background image

The Thyroid Gland

Dr. Haidar F. Al-Rubaye


background image

Anatomy 

The thyroid 

gland comprises

midline isthmus 

lying 

horizontally just below 

the cricoid cartilage.

Two lateral lobes 

that 

extend upward over 

the lower half of the 

thyroid cartilage.

The gland lies deep to the 

strap muscles of the neck, 

enclosed in the pretracheal

fascia, which anchors it to the 

trachea, so that the thyroid 

moves up on swallowing.


background image

Histology

Fibrous septa divide the gland into pseudolobules. 
Pseudolobules are composed of vesicles called follicles or 
acini, surrounded by a capillary network.

The follicle walls are lined by cuboidal epithelium.

The lumen is filled with a proteinaceous colloid, which 
contains the unique protein thyroglobulin. 

The peptide sequences of thyroxine (T 4 ) and tri-
iodothyronine (T 3 ) are synthesized and stored as a 
component of thyroglobulin.


background image

background image

Anatomy 


background image

Physiology 

Thyroid hormone contains iodine. Iodine enters the 
thyroid in the form of inorganic or ionic iodide, which is 
organized by the thyroid peroxidase enzyme at the cell–
colloid interface.

Subsequent reactions result in the formation of 
iodothyronines.

The thyroid is the only source of T4 . The thyroid secretes 
20% of circulating T3 ; the remainder is generated in 
extraglandular tissues by the conversion of T4 to T3 by 
deiodinases (largely in the liver and kidneys).


background image

Physiology 

In the blood, T4 and T3 are almost entirely bound to plasma 

proteins. 

T4 is bound in d order of affinity to T4 -binding globulin (TBG), 

transthyretin (TTR), and albumin. 

T3 is bound 10–20 times less avidly by TBG and not 

significantly by TTR.

Only the free or unbound hormone is available to tissues. The 

metabolic state correlates more closely with the free than the 

total hormone concentration in the plasma. 

The relatively weak binding of T 3 accounts for its more rapid 

onset and offset of action.

The concentration of free hormones does not necessarily vary 

directly with that of the total hormones; e.g., while the total T 

4 level rises in pregnancy, the free T 4 (FT 4 ) level remains 

normal.


background image

background image

Classification of thyroid disease

Primary

Secondary

Hormone excess

Graves’ disease

Multinodular goitre

Adenoma
Subacute thyroiditis

TSHoma

Hormone deficiency

Hashimoto’s thyroiditis
Atrophic hypothyroidism

Hypopituitarism

Hormone 
hypersensitivity

Hormone resistance

Thyroid hormone resistance 
syndrome
5′-monodeiodinase deficiency

Non-functioning 
tumours

Differentiated carcinoma
Medullary carcinoma
Lymphoma


background image

Thyroid Function Tests

TSH

TOTAL

T4

TOTAL

T3

FREE

T4

FREE 

T3


background image

How to interpret thyroid function test 

results


background image

TSH

• Undetected 

T4

• Raised 

T3

• Raised

Primary 

thyrotoxicosis

TSH

• Undetected 

T4

• Normal 

T3

• Raised

Primary 

T3-toxicosis

TSH

• Undetected 

T4 

• Normal 

T3

• Normal 

Subclinical 

thyrotoxicosis


background image

TSH

• Undetected 

or low

T4

• Raised

T3

• Low, normal 

or raised

Sick 

euthyroidism/

non-thyroidal 

illness

TSH

• Undetected 

T4

• Low

T3

• Low

Secondary 

hypothyroidism

/Transient 

thyroiditis in

evolution

TSH

• Normal

T4 

• Low

T3

• Low

Secondary 

hypothyroidism


background image

TSH

• Mildly 

elevated

• 5–20 mU/L

T4

• Low

T3

• Low

Primary 

hypothyroidism

/Secondary 

hypothyroidism

TSH

• Elevated
• > 20 mU/L

T4

• Low 

T3

• Low 

Primary 

hypothyroidism

TSH

• Mildly 

elevated

• 5–20 mU/L

T4 

• Normal 

T3

• Normal 

Subclinical 

hypothyroidism


background image

TSH

• Elevated
• 20–500 mU/L

T4

• Normal

T3

• Normal

Artefact

Endogenous IgG antibodies which interfere with TSH assay

TSH

• Elevated

T4

• Raised 

T3

• Raised 

Non-compliance with T4 replacement (Recent ‘loading’ dose)

Secondary thyrotoxicosis 

Thyroid hormone resistance


background image

Thyrotoxicosis


background image

Thyrotoxicosis describes a constellation of clinical 
features arising from elevated circulating levels of thyroid 
hormone.

The most common causes are Graves’ disease, 
multinodular goitre and autonomously functioning 
thyroid nodules (toxic adenoma) 

Thyroiditis is more common in parts of the world where 
relevant viral infections occur, such as North America


background image

Causes of thyrotoxicosis and their relative 
frequencies

Cause

Frequency (%)

Graves’ disease

76

Multinodular goitre

14

Solitary thyroid adenoma

5

Thyroiditis

Subacute (de Quervain’s)
Post-partum

3
0.5

Iodide-induced

Drugs (e.g. amiodarone)
Radiographic contrast media
Iodine prophylaxis programme

1
-
-


background image

Causes of thyrotoxicosis and their relative 
frequencies

Cause

Frequency (%)

Extrathyroidal source of thyroid 
hormone

Factitious thyrotoxicosis
Struma ovarii

0.2
-

TSH-induced

TSH-secreting pituitary adenoma
Choriocarcinoma and 
hydatidiform mole

0.2
-

Follicular carcinoma ± metastases 0.1


background image

background image

Clinical features of thyrotoxicosis & hypothyroidims-
common symptoms 

Thyrotoxicosis-symptoms 

Hypothyroidism-symptoms

Weight loss

Heat 

intolerance

Palpitations

Dyspnoea

Irritability, 

emotional 

lability

Fatigue

Sweating

Tremor

Weight gain

Cold 

intolerance

Fatigue, 

somnolence

Dry skin

Dry hair

Menorrhagia


background image

Clinical features of thyrotoxicosis & hypothyroidims-
common signs

Thyrotoxicosis-signs 

Hypothyroidism-signs

Weight loss

Tremor

Palmar 

erythema

Sinus 

tachycardia

Lid retraction, 

lid lag

Weight 

Gain


background image

Clinical features of thyrotoxicosis & hypothyroidims-

common signs


background image

The most common symptoms are weight loss with a 
normal or increased appetite, heat intolerance, 
palpitations, tremor and irritability.

Tachycardia, palmar erythema and lid lag are common 
signs. 

Not all patients have a palpable goitre, but experienced 
clinicians can discriminate the diffuse soft goitre of 
Graves’ disease from the irregular enlargement of a 
multinodular goitre. 


background image

Investigation of thyrotoxicosis

The first-line investigations are serum T3, T4 and TSH.

If abnormal values are found, the tests should be repeated and 
the abnormality confirmed in view of the likely need for 
prolonged medical treatment or destructive therapy. 

In most patients serum T3 and T4 are both elevated but T4 is in 
the upper part of the normal range and T3 raised (T3 toxicosis) 
in about 5%. 

Serum TSH is undetectable in primary thyrotoxicosis but values 
can be raised in the very rare syndrome of secondary 
thyrotoxicosis caused by a TSH-producing pituitary adenoma.


background image

background image

↓TSH and ↑T3 ± T4

Repeat when acute 
illness has resolved

Scenario?

Any features of Graves’ 
disease?
• Diffuse goitre with bruit
• Ophthalmopathy
• Pretibial myxoedema
• Positive TSH receptor 
antibodies

Any features of non-Graves’ thyrotoxicosis?
• Recent (< 6 months) regnancy
• Neck pain/flu-like illness
• Drugs (amiodarone, T4)3
• Palpable multinodular goitre or solitary 
nodule

Yes

No

Thyroid Scintigraphy

Yes

Low-uptake thyrotoxicosis
• Transient thyroiditis
• Extrathyroidal T4 source

Toxic adenoma

Toxic MNG

Graves’ disease

No

Clinically thyrotoxic

Possible sick 
euthyroidism


background image

Investigation of thyrotoxicosis

When biochemical thyrotoxicosis has been confirmed, 
further investigations should be undertaken to determine 
the underlying cause, including measurement of 

TSH 

receptor antibodies

(TRAb, elevated in Graves’ disease, 

and 

isotope scanning

.


background image

Prevalence of thyroid autoantibodies (%)

Antibodies to:

Thyroid

peroxidase

Thyroglobuli

n

TSH

receptor

Normal population

8–27

5–20

0

Graves’ disease

50–80

50–70

80–95

Autoimmune
Hypothyroidism

90–100

80–90

10–20

Multinodular goitre

∼30–40

0

0

Transient thyroiditis

∼30–40

0

0

1 Thyroid peroxidase (TPO) antibodies 

are the principal component of what was 

previously measured as thyroid ‘microsomal’ antibodies.

2  TSH receptor antibodies (TRAb) 

can be agonists (stimulatory, causing Graves’ 

thyrotoxicosis) or antagonists (‘blocking’, causing hypothyroidism).


background image

Non-specific laboratory abnormalities in
thyroid dysfunction*

Thyrotoxicosis

• Serum enzymes

• Raised alanine aminotransferase, γ-glutamyl

transferase (GGT), and alkaline phosphatase from liver 
and bone

• Raised bilirubin
• Mild hypercalcaemia
• Glycosuria: Associated diabetes mellitus, ‘Lag storage’ 

glycosuria

Hypothyroidism

• Serum enzymes: Raised creatine kinase, aspartate 

aminotransferase, lactate dehydrogenase (LDH)

• Hypercholesterolaemia
• Anaemia:  Normochromic normocytic or macrocytic
• Hyponatraemia

*These 

abnormalities 

are not useful in 

differential 

diagnosis, so the 

tests should be 

avoided and any 

further 

investigation 

undertaken only 

if abnormalities 

persist when the 

patient is 

euthyroid.


background image

Management 

Definitive treatment of thyrotoxicosis depends on the 
underlying cause and may include antithyroid drugs, 
radioactive iodine or surgery. 

A non-selective β- adrenoceptor antagonist (β-blocker), 
such as propranolol (160 mg daily) or nadolol (40–80 mg 
daily), will alleviate but not abolish symptoms in most 
patients within 24–48 hours. 

Beta-blockers should not be used for long term treatment 
of thyrotoxicosis, but are extremely useful in the short 
term, whilst patients are awaiting hospital consultation or 
following 

131

I therapy.


background image

Hypothyroidism 


background image

Hypothyroidism is a common condition with various 
causes  but autoimmune disease (Hashimoto’s thyroiditis) 
and thyroid failure following 

131

I or surgical treatment of 

thyrotoxicosis account for over 90% of cases, except in 
areas where iodine deficiency is endemic.

Women are affected approximately six times more 
frequently than men.


background image

background image

background image

background image

Clinical features 

The clinical presentation depends on the duration and severity 

of the hypothyroidism. 

A consequence of prolonged hypothyroidism is the infiltration 

of many body tissues by the mucopolysaccharides, hyaluronic 

acid and chondroitin sulphate, resulting in a low-pitched voice, 

poor hearing, slurred speech due to a large tongue, and 

compression of the median nerve at the wrist (carpal tunnel 

syndrome).

Infiltration of the dermis gives rise to non-pitting oedema

(myxoedema) which is most marked in the skin of the hands, 

feet and eyelids.

The resultant periorbital puffiness is often striking and, when 

combined with facial pallor due to vasoconstriction and 

anaemia, or a lemon-yellow tint to the skin due to 

carotenaemia, purplish lips and malar flush, the clinical 

diagnosis is simple. 


background image

Most cases of hypothyroidism are not clinically obvious, 
however, and a high index of suspicion needs to be maintained 
so that the diagnosis is not overlooked in the middle-aged 
woman complaining of non-specific symptoms such as 
tiredness, weight gain, depression or carpal tunnel syndrome.

Care must be taken to identify patients with transient 
hypothyroidism, in whom life-long thyroxine therapy is 
inappropriate. 

This is often observed during the first 6 months after subtotal 
thyroidectomy or 

131

I treatment of Graves’ disease, in the post-

thyrotoxic phase of subacute thyroiditis and in post-partum 
thyroiditis. In these conditions thyroxine treatment is not 
always necessary as the patient may be asymptomatic during 
the short period of thyroid failure.


background image

Investigations 

In the vast majority of cases hypothyroidism results from 
an intrinsic disorder of the thyroid gland (primary 
hypothyroidism). In this situation serum T4 is low and TSH 
is elevated, usually in excess of 20 mU/L.  

Measurements of serum T3 are unhelpful since they do 
not discriminate reliably between euthyroidism and 

hypothyroidism. 

The rare condition of secondary hypothyroidism is caused 
by failure of TSH secretion in a patient with hypothalamic 
or anterior pituitary disease. This is characterised by a 
low serum T4 but TSH may be low, normal or even slightly 
elevated


background image

Management

Treatment is with thyroxine replacement. It is customary 
to start with a low dose of 50 μg per day for 3 weeks, 
increasing thereafter to 100 μg per day for a further 3 
weeks and finally to a maintenance dose of 100–150 μg
per day.

Thyroxine has a half-life of 7 days so it should always be 

taken as a single daily dose and at least 6 weeks should 

pass before repeating thyroid function tests and adjusting 
the dose, usually in increments of 25 μg per day. 

Patients feel better within 2–3 weeks. Reduction in 
weight and periorbital puffiness occurs quickly, but the 
restoration of skin and hair texture and resolution of any 
effusions may take 3–6 months. 


background image

The dose of thyroxine should be adjusted to maintain 
serum TSH within the reference range. 

To achieve this, serum T4 often needs to be in the upper part 
of the normal range or even slightly raised, because the T3 
required for receptor activation is derived exclusively from 
conversion of T4 within the target tissues, without the usual 
contribution from thyroid secretion. 

Some patients remain symptomatic despite 

normalisation of TSH and may wish to take extra 
thyroxine which suppresses TSH values. 

However, there is evidence that suppressed TSH is a risk factor 
for osteoporosis and atrial fibrillation, so this approach cannot 
be recommended. 


background image

It is important to measure thyroid function every 1–2 
years once the dose of thyroxine is stabilised.

This encourages patient compliance with therapy and allows 
adjustment for variable underlying thyroid activity and other 
changes in thyroxine requirements


background image

Thyroxine replacement in ischaemic heart disease

Hypothyroidism and ischaemic heart disease are common 

conditions which often occur together. 

Although angina may remain unchanged in severity or paradoxically 

disappear with restoration of metabolic rate, exacerbation of 

myocardial ischaemia, infarction and sudden death are recognised

complications of thyroxine replacement, even using doses as low as 

25 μg per day. 

In patients with known ischaemic heart disease, thyroid hormone 

replacement should be introduced at low dose and increased very 

slowly under specialist supervision. 

It has been suggested that T3 has an advantage over T4  since T3 has 

a shorter half-life and any adverse effect will reverse more quickly, 

but the more distinct peak in hormone levels after each dose of T3 

is a disadvantage. 

Coronary artery surgery or angioplasty is required in the minority of 

patients with angina who cannot tolerate full thyroxine replacement 

therapy despite maximal anti-anginal therapy.


background image

Hypothyroidism in pregnancy

Most pregnant women with primary hypothyroidism 
require an increase in the dose of thyroxine of 
approximately 50 μg daily to maintain normal TSH levels. 

This may reflect increased metabolism of thyroxine by the 
placenta and increased serum thyroxine-binding globulin 
during pregnancy, resulting in an increase in the total 

thyroid hormone pool to maintain the same free T4 and 

T3 concentrations. 

Recent research suggests that inadequate maternal T4 
therapy is associated with impaired cognitive 
development in their offspring. Serum TSH and free T4 
should be measured during each trimester and the dose 
of thyroxine adjusted to maintain a normal TSH.


background image

Myxoedema coma

This is a rare presentation of hypothyroidism in which 
there is a depressed level of consciousness, usually in an 
elderly patient who appears myxoedematous. 

Body temperature may be as low as 25°C, convulsions are 
not uncommon and cerebrospinal fluid (CSF) pressure 
and protein content are raised. 

The mortality rate is 50% and survival depends upon early 
recognition and treatment of hypothyroidism and other 
factors contributing to the altered consciousness level, 
such as phenothiazines, cardiac failure, pneumonia, 
dilutional hyponatraemia and respiratory failure.


background image

Myxoedema coma is a medical emergency and treatment must 

begin before biochemical confirmation of the diagnosis. 

Suspected cases should be treated with an intravenous injection of 

20 μg triiodothyronine followed by further injections of 20 μg 8-

hourly until there is sustained clinical improvement. In survivors 

there is a rise in body temperature within 24 hours and, after 48–72 

hours, it is usually possible to switch patients on to oral thyroxine in 

a dose of 50 μg daily. 

Unless it is apparent that the patient has primary hypothyroidism, 

the thyroid failure should also be assumed to be secondary to 

hypothalamic or pituitary disease and treatment given with 

hydrocortisone 100 mg i.m. 8-hourly, pending the results of T4, TSH 

and cortisol measurement

Other measures include slow rewarming, cautious use of 

intravenous fluids, broad-spectrum antibiotics and high-flow oxygen. 

Occasionally, assisted ventilation may be necessary.


background image

Autoimmune thyroid diseases 

Thyroid diseases are amongst the most prevalent 
antibody- mediated autoimmune diseases and are 
associated with other organ-specific autoimmunity 

Autoantibodies may produce inflammation and 
destruction of thyroid tissue resulting in hypothyroidism, 
goitre (in Hashimoto’s thyroiditis) or sometimes even 
transient thyrotoxicosis (‘Hashitoxicosis’), or they may 
stimulate the TSH receptor to cause thyrotoxicosis (in 
Graves’ disease). 

There is overlap between these conditions, since some 
patients have multiple autoantibodies.


background image

Graves’ disease

Graves’ disease can occur at any age but is unusual before 
puberty and most commonly affects women aged 30–50 
years. 

The most common manifestation is thyrotoxicosis with or 
without a diffuse goitre. 

Graves causes clinical features shown in previous lectures 

Graves’ disease also causes ophthalmopathy and rarely 
pretibial myxoedema

These extrathyroidal features usually occur in thyrotoxic
patients, but can occur in the absence of thyroid dysfunction.


background image

Graves’ thyrotoxicosis-Pathophysiology

The thyrotoxicosis results from the production of IgG

antibodies directed against the TSH receptor on the thyroid 

follicular cell, which stimulate thyroid hormone production 

and proliferation of follicular cells, leading to goitre in the 

majority of patients. These antibodies are termed thyroid-

stimulating immunoglobulins or TSH receptor antibodies 

(TRAb) and can be detected in the serum of 80–95% of 

patients with Graves’ disease.

The concentration of TRAb in the serum is presumed to 

fluctuate to account for the natural history of Graves’ 

thyrotoxicosis 

The thyroid failure seen in some patients may result from the 

presence of blocking antibodies against the TSH receptor, and 

from tissue destruction by cytotoxic antibodies and cell-

mediated immunity.


background image

Features of Graves disease in addition to diffuse 
goitre

Periorbital

oedema

Conjunctival

irritation

Exophthalmos 

Diplopia 

Pretibial 

myxoedema 

Thyroid 

acropachy


background image

A suggested trigger for the development of thyrotoxicosis 
in genetically susceptible individuals may be infection 
with viruses or bacteria. 

Certain strains of the gut organisms Escherichia coli and 
Yersinia enterocolitica possess cell membrane TSH 
receptors; antibodies to these microbial antigens may 

cross-react with the TSH receptors on the host thyroid 

follicular cell. 

In regions of iodine deficiency, iodine supplementation 
can precipitate thyrotoxicosis, but only in those with pre-
existing subclinical Graves’ disease. Smoking is weakly 
associated with Graves’ thyrotoxicosis, but strongly linked 
with the development of ophthalmopathy.


background image

Management

Symptoms of thyrotoxicosis respond to β-blockade, but 
definitive treatment requires control of thyroid hormone 
secretion. 


background image

Comparison of treatments for the thyrotoxicosis of 
Graves’ disease

Management

Common 

indications

Contraindications

Disadvantages/

complications

Antithyroid

drugs

Subtotal

thyroidectomy

Radio-iodine

First episode 

in patients 

< 40 yrs

Large goitre
Poor drug compliance, 
especially in young patients 
Recurrent thyrotoxicosis 
after course of antithyroid
drugs in young patients

First episode 

in patients 

< 40 yrs


background image

Comparison of treatments for the thyrotoxicosis of 
Graves’ disease

Management

Common 

indications

Contraindications

Disadvantages/

complications

Antithyroid

drugs

Subtotal

thyroidectomy

Radio-iodine

Breastfeeding 

(propylthiouracil

suitable)

Previous thyroid 
surgery
Dependence upon 
voice, e.g. opera 
singer, lecturer

Pregnancy or planned pregnancy
within 6 months of treatment
Active Graves’ ophthalmopathy


background image

Comparison of treatments for the thyrotoxicosis of 
Graves’ disease

Management

Common 

indications

Contraindications

Disadvantages/

complications

Antithyroid

drugs

Subtotal

thyroidectomy

Radio-iodine

Hypersensitivity rash 2%
Agranulocytosis 0.2%
> 50% relapse rate usually within 2 years of stopping drug

Hypothyroidism (∼25%)
Transient hypocalcaemia (10%)
Permanent hypoparathyroidism (1%)
Recurrent laryngeal nerve palsy1 (1%)

Hypothyroidism, ∼40% in first year, 80% after 15 years

Most likely treatment to result in exacerbation of 
ophthalmopathy


background image

Thyrotoxicosis in pregnancy 

The coexistence of pregnancy and thyrotoxicosis is unusual, as 

anovulatory cycles are common in thyrotoxic patients and 

autoimmune disease tends to remit during pregnancy, when 

the maternal immune response is suppressed. 

Thyroid function tests must be interpreted in the knowledge 

that thyroid-binding globulin, and hence total T

4

and T

3

levels, 

are increased in pregnancy and that TSH normal ranges may 

be lower 

A fully suppressed TSH with elevated free thyroid hormone 

levels indicates thyrotoxicosis. 

The thyrotoxicosis is almost always caused by Graves' disease. 

Both mother and fetus must be considered, since maternal 

thyroid hormones, TRAb and antithyroid drugs can all cross the 

placenta to some degree, exposing the fetus to the risks of 

thyrotoxicosis, iatrogenic hypothyroidism and goitre. 


background image

Thyrotoxicosis should be treated with antithyroid drugs which 

cross the placenta and also treat the fetus, whose thyroid 

gland is exposed to the action of maternal TRAb. 

Propylthiouracil may be preferable to carbimazole since the 

latter might be associated with a skin defect in the child, 

known as aplasia cutis. 

In order to avoid fetal hypothyroidism and goitre, it is 

important to use the smallest dose of antithyroid drug 

(optimally less than 150 mg propylthiouracil per day) that will 

maintain maternal (and presumably fetal) free T

4

, T

3

and TSH 

within their respective normal ranges. 

After delivery, if antithyroid drug is required and the patient 

wishes to breastfeed, then propylthiouracil is the drug of 

choice, as it is excreted in the milk to a much lesser extent 

than carbimazole. 


background image

If subtotal thyroidectomy is necessary because of poor 
drug compliance or drug hypersensitivity, it is most safely 
performed in the second trimester. 

Radioactive iodine is absolutely contraindicated, as it 
invariably induces fetal hypothyroidism. 


background image

Graves' ophthalmopathy

This condition is immunologically mediated, but the autoantigen has not 

been identified. 

Within the orbit (and the dermis) there is cytokine-mediated proliferation 

of fibroblasts which secrete hydrophilic glycosaminoglycans. 

The resulting increase in interstitial fluid content, combined with a chronic 

inflammatory cell infiltrate, causes marked swelling and ultimately fibrosis 

of the extraocular muscles  and a rise in retrobulbar pressure. 

The eye is displaced forwards (proptosis, exophthalmos) and in severe 

cases there is optic nerve compression. 

The majority of patients require no treatment other than reassurance. 

Methylcellulose eye drops and gel counter the gritty discomfort of dry 

eyes, and tinted glasses or side shields attached to spectacle frames reduce 

the excessive lacrimation triggered by sun or wind. 

Severe inflammatory episodes are treated with glucocorticoids (e.g. daily 

oral prednisolone or pulsed i.v. methylprednisolone) and sometimes orbital 

irradiation. 

Loss of visual acuity is an indication for urgent surgical decompression of 

the orbit. In 'burnt out' disease, surgery to the eyelids and/or ocular 

muscles may improve conjunctival exposure, cosmetic appearance and 

diplopia. 


background image

background image

Pretibial myedema

This infiltrative dermopathy occurs in fewer than 10% of 
patients with Graves’ disease and has similar pathological 
features as occur in the orbit.

It takes the form of raised pink-coloured or purplish 
plaques on the anterior aspect of the leg, extending on to 
the dorsum of the foot. 

The lesions may be itchy and the skin may have a ‘peau
d’orange’ appearance with growth of coarse hair; less 
commonly, the face and arms are affected. 

Treatment is rarely required, but in severe cases topical 
glucocorticoids may be helpful.


background image

Hashimoto’s thyroiditis

Hashimoto’s thyroiditis is characterised by destructive 

lymphoid infiltration of the thyroid, ultimately leading to a 

varying degree of fibrosis and thyroid enlargement. 

There is an increased risk of thyroid lymphoma, although this 

is exceedingly rare. 

Many present with a small or moderately sized diffuse goitre, 

which is characteristically firm or rubbery in consistency. 

The goitre may be soft, however, and impossible to 

differentiate from simple goitre by palpation alone. 

Around 25% of patients are hypothyroid at presentation. In the 

remainder, serum T4 is normal and TSH normal or raised, but 

these patients are at risk of developing overt hypothyroidism 

in future years. 

Antithyroid peroxidase antibodies are present in the serum in 

more than 90% of patients with Hashimoto’s thyroiditis. In 

those under the age of 20 years, antinuclear factor (ANF) may 

also be positive. 


background image

Hashimoto’s thyroiditis

Levothyroxine therapy is indicated as treatment for 
hypothyroidism, and also to shrink an associated goitre. 
In this context, the dose of thyroxine should be sufficient 
to suppress serum TSH to low but detectable levels.


background image

Transient thyroiditis


background image

Subacute (de Quervain’s) thyroiditis 

In its classical painful form, subacute thyroiditis is a transient 
inflammation of the thyroid gland occurring after infection 
with Coxsackie, mumps or adenoviruses. 

There is pain in the region of the thyroid that may radiate to 
the angle of the jaw and the ears, and is made worse by 
swallowing, coughing and movement of the neck. 

The thyroid is usually palpably enlarged and tender. Systemic 
upset is common. 

Affected patients are usually females aged 20–40 years. 

Painless transient thyroiditis can also occur after viral infection 
and in patients with underlying autoimmune disease. 

The condition can also be precipitated by drugs, including 
interferon-α and lithium.


background image

Irrespective of the clinical presentation, inflammation in the thyroid 

gland occurs and is associated with release of colloid and stored 

thyroid hormones, but also with damage to follicular cells and 

impaired synthesis of new thyroid hormones. 

As a result, T4 and T3 levels are raised for 4–6 weeks until the pre-

formed colloid  is depleted. 

Thereafter, there is usually a period of hypothyroidism of variable 

severity before the follicular cells recover and normal thyroid 

function is restored within 4–6 months 

In the thyrotoxic phase, the iodine uptake is low, because the 

damaged follicular cells are unable to trap iodine and because TSH 

secretion is suppressed. 

Low-titre thyroid autoantibodies appear transiently in the serum, 

and the erythrocyte sedimentation rate (ESR) is usually raised. 

High-titre autoantibodies suggest an underlying autoimmune 

pathology and greater risk of recurrence and ultimate progression to 

hypothyroidism. 


background image

The pain and systemic upset usually respond to simple measures 

such as non-steroidal anti-inflammatory drugs (NSAIDs). 

Occasionally, however, it may be  necessary to prescribe 

prednisolone 40 mg daily for  3–4 weeks. 

The thyrotoxicosis is mild and treatment with a β-blocker is usually 

adequate. 

Antithyroid drugs are of no benefit because thyroid hormone 

synthesis is impaired rather than enhanced. 

Careful monitoring of thyroid function and symptoms is required so 

that 

levothyroxine can be prescribed temporarily in the hypothyroid 

phase. 

Care must be taken to identify patients presenting with 

hypothyroidism who are in the later stages of a transient thyroiditis, 

since they are unlikely to require life-long levothyroxine therapy


background image

Post-partum thyroiditis 

The maternal immune response, which is modified during pregnancy to 

allow survival of the fetus, is enhanced after delivery and may unmask 

previously unrecognised subclinical autoimmune thyroid disease. 

Surveys have shown that transient biochemical disturbances of thyroid 

function occur in 5–10% of women within 6 months of delivery 

Those affected are likely to have anti-thyroid peroxidase antibodies in the 

serum in early pregnancy. 

Symptoms of thyroid dysfunction are rare and there is no association 

between postnatal depression and abnormal thyroid function tests. 

However, symptomatic thyrotoxicosis presenting for the first time within 12 

months of childbirth is likely to be due to post-partum thyroiditis and the 

diagnosis is confirmed by a negligible radio-isotope uptake. The clinical 

course and treatment are similar to those of painless subacute thyroiditis 

Postpartum thyroiditis tends to recur after subsequent pregnancies, and 

eventually patients progress over a period of years to permanent 

hypothyroidism.


background image

Iodine-associated thyroid disease

Thyroid enlargement is extremely common in certain 
mountainous parts of the world, such as the Andes, the 
Himalayas and central Africa, where there is dietary 
iodine deficiency (endemic goitre). Most patients are 
euthyroid with normal or raised TSH levels, although 
hypothyroidism can occur with severe iodine deficiency. 
Iodine supplementation programmes have abolished this 
condition in most developed countries. 


background image

Iodine-induced thyroid dysfunction 

Iodine has complex effects on thyroid function. 

Very high concentrations of iodine inhibit thyroid hormone release and this 

forms the rationale for iodine treatment of thyroid storm and prior to 

thyroid surgery for thyrotoxicosis

Iodine administration initially enhances, but then inhibits, iodination of 

tyrosine and thyroid hormone synthesis 

The resulting effect of iodine on thyroid function varies according to 

whether the patient has an iodine-deficient diet or underlying thyroid 

disease.

In iodine-deficient parts of the world, transient thyrotoxicosis may be 

precipitated by prophylactic iodinisation programmes. 

In iodine-sufficient areas, thyrotoxicosis can be precipitated by 

radiographic contrast medium or expectorants in individuals who have 

underlying thyroid disease predisposing to thyrotoxicosis, such as 

multinodular goitre or Graves’ disease in remission. 

Induction of thyrotoxicosis by iodine is called the Jod–Basedow effect.

Chronic excess iodine administration can, however, result in 

hypothyroidism. Increased iodine within the thyroid gland down-regulates 

iodine trapping, so that uptake is low in all circumstances.


background image

Amiodarone

The anti-arrhythmic agent amiodarone has a structure 
that is analogous to that of T4  and contains huge 
amounts of iodine; a 200 mg dose contains 75 mg iodine, 
compared with a daily dietary requirement of just 125 µg. 

Amiodarone also has a cytotoxic effect on thyroid 
follicular cells and inhibits conversion of T4 to T3. 

Most patients receiving amiodarone have normal thyroid 

function, but up to 20% develop hypothyroidism or 
thyrotoxicosis and so thyroid function should be 
monitored regularly. 

The ratio of T4:T3 is elevated and TSH provides the best 
indicator of thyroid function.


background image

Amiodarone

The thyrotoxicosis can be classified as either:

type I: iodine-induced excess thyroid hormone synthesis in patients with an 

underlying thyroid disorder, such as nodular goitre or latent Graves’ disease 

type II: thyroiditis due to a direct cytotoxic effect if amiodarone administration 

results in a transient thyrotoxicosis. 

Antithyroid drugs may be effective in patients with the type I form, but are 

ineffective in type II thyrotoxicosis. Prednisolone is beneficial in the type II 

form.

A pragmatic approach is to commence combination therapy with an 

antithyroid drug and glucocorticoid in patients with significant 

thyrotoxicosis. 

A rapid response (within 1–2 weeks) usually indicates a type II picture and 

permits withdrawal of the antithyroid therapy; a slower response suggests 

a type I picture, when antithyroid drugs may be continued and 

prednisolone withdrawn. 

If the cardiac state allows, amiodarone should be discontinued, but it has a 

long half-life (50–60 days) and so its effects are long-lasting. 

To minimise the risk of type I thyrotoxicosis, thyroid function should be 

measured in all patients prior to commencement of amiodarone therapy, 

and amiodarone should be avoided if TSH is suppressed. 


background image

Hypothyroidism should be treated with levothyroxine, 
which can be given while amiodarone is continued.




رفعت المحاضرة من قبل: Ahmed 95
المشاهدات: لقد قام 37 عضواً و 342 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل