

X-RAY TUBE CHARACTERISTICS

Introduction

- ◆ An x-ray tube consists essentially of an *evacuated* enclosure surrounded by the protective housing.
- ◆ Inside the tube is a *cathode* (held at a –ve voltage) and an *anode* (held at a +ve voltage).

■ Protective Housing

◆ The protective housing is lined with lead to minimize leakage radiation.

- ◆ It also protects against accidental electric shock.
- It may contain oil to help cool the tube.

■ Tube Enclosure

- ◆ Maintains a vacuum inside the tube.
- ◆ If air were present it would interfere with movement of electrons and x-ray production could not be accurately controlled.
- Generally made of *glass* but high power x-ray tubes are made of *metal*.
- ◆ The x-ray window is a thin area of the tube enclosure through which the useful x-ray beam exits.

Cathode

- ◆ The -ve electrode of the tube and the source of electrons which are accelerated to the anode to produce x-rays.
- ♦ It consists of:
 - 7 Tube filaments (usually two)
 - 7 Focussing cups (one for each filament)
 - 7 Control circuitry (external to tube for filament heating, focussing and switching)

Filament.

- ◆ Produces electrons by the process of *thermionic emission* (electrons are "boiled off" at high temperature).
- Material must have the following characteristics:
 - 7 Minimal energy (ie, temperature) required to liberate electrons
 - 7 High melting point to resist vapourisation
 - Mechanically strong to resist heating/cooling
 - 7 Able to be manufactured into filaments.
- ◆ Commonly made of *tungsten* (W).
- ◆ Is heated to 2000 °C or more for efficient emission.

 ✓ Melts at 3370 °C.
- ◆ Evaporation of W from filament can coat tube enclosure and shorten tube life.
 - 71 2% thorium (Th) added to reduce this.
- ◆ Produced as a wire 0.2 mm thick and coiled to form a cylinder 2 mm diameter by 10 to 15 mm long.
- ◆ A 10 V and 3 5 A current is applied to the filament to heat it in order for it to eject electrons by thermionic emission.
- ◆ The ejected electrons form a cloud around the filament called a *space charge*.
- ◆ A high voltage is applied between the cathode and anode which accelerates electrons toward the anode.
- ◆ *Electrostatic repulsion* between the electrons causes the electron beam to spread out.
 - 7 Need to focus the beam to keep its dimensions small.

Focussing Cup

 Provides a –ve electrostatic field to prevent electron beam diverging

Usually made of nickel, steel or molybdenum.

Anode

- ◆ Is the +ve terminal of the x-ray tube to which the electron beam is accelerated by the applied tube voltage.
- ◆ It supports the target for the electron beam to interact with.
- ◆ Can be *stationary* or *rotating* depending on tube loading requirements.
- ◆ For general x-ray usage the target is made of tungsten (W).
 - It has a high atomic number (74) resulting in high efficiency x-ray production.
 - It has good thermal heat conductivity for heat dissipation.
 - 7 It has a high melting point and is not readily vapourised.

- ◆ The area where the electron beam strikes is called the *focal* area.
 - □ Large focal spots can absorb more heat without damage.
 - 7 Small focal spots produce sharper images.
- ◆ The solution is to have a large physical focal spot that "appears" small at angle of useful x-ray beam out of the tube.
- ◆ Achieved by setting the focal spot at an angle to the electron beam.
- Known as the Line Focus principle.

As target angle decreases, effective local spot also decreases

■ The Rotating Anode

- ◆ Increases the area on which the electron beam impacts without increasing the effective focal spot because the electron beam energy is spread around the circumference of the circular anode.
- The anode cools during each rotation before more energy is deposited.
- Cooling occurs via "radiative" heat transfer.

■ The Heel Effect

- ◆ X-rays are produced below the surface of the target and must pass through some tungsten before escaping.
- ◆ X-rays must traverse a greater thickness of tungsten on the anode side of the x-ray beam compared to x-rays on the cathode side.

- ♦ This greater thickness of tungsten causes more of the x-ray beam to be absorbed toward the anode side of the tube this is known as the heel effect.
- ◆ The difference in radiation intensity across the useful x-ray beam can vary as much as 45 %.
- ♦ If the radiation intensity along the central ray is designated as 100 %, then the intensity on the cathode side may be as high as 120 % and that on the anode side may be as low as 75 %.

■ X-Ray Tube Failure

- ◆ Excessive heat results in reduced x-ray tube life.
- ♦ The anode may glow red hot during an exposure.
- ◆ Localised surface melting and pitting of the anode can occur.

1. 1

- ◆ This in turn results in variable and reduced radiation output.
- ◆ If the temperature increases to rapidly the anode may crack.
- ♦ Hence the need to warm up the tube.
- ◆ The most common cause of abrupt tube failure is electronarcing from the filament to the enclosure due to vapourised tungsten.