Conversion from a Binary to Octal and Vice Versa

Binary to octal

To convert from **binary** to **octal**, we start from the LSB and then group three digits at a time and replace them by the decimal equivalent as follow:

Ex) Convert (101101010)₂ into an equivalent octal number.

Solution. The binary number given is 101101010

Starting with LSB and grouping 3 bits 101 101 010

Octal equivalent 5 5 2

Hence the octal equivalent number is (552).

Ex) Convert (1011110)₂ into an equivalent octal number.

Ex) Convert (1101.0111)₂ into an equivalent octal number.

Solution. The binary number given is 1101.0111

Grouping 3 bits 001 101. 011 100

Octal equivalent: 1 5 3 4

Hence the octal number is $(15.34)_s$.

In this case, we complete the real part by adding two 0s (left padding) and adding two 0s on the right side (right padding).

Ex) Convert (11010111.0101)₂ into an equivalent octal number.

Octal to binary

To convert from **octal** to **binary**, each octal digit is converted into a 3-bit-equivalent binary number.

Ex) Convert (235)8 into an equivalent binary number.

Solution. The octal number given is 2 3 5 3-bit binary equivalent 010 011 101 Hence the binary number is $(010011101)_2$.

Ex) Convert (47.321)8 into an equivalent binary number.

Solution. The octal number given is 4 7 3 2 1 3-bit binary equivalent 100 111 011 010 001 Hence the binary number is $(100111.011010001)_2$.

Conversion from a Binary to Hexadecimal and Vice Versa

Binary to hexadecimal

To convert from **binary** to **hexadecimal**, we start from the LSB and then group four digits at a time and replace them by the decimal equivalent as follow:

Ex) Convert (110011110)2 into an equivalent hexadecimal number.

Solution. The binary number given is 110011110 Starting with LSB and grouping 4 bits 0001 1001 1110 Hexadecimal equivalent 1 9 E Hence the hexadecimal equivalent number is $(19E)_{16}$.

Ex) Convert (111011.011)₂ into an equivalent hexadecimal number.

Solution. The binary number given is 111011.011 Grouping 4 bits 0011 1011.0110 Hexadecimal equivalent 3 B 6 Hence the hexadecimal equivalent number is $(3B.6)_{16}$.

Ex) Convert (1010101011.011010)₂ into an equivalent hexadecimal number.

Hexadecimal to binary

To convert from **hexadecimal** to **binary**, each hexadecimal digit is converted into a 4-bit equivalent binary number.

Ex) Convert (29C)₁₆ into an equivalent binary number.

Solution. The hexadecimal number given is 2 9 C
4-bit binary equivalent 0010 1001 1100
Hence the equivalent binary number is (001010011100)_o.

Ex) Convert (9E.AF2)₁₆ into an equivalent binary number.

Conversion from Octal to Hexadecimal and Vice Versa

Octal to hexadecimal

To convert from **octal to hexadecimal**, the following steps are followed:

- (i) First convert the octal number to its binary equivalent.
- (ii) Then form groups of 4 bits, starting from the LSB.
- (iii) Then write the equivalent hexadecimal number for each group of 4 bits.

Ex) Convert (247)₈ into an equivalent hexadecimal number.

Given octal number is Solution. 2 4 7 Binary equivalent is 010 100 111 = 010100111Forming groups of 4 bits from the LSB 1010 0111Hexadecimal equivalent 7 Α Hence the hexadecimal equivalent of (247)₈ is (A7)₁₆.

Ex) Cor	nvert (36.532)sinto ar	n equivalent hexa	adeci	mal r	numb	er.			
Ex) Cor	nvert (735.461) ₈ into a	an equivalent he	xade	cimal	l num	ber.			
Hexade	cimal to octal								
Similarly	y, to convert from he	xadecimal numb	oer in	ito ar	octa	al nur	nber:		
(i) First	convert the hexadec	imal number to it	s bin	ary e	quiva	lent.			
(ii) Ther	n form groups of 3 bit	ts, starting from t	he LS	SB.					
(<i>iii</i>) Thei	n write the equivalen	t octal number fo	or ead	ch gr	o quc	f 3 bi	ts.		
Ex) Cor	nvert the following he	xadecimal numb	ers ir	nto e	quiva	lent c	octal r	numb	ers.
		(a) A72E	(b) 4	1.BF8	35				
(a)	Given hexadecimal n Binary equivalent is					A) 01	7 11 0	2 010	E 1110
			= 10	1001	11001	01110)		
	Forming groups of 3 Octal equivalent	bits from the LSI	3	001 1	010 2	011 3	100 4	101 5	110
	Hence the octal equ	ivalent of (A72E)	, is			3	4	อ	6
(b)	•	· · · · · · · · · · · · · · · · · · ·	10						
(2)									