Probability
Probability: is a numerical measure of the likelihood that an event will occur An experiment: is any process that generates well-defined outcomes Sample space (S): is the set of all possible outcomes of an experiment An event (A): is an outcome or set of outcomes that are of interest to the experiment. An event (A) is a subset of the sample space (S) The probability of an event A {P (A)}: is a measure of the likelihood that an event A will occurExample: Tossing a coin Experiment: Toss a coin and observe the up face S { } S= {H, T} H (head) T (tail) Example: Tossing a coin twice Experiment: flip a coin twice and observe the sequence (keeping track of order) of up faces. S= {HH, HT, TH, TT} A= {Tossing at least one head} A = {HH, HT, TH}
Example = Tossing by a dice Experiment: Tossing a six-sided dice and S= {1, 2, 3, 4, 5, 6} A= {roll an even number} A = {2, 4, 6}
Methods of assigning probability
Classical probability: Each outcome is equally likely It is applicable to games of chance In the cases, if there are N outcomes in S, then the probability of any one outcome is 1/N If A is any event and nA is the number of outcomes in A, then: P (A) =Example: Tossing a dice: S= {1, 2, 3, 4, 5, 6} P (1) = P(2)= P(3)=P (4)=P(5)=P(6)= A= {roll an even number}= {2, 4, 6} P (A) = 3/6 = 0.5
Empirical probability is simply the relative frequency that some event is observed to happen (or fail). Number of times an event occurred divided by the number of trials: P (A) = Where: N= total number of trails nA Number of outcomes producing A
Relative frequency example
Children No.Frequency
Relative frequency
0
40
40/215 = 0.19
1
80
80/215 = 0.37
2
50
50/215 = 0.23
3
30
30/215 = 0.14
4
10
10/215 = 0.05
5
5
5/215 = 0.02
Sum
215
215/215 = 1.00
Basic concepts of probability:
Probability values are always assigned on a scale from 0 to 1 A probability near 0 indicates an event is unlikely to occur A probability near 1 indicates an event is almost certain to occur A probability near of 0.5 indicates event is just as likely as it is unlikely The sum of the probabilities of all outcomes must be 1Definitions
Mutually exclusive events: occurrence of one event precludes the occurrence of the other event Independent event: occurrence of one event does not affect the occurrence or non- occurrence of the other event Complementary events: all elementary events that are not in the event A are in its complementary event. P (Sample space) P (A') = 1-P (A)Laws of Probability
The addition rule: The probability of one event or another P (A or B) = P (A) + P (B) – P (A and B)If A and B are mutually exclusive events (A and B can not occur at the same time), thenP (A or B) = P (A) + P (B)Examples:
䀄ȁC(ǡ쎀οGroup 9뵆偾奋ﴢ䨣幐檞춖킒㬥狭붨귻덖槝黹Ⲥﻻ嚩쳳먋뼍䙖ᄏ靍㭒幅钖醤坦萤䊕剺檝枪㍠릭헏拖讨珪㢩룞휴鉔ꭖ큵뷴ᬛᨌ仝ᛛ뗸㣙郹묶曝㪛䡅됹캂❁㥰櫯䩒퍹泬쮩㺤쌳림鹎䳑䶆꜄쓎智쨢긿厃䒝㹅ॉꫯ㟯鬏盝厷浈ꭁ㳑盬繿곞菗휃泫㯱큁⭫췭绺톻栽譶薂嚞ꍗ톌歸伔ޮ먪ֱ킛닟⊸⌷⍳殸쳎첾䲤橽ਏ뮜뢀≯ᨣ⹘쓈튔ㇾ췏몙뷲있㙣ﷶ甮壺츛彀໘역驊蓡ӷ再빙侦䱦楎స㋧䲤圂Ⅾ奇䭨枖メꌥ荤ﶺ쩗㥡胆ꍅ软뱀﹤뗱츓㹤궺➂赔쟪騷岲朖⦹蛚棄⿓⏾庑폌唤冷Ե덕珯裻㷦夒殣㘅䐩ﻬ䥽兩ᜧᔴ㕉ⅲ␚⚌뒥麓湈忹⏮匫鐉쭒灉ﻛ勵뚎剀⒝ᑂᑥ角襀눤㴏傝㬡圙寒욎飣ꚇⲨ맫䷌揆刖徍攪쒲뎄阓숦휴㎇玦鎑顜费崄贜Ⴉ語䲽觥ﶝポ荱뗅霄郑癩蠵핸墺栕水㶭疎쓂㛽ꄣ萯ө덌鶇ꪓ왙⒄♥駃緒㐿䚚튷羷ਓ薈㦢镑늡鹳秙栲灀㰽溦셅ꌴ㥕厗⯟ᰦ튛뭳ꙭꊳ㭻ᘉ⽓爲焽姆䗴깆㊍堪⏊똚ڜඓ颹▆㇢䤱䈨ଢ빹闗⼼㤪蹊䪋銺늃씥൘ප⺯맪ΐ輊쓗y仜씊璖稓㺼煌䨠ဏ췥쨡괩岛頃ĔL鰡탦㧗즀쇨胶휫蕛或꾱偹䉻ﭳ祳従러誐എ䕭ͧа赽䃜싡⽺꾧虑怉怡薡ሊ驊핗ń事㭱졘瓪䖵蕝覉⼌㉍漏䧮巨ƾ版坙竜Ґ鱅ঐ祜熭㗖枘䩰裸坈ぞ탏臐虹䶶₫ᖋ䉈枚₠Ź꼷ᾀᾀᾀ䊤毘찊ᑶ隦킮㼁ῶѾ螠縀釀聖煮靼ꃴ肇Ȟࡺ⇨ꕏ뒇ꁚ肇Ȟࡺߠ⇨䦻椏ᯖ뚍쳯㠱殱⬗䕨忶㈫♌렡벆➝将뛳됯栉ꁇ脝Ѷ釚檧栍ꁇ脝Ѷᇚ䝨䍶Ȼ↸뽶퓧ꃔ뻫Კ௨酻ឭ椫얎৽㧋ᅵቦ빙ꢦ☳璧ힱ獃邭첣酙裈鵒ꖻ霖ⶑ壇녜앒ᧅ杝ﮊ쇇滇࿀㽢弬諟敛㉝酡굑繰휁笡恿鏷⮠䁥蚠᪀讂烶廑筆ꤔ熬跿鬝㛁ᐃ曘ᮠ뇁ᱝ엛먈ꀑ頏聄疛違慖膘١ᦆ昘孥豓姐궏迢᭶ϰϰϰϰϰϰϰ揰#惾蘠ᢀ戂蠈묡ﲱ覐买斚⒳쳼嬌䷾곡ꗷ亡䬴퇹ї䭐Ѓ!슫䞽ЙЯ牤⽳潤湷敲浸䑬侏쉫ᑀ纅박協嘪詐П콯毬먒㛻㝤纚滻킡ャ뼳컋焚욣蹗박ሌ쐐펹᜕上䷇߂赤㇆༦엋쏣㌜Ꞽ⇛∔ꡧಠ캡䥹ﴖ헀퇄瓻얍攐䡓숽醭Ⓝ䬙ᖋ藇欒靚羔娝楼햫箇痛햺뵦契⣎篕囪ဳ몁毾殿椅稺꒝ﯰ縧뤁Ǹ䭐ȁ-!莶鈸юǡࠀ뼀Ȁ牟汥⽳爮汥汳쇏썪ర惻惯彴왐펈ꅛ틗耾閱Ⳅ貶뉤穧읪銎㿸썉⟡暭턣껂쇫戜⽜럇』嵚渎䳥渖炤弘號괳뚮⺐ꢱ䩩ୖ굋ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀鈀졗훾豈ༀ܀搀獲搯睯牮癥砮汭䭐·̊[ͺܿ„ྟྨ祔数漠潰楳楴湯ྡ2ࠀg︀ЀCЀྪྦрǔːϰԐӁ䀋ਂs*Ђ혨ᙻ‡їƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ἀ开敲獬ⸯ敲獬䭐ȁ-!␇딚Цщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰఀ稀쀀윀ༀഀ竰鼀ЏЀꠀ؏䜀湥敤rꄀ㈏܀ਈĀ܀最ȀȀȀᰀǾ䌄ȄȀᰀꨀਏ܀Āꘀఏ퐀퀁ဃ༅Ѐ뿰ሀࣰఀ@Ȁ猀⫰缀Ѐ耀蠀篟蜖Ā뼀뼀āᔀࠀ뼀Ȁ牟汥⽳爮汥汳쇏썪ర惻惯彴왐펈ꅛ틗耾閱Ⳅ貶뉤穧읪銎㿸썉⟡暭턣껂쇫戜⽜럇』嵚渎䳥渖炤弘號괳뚮⺐ꢱ䩩ୖ굋ἀ开敲獬ⸯ敲獬䭐ȁ-!字毄Хщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ऀༀჰ쀀稀㼀ༀഀ称鼀ЏЀꠀԏ吀瑯污ྡ2ࠀg︀ЀCЀྪྦрǔːϰԐқ䀍ਂc$Ђᙻїƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ἀ开敲獬ⸯ敲獬䭐ȁ-!泯瑝Цщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰఀ윀贀㼀ༀഀ嫰鼀ЏЀꄀĀ㘀ਠĀᐄ܀ĀȀᰀꨀਏĀĀꘀఏ퐀퀁ဃ༅Ѐ鯰ሀࣰ@Ȁ挀⓰缀Ѐ耀⠀篜뼖뼀āᔀࠀ뼀Ȁ牟汥⽳爮汥汳쇏썪ర惻惯彴왐펈ꅛ틗耾閱Ⳅ貶뉤穧읪銎㿸썉⟡暭턣껂쇫戜⽜럇』嵚渎䳥渖炤弘號괳뚮⺐ꢱ䩩ୖ굋ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀嵬홴豈ༀ܀搀獲搯睯牮癥砮汭䭐·̊ඍӇჀܿZྟྡ ‶ЀྪྦрǔːϰԐӀ䀏ਂc$Ђ횈ᙻїƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ἀ开敲獬ⸯ敲獬䭐ȁ-!ᢰЦщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰ嬀㼀ఀ谀ༀഀ翰鼀ЏЀꠀଏ䴀湡条牥慩ྡ2ࠀg︀ЀCЀྪྦрǔːϰԐҶ䀐ਂc$Ђᙻїƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ἀ开敲獬ⸯ敲獬䭐ȁ-!༾왐Цщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰఀ㼀贀谀ༀഀ痰鼀ЏЀꠀď㠀ྡ2ࠀg︀ЀCЀྪྦрǔːϰԐҶ䀑ਂc$Ђᙻїƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ႁꔏϴ踴㶩揟ŵ㯋瑷캮㕢廚⠜후Ի鎷Ќ훫ਵ㟏ၳ톑⎽✅낊幚ⱞ킰㩊롬ऑ拢ઁ䡐欙ᙃ쓣띒쇳ꜢᨘΩ亮南嫾캾ꕷ꾮쟆ဇ⍌㿿췯忥䙹檽줅ꩲꭂ豋䥼즦៲䭐ȁ-!쯶оƅἀ开敲獬ⸯ敲獬䭐ȁ-!πܺЦщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰ贀㼀쀀谀ༀഀ痰鼀ЏЀꠀď㌀ྡ2ࠀg︀ЀCЀྪྦрǔːϰԐҸ䀒ਂc$Ђ훨ᙻїƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀묀ퟒ豈ༀ܀搀獲搯睯牮癥砮汭䭐·̋Ⴠܿᓿࢌvྟྨㄱྡ2ࠀg︀ЀCЀྪྦрǔːϰԐӂ䀓ਂc$Ђᙻїƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ἀ开敲獬ⸯ敲獬䭐ȁ-!㒧獓Цщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰ嬀谀ఀༀഀ臰鼀ЏЀꠀഏ倀潲敦獳潩慮ྡ2ࠀg︀ЀCЀྪྦрǔːϰԐҹ䀔ਂc$Ђᙻїƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹쳔♝⡥㉫䘘⎮묛㤆彆ᓱꛡ餤荈趍㔋둶ꦪ氼豿㍽엟㾘語ꇥ❌埓꺥ﶇᇲ匄ᅬ忏뫹쾻쫿⭙⚈恠韲㑋隍ї䭐ȁ-!쯶оƅἀ开敲獬ⸯ敲獬䭐ȁ-!嗥ႼШщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ఀༀჰఀ谀贀ༀഀ盰鼀ЏЀꠀȏ㌀1ꄀ㈏̀ਈ܀Ȁ最ȀȀȀᰀǾ䌄ȄȀᰀꨀਏ̀Āꘀఏ퐀퀁ဃ༅Ѐ런ሀࣰᔀ@Ȁ挀⓰缀Ѐ耀䠀篗뼖뼀āᔀࠀ뼀Ȁ牟汥⽳爮汥汳쇏썪ర惻惯彴왐펈ꅛ틗耾閱Ⳅ貶뉤穧읪銎㿸썉⟡暭턣껂쇫戜⽜럇』嵚渎䳥渖炤弘號괳뚮⺐ꢱ䩩ୖ굋罬ဣ톁汪▜朅《䳞팰擮瓗烜∩蛄ᔌ챔♭⡥㈪礼▮묛㤆彆ᓱꛡ莑ᤤ荊趵ᔋ㒶ꢯ濘赾ㇴ㋽粇ꯀ糗ᄏ烩꧴箮ٹ퓁礳驾O⯊巪蠫묦玷毮욽鞯ᩨ䄭⽎Ͽ倀ŋⴂ᐀ࠀ℀蔀ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀Ḁ훸豈ༀ܀搀獲搯睯牮癥砮汭䭐·̊ඍࢌჀvྟྨ㌱ྡ2ࠀg︀ЀCЀྪྦрǔːϰԐҷ䀖ਂc$Ђᙻїƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ἀ开敲獬ⸯ敲獬䭐ȁ-!뗃᪪Цщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰ쀀谀ༀഀ盰鼀ЏЀꠀȏ㐀4ꄀ㈏̀ਈ܀Ȁ最ȀȀȀᰀǾ䌄ȄȀᰀꨀਏ̀Āꘀఏ퐀퀁ဃ༅Ѐ샰ሀࣰᜀ@Ȁ挀⓰缀Ѐ耀篙뼖뼀āᔀࠀ뼀Ȁ牟汥⽳爮汥汳쇏썪ర惻惯彴왐펈ꅛ틗耾閱Ⳅ貶뉤穧읪銎㿸썉⟡暭턣껂쇫戜⽜럇』嵚渎䳥渖炤弘號괳뚮⺐ꢱ䩩ୖ굋嘄ㄊꍆ锐粀흎슶㰶Ἐ막팹潹煛ἠ掌眅ಃ焄듥嫡䐢赤掭灒ў엥ଔ軭ꚼ⛃⋖㡁ꠔ覠⮱ತ䍕쌖痀꧄㧛ㅯꥫḽ状斘椣烑桚ꎰ蚧ﶪ쟦巻맪鎗Ἢ몕䑀ළ얚祟뵆թ擉竷봪毑鄌識䲒▓/䭐ȁ-!쯶оƅἀ开敲獬ⸯ敲獬䭐ȁ-!鉩Чщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰ嬀ఀ✀ༀഀ绰鼀ЏЀꠀਏ吀捥湨捩污 ꄀ㈏ਈ܀最ȀȀȀᰀǾ䌄ȄȀᰀꨀਏĀꘀఏ퐀퀁ဃ༅Ѐ런ሀࣰ᠀@Ȁ挀⓰缀Ѐ耀저篘뼖뼀āᔀࠀ뼀Ȁ牟汥⽳爮汥汳쇏썪ర惻惯彴왐펈ꅛ틗耾閱Ⳅ貶뉤穧읪銎㿸썉⟡暭턣껂쇫戜⽜럇』嵚渎䳥渖炤弘號괳뚮⺐ꢱ䩩ୖ굋远ဒ⭤宧⭛븨₦ꌂ䬹上怔뼱骾ꙡ퇝玐∭蛄ᔌ찴♽ꡥ㈚䘘➮묛㤆彆ᣱꛡ餤荈趭ഋ듶ꡪ䚿㫁䡽촿Ჾퟳ女㉴僽塦脾᩠瑜鍻ﳿ林鯔ၖ뙍ꞯ럒荺즁⾟㓑艚ワϿ倀ŋⴂ᐀ࠀ℀蔀ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀鼀괶홣豈ༀ܀搀獲搯睯牮癥砮汭䭐·̊ඍଧvྟྨ㈵ྡ2ࠀg︀ЀCЀྪྦрǔːϰԐҷ䀙ਂc$Ђᙻїƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ἀ开敲獬ⸯ敲獬䭐ȁ-!㨨Цщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰ贀쀀✀ༀഀ盰鼀ЏЀꠀȏ7ꄀ㈏̀ਈ܀Ȁ最ȀȀȀᰀǾ䌄ȄȀᰀꨀਏ̀Āꘀఏ퐀퀁ဃ༅Ѐ룰ሀࣰᨀ@Ȁ挀⓰缀Ѐ耀蠀篙뼖뼀āᔀࠀ뼀Ȁ牟汥⽳爮汥汳쇏썪ర惻惯彴왐펈ꅛ틗耾閱Ⳅ貶뉤穧읪銎㿸썉⟡暭턣껂쇫戜⽜럇』嵚渎䳥渖炤弘號괳뚮⺐ꢱ䩩ୖ굋㇔藶䆔擗谱作몜挖뺊욒㇣淁윧㙙ᚑ丛㔋鍘흮嘿埁靾㥽綶ힿ擹ꇺ̰椑ネ𢡊㖭ﳻ㲯庣芍뉤㥻뺕⬱鄌識䲒▓었/䭐ȁ-!쯶оƅἀ开敲獬ⸯ敲獬䭐ȁ-!귯䉹Чщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰ쀀✀ༀഀ盰鼀ЏЀꠀȏ㘀9ꄀ㈏̀ਈ܀Ȁ最ȀȀȀᰀǾ䌄ȄȀᰀꨀਏ̀Āꘀఏ퐀퀁ဃ༅Ѐ뿰ሀࣰᬀ@Ȁ挀⓰缀Ѐ耀ࠀ篪뼖뼀āᔀࠀ뼀Ȁ牟汥⽳爮汥汳쇏썪ర惻惯彴왐펈ꅛ틗耾閱Ⳅ貶뉤穧읪銎㿸썉⟡暭턣껂쇫戜⽜럇』嵚渎䳥渖炤弘號괳뚮⺐ꢱ䩩ୖ굋ْ鍝ヅᵲ컶豛﨩ᩊ잏뜄鲭婔㡬퐭퇘䵽냺뛽췼镾僱猯依꽧嵊ൟ୷鄐ﳿ쿓鎵ᑬ錤폽衠쿤撗Ⲛ깁ž䭐ȁ-!쯶оƅἀ开敲獬ⸯ敲獬䭐ȁ-!ꉃЧщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰ嬀✀ఀ琀ༀഀ緰鼀ЏЀꠀए䌀敬楲慣ྡ2ࠀg︀ЀCЀྪྦрǔːϰԐҶ䀜ਂc$Ђᙻїƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ἀ开敲獬ⸯ敲獬䭐ȁ-!먑두Цщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰఀ✀贀琀ༀഀ痰鼀ЏЀꠀď㤀ྡ2ࠀg︀ЀCЀྪྦрǔːϰԐҸ䀝ਂc$Ђᙻїƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ἀ开敲獬ⸯ敲獬䭐ȁ-!Цщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰ贀✀쀀琀ༀഀ矰鼀ЏЀꠀ̏㈀㜮ྡ2ࠀg︀ЀCЀྪྦрǔːϰԐҹ䀞ਂc$Ђᙻїƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹쳔♝⡥㉫䘘⎮묛㤆彆ᓱꛡ餤荈趍㔋둶ꦪ氼豿㍽엟㾘語ꇥ❌埓꺥ﶇᇲ匄ᅬ忏뫹쾻쫿⭙⚈恠韲㑋隍ї䭐ȁ-!쯶оƅἀ开敲獬ⸯ敲獬䭐ȁ-!嗥ႼШщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ఀༀჰ쀀✀琀ༀഀ盰鼀ЏЀꠀȏ㌀1ꄀ㈏̀ਈ܀Ȁ最ȀȀȀᰀǾ䌄ȄȀᰀꨀਏ̀Āꘀఏ퐀퀁ဃ༅Ѐ뫰ሀࣰἀ@Ȁ挀⓰缀Ѐ耀⠀篥뼖뼀āᔀࠀ뼀Ȁ牟汥⽳爮汥汳쇏썪ర惻惯彴왐펈ꅛ틗耾閱Ⳅ貶뉤穧읪銎㿸썉⟡暭턣껂쇫戜⽜럇』嵚渎䳥渖炤弘號괳뚮⺐ꢱ䩩ୖ굋ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀씀ꐛ홑豈ༀ܀搀獲搯睯牮癥砮汭䭐·̊[ශyྟྨ潔慴lꄀ㈏ਈ܀Ԁ最ȀȀȀᰀǾ䌄ȄȀᰀꨀਏĀꘀఏ퐀퀁ဃ༅Ѐ뫰ሀࣰ @Ȁ挀⓰缀Ѐ耀저篧뼖뼀āᔀࠀ뼀Ȁ牟汥⽳爮汥汳쇏썪ర惻惯彴왐펈ꅛ틗耾閱Ⳅ貶뉤穧읪銎㿸썉⟡暭턣껂쇫戜⽜럇』嵚渎䳥渖炤弘號괳뚮⺐ꢱ䩩ୖ굋淌攦⨨ᠲ깆ᬥ붻۳䘹䩟뇭炋죓鉉ꕌ藆嬊坚᱔셆穫뺝꾘쉼睯瓰ꑓ劳쎗畾舋翩㏊凪蠫ﬦ厇毮솽韏ᩨ䄭縮Ͽ倀ŋⴂ᐀ࠀ℀蔀ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀묀豈ༀ܀搀獲搯睯牮癥砮汭䭐·̌ඍශwྟྨ〱0ꄀ㈏Ѐਈ܀̀最ȀȀȀᰀǾ䌄ȄȀᰀꨀਏЀĀꘀఏ퐀퀁ဃ༅Ѐ런ሀࣰ℀@Ȁ挀⓰缀Ѐ耀䠀篣뼖뼀āᔀࠀ뼀Ȁ牟汥⽳爮汥汳쇏썪ర惻惯彴왐펈ꅛ틗耾閱Ⳅ貶뉤穧읪銎㿸썉⟡暭턣껂쇫戜⽜럇』嵚渎䳥渖炤弘號괳뚮⺐ꢱ䩩ୖ굋넊仱̠깁뫲땱罹౦㈢贺瞭ᅄ诋ᘙῚ諝欎䖮뢂ꁘ쌂ᗜ왒郊㣅ᷰ풹糭좰蘩잀뜄Ჭ婈屬ず퇘ꆃ뽪뇾㸊믲靾﹃⩼﮷䦷辕䯆꺥絛⧻ꘈ゙禟㲯庣芵뉤㥻ꆕ⯑䲌糡ꙉዉﳤϿ倀ŋⴂ᐀ࠀ℀蔀ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀鸿홺豈ༀ܀搀獲搯睯牮癥砮汭䭐·̊ඍჀශvྟྨ㔵ྡ2ࠀg︀ЀCЀྪྦрǔːϰԐҸ䀢ਂc$Ђᙻїƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ἀ开敲獬ⸯ敲獬䭐ȁ-!翅Цщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰ쀀琀섀ༀഀ矰鼀ЏЀꠀ̏㔵ྡ2ࠀg︀ЀCЀྪྦрǔːϰԐиł䀣ਂc$їſƿNj㆜ǿο#Ϝǿ@쎩ϐ䭐Ѓ!쯶оƅ开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀蘀콜ༀ܀搀獲搯睯牮癥砮汭䭐·̃ͺශиł䀤ਂc$їſƿNj㆜ǿο#Ϝǿ@쎩ϐ䭐Ѓ!쯶оƅ开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀蘀콜ༀ܀搀獲搯睯牮癥砮汭䭐·̃ඍӇඍශиł䀥ਂc$їſƿNj㆜ǿο#Ϝǿ@쎩ϐ䭐Ѓ!쯶оƅ开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀蘀콜ༀ܀搀獲搯睯牮癥砮汭䭐·̃ჀͺჀශиł䀦ਂc$їſƿNj㆜ǿο#Ϝǿ@쎩ϐ䭐Ѓ!쯶оƅ开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀蘀콜ༀ܀搀獲搯睯牮癥砮汭䭐·̃ӇჀӇиł䀧ਂc$їſƿNj㆜ǿο#Ϝǿ@쎩ϐ䭐Ѓ!쯶оƅ开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀蘀콜ༀ܀搀獲搯睯牮癥砮汭䭐·̃[ܿᓿܿиł䀨ਂc$їſƿNj㆜ǿο#Ϝǿ@쎩ϐ䭐Ѓ!쯶оƅ开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀蘀콜ༀ܀搀獲搯睯牮癥砮汭䭐·̃[ࢌᓿࢌиł䀩ਂc$їſƿNj㆜ǿο#Ϝǿ@쎩ϐ䭐Ѓ!쯶оƅ开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀蘀콜ༀ܀搀獲搯睯牮癥砮汭䭐·̃[ᓿиł䀪ਂc$їſƿNj㆜ǿο#Ϝǿ@쎩ϐ䭐Ѓ!쯶оƅ开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀蘀콜ༀ܀搀獲搯睯牮癥砮汭䭐·̃[ଧᓿଧиł䀫ਂc$їſƿNj㆜ǿο#Ϝǿ@쎩ϐ䭐Ѓ!쯶оƅ开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀蘀콜ༀ܀搀獲搯睯牮癥砮汭䭐·̃[ᓿиł䀬ਂc$їſƿNj㆜ǿο#Ϝǿ@쎩ϐ䭐Ѓ!쯶оƅ开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀蘀콜ༀ܀搀獲搯睯牮癥砮汭䭐·̃[ͺ[ශиł䀭ਂc$їſƿNj㆜ǿο#Ϝǿ@쎩ϐ䭐Ѓ!쯶оƅ开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀蘀콜ༀ܀搀獲搯睯牮癥砮汭䭐·̃ᓿͺᓿශиł䀮ਂc$їſƿNj㆜ǿο#Ϝǿ@쎩ϐ䭐Ѓ!쯶оƅ开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀蘀콜ༀ܀搀獲搯睯牮癥砮汭䭐·̃[ͺᓿͺиł䀯ਂc$їſƿNj㆜ǿο#Ϝǿ@쎩ϐ䭐Ѓ!쯶оƅ开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀蘀콜ༀ܀搀獲搯睯牮癥砮汭䭐·̃[ශᓿශĤ䀰ГdǯЂᙻїƁࠀƿǀࠀǿȁࠀȿ̿쎀οRectangle 183ญ}ࡪཾђྟྨ倍⠠⁔††䌠 ‽⁐吨 ⁐䌨㨩ྡ*ကPႁ•PྪЉЉྦшǔːϰԐŐ䀱гpǯЂᙻ…‡їƁࠀƿǀࠀǿȁࠀȿ̿쎀οRectangle 185ߵ ߵF Ȩvຜ㣃འ㨙䀅ȁC(ǡ쎀οGroup 5뵆偾奋ﴢ䨣幐檞춖킒㬥狭붨귻덖槝黹Ⲥﻻ嚩쳳먋뼍䙖ᄏ靍㭒幅钖醤坦萤䊕剺檝枪㍠릭헏拖讨珪㢩룞휴鉔ꭖ큵뷴ᬛᨌ仝ᛛ뗸㣙郹묶曝㪛䡅됹캂❁㥰櫯䩒퍹泬쮩㺤쌳림鹎䳑䶆꜄쓎智쨢긿厃䒝㹅ॉꫯ㟯鬏盝厷浈ꭁ㳑盬繿곞菗휃泫㯱큁⭫췭绺톻栽譶薂嚞ꍗ톌歸伔ޮ먪ֱ킛닟⊸⌷⍳殸쳎첾䲤橽ਏ뮜뢀≯ᨣ⹘쓈튔ㇾ췏몙뷲있㙣ﷶ甮壺츛彀໘역驊蓡ӷ再빙侦䱦楎స㋧䲤圂Ⅾ奇䭨枖メꌥ荤ﶺ쩗㥡胆ꍅ软뱀﹤뗱츓㹤궺➂赔쟪騷岲朖⦹蛚棄⿓⏾庑폌唤冷Ե덕珯裻㷦夒殣㘅䐩ﻬ䥽兩ᜧᔴ㕉ⅲ␚⚌뒥麓湈忹⏮匫鐉쭒灉ﻛ勵뚎剀⒝ᑂᑥ角襀눤㴏傝㬡圙寒욎飣ꚇⲨ맫䷌揆刖徍攪쒲뎄阓숦휴㎇玦鎑顜费崄贜Ⴉ語䲽觥ﶝポ荱뗅霄郑癩蠵핸墺栕水㶭疎쓂㛽ꄣ萯ө덌鶇ꪓ왙⒄♥駃緒㐿䚚튷羷ਓ薈㦢镑늡鹳秙栲灀㰽溦셅ꌴ㥕厗⯟ᰦ튛뭳ꙭꊳ㭻ᘉ⽓爲焽姆䗴깆㊍堪⏊똚ڜඓ颹▆㇢䤱䈨ଢ빹闗⼼㤪蹊䪋銺늃씥൘ප⺯맪ΐ輊쓗y仜씊璖稓㺼煌䨠ဏ췥쨡괩岛頃ĔL鰡탦㧗즀쇨胶휫蕛或꾱偹䉻ﭳ祳従러誐എ䕭ͧа赽䃜싡⽺꾧虑怉怡薡ሊ驊핗ń事㭱졘瓪䖵蕝覉⼌㉍漏䧮巨ƾ版坙竜Ґ鱅ঐ祜熭㗖枘䩰裸坈ぞ탏臐虹䶶₫ᖋ䉈枚₠Ź꼷ᾀᾀᾀ䊤毘찊ᑶ隦킮㼁ῶѾ螠縀釀聖煮靼ꃴ肇Ȟࡺ⇨ꕏ뒇ꁚ肇Ȟࡺߠ⇨䦻椏ᯖ뚍쳯㠱殱⬗䕨忶㈫♌렡벆➝将뛳됯栉ꁇ脝Ѷ釚檧栍ꁇ脝Ѷᇚ䝨䍶Ȼ↸뽶퓧ꃔ뻫Კ௨酻ឭ椫얎৽㧋ᅵቦ빙ꢦ☳璧ힱ獃邭첣酙裈鵒ꖻ霖ⶑ壇녜앒ᧅ杝ﮊ쇇滇࿀㽢弬諟敛㉝酡굑繰휁笡恿鏷⮠䁥蚠᪀讂烶廑筆ꤔ熬跿鬝㛁ᐃ曘ᮠ뇁ᱝ엛먈ꀑ頏聄疛違慖膘١ᦆ昘孥豓姐궏迢᭶ϰϰϰϰϰϰϰ揰#惾蘠ᢀ戂蠈묡ﲱ覐买斚⒳쳼嬌䷾곡ꗷ亡䬴퇹ї䭐Ѓ!슫䞽ЙЯ牤⽳潤湷敲浸䑬侏쉫ᑀ纅박協嘪詐П콯毬먒㛻㝤纚滻킡ャ뼳컋焚욣蹗박ሌ쐐펹᜕上䷇߂赤㇆༦엋쏣㌜Ꞽ⇛∔ꡧಠ캡䥹ﴖ헀퇄瓻얍攐䡓숽醭Ⓝ䬙ᖋ藇欒靚羔娝楼햫箇痛햺뵦契⣎篕囪ဳ몁毾殿椅稺꒝ﯰ縧뤁Ǹ䭐ȁ-!莶鈸юǡࠀ뼀Ȁ牟汥⽳爮汥汳쇏썪ర惻惯彴왐펈ꅛ틗耾閱Ⳅ貶뉤穧읪銎㿸썉⟡暭턣껂쇫戜⽜럇』嵚渎䳥渖炤弘號괳뚮⺐ꢱ䩩ୖ굋ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀鈀졗훾豈ༀ܀搀獲搯睯牮癥砮汭䭐·̊[ͺܿ„ྟྨ祔数漠潰楳楴湯ྡ2ࠀg︀ЀCЀྪྦрǔːϰԐӁ䀋ਂs*Ђ혨ᙻ‡їƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ἀ开敲獬ⸯ敲獬䭐ȁ-!␇딚Цщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰఀ稀쀀윀ༀഀ竰鼀ЏЀꠀ؏䜀湥敤rꄀ㈏܀ਈĀ܀最ȀȀȀᰀǾ䌄ȄȀᰀꨀਏ܀Āꘀఏ퐀퀁ဃ༅Ѐ뿰ሀࣰఀ@Ȁ猀⫰缀Ѐ耀蠀篟蜖Ā뼀뼀āᔀࠀ뼀Ȁ牟汥⽳爮汥汳쇏썪ర惻惯彴왐펈ꅛ틗耾閱Ⳅ貶뉤穧읪銎㿸썉⟡暭턣껂쇫戜⽜럇』嵚渎䳥渖炤弘號괳뚮⺐ꢱ䩩ୖ굋ἀ开敲獬ⸯ敲獬䭐ȁ-!字毄Хщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ऀༀჰ쀀稀㼀ༀഀ称鼀ЏЀꠀԏ吀瑯污ྡ2ࠀg︀ЀCЀྪྦрǔːϰԐқ䀍ਂc$Ђᙻїƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ἀ开敲獬ⸯ敲獬䭐ȁ-!泯瑝Цщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰఀ윀贀㼀ༀഀ嫰鼀ЏЀꄀĀ㘀ਠĀᐄ܀ĀȀᰀꨀਏĀĀꘀఏ퐀퀁ဃ༅Ѐ鯰ሀࣰ@Ȁ挀⓰缀Ѐ耀⠀篜뼖뼀āᔀࠀ뼀Ȁ牟汥⽳爮汥汳쇏썪ర惻惯彴왐펈ꅛ틗耾閱Ⳅ貶뉤穧읪銎㿸썉⟡暭턣껂쇫戜⽜럇』嵚渎䳥渖炤弘號괳뚮⺐ꢱ䩩ୖ굋ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀嵬홴豈ༀ܀搀獲搯睯牮癥砮汭䭐·̊ඍӇჀܿZྟྡ ‶ЀྪྦрǔːϰԐӀ䀏ਂc$Ђ횈ᙻїƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ἀ开敲獬ⸯ敲獬䭐ȁ-!ᢰЦщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰ嬀㼀ఀ谀ༀഀ翰鼀ЏЀꠀଏ䴀湡条牥慩ྡ2ࠀg︀ЀCЀྪྦрǔːϰԐҶ䀐ਂc$Ђᙻїƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ἀ开敲獬ⸯ敲獬䭐ȁ-!༾왐Цщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰఀ㼀贀谀ༀഀ痰鼀ЏЀꠀď㠀ྡ2ࠀg︀ЀCЀྪྦрǔːϰԐҶ䀑ਂc$Ђᙻїƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ႁꔏϴ踴㶩揟ŵ㯋瑷캮㕢廚⠜후Ի鎷Ќ훫ਵ㟏ၳ톑⎽✅낊幚ⱞ킰㩊롬ऑ拢ઁ䡐欙ᙃ쓣띒쇳ꜢᨘΩ亮南嫾캾ꕷ꾮쟆ဇ⍌㿿췯忥䙹檽줅ꩲꭂ豋䥼즦៲䭐ȁ-!쯶оƅἀ开敲獬ⸯ敲獬䭐ȁ-!πܺЦщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰ贀㼀쀀谀ༀഀ痰鼀ЏЀꠀď㌀ྡ2ࠀg︀ЀCЀྪྦрǔːϰԐҸ䀒ਂc$Ђ훨ᙻїƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀묀ퟒ豈ༀ܀搀獲搯睯牮癥砮汭䭐·̋Ⴠܿᓿࢌvྟྨㄱྡ2ࠀg︀ЀCЀྪྦрǔːϰԐӂ䀓ਂc$Ђᙻїƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ἀ开敲獬ⸯ敲獬䭐ȁ-!㒧獓Цщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰ嬀谀ఀༀഀ臰鼀ЏЀꠀഏ倀潲敦獳潩慮ྡ2ࠀg︀ЀCЀྪྦрǔːϰԐҹ䀔ਂc$Ђᙻїƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹쳔♝⡥㉫䘘⎮묛㤆彆ᓱꛡ餤荈趍㔋둶ꦪ氼豿㍽엟㾘語ꇥ❌埓꺥ﶇᇲ匄ᅬ忏뫹쾻쫿⭙⚈恠韲㑋隍ї䭐ȁ-!쯶оƅἀ开敲獬ⸯ敲獬䭐ȁ-!嗥ႼШщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ఀༀჰఀ谀贀ༀഀ盰鼀ЏЀꠀȏ㌀1ꄀ㈏̀ਈ܀Ȁ最ȀȀȀᰀǾ䌄ȄȀᰀꨀਏ̀Āꘀఏ퐀퀁ဃ༅Ѐ런ሀࣰᔀ@Ȁ挀⓰缀Ѐ耀䠀篗뼖뼀āᔀࠀ뼀Ȁ牟汥⽳爮汥汳쇏썪ర惻惯彴왐펈ꅛ틗耾閱Ⳅ貶뉤穧읪銎㿸썉⟡暭턣껂쇫戜⽜럇』嵚渎䳥渖炤弘號괳뚮⺐ꢱ䩩ୖ굋罬ဣ톁汪▜朅《䳞팰擮瓗烜∩蛄ᔌ챔♭⡥㈪礼▮묛㤆彆ᓱꛡ莑ᤤ荊趵ᔋ㒶ꢯ濘赾ㇴ㋽粇ꯀ糗ᄏ烩꧴箮ٹ퓁礳驾O⯊巪蠫묦玷毮욽鞯ᩨ䄭⽎Ͽ倀ŋⴂ᐀ࠀ℀蔀ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀Ḁ훸豈ༀ܀搀獲搯睯牮癥砮汭䭐·̊ඍࢌჀvྟྨ㌱ྡ2ࠀg︀ЀCЀྪྦрǔːϰԐҷ䀖ਂc$Ђᙻїƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ἀ开敲獬ⸯ敲獬䭐ȁ-!뗃᪪Цщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰ쀀谀ༀഀ盰鼀ЏЀꠀȏ㐀4ꄀ㈏̀ਈ܀Ȁ最ȀȀȀᰀǾ䌄ȄȀᰀꨀਏ̀Āꘀఏ퐀퀁ဃ༅Ѐ샰ሀࣰᜀ@Ȁ挀⓰缀Ѐ耀篙뼖뼀āᔀࠀ뼀Ȁ牟汥⽳爮汥汳쇏썪ర惻惯彴왐펈ꅛ틗耾閱Ⳅ貶뉤穧읪銎㿸썉⟡暭턣껂쇫戜⽜럇』嵚渎䳥渖炤弘號괳뚮⺐ꢱ䩩ୖ굋嘄ㄊꍆ锐粀흎슶㰶Ἐ막팹潹煛ἠ掌眅ಃ焄듥嫡䐢赤掭灒ў엥ଔ軭ꚼ⛃⋖㡁ꠔ覠⮱ತ䍕쌖痀꧄㧛ㅯꥫḽ状斘椣烑桚ꎰ蚧ﶪ쟦巻맪鎗Ἢ몕䑀ළ얚祟뵆թ擉竷봪毑鄌識䲒▓/䭐ȁ-!쯶оƅἀ开敲獬ⸯ敲獬䭐ȁ-!鉩Чщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰ嬀ఀ✀ༀഀ绰鼀ЏЀꠀਏ吀捥湨捩污 ꄀ㈏ਈ܀最ȀȀȀᰀǾ䌄ȄȀᰀꨀਏĀꘀఏ퐀퀁ဃ༅Ѐ런ሀࣰ᠀@Ȁ挀⓰缀Ѐ耀저篘뼖뼀āᔀࠀ뼀Ȁ牟汥⽳爮汥汳쇏썪ర惻惯彴왐펈ꅛ틗耾閱Ⳅ貶뉤穧읪銎㿸썉⟡暭턣껂쇫戜⽜럇』嵚渎䳥渖炤弘號괳뚮⺐ꢱ䩩ୖ굋远ဒ⭤宧⭛븨₦ꌂ䬹上怔뼱骾ꙡ퇝玐∭蛄ᔌ찴♽ꡥ㈚䘘➮묛㤆彆ᣱꛡ餤荈趭ഋ듶ꡪ䚿㫁䡽촿Ჾퟳ女㉴僽塦脾᩠瑜鍻ﳿ林鯔ၖ뙍ꞯ럒荺즁⾟㓑艚ワϿ倀ŋⴂ᐀ࠀ℀蔀ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀鼀괶홣豈ༀ܀搀獲搯睯牮癥砮汭䭐·̊ඍଧvྟྨ㈵ྡ2ࠀg︀ЀCЀྪྦрǔːϰԐҷ䀙ਂc$Ђᙻїƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ἀ开敲獬ⸯ敲獬䭐ȁ-!㨨Цщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰ贀쀀✀ༀഀ盰鼀ЏЀꠀȏ7ꄀ㈏̀ਈ܀Ȁ最ȀȀȀᰀǾ䌄ȄȀᰀꨀਏ̀Āꘀఏ퐀퀁ဃ༅Ѐ룰ሀࣰᨀ@Ȁ挀⓰缀Ѐ耀蠀篙뼖뼀āᔀࠀ뼀Ȁ牟汥⽳爮汥汳쇏썪ర惻惯彴왐펈ꅛ틗耾閱Ⳅ貶뉤穧읪銎㿸썉⟡暭턣껂쇫戜⽜럇』嵚渎䳥渖炤弘號괳뚮⺐ꢱ䩩ୖ굋㇔藶䆔擗谱作몜挖뺊욒㇣淁윧㙙ᚑ丛㔋鍘흮嘿埁靾㥽綶ힿ擹ꇺ̰椑ネ𢡊㖭ﳻ㲯庣芍뉤㥻뺕⬱鄌識䲒▓었/䭐ȁ-!쯶оƅἀ开敲獬ⸯ敲獬䭐ȁ-!귯䉹Чщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰ쀀✀ༀഀ盰鼀ЏЀꠀȏ㘀9ꄀ㈏̀ਈ܀Ȁ最ȀȀȀᰀǾ䌄ȄȀᰀꨀਏ̀Āꘀఏ퐀퀁ဃ༅Ѐ뿰ሀࣰᬀ@Ȁ挀⓰缀Ѐ耀ࠀ篪뼖뼀āᔀࠀ뼀Ȁ牟汥⽳爮汥汳쇏썪ర惻惯彴왐펈ꅛ틗耾閱Ⳅ貶뉤穧읪銎㿸썉⟡暭턣껂쇫戜⽜럇』嵚渎䳥渖炤弘號괳뚮⺐ꢱ䩩ୖ굋ْ鍝ヅᵲ컶豛﨩ᩊ잏뜄鲭婔㡬퐭퇘䵽냺뛽췼镾僱猯依꽧嵊ൟ୷鄐ﳿ쿓鎵ᑬ錤폽衠쿤撗Ⲛ깁ž䭐ȁ-!쯶оƅἀ开敲獬ⸯ敲獬䭐ȁ-!ꉃЧщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰ嬀✀ఀ琀ༀഀ緰鼀ЏЀꠀए䌀敬楲慣ྡ2ࠀg︀ЀCЀྪྦрǔːϰԐҶ䀜ਂc$Ђᙻїƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ἀ开敲獬ⸯ敲獬䭐ȁ-!먑두Цщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰఀ✀贀琀ༀഀ痰鼀ЏЀꠀď㤀ྡ2ࠀg︀ЀCЀྪྦрǔːϰԐҸ䀝ਂc$Ђᙻїƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ἀ开敲獬ⸯ敲獬䭐ȁ-!Цщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰ贀✀쀀琀ༀഀ矰鼀ЏЀꠀ̏㈀㜮ྡ2ࠀg︀ЀCЀྪྦрǔːϰԐҹ䀞ਂc$Ђᙻїƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹쳔♝⡥㉫䘘⎮묛㤆彆ᓱꛡ餤荈趍㔋둶ꦪ氼豿㍽엟㾘語ꇥ❌埓꺥ﶇᇲ匄ᅬ忏뫹쾻쫿⭙⚈恠韲㑋隍ї䭐ȁ-!쯶оƅἀ开敲獬ⸯ敲獬䭐ȁ-!嗥ႼШщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ఀༀჰ쀀✀琀ༀഀ盰鼀ЏЀꠀȏ㌀1ꄀ㈏̀ਈ܀Ȁ最ȀȀȀᰀǾ䌄ȄȀᰀꨀਏ̀Āꘀఏ퐀퀁ဃ༅Ѐ뫰ሀࣰἀ@Ȁ挀⓰缀Ѐ耀⠀篥뼖뼀āᔀࠀ뼀Ȁ牟汥⽳爮汥汳쇏썪ర惻惯彴왐펈ꅛ틗耾閱Ⳅ貶뉤穧읪銎㿸썉⟡暭턣껂쇫戜⽜럇』嵚渎䳥渖炤弘號괳뚮⺐ꢱ䩩ୖ굋ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀씀ꐛ홑豈ༀ܀搀獲搯睯牮癥砮汭䭐·̊[ශyྟྨ潔慴lꄀ㈏ਈ܀Ԁ最ȀȀȀᰀǾ䌄ȄȀᰀꨀਏĀꘀఏ퐀퀁ဃ༅Ѐ뫰ሀࣰ @Ȁ挀⓰缀Ѐ耀저篧뼖뼀āᔀࠀ뼀Ȁ牟汥⽳爮汥汳쇏썪ర惻惯彴왐펈ꅛ틗耾閱Ⳅ貶뉤穧읪銎㿸썉⟡暭턣껂쇫戜⽜럇』嵚渎䳥渖炤弘號괳뚮⺐ꢱ䩩ୖ굋淌攦⨨ᠲ깆ᬥ붻۳䘹䩟뇭炋죓鉉ꕌ藆嬊坚᱔셆穫뺝꾘쉼睯瓰ꑓ劳쎗畾舋翩㏊凪蠫ﬦ厇毮솽韏ᩨ䄭縮Ͽ倀ŋⴂ᐀ࠀ℀蔀ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀묀豈ༀ܀搀獲搯睯牮癥砮汭䭐·̌ඍශwྟྨ〱0ꄀ㈏Ѐਈ܀̀最ȀȀȀᰀǾ䌄ȄȀᰀꨀਏЀĀꘀఏ퐀퀁ဃ༅Ѐ런ሀࣰ℀@Ȁ挀⓰缀Ѐ耀䠀篣뼖뼀āᔀࠀ뼀Ȁ牟汥⽳爮汥汳쇏썪ర惻惯彴왐펈ꅛ틗耾閱Ⳅ貶뉤穧읪銎㿸썉⟡暭턣껂쇫戜⽜럇』嵚渎䳥渖炤弘號괳뚮⺐ꢱ䩩ୖ굋넊仱̠깁뫲땱罹౦㈢贺瞭ᅄ诋ᘙῚ諝欎䖮뢂ꁘ쌂ᗜ왒郊㣅ᷰ풹糭좰蘩잀뜄Ჭ婈屬ず퇘ꆃ뽪뇾㸊믲靾﹃⩼﮷䦷辕䯆꺥絛⧻ꘈ゙禟㲯庣芵뉤㥻ꆕ⯑䲌糡ꙉዉﳤϿ倀ŋⴂ᐀ࠀ℀蔀ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀鸿홺豈ༀ܀搀獲搯睯牮癥砮汭䭐·̊ඍჀශvྟྨ㔵ྡ2ࠀg︀ЀCЀྪྦрǔːϰԐҸ䀢ਂc$Ђᙻїƿǿο开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ἀ开敲獬ⸯ敲獬䭐ȁ-!翅Цщȇ牤⽳潤湷敲浸偬Ջ̀̀뜀ༀჰ쀀琀섀ༀഀ矰鼀ЏЀꠀ̏㔵ྡ2ࠀg︀ЀCЀྪྦрǔːϰԐиł䀣ਂc$їſƿNj㆜ǿο#Ϝǿ@쎩ϐ䭐Ѓ!쯶оƅ开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀蘀콜ༀ܀搀獲搯睯牮癥砮汭䭐·̃ͺශиł䀤ਂc$їſƿNj㆜ǿο#Ϝǿ@쎩ϐ䭐Ѓ!쯶оƅ开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀蘀콜ༀ܀搀獲搯睯牮癥砮汭䭐·̃ඍӇඍශиł䀥ਂc$їſƿNj㆜ǿο#Ϝǿ@쎩ϐ䭐Ѓ!쯶оƅ开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀蘀콜ༀ܀搀獲搯睯牮癥砮汭䭐·̃ჀͺჀශиł䀦ਂc$їſƿNj㆜ǿο#Ϝǿ@쎩ϐ䭐Ѓ!쯶оƅ开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀蘀콜ༀ܀搀獲搯睯牮癥砮汭䭐·̃ӇჀӇиł䀧ਂc$їſƿNj㆜ǿο#Ϝǿ@쎩ϐ䭐Ѓ!쯶оƅ开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀蘀콜ༀ܀搀獲搯睯牮癥砮汭䭐·̃[ܿᓿܿиł䀨ਂc$їſƿNj㆜ǿο#Ϝǿ@쎩ϐ䭐Ѓ!쯶оƅ开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀蘀콜ༀ܀搀獲搯睯牮癥砮汭䭐·̃[ࢌᓿࢌиł䀩ਂc$їſƿNj㆜ǿο#Ϝǿ@쎩ϐ䭐Ѓ!쯶оƅ开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀蘀콜ༀ܀搀獲搯睯牮癥砮汭䭐·̃[ᓿиł䀪ਂc$їſƿNj㆜ǿο#Ϝǿ@쎩ϐ䭐Ѓ!쯶оƅ开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀蘀콜ༀ܀搀獲搯睯牮癥砮汭䭐·̃[ଧᓿଧиł䀫ਂc$їſƿNj㆜ǿο#Ϝǿ@쎩ϐ䭐Ѓ!쯶оƅ开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀蘀콜ༀ܀搀獲搯睯牮癥砮汭䭐·̃[ᓿиł䀬ਂc$їſƿNj㆜ǿο#Ϝǿ@쎩ϐ䭐Ѓ!쯶оƅ开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀蘀콜ༀ܀搀獲搯睯牮癥砮汭䭐·̃[ͺ[ශиł䀭ਂc$їſƿNj㆜ǿο#Ϝǿ@쎩ϐ䭐Ѓ!쯶оƅ开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀蘀콜ༀ܀搀獲搯睯牮癥砮汭䭐·̃ᓿͺᓿශиł䀮ਂc$їſƿNj㆜ǿο#Ϝǿ@쎩ϐ䭐Ѓ!쯶оƅ开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀蘀콜ༀ܀搀獲搯睯牮癥砮汭䭐·̃[ͺᓿͺиł䀯ਂc$їſƿNj㆜ǿο#Ϝǿ@쎩ϐ䭐Ѓ!쯶оƅ开敲獬ⸯ敲獬콬櫁ッ،ﯠ瑠鑟僮裆寓힡㻒놀쒕똬撌柭橺軇䤿괧⍦죑싙僁ᳶ鹢尭윯ྷ娰ᙌꑮᡰ彟㎆꺭邶넮榨噊䬋儓䋽槉藇魲ⱌ헉쩖얌⿹ğ牟汥⽳爮汥偳ŋⴂ᐀ࠀ℀蘀콜ༀ܀搀獲搯睯牮癥砮汭䭐·̃[ශᓿශĤ䀰ГdǯЂᙻїƁࠀƿǀࠀǿȁࠀȿ̿쎀οRectangle 183ญ}ࡪཾђྟྨ倍⠠⁔††䌠 ‽⁐吨 ⁐䌨㨩ྡ*ကPႁ•PྪЉЉྦшǔːϰԐŐ䀱гpǯЂᙻ…‡їƁࠀƿǀࠀǿȁࠀȿ̿쎀οRectangle 185ߵ ߵF Type of positionGender
Total
Managerial
8
3
11
Professional
31
13
44
Technical
52
17
69
Clerical
9
2.7
31
Total
100
55
155
P (T C) = P (T) + P (C):
Probability Distribution
Defined: It is the distribution of all possible outcomes of a particular event. Examples of probability distribution are: the binomial distribution (only 2 statistically independent outcomes are possible on each attempt) (Example coin flip) the normal distribution other underlying distributions exist (such as the Poisson, t, f, chi-square, ect.) that are used to make statistical inferences.
The normal probability distribution
The normal curve is bell-shaped that has a single peak at the exact centre of the distribution.The arithmetic mean, median, and mode of the distribution are equal and located at the peak The normal probability distribution is symmetrical about its mean (of the observations are above the mean and are below).It is determined by 2 quantities: the mean and the SD. The random variable has an infinite theoretical range (Tails do not touch X – axis). The total area under the curve is = 1Figure
68% of the area under the carve is between 1 SD 95% of the area under the carve is between 1.96 SD 99% of the area under the carve is between 2.58 SD Why the normal distribution is important? A/ Because many types of data that are of interest have a normal distributionCentral Limit theorem
sampling distribution of means becomes normal as N increases, regardless of shape of original distribution Binominal distribution becomes normal as N increases N.B: Normal distribution is a continuous one Binomial distribution is a quantitative discreteStandard normal distribution (curve)
A normal distribution with a of zero and SD of 1 is called standard normal distribution Any normal distribution can be converted to the standard normal distribution using the Z-statistics (value) Z-value (SND): is the distance between the selected value, designated X, and the population mean (M), divided by the population SD ( ) Z = The standard normal distribution curve is bell-shaped curve centered around zero with a SD=1Z- score
Z-score is often called the standardized value or Standard Normal Deviate (SND). It denotes the number of SD.s a data value X is distant from the and in which direction. A data value less than sample mean will have a z-score less then zero; A data value greater than the sample will have a z-score greater than zero; and A data value = the will have a z-score of zero
Normal curve table
The normal curve table gives the precise percentage of scores (values) between the (z-score of zero) and any other z-score. It can be used to determine:proportion of scores above or below a particular z-score proportion of scores between the and a particular z–score proportion of scores between two z–scoresBy converting raw scores to z-scores, can be used in the same way for raw sources. Can also used in the opposite way: Determine a z-score for a particular proportion of scores under the normal curve. * Table lists positive z-scores * Can work for negatives too * Why? Because curve is symmetrical
Steps for figuring percentage above or below a z-score:
Convert raw score to z-score, if necessary Draw a normal curve: - indicate where z-score falls - Shade area you are trying to find Find the exact percentage with normal curve tableFigure
Steps for figuring a z-score or raw score from a percentage:Draw normal curve, shedding an approximate area for the percentage concerned Find the exact z-score using normal curve table Convert z–score to raw score, if desired
Figure
Example: For = 2200, M = 2000, = 200, Z = (2200-2000)/200=1For = 1700, M = 2000, = 200, Z = (1700 – 2000)/200= -1.5 A z-value of 1 indicates that the value of 2200 is 1 SD above the of 2000, while a z-value of -1.5 indicates that the value of 1700 is 1.5 SD below the of 2000. Example: For M= 500, = 365, determine the position of 722 in SD units
Figure
= = = 0.61We can also determine how much of the area under the normal curve is found between any point on the curve and the Once you have a z-score, you can use the table to find the area of the z-score 0.61 (from table A) = 0 .2291 = 0.23 Therefore, 22.9% or 23%
Q/ How much of the population lies between 500 and 722?A/ 0.5 – 0.23 = 0.27Q/ How much of the population is to the left?A/ 0.5 + 0.23 = 0.73
Example: The daily water usage per person in an area, is normally distributed with a of 20 gallons and a SD of 5 gallons Q1/ About 68% of the daily water usage per person in this area lies between what 2 values? A/ About 68% of the daily water usage will lie between 15 and 25 gallons Q2/ What is the probability that a person from this area, selected at random, will use less then 20 gallons par day? A/ P (X < 20) = 0.5
Q3/ What percent uses between 20 and 24 gallons?The z-value associated with X=24: z = (24 -20)/ 5 = 0.8 From the table, the probability of z= 0.8 is 0.2119. Thus, P (20 < Ч < 24) = 0.5 – 0.2119 = 0.2881 = 28.81%
Figure
What percent of the population uses between 18 and 26 gallous?A/ The z-value associated with X = 18: z = (18-20)/5= -0.4and for X=26: z= (26-20)/5 = 1.2Thus P (18 <Ч < 26) = P (-0.4 < Z < 1.2) =0.6554 – 0.1151 =0.5403Example: Height of young women:The distribution of heights of women, aged 20-29 years, is approximately normal with =64 inch and SD= 2.7 inchQ/ Approximately, 68% of women have height between ……………. and ………….Q/ ~ 2.5% of women are shorter than ……..Q/ Approximately, what proportion of women are taller then 72.1=?