Conversion from a Binary to Octal and Vice Versa

Binary to octal
To convert from binary to octal, we start from the LSB and then group three digits at a time and replace them by the decimal equivalent as follow:

Ex) Convert (101101010) $)_{2}$ into an equivalent octal number.
Solution. The binary number given is 101101010
$\begin{array}{lllll}\text { Starting with LSB and grouping } 3 \text { bits } & 101 & 101 & 010\end{array}$
Octal equivalent $\quad 5 \quad 5 \quad 2$
Hence the octal equivalent number is (552) .
Ex) Convert (1011110) $)_{2}$ into an equivalent octal number.

Ex) Convert (1101.0111)2 into an equivalent octal number.

\left.| Solution. | The binary number given is | 1101.0111 | | |
| :--- | :--- | :--- | :--- | :--- |
| Grouping 3 bits | 001 | 101. | 011 | 100 |
| Octal equivalent: | 1 | 5 | 3 | 4 |$\right)$

In this case, we complete the real part by adding two 0 s (left padding) and adding two Os on the right side (right padding).

Ex) Convert (11010111.0101)2 into an equivalent octal number.

Octal to binary

To convert from octal to binary, each octal digit is converted into a 3-bit-equivalent binary number.

Ex) Convert (235)sinto an equivalent binary number.

Solution.	The octal number given is	2	3	5
3-bit binary equivalent	010	011	101	
	Hence the binary number is $(010011101)_{2}$.			

Ex) Convert (47.321)8into an equivalent binary number.
$\begin{array}{lllllllll}\text { Solution. } & \text { The octal number given is } & 4 & 7 & & 3 & 2 & 1\end{array}$
3-bit binary equivalent $\quad 100 \quad 111.011 \quad 010 \quad 001$
Hence the binary number is (100111.011010001) ${ }_{2}$.

Conversion from a Binary to Hexadecimal and Vice Versa

Binary to hexadecimal

To convert from binary to hexadecimal, we start from the LSB and then group four digits at a time and replace them by the decimal equivalent as follow:

Ex) Convert (110011110)2 into an equivalent hexadecimal number.

Solution.	The binary number given is	110011110	
Starting with LSB and grouping 4 bits	00011001	1110	
Hexadecimal equivalent	1	9	E
	Hence the hexadecimal equivalent number is $(19 \mathrm{E})_{18}$.		

Ex) Convert (111011.011)2 into an equivalent hexadecimal number.
Solution. The binary number given is 111011.011
Grouping 4 bits 0011 1011. 0110
Hexadecimal equivalent $3 \quad$ B 6
Hence the hexadecimal equivalent number is (3B.6) ${ }_{16}$.
Ex) Convert (1010101011.011010)2 into an equivalent hexadecimal number.

Hexadecimal to binary

To convert from hexadecimal to binary, each hexadecimal digit is converted into a 4bit equivalent binary number.

Ex) Convert (29C) ${ }_{16}$ into an equivalent binary number.

Solution.	The hexadecimal number given is	2	9	C
4-bit binary equivalent	0010	1001	1100	

Hence the equivalent binary number is $(001010011100)_{2}$.
Ex) Convert (9E.AF2) 16 into an equivalent binary number.

Conversion from Octal to Hexadecimal and Vice Versa

Octal to hexadecimal

To convert from octal to hexadecimal, the following steps are followed:
(i) First convert the octal number to its binary equivalent.
(ii) Then form groups of 4 bits, starting from the LSB.
(iii) Then write the equivalent hexadecimal number for each group of 4 bits.

Ex) Convert (247)8 into an equivalent hexadecimal number.
$\begin{array}{lllll}\text { Solution. } & \text { Given octal number is } & 2 & 4 & 7\end{array}$
Binary equivalent is $\quad 010 \quad 100 \quad 111$
$=010100111$
Forming groups of 4 bits from the LSB 10100111
Hexadecimal equivalent A
A $\quad 7$
Hence the hexadecimal equivalent of (247) ${ }_{8}$ is (A7) ${ }_{16}$.

Ex) Convert (36.532)sinto an equivalent hexadecimal number.

Ex) Convert (735.461) 8 into an equivalent hexadecimal number.

Hexadecimal to octal

Similarly, to convert from hexadecimal number into an octal number:
(i) First convert the hexadecimal number to its binary equivalent.
(ii) Then form groups of 3 bits, starting from the LSB.
(iii) Then write the equivalent octal number for each group of 3 bits.

Ex) Convert the following hexadecimal numbers into equivalent octal numbers.
(a) A72E
(b) 4.BF85
(a) Given hexadecimal number is Binary equivalent is $1010 \quad 01110010 \quad 1110$ = 1010011100101110

Forming groups of 3 bits from the LSB $\begin{array}{lllllll}001 & 010 & 011 & 100 & 101 & 110\end{array}$ $\begin{array}{llllllll}\text { Octal equivalent } & 1 & 2 & 3 & 4 & 5 & 6\end{array}$ Hence the octal equivalent of $(\mathrm{A} 72 \mathrm{E})_{16}$ is (123456) ${ }_{\mathrm{s}}$.
(b)

