background image

DIABETES MELLITUS 


background image

Diabetes mellitus is a clinical syndrome characterised by an increase in plasma 
blood glucose (hyperglycaemia).

Diabetes has many causes but is most commonly due to type 1 or type 2 
diabetes.

Type 1 diabetes 

• is caused by autoimmune 

destruction of insulin-

producing cells (β cells) 

in the pancreas, resulting 

in absolute insulin 

deficiency

Type 2 diabetes 

• is characterised by 

resistance to the action of 

insulin and an inability to 

produce sufficient insulin 

to overcome this ‘insulin 

resistance’.


background image

Hyperglycaemia results in both acute and long-term 
problems. Acutely, high glucose and lack of insulin can result 
in marked symptoms, metabolic decompensation and 
hospitalisation.

Chronic hyperglycaemia is responsible for diabetes-specific 
‘microvascular’ complications affecting the eyes 
(retinopathy), kidneys (nephropathy) and feet (neuropathy).


background image

NORMAL GLUCOSE AND FAT METABOLISM

Blood glucose is tightly regulated and maintained within a narrow range. This is 
essential for ensuring a continuous supply of glucose to the central nervous system.

The brain has little capacity to store energy in the form of glycogen or triglyceride 

and the blood–brain barrier is largely impermeable to fatty acids, so the brain 
depends on the liver for a constant supply of glucose for oxidation and hence 
generation of adenosine triphosphate (ATP).

Glucose homeostasis is achieved through the coordinated actions of multiple organs, 
but mainly reflects a balance between the entry of glucose into the circulation from 
the liver, supplemented by intestinal absorption of glucose after meals, and the 

uptake of glucose by peripheral tissues, particularly skeletal muscle and brain.


background image

NORMAL GLUCOSE AND FAT METABOLISM

After ingestion of a meal containing carbohydrate,

normal blood glucose levels are maintained by:

Suppression 

of hepatic 

glucose 

production

Stimulation of 

hepatic 

glucose 

uptake

Stimulation of 

glucose 

uptake by 

peripheral 

tissues


background image

Major metabolic 

pathways of 

fuel metabolism 

and the actions 

of insulin


background image

Insulin, the primary regulator of glucose metabolism and 
storage  is secreted from pancreatic β cells into the portal 
circulation in response to a rise in blood glucose 

A number of other factors released from the gut following 
food intake can augment insulin release, including amino 
acids and hormones such as glucagon-like peptide 1 (GLP-1) 
and gastrointestinal peptide (GIP). 

As a result, insulin release is greater when glucose is 
administered by mouth than when the same rise in plasma 
glucose is achieved by intravenous glucose infusion, a 
phenomenon termed the ‘incretin’ effect 


background image

The post-prandial rise in portal vein insulin and glucose, 
together with a fall in portal

When intestinal glucose absorption declines between meals, 
portal vein insulin and glucose concentrations fall while 
glucagon levels rise. This leads to increased hepatic glucose 
output via gluconeogenesis and glycogen breakdown. 

The liver now resumes net glucose production and glucose 
homeostasis is maintained. 

The main substrates for gluconeogenesis are glycerol and 
amino acids, their use in production of energy leads to 
ketosis 


background image

ENDOCRINE 

PANCREAS 

The functional unit 


background image

INSULIN 

STRUCTURE 

The C-peptide concept


background image

INSULIN 

SECRETION 

3

phases of 

secretion 


background image

INCRETIN 

EFFECT 

Insulin secretion is higher 

on oral glucose load by 

the effect of incretin 

hormones 


background image

Glucose 

transport 

(muscle, adipose 

tissue)

Glucose 

phosphorylation

Glycogen 

synthesis

Glycolysis

Pyruvate 

dehydrogenase 

Activity

Pentose 

phosphate shunt

Incr

ease 

Decr

ease 

Gluconeogenesis

Glycogenolysis

METABOLIC ACTIONS OF INSULIN

CARBOHYDRATE METABOLISM


background image

Triglyceride 

synthesis

Fatty acid 

synthesis (liver)

Lipoprotein 

lipase activity 

(adipose tissue)

Incr

ease 

Decr

ease 

Lipolysis

Lipoprotein 

lipase 

(muscle)

Ketogenesis

Fatty acid 

oxidation 

(liver)

METABOLIC ACTIONS OF INSULIN

LIPID METABOLISM


background image

Amino acid 

transport

Protein 

synthesis

Incr

ease 

Decr

ease 

Protein 

degradation

METABOLIC ACTIONS OF INSULIN

PROTEIN METABOLISM


background image

PATHOGENESIS OF 

DIABETES 


background image

In both of the common types of diabetes, environmental 
factors interact with genetic susceptibility to determine 
which people develop the clinical syndrome, and the timing 
of its onset.

However, the underlying genes, precipitating environmental 
factors and pathophysiology differ substantially between 
type 1 and type 2 diabetes.


background image

TYPE 1 DIABETES

PATHOLOGY 

Type 1 diabetes is a T cell-mediated autoimmune disease 
involving destruction of the insulin-secreting β cells in the 
pancreatic islets. 

Progressive loss of β cell function takes place over a prolonged 
period (months to years), but marked hyperglycaemia, 
accompanied by the classical symptoms of diabetes, occurs only 
when 80–90% of the functional capacity of β cells has been lost.


background image

PATHOGENESIS OF TYPE 1 DIABETES 


background image

METABOLIC DISTURBANCES IN TYPE 1 

DIABETES

Patients with type 1 diabetes present when progressive β-
cell destruction has crossed a threshold at which adequate 
insulin secretion and normal blood glucose levels can no 
longer be sustained. 

Above a certain level, high glucose levels may be toxic to the 
remaining β cells, so that profound insulin deficiency rapidly 
ensues, causing the metabolic sequelae shown in figure in 
the next slide. 


background image

Insufficient insulin 

Increase FFA & 

Glycerol to liver

Increase 

proteolysis 

Increase lipolysis 

Increase 

gluconeogenesis 

Increase 

glycogenolysis

Decreased glucose 

uptake & 

Utilization

Increase 

ketogenesis

Metabolic acidosis

Hyperglycemia 

Glycosuria 

Osmotic diuresis 

Dehydration 

Secondary 

hyperldosteronism

K

+

deficiency  

Hyperosmolarity

Impaired renal 

function 

Increased 

lactate 


background image

Hyperglycaemia leads to glycosuria and dehydration, causing fatigue, 
polyuria, nocturia, thirst and polydipsia, susceptibility to urinary and genital 
tract infections, and later tachycardia and hypotension. 

Unrestrained lipolysis and proteolysis result in weight loss. 

Ketoacidosis occurs when generation of ketone bodies exceeds the capacity 
for their metabolism. 

Elevated blood H

+

ions drive K

+

out of the intracellular compartment, while 

secondary hyperaldosteronism encourages urinary loss of K

+

Thus patients usually present with a short history (typically a few weeks) of 
hyperglycaemic symptoms (thirst, polyuria, nocturia and fatigue), infections 
and weight loss, and may have developed ketoacidosis. 


background image

TYPE 2 DIABETES

PATHOLOGY

Type 2 diabetes is a diagnosis of exclusion, i.e. it is made 
when type 1 diabetes and other types of diabetes are ruled 
out, and is highly heterogeneous.

The natural history of typical type 2 diabetes is shown in 

following figure. 


background image

background image

Initially, insulin resistance leads to elevated insulin secretion in order to maintain 
normal blood glucose levels. 

However, in susceptible individuals, the pancreatic β cells are unable to sustain 
the increased demand for insulin and a slowly progressive insulin deficiency 
develops. 

Some patients develop diabetes at a young age, usually driven by insulin 
resistance due to obesity and ethnicity; others, particularly the elderly, develop 
diabetes despite being non-obese and may have more pronounced β-cell failure. 

The key feature is a ‘relative’ insulin deficiency, such that there is insufficient 
insulin production to overcome the resistance to insulin action. 

This contrasts with type 1 diabetes, in which there is rapid loss of insulin 
production and an absolute deficiency, resulting in ketoacidosis and death if the 
insulin is not replaced.


background image

BASIC PATHOPHYSIOLOGY IN TYPE 2 DM

Insulin resistance 

Obesity 

Genetic predisposition 

Environmental factors 


background image

AETIOLOGICAL CLASSIFICATION OF 

DIABETES MELLITUS

Type 1 diabetes

Immune-mediated

Idiopathic

Type 2 diabetes

Gestational diabetes

Other specific types   


background image

AETIOLOGICAL CLASSIFICATION OF 

DIABETES MELLITUS

Other specific types

Genetic defects of β-cell function

Genetic defects of insulin action (e.g. leprechaunism, 
lipodystrophies)

Pancreatic disease (e.g. pancreatitis, pancreatectomy, 
neoplastic disease, cystic fibrosis, haemochromatosis, 
fibrocalculous pancreatopathy)


background image

AETIOLOGICAL CLASSIFICATION OF 

DIABETES MELLITUS

Other specific types

Excess endogenous production of hormonal antagonists to 
insulin, e.g.

Growth hormone – acromegaly

Glucocorticoids – Cushing’s syndrome

Glucagon – glucagonoma

Catecholamines – phaeochromocytoma

Thyroid hormones – thyrotoxicosis


background image

AETIOLOGICAL CLASSIFICATION OF 

DIABETES MELLITUS

Other specific types

Drug-induced (e.g. corticosteroids, thiazide diuretics, phenytoin)

Uncommon forms of immune-mediated diabetes (e.g. IPEX 
(immunodysregulation polyendocrinopathy X) syndrome)

Associated with genetic syndromes (e.g. Down’s syndrome; Klinefelter’s
syndrome; Turner’s syndrome; DIDMOAD (Wolfram’s syndrome) –
diabetes insipidus, diabetes mellitus, optic atrophy, nerve deafness; 
Friedreich’s ataxia; myotonic dystrophy)


background image

MONOGENIC DIABETES MELLITUS

MATURITY-ONSET DIABETES OF THE YOUNG 

(MODY)

Functional defect

Main type

*

Gene mutated

*

β-cell glucose sensing

MODY2

GCK

The set point for basal insulin release is altered, causing a high fasting glucose, but sufficient insulin 
is released after meals. As a result, the HbA

1c

is often normal and microvascular complications are 

rare. Treatment is rarely required

β-cell transcriptional regulation

MODY3

HNF-1α

MODY5

HNF-1β

MODY1

HNF-4α

Diabetes develops during adolescence/early adulthood and can be managed with diet and tablets for 
many years, but ultimately, insulin treatment is required. The HNF-1

α and 4α forms respond 

particularly well to sulphonylurea drugs. All types are associated with microvascular complications. 
HNF-1

β mutations also cause renal cysts and renal failure




رفعت المحاضرة من قبل: Ahmed 95
المشاهدات: لقد قام 49 عضواً و 384 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل