneous catalysis, the reactants and the catalysts 
are dispersed in a single phase, usually liquid.

Haber synthesis of ammonia

Ostwald process for the production of nitric acid

Catalytic converters

Acid catalysis

Base catalysis

13.6


background image

N

2

(g) + 3H

2

(g)                           2NH

3

(g)

Fe/Al

2

O

3

/K

2

O

catalyst

Haber Process

13.6


background image

Ostwald Process

Hot Pt wire 

over NH

3

solution

Pt-Rh catalysts used

in Ostwald process

4NH

3

(g)

+ 5O

2

(g)

4NO 

(g)

+ 6H

2

(g)

Pt catalyst

2NO 

(g)

+ O

2

(g)

2NO

2

(g)

2NO

2

(g)

+ H

2

(l)

HNO

2

(aq)

+ HNO

3

(aq)

13.6


background image

Catalytic Converters

13.6

CO + Unburned Hydrocarbons + O

2

CO

2

+ H

2

O

catalytic

converter

2NO + 2NO

2

2N

2

+ 3O

2

catalytic

converter


background image

Enzyme Catalysis

13.6


background image

uncatalyzed

enzyme

catalyzed

13.6

rate = 

D[P]

Dt

rate = [ES]




رفعت المحاضرة من قبل: abdalla Alhamdany
المشاهدات: لقد قام 3 أعضاء و 89 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل