background image

background image

Diagnosis and Treatment  

of Furcation‐Involved Teeth


background image

Diagnosis and Treatment  

of Furcation‐Involved Teeth

Edited by Luigi Nibali

Senior Clinical Lecturer

Centre for Immunobiology and Regenerative Medicine

Centre for Oral Clinical Research, Institute of Dentistry

Barts and the London School of Medicine and Dentistry

Queen Mary University of London (QMUL), London, UK
Honorary Associate Professor, University of Hong Kong


background image

This edition first published 2018

© 2018 John Wiley & Sons Ltd

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, 

in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as 

permitted by law. Advice on how to obtain permission to reuse material from this title is available at  

http://www.wiley.com/go/permissions.

The right of Luigi Nibali to be identified as the author of the editorial material in this work has been asserted 

in accordance with law.

Registered Offices

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office

9600 Garsington Road, Oxford, OX4 2DQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products visit us 

at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print‐on‐demand. Some content that 

appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

The contents of this work are intended to further general scientific research, understanding, and discussion only 

and are not intended and should not be relied upon as recommending or promoting scientific method, diagnosis, or 

treatment by physicians for any particular patient. In view of ongoing research, equipment modifications, changes 

in governmental regulations, and the constant flow of information relating to the use of medicines, equipment, and 

devices, the reader is urged to review and evaluate the information provided in the package insert or instructions 

for each medicine, equipment, or device for, among other things, any changes in the instructions or indication of 

usage and for added warnings and precautions. While the publisher and authors have used their best efforts in 

preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the 

contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of 

merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, 

written sales materials or promotional statements for this work. The fact that an organization, website, or product 

is referred to in this work as a citation and/or potential source of further information does not mean that the 

publisher and authors endorse the information or services the organization, website, or product may provide or 

recommendations it may make. This work is sold with the understanding that the publisher is not engaged in 

rendering professional services. The advice and strategies contained herein may not be suitable for your situation. 

You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in 

this work may have changed or disappeared between when this work was written and when it is read. Neither the 

publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited 

to special, incidental, consequential, or other damages.

Library of Congress Cataloging‐in‐Publication Data
Names: Nibali, Luigi, 1978– editor.

Title: Diagnosis and treatment of furcation-involved teeth / edited by Luigi Nibali.

Description: Hoboken, NJ : Wiley, [2018] | Includes bibliographical references and index. |

Identifiers: LCCN 2018010570 (print) | LCCN 2018011380 (ebook) | ISBN 9781119270669 (pdf) |  

ISBN 9781119270676 (epub) | ISBN 9781119270652 (hardback)

Subjects: | MESH: Furcation Defects–diagnosis | Furcation Defects–therapy | Models, Animal

Classification: LCC RK450.P4 (ebook) | LCC RK450.P4 (print) | NLM WU 242 | DDC 617.6/32–dc23

LC record available at https://lccn.loc.gov/2018010570
Cover image: (Main, top left and middle images) © Luigi Nibali; (Top right image) © Roberto Rotundo

Cover design: Wiley

Set in 10/12pt Warnock by SPi Global, Pondicherry, India

10 9 8 7 6 5 4 3 2 1


background image

Chapter No.: 1  Title Name: <TITLENAME> 

ftoc.indd

Comp. by: R. RAMESH  Date: 14 May 2018  Time: 04:18:23 PM  Stage: Revises1  WorkFlow:

<WORKFLOW>

 

Page Number: v

v

List of Contributors 

vii

Foreword 

ix

Preface 

xi

About the Companion Website 

xiii

1  Anatomy of Multi‐rooted Teeth and Aetiopathogenesis of the Furcation Defect 

1

Bernadette Pretzl

2  Clinical and Radiographic Diagnosis and Epidemiology of Furcation Involvement 

15

Peter Eickholz and Clemens Walter

3  How Good are We at Cleaning Furcations? Non‐surgical and Surgical Studies 

33

Jia‐Hui Fu and Hom‐Lay Wang

Furcation: The Endodontist’s View 

55

Federica Fonzar and Riccardo Fabian Fonzar

5  Why do We Really Care About Furcations? Long‐term Tooth Loss Data 

91

Luigi Nibali

6  Regenerative Therapy of Furcation Involvements in  

Preclinical Models: What is Feasible? 

105

Nikolaos Donos, Iro Palaska, Elena Calciolari, Yoshinori Shirakata, and Anton Sculean

7  Regenerative Therapy of Furcations in Human Clinical Studies: What has been Achieved 

So Far? 

137

Søren Jepsen and Karin Jepsen

8  Furcation Therapy: Resective Approach and Restorative Options 

161

Roberto Rotundo and Alberto Fonzar

Furcation Tunnelling 

177

Stefan G. Rüdiger

10  Innovative and Adjunctive Furcation Therapy: Evidence of Success  

and Future Perspective 

191

Luigi Nibali and Elena Calciolari

Contents


background image

Contents

vi

11  Furcation: Why Bother? Treat the Tooth or Extract and Place an Implant? 

209

Nikos Mardas and Stephen Barter

12  Is it Worth it? Health Economics of Furcation Involvement 

229

Falk Schwendicke and Christian Graetz

13  Deep Gaps between the Roots of the Molars: A Patient’s Point of View 

249

Luigi Nibali

14  Assessment of Two Example Cases Based on a Review of the Literature 

257

Luigi Nibali

15  Furcations: A Treatment Algorithm 

269

Luigi Nibali

Index 

285


background image

Chapter No.: 1  Title Name: <TITLENAME> 

fbetw.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:18:26 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: vii

vii

Dr Stephen Barter

Private practice, Eastbourne, UK

Dr Elena Calciolari

Centre for Immunobiology and Regenerative 

Medicine

Centre for Oral Clinical Research

Institute of Dentistry

Barts and the London School of Medicine 

and Dentistry

Queen Mary University of London (QMUL)

London, UK

Prof. Nikolaos Donos

Centre for Immunobiology and Regenerative 

Medicine

Centre for Oral Clinical Research

Institute of Dentistry

Barts and the London School of Medicine 

and Dentistry

Queen Mary University of London (QMUL)

London, UK

Prof. Peter Eickholz

Poliklinik für Parodontologie

Zentrum der Zahn‐ Mund‐ und 

Kieferheilkunde (Carolinum)

Johann Wolfgang Goethe‐Universität 

Frankfurt

Frankfurt am Main

Germany

Dr Federica Fonzar

Private practice

Udine

Italy

Dr Alberto Fonzar

Private practice

Udine

Italy

Dr Riccardo Fabian Fonzar

Private practice

Udine

Italy

Dr Jia‐Hui Fu

Discipline of Periodontics

Faculty of Dentistry

National University of Singapore

Singapore

Dr Christian Graetz

Clinic for Conservative Dentistry and 

Periodontology

Christian‐Albrechts‐University

Kiel

Germany

Dr Karin Jepsen

Department of Periodontology

Operative and Preventive Dentistry

University of Bonn

Germany

Prof. Søren Jepsen

Department of Periodontology

Operative and Preventive Dentistry

University of Bonn

Germany

Dr Nikos Mardas

Centre for Immunobiology and Regenerative 

Medicine

Centre for Oral Clinical Research

Institute of Dentistry

Barts and the London School of Medicine 

and Dentistry

Queen Mary University of London (QMUL)

London

UK

List of Contributors


background image

List of Contributors

viii

Dr Luigi Nibali

Centre for Immunobiology and Regenerative 

Medicine

Centre for Oral Clinical Research

Institute of Dentistry

Barts and the London School of Medicine

and Dentistry

Queen Mary University of London (QMUL)

London

UK

Dr Iro Palaska

Centre for Immunobiology and Regenerative 

Medicine

Centre for Oral Clinical Research

Institute of Dentistry

Barts and the London School of Medicine 

and Dentistry

Queen Mary University of London (QMUL)

London

UK

Dr Bernadette Pretzl

Section of Periodontology

Department of Operative Dentistry

University Clinic Heidelberg

Heidelberg

Germany

Dr Roberto Rotundo

Periodontology Unit

UCL Eastman Dental Institute

London

UK

Dr Stefan G. Rüdiger

Department of Periodontology

Public Dental Service/Malmö University

Malmö

Sweden

Dr Falk Schwendicke

Department of Operative and Preventive 

Dentistry

Charité‐Universitätsmedizin Berlin

Berlin

Germany

Prof. Anton Sculean

Department of Periodontology

School of Dental Medicine

University of Bern

Bern

Switzerland

Dr Yoshinori Shirakata

Department of Periodontology

Kagoshima

University Graduate School of Medical and 

Dental Sciences

Kagoshima

Japan

Prof. Clemens Walter

Klinik für Parodontologie

Endodontologie und Kariologie

Universitätszahnkliniken,

Universitäres Zentrum für  

Zahnmedizin Basel

Basel

Switzerland

Prof. Hom‐Lay Wang

Department of Periodontics and Oral 

Medicine

School of Dentistry

University of Michigan

Ann Arbor

MI

USA


background image

Chapter No.: 1  Title Name: <TITLENAME> 

fbetw.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:18:26 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: ix

ix

 Foreword

The preservation of tissues and structures 

that support the dentition is a major goal of 

conservative dentistry for the benefit of our 

patients. As dental practitioners, we are 

trained to maintain and restore function, 

aesthetics, and phonetics for the promotion 

of oral health. In the development of this 

book, Diagnosis and Treatment of Furcation‐

Involved Teeth, Luigi Nibali and his 

 

co‐authors have assembled an excellent text 

that comprehensively examines the manage-

ment of the most challenging‐to‐treat teeth 

in the jaws – the molar and premolar teeth 

with furcation involvement. It is clear that 

clinicians are continually tested on which are 

the best approaches to handle these clinical 

scenarios that include furcated teeth. The 

education, skill, and training required to 

manage furcations are significant given the 

anatomy, location, and functional biome-

chanical occlusal forces associated with 

 posterior teeth that make for complex  clinical 

decision‐making.

In this text, Dr Nibali has convened inter-

national experts providing chapters ranging 

from the diagnosis of disease to clinical out-

comes from the health policy expert’s, cari-

ologist’s, periodontist’s, and endodontist’s 

perspectives on periodontal‐endodontic‐

restorative dilemmas in patient care. It is 

important to recognize that there is a large 

evidence base that was initiated from the 

‘pre–dental implant era’ on the long‐term 

success in the maintenance of compromised 

teeth affected by extensive restorative care, 

periodontal involvement, and/or pulpal 

pathology. This text not only focuses on 

 diagnosis and treatment, but includes valua-

ble information from a health economics and 

treatment algorithms perspectives on long‐

term tooth preservation.

In the first part of the book, a thorough 

background on the unique anatomy of multi‐

rooted teeth and corresponding diagnostic, 

prognostic, and therapeutic intricacies is 

presented. The next section provides a strong 

rationale regarding the concept of tooth 

preservation from the restorative, periodon-

tal, and endodontic perspectives, which 

highlights the strong evidence base of 

 treatment success of tooth furcations. This 

background is important to examine criti-

cally, since many oral implantologists in the 

field are not adequately versed on the ramifi-

cations of premature tooth removal versus 

those teeth that can be predictably retained 

for the long‐term success of the patient. The 

application in clinical practice by those with-

out adequate training occasionally errs on 

the expedience of tooth extraction, without 

pausing to weigh methodically the advan-

tages and disadvantages of embarking on 

comprehensive therapy for furcated teeth. 

Those without access to this text on the many 

options available to increase the lifespan of 

molar and premolar teeth may not be pre-

pared to treatment plan the complex dental 

patient appropriately for the comprehensive 

assessment of restorative, periodontal, endo-

dontic, functional, and aesthetic needs. 

Given practice trends of more common 

extractions of furcated periodontally and 

endodontically compromised teeth, it sug-

gests that ‘the time is right’ to emphasize the 


background image

­orreorr

x

great potential available in the proper assess-

ment and treatment of furcated teeth. This 

section highlights the long‐term success with 

proper therapy in maintaining furcated teeth.

The next part of the text highlights the many 

different therapeutic modalities that are clini-

cally available to treat multi‐rooted teeth, 

including non‐surgical maintenance, resective 

procedures (including tunnelling, root resec-

tion, and bicuspidization), and reconstructive 

regenerative therapy using biologics or bioma-

terials. Other chapters in the book build on 

our  existing evidence base to examine the 

cases that can genuinely be retained versus 

those teeth too compromised as ‘hopeless’ 

that may benefit from extraction, implant site 

development (bone grafting and alveolar ridge 

preservation), followed by dental implant 

reconstruction. Indeed, dental implant ther-

apy has revolutionized oral care and clinical 

treatment decision‐making paradigms for 

advanced reconstructive procedures. It is also 

crucial for the advanced clinician to under-

stand when and when not to attempt to retain 

advanced disease cases. Large epidemiologi-

cal studies have demonstrated that dental 

implant therapy is not a ‘panacea’ and that, 

given the significant incidence and prevalence 

of peri‐implant biological complications in 

the molar regions, we should re‐examine the 

opportunities for maintaining and treating 

furcated teeth more diligently and more fully. 

The concluding chapters scrutinize the health 

economics opportunities at the patient and 

clinician levels in terms of tooth preservation 

of furcated molars, and in which types of cases 

which treatment planning approach is indi-

cated for such advanced clinical scenarios.

Stimulated by the comprehensive approach 

in this book, this can be a renaissance period 

in reconstructive dentistry when we firmly 

consider the many options available to us as 

clinicians to better preserve the dentition in 

treating furcation‐involved teeth. This text 

lays out a contemporary and exciting oppor-

tunity for us as clinicians to provide our 

patients with state‐of‐the‐art therapy for the 

betterment of oral health!

William V. Giannobile, DDS, MS, DMedSc

Najjar Endowed Professor of Dentistry & 

Biomedical Engineering

Departments of Periodontics and Oral 

Medicine & Biomedical Engineering, 

University of Michigan School of Dentistry and 

College of Engineering, Ann Arbor, MI, USA


background image

Chapter No.: 1  Title Name: <TITLENAME> 

fpref.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:18:30 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: xi

xi

Declare the past, diagnose the present, 

foretell the future.

Hippocrates

Doubt is not a pleasant condition, but 

 certainty is an absurd one.

Voltaire

Young and new to a periodontal clinic, I 

remember looking at cases of extensive peri-

odontal and bone loss in multi‐rooted teeth 

and wondering how the problem could be 

solved, and if and how the tooth could be 

retained. The fascination with the spaces 

 created by inter‐radicular bone resorption, 

called ‘furcations’, and the struggle over how 

to manage them in the clinic, continues to 

occupy large parts of my days and has 

prompted me to write this book. Here, with 

the help of several expert colleagues, I have 

tried to:

 

Critically appraise the evidence.

 

Present expert opinions.

 

Show treated cases.

 

Present useful clinical guidelines, step‐by 

step procedures, and treatment algorithms.

The emphasis of the book is to try and 

 maintain molars affected by furcation involve-

ment and regenerate the lost support, when 

possible, accepting that this is not always pos-

sible in the long term. It goes  without saying 

that primary prevention of periodontitis 

remains the best way to prevent tooth loss. 

I hope that periodontists, dental/postgraduate 

students, hygienists, and  

general dentists 

might find this book useful for the treatment 

of molars already affected by periodontitis 

and furcation involvement.

Immense thanks go to all the expert collab-

orators and friends, Will Giannobile, 

Bernadette Pretzl, Peter Eickholz, Clemens 

Walter, Jia‐Hui Fu, Hom‐Lay Wang, Federica, 

Riccardo, and Alberto Fonzar, Roberto 

Rotundo, Stefan Rüdiger, Nikos Donos, Toni 

Sculean, Elena Calciolari, Iro Palaska, 

Yoshinori Shirakata, Søren and Karin Jepsen, 

Nikos Mardas, Steve Barter, Christian Graetz, 

and Falk Schwendicke, who all contributed 

chapters to this book, and to Paul Kletz for 

kindly proofreading some of the chapters and 

for his support throughout my career. Special 

thanks go to the patients who over the years 

have been a big source of inspiration with 

their interest and commitment, and who 

every day make me want to be a better perio-

dontist. I also need to thank my teachers at the 

University of Catania and at the UCL Eastman 

Dental Institute, who have all contributed, 

some with small and some with larger 

 ingredients, to the cauldron of periodontal 

knowledge from which I drew for the plan-

ning and editing of this book. The students 

and staff at Barts and the London School of 

Medicine and Dentistry, Queen Mary 

University of London (QMUL), are gratefully 

acknowledged. But most of all, I would like to 

thank my family, Daniela, Domenico, Lorenzo, 

Delia, and my parents and in‐laws, for their 

 continued support of my work.

Luigi Nibali

Preface


background image

Chapter No.: 1  Title Name: <TITLENAME> 

flast.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:18:33 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: xiii

xiii

Don’t forget to visit the companion website for this book:

www.wiley.com/go/nibali/diagnosis 

There you will find valuable material designed to enhance your learning, including:

 

video clips

 

additional treated cases

Scan this QR code to visit the companion website

About the Companion Website


background image

Diagnosis and Treatment of Furcation-Involved Teeth, First Edition. Edited by Luigi Nibali. 

© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd. 

Companion website: www.wiley.com/go/nibali/diagnosis

Chapter No.: 1  Title Name: <TITLENAME> 

c01.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:18:39 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 1

1

1.1   Introduction:  Why 

Focus on Molars?

Dentists generally agree on three statements 

about molars:

 

They play an important role in the 

dentition.

 

They are difficult to reach for self‐performed 

as well as professional cleaning due to their 

posterior position in the mouth.

 

They pose some challenges due to their 

unique anatomy.

The important role of molar teeth in the den-

tition mainly consists in their contribution to 

mastication, because they carry a considera-

ble part of the occlusal load. Hiiemäe (1967) 

focused on the masticatory function in mam-

mals and molars grinding the food, and in 

1975 Bates et al. reviewed the literature on 

the masticatory cycle in natural and artificial 

dentitions of men, attributing a fundamental 

role to our posterior teeth regarding the 

intake and preparation of nutrition. Thus, a 

focus on molars and the endeavour to retain 

our posterior teeth in a healthy functional 

state seems justified.

This chapter will reveal how the posterior 

position of molars makes them less accessi-

ble for cleaning, whether it may be self‐ 

performed or carried out by a dental 

professional. This fact, combined with the 

unique anatomy of molars, poses a challenge 

for all dentists focusing on molar retention.

1.2   The  ‘Special’  Anatomy 

of Molar Teeth

The essential knowledge of molar root anat-

omy for every periodontist is stressed in a 

review by Al‐Shammari et al. (2001). Due to 

the higher mortality and compromised 

diagnoses of furcation‐involved molars, and 

likewise to the reduced efficacy of perio-

dontal therapy in multi‐rooted teeth, the 

authors suggest a thorough engagement 

with possibly decisive tooth factors such as 

furcation entrance area, (bi)furcation 

ridges, root surface area, root separation, 

and root trunk length, because they may 

critically affect the diagnosis and therapy 

of  multi‐rooted teeth (Leknes 1997; Al‐

Shammari et al. 2001).

For centuries, scientists have concerned 

themselves with the human teeth, their anat-

omy, evolution, function, histology, and 

 histogenesis. Almost 3000 years ago, the 

Etruscans populating the northern and cen-

tral part of what is now Italy from 900 to 100 

bc recognized the importance of teeth and 

fabricated quite delicate dental prostheses, 

which Loevy and Kowitz (1997) compared to 

prostheses from the mid‐twentieth century.

Chapter 1

Anatomy of Multi‐rooted Teeth and Aetiopathogenesis 
of the Furcation Defect

Bernadette Pretzl

Section of Periodontology, Department of Operative Dentistry, University Clinic Heidelberg, Heidelberg, Germany


background image

Chapter 1  

2

The formation and genesis of teeth have 

been studied in more detail during the last 

three and a half centuries, starting with the 

works of the so‐called father of microscopic 

anatomy and histology, Marcello Malpighi 

(1628–1694) from Italy (Rifkin and 

Ackerman 2011), who referred to an ‘invo-

lucrum externum’ describing the outer part 

of the tooth, which is today known as 

enamel. More than a century later the 

 formation of cementum (1798–1801) and 

dentine (1835–1839) was described (e.g. 

Blake 1801; Bell 1835). Written in 1935, 

Meyer’s Normal Histology and Histogenesis 

of the Human Teeth and Associated Parts 

(Churchill 1935) builds the foundation of 

our understanding regarding the anatomy 

of teeth. Orban and Mueller (1929), who 

studied the development of  furcations in 

multi‐rooted teeth, set a focus on molars 

using graphic reconstructions as early as 

1929. Their three‐dimensional illustrations 

allow a detailed impression of the root area 

comparable to those documented by 

Svärdström and Wennström (1988). In later 

years, scientists focused more and more on 

micro‐anatomical and histological research.

Based on the knowledge thus created, the 

sequence of molar development can be 

divided into three phases analogous to the 

development of all teeth (Thesleff and 

Hurmerinta 1981): initiation, morphogene-

sis, and cell differentiation. The evolution of 

more than one root sets molars apart from 

the rest of the dentition: in multi‐rooted 

teeth the enamel organ expands with 

 projections of Hertwig’s root sheath (an epi-

thelial diaphragm). These expansions were 

described as lobular growing inwards 

between the lobes. Depending on the num-

ber of lobes, two to three (in rarer cases four) 

roots develop as soon as the projections have 

fused (Bhussry 1980). In an investigation by 

Bower (1983) of furcation development, 

evolving mandibular molars from 13 foetuses 

between 17 and 38 weeks of gestation were 

fixed, sectioned, and stained, giving a unique 

and detailed impression of furcation devel-

opment. The author measured the base of 

the dental papilla as well as the buccal and 

lingual epithelial elements and described the 

development as follows: The first epithelial 

elements, which later evolve into the bifurca-

tion, appear at the 24‐week stage of gesta-

tional age. At that time, the crown formation 

of the molar is not complete and Hertwig’s 

root sheath has not developed yet (Bhussry 

1980; Bower 1983). Thus, the author suggests 

that the epithelial elements form extensions 

of the epithelium of the developing crown 

rather than the root (Bower 1983). 

Additionally, he detected stellate reticulum 

(which is essential for the formation of 

ameloblasts) in the furcation area. The 

author speculated about a possible mecha-

nism of enamel formation due to the  presence 

of stellate reticulum in the region of the 

 furcation, which develops into ameloblasts, 

for example resulting in cervical projections 

of enamel.

1.3   Anatomical  Factors 

in Molar Teeth

In 1988, Svärdström and Wennström plotted 

three‐dimensional contour maps in order to 

describe the topography of the furcation area 

and compared drawings of maxillary and 

mandibular molars. These show a complex 

area with small ridges, peaks, and pits, and 

the authors summarize that the complexity 

of the furcation topography evidently 

increases the difficulties with respect to 

proper debridement once the periodontal 

pocket reaches the furcation entrance and 

runs into the furcation area. Thus, in addi-

tion to the aforementioned potentially deci-

sive factors  –  furcation entrance area, 

bifurcation ridges, root surface area, and 

root trunk length – it has to be kept in mind 

that the complexity of the furcation area 

itself poses a challenge to the dental practi-

tioner (Svärdström and Wennström 1988). 

Figure 1.1 shows a diagram of a mandibular 

molar, highlighting the main anatomical 

features.


background image

Anatomy of Multi-rooted Teeth  3

1.3.1  Furcation Entrance Area

The furcation entrance area was measured 

by Bower (1979a) in 114 maxillary and 103 

mandibular first molars. The diameter of 

the entrance area was smaller than a curette 

blade in more than 50% of the examined fur-

cations, with the smallest average diameter 

in buccal (b) sites of maxillary as well as 

mandibular first molars. No correlation 

between the size of the tooth and its furca-

tion entrance area could be detected (Bower 

1979a). Hou et  al. (1994) studied 89 

extracted maxillary and 93 extracted man-

dibular first and second molars microscopi-

cally. In their Chinese population sample, 

they concurred with the results presented 

by Bower (1979a) in the maxilla and found a 

larger diameter in mesio‐ (mp) and disto‐

palatal (dp) furcation entrances for first and 

second molars (mp: 1.04 mm and 0.90 mm; 

dp: 0.99 mm and 0.67 mm; b: 0.74 mm and 

0.63 mm, respectively), which was con-

firmed by Svärdström and Wennström 

(1988) and dos Santos et al. (2009).

In mandibular molars the results differed, 

with wider entrance areas in buccal furca-

tions of first and second molars (b: 0.88 mm 

and 0.73 mm; l: 0.81 mm and 0.71 mm, 

respectively). Nonetheless, the furcation 

entrance area was < 1 mm in the majority of 

molars and < 0.75 mm in 58%, 49%, and 52% 

of molars, respectively (Bower 1979a; Chiu 

et al. 1991; Hou et al. 1994). Thus, the stand-

ard width of curettes (0.75–1.0 mm) is 

mostly too large to access, let alone properly 

clean, a furcation entrance. Hou et al. (1994) 

concluded that in order to achieve complete 

debridement of root surfaces within furca-

tions, an appropriate selection and combi-

nation of ultrasonic tips (diameter 0.56 mm) 

and periodontal curettes should be consid-

ered. A recent study by dos Santos et  al. 

Fornix

Divergence

Root trunk

Root complex

Root cone

Crown

Bone loss

Degree of
separation

Figure 1.1 

Drawing of mandibular molar with furcation involvement, showing the main anatomical features, 

including root trunk (part of the root from the cemento‐enamel junction [CEJ] to the furcation entrance) 

and root cones, and pointing at root divergence and degree of separation between roots. The ‘bone loss’ is 

schematically indicated as the distance between the CEJ and the most apical part of the bone. Source

Courtesy of Dr Aliye Akcali.


background image

Chapter 1  

4

(2009) analysed 50 maxillary and 50 man-

dibular molars and confirmed the afore-

mentioned findings, concluding that some 

molar furcation entrances could not be 

 adequately instrumented with curettes and 

 

suggesting the use of alternative hand 

instruments. In a review, Matthews and 

Tabesh (2004) stressed the importance of 

the diameter of the furcation entrance in 

order to judge the effect of professional 

cleaning, and thus the probable success of 

periodontal therapy. The challenges of fur-

cation cleaning are discussed by Fu and 

Wang in Chapter 3.

1.3.2  (Bi)furcation Ridges

In early morphological studies of extracted 

first molar teeth, cementum was found in the 

furcation area in a ridge, building the furca-

tion region in mandibular molars, and was 

called an intermediate bifurcation ridge 

(IBR), with a high presence of cementum 

adjacent to the furcation entrance (Everett 

et al. 1958; Bower 1979a, b; see Figure 1.2). 

In  a study on developing first mandibular 

molars sectioned at different gestational 

ages, the lingual element was found to be 

wider in a mesio‐distal dimension comparable 

to studies in extracted molars (Bower 1983, 

1979b). Secondly, the exclusion of ectomes-

enchyme between the lobes described by 

Bhussry (1980) may explain the large quanti-

ties of cementum in the furcation area of the 

mature tooth corresponding to bifurcation 

ridges (Bower 1983). In general, two types of 

bifurcation ridge are known: one in the 

bucco‐lingual direction, the other in the 

mesio‐distal  direction  (intermediate = IBR). 

Everett et al. (1958) detected buccal and lin-

gual ridges, mainly constituting of dentine, in 

63% of mandibular first molars and IBRs, 

mainly composed of cementum, in 73%. The 

findings of Burch and Hulen (1974), Dunlap 

and Gher (1985), and Hou and Tsai (1997a) 

concur, with a prevalence of 76.3%, 70%, and 

67.9%, respectively, in mandibular first 

molars.

Gher and Vernino (1980) suggest a connec-

tion between the presence of an IBR and the 

progression of the furcation defect due to the 

morphology and location of IBRs. Hou and 

Tsai (1997a) confirmed this correlation. 

Additionally, they stated that an even higher 

significant correlation exists between the 

simultaneous presence of IBRs combined 

with cemento‐enamel projections and furca-

tion involvement (FI).

Figure 1.2 

Furcation ridge. Source: Courtesy of Dr Nicola Perrini.


background image

Anatomy of Multi-rooted Teeth  5

1.3.3  Root Surface Area

A team of researchers (Hermann et al. 1983; 

Dunlap and Gher 1985; Gher and Dunlap 

1985) focused on the topic of root surface 

area (RSA) in maxillary and mandibular first 

molars. In a meta‐analysis derived of data 

from 22 original articles, Hujoel (1994) com-

puted a total RSA (corresponding to the 

 periodontal surface area) for the complete 

dentition of 65–86 

cm

2

, excluding third 

molars. In maxillary first molars a mean of 

4.5 cm

2

 (second: 4.0 cm

2

) and in mandibular 

first molars a mean of 4.2 cm

2

 (second: 

3.4 cm

2

) were calculated. In molars, it is often 

difficult to judge the extent of FI clinically 

(Bower 1979b) and thus to determine the 

RSA exactly.

1.3.3.1  RSA in the Maxilla

Hermann et  al. (1983) as well as Gher and 

Dunlap (1985) dissected 20 extracted first 

maxillary molars and cross‐sectioned them in 

1 mm increments. Molars with fused roots 

were excluded. They observed that the disto‐

buccal root had a significantly smaller RSA 

than either the mesio‐buccal or palatal root, 

confirming the results of Bower (1979b). The 

root trunk surface area was significantly larger 

than any surface of the three individual roots, 

and averaged 32% of the total RSA of the max-

illary first molar (Hermann et al. 1983). Gher 

and Dunlap (1985) measured a mean root 

length of 13.6 mm (ranging from 10.5 to 

16 mm) and a total RSA of 4.77 cm

2

 (ranging 

from 3.36 to 5.84 cm

2

). Additionally, a ‘bal-

looning’ of the RSA percentage in the furca-

tion area of maxillary molars was described, 

which could not be detected in other teeth. 

Accordingly, the importance of periodontal 

support in the furcation area of maxillary 

molars was stressed, concluding that a rela-

tively small attachment gain or loss may have 

a significant impact on the stability of the 

maxillary first molar (Gher and Dunlap 1985).

1.3.3.2  RSA in the Mandible

For a study on mandibular first molars, 

10 teeth were hemisected and measured by 

Anderson et al. (1983). They concluded that 

the mesial root showed a statistically signifi-

cant greater RSA than the distal root, which 

should be taken into consideration when 

planning treatment, especially regarding 

resective approaches. Dunlap and Gher 

(1985) dissected 20 extracted mandibulary 

first molars and cross‐sectioned them in 

1 mm increments. They too observed that 

the distal root had a significantly smaller 

RSA than the mesial one, but stressed that 

the shapes of the roots (conical for the distal 

one; hour‐glass shaped for the mesial one) 

should be taken into consideration as well. In 

contrast to their findings in the maxilla, the 

root trunk surface area was not larger than 

the surface of the individual roots, and aver-

aged 30.5% of the total RSA of the mandibu-

lary first molar. They found a mean root 

length of 14.4 ± 1.1 mm and a total RSA of 

4.37 ± 0.64 cm

2

. In other studies (Jepsen 1963; 

Anderson et al. 1983), the total RSA varied 

from 4.31 to 4.7 cm

2

.

1.3.4  Root Trunk Length

The portion of multi‐rooted teeth located api-

cal to the cemento‐enamel junction (CEJ) is 

called the ‘root complex’ and is divided into 

root trunk and root cones. The root trunk is 

generally defined as the area of the tooth from 

the CEJ to the furcation fornix. In a study by 

Gher and Dunlap (1985), the distance between 

the CEJ and the furcation entrance in maxil-

lary molars differed considerably between the 

mesial (3.6 ± 0.8 mm) and the distal entrance 

(4.8 ± 0.8 mm), whereas the buccal entrance 

was detected 4.2 ± 1.0 mm apical to the CEJ. 

These findings led to the conclusion that the 

clinician should suspect a through‐and‐

through furcation (degree III according to 

Hamp et al. 1975) in maxillary molars once a 

loss of 6 mm in vertical attachment occurred. 

In more than 50% of the dissected maxillary 

molars, the furcation roof was found coronal 

of the root separations and formed a concave 

dome between the three roots.

It should be emphasized that the dome‐like 

anatomy further complicates therapy and 


background image

Chapter 1  

6

maintenance of maxillary first molars (Gher 

and Dunlap 1985). Hou and Tsai (1997b) 

measured the root trunk in 166 extracted 

first and second maxillary and 200 extracted 

first and second mandibular molars of a 

Taiwanese tooth sample. In the maxilla, short 

root trunks were more commonly found 

buccally, whereas long root trunks were more 

commonly found mesially (Hou and Tsai 

1997b). The authors found generally longer 

root trunks in second molars than in first 

molars in both jaws, and additionally stated 

that long root trunks are associated with 

short root cone length (Hou and Tsai 1997b).

In 134 extracted first and second mandibu-

lar molars, Mandelaris et al. (1998) detected 

longer root trunks in lingual molar surfaces 

when compared to buccal surfaces (mean: 

4.17 mm and 3.14 mm, respectively), confirm-

ing the results of Hou and Tsai (1997b). The 

mean distance between the CEJ and the furca-

tion entrance was 4.0 ± 0.7 mm in mandibular 

molars (4.6 ± 0.6 mm in maxillary first molars; 

Dunlap and Gher 1985; Gher and Dunlap 

1985), whereas no root trunk of > 6 mm could 

be found (Dunlap and Gher 1985; Mandelaris 

et al. 1998). Like in maxillary molars, it can be 

concluded that a through‐and‐through furca-

tion (Hamp et al. 1975) should be expected in 

the mandible once a loss of 6 mm in vertical 

attachment was reached on both sides (buccal 

and lingual). On the other hand, it has to be 

kept in mind that a furcation defect has a 

 horizontal component as well. Santana et al. 

(2004) measured 100 extracted first and sec-

ond mandibular molars and their findings 

suggest that a horizontal attachment loss of 

4.3–6.9 mm is essential in order to allow com-

munication between the buccal and lingual 

furcation entrance. Complete or partial fusion 

of roots is also not unusual in multi‐rooted 

teeth. Some 40% of maxillary premolars are 

two‐rooted and the entrance to the furcation 

is located an average 8 mm from the CEJ, well 

into the middle third of the root complex 

(Bower 1979a).

A clinically evident FI correlates with the 

vertical length and type of the root trunk 

(Carnevale 1995; Hou and Tsai 1997b, 

Al‐Shammari et  al. 2001). Thus, Al‐

Shammari et al. (2001) summarized that the 

root trunk length significantly relates to the 

prognosis and treatment of molars. A short 

root trunk worsens the prognosis with regard 

to a more likely FI, but once periodontal 

destruction has occurred, it improves the 

chances of a successful treatment (Horwitz 

et al. 2004).

1.4   Anatomical  Aetiological 

Factors

1.4.1  Cervical Enamel Projections

Enamel surfaces do not allow for the attach-

ment of connective tissue and represent an 

anatomical abnormality in the root area. 

Thus, cervical enamel projections (CEP) may 

contribute to the development of a furcation 

defect (Al‐Shammari et al. 2001). The first to 

report a possible connection between CEPs 

and periodontal destruction in molars was 

Atkinson in 1949. According to Masters and 

Hoskins (1964), CEPs can be classified in 

three grades (Table 1.1).

Different prevalences of CEPs have been 

documented so far. Masters and Hoskins 

(1964) found CEPs in 29% of mandibular and 

17% of maxillary molars. In Egyptian skulls, 

Bissada and Abdelmalek (1973) detected a 

CEP prevalence of 8.6%. In the 1138 molars 

studied, a higher incidence of CEPs in the 

Table 1.1 

Classification of cervical enamel 

projections.

Grade I

The enamel projection extends from 

the cemento‐enamel junction of the 

tooth towards the furcation entrance 

(<1/3 of the root trunk).

Grade II The enamel projection approaches 

the furcation entrance but does not 

enter it. No horizontal component is 

present (>1/3 of the root trunk).

See Figure 1.3a.

Grade III The enamel projection extends 

horizontally into the furcation.

Compare Figures 1.3b and 1.3c.


background image

Anatomy of Multi-rooted Teeth  7

mandible could be confirmed. A study in 200 

East Indian skulls with 2000 molars reported a 

32.6% incidence rate of CEPs (Swan and Hurt 

1976). They were most often reported in man-

dibular second molars (51.0%), followed by 

maxillary second molars (45.6%), mandibular 

first and maxillary first molars (13.6%). Grade 

I enamel projections (Masters and Hoskins 

1964) were detected most frequently. These 

could not be significantly related to furcation 

involvement, as could grade II and III CEPs 

(Swan and Hurt 1976). An observation in 78 

Taiwanese individuals reported detection of 

CEPs in 49.3% of second and 62.3% of first 

maxillary and 51.2% of second and 73.9% of 

first mandibular molars (Hou and Tsai 1987). 

A study by the same authors in furcation‐

involved mandibular molars reported even 

higher CEP percentages: 71% of second and 

92.9% of first mandibular molars showed 

enamel projections (Hou and Tsai 1997b). 

Mandelaris et al. (1998) documented CEPs in 

66.4% of mandibular molars (61.9% of buccal 

and 50.8% of lingual surfaces) ranging from 

0.98 to 1.33 mm in diameter. Current research 

on CEPs was published in 2013 and 2016. 

Bhusari et  al. (2013) investigated their inci-

dence on the buccal surface of 944 upper and 

lower first, second and third permanent 

molars from 89 Indian dry human skulls, and 

additionally measured FI. Again, it could be 

confirmed that CEPs are found more fre-

quently in the mandible and are significantly 

associated with the occurrence of FI. The 

incidence ranged from 14.7% in mandibular 

second molars to 5.5% in wisdom teeth. The 

most recent study was performed using cone‐

beam computed tomography data in a Korean 

population analysing 982 mandibular molars 

(Lim et  al. 2016) and reported an overall 

 prevalence rate of CEP of 76%. Grade I CEPs 

were the most common, followed by CEPs of 

grades II and III (Lim et al. 2016).

The huge variations can partly be explained 

by different study objects: in human skulls 

healthier periodontal conditions can be 

assumed, while extracted molars most prob-

ably show worse conditions, and Hou and 

Tsai (1987, 1997a) as well as Mandelaris et al. 

(1998) studied furcation‐involved molars in 

periodontal patients. Additionally, a higher 

prevalence of CEPs in Oriental subjects than 

in Caucasians is suspected (Hou and Tsai 

1987; Lim et al. 2016).

Nonetheless, it can be concluded that CEPs 

are a common problem which must be 

addressed by clinicians when treating molar 

teeth. They are more prevalent than enamel 

pearls and prevent connective tissue attach-

ment, thus contributing to the aetiology of 

 furcation defects, possibly resulting in localized 

chronic periodontitis and FI in molars (Leknes 

Figure 1.3a 

Cervical enamel projection grade II (>1/3 of root trunk; Masters and Hoskins 1964) on upper right 

first molar (REM microscope). Source: Eickholz and Hausmann 1998.


background image

Chapter 1  

8

1997; Al‐Shammari et al. 2001; Bhusari et al. 

2013). Additionally, significantly higher plaque 

and gingivitis index values have been reported 

in the presence of CEPs (Carnevale et al. 1995).

1.4.2  Enamel Pearls

Enamel pearls (see Figure  1.4) were first 

described in an article in the American 

Journal of Dental Science in 1841 (Moskow 

Figure 1.3b 

Cervical enamel projection on lower 

left first molar; grade III (reaching furcation 

entrance area; Masters and Hoskins 1964). Source

Eickholz 2005.

Figure 1.3c 

Cervical enamel projection on extracted 

lower right first molar; grade III (reaching furcation 

entrance area; Masters and Hoskins 1964). Source

Eickholz and Hausmann 1998.

Figure 1.4a 

Macroscopic image of an enamel pearl 

on an extracted molar. Source: Courtesy of Prof. 

Dr. H.-K. Albers.

Figure 1.4b 

Microscopic image of an enamel pearl. 

Source: Courtesy of Prof. Dr. H.-K. Albers.


background image

Anatomy of Multi-rooted Teeth  9

and Canut 1990). They are ectopic globules 

consisting mostly of enamel, often contain-

ing a core of dentine, and they adhere to the 

tooth root surface, with a distinct predilec-

tion for the furcation areas of molar teeth, 

particularly maxillary third and second 

molars. In a review from 1990, an incidence 

of 2.6% (ranging from 1.1 to 9.7%) was 

reported, with differences among racial 

groups and a greater incidence in histological 

studies (Moskow and Canut 1990). Like 

CEPs, enamel projections prevent connec-

tive tissue attachment and thus contribute to 

the aetiology of periodontal destruction. 

They usually occur singularly, but up to four 

enamel pearls have been observed on the 

same tooth (Moskow and Canut 1990).

More recent research demonstrates an 

incidence within the range documented by 

Moskow and Canut (1990). Darwazeh and 

Hamasha (2000) evaluated the presence of 

enamel pearls in a Jordanian patient sample, 

studying 1032 periapical radiographs. An 

incidence of 1.6% of enamel pearls in molars 

and 4.76% per subject with no gender differences 

was reported. Chrcanovic et al. (2010) evalu-

ated the prevalence of enamel pearls in 

45 539 permanent teeth (20 218 molars) from 

a human tooth bank in Brazil. They con-

firmed the predominant presence in the 

maxilla and reported an incidence of 1.71% 

in molars. Akgül et al. (2012) evaluated the 

presence of enamel pearls using cone‐beam 

computed tomography in 15 185 teeth (4334 

molars). An incidence of enamel pearls of 

0.83% in molars and 4.69% per subject with no 

gender differences was reported. Again, the 

incidence was significantly higher in the max-

illa. Colak et al. (2014) studied the prevalence 

of enamel pearls in Turkish dental patients 

and detected them in 0.85% of teeth and 5.1% 

of subjects, with a contradictory higher inci-

dence in the mandible and in male patients.

Although lower in incidence than enamel 

projections, it can be summarized that 

enamel pearls play an important role in the 

aetiology of furcation defects, and it is con-

sidered essential to diagnose enamel pearls 

early on to allow for an adequate prognosis of 

molar retention and probably alter the thera-

peutic approach.

1.5   Periodontal  Aetiological 

Factors in Molar Teeth

Aetiological factors interact with the previ-

ously described anatomical factors and may 

lead to periodontal destruction and attach-

ment loss in molars, and thus result in a fur-

cation defect. According to Al‐Shammari 

et al. (2001), plaque‐associated inflammation, 

Figure 1.4c 

Orthopantomogram showing enamel pearls on upper right and left second molars. Source

Eickholz and Hausmann 1998.


background image

Chapter 1  

10

trauma from occlusion, pulpal pathology, 

vertical root fractures, and iatrogenic factors 

need to be taken into consideration.

1.5.1 Plaque‐associated 

Inflammation

The reader of this book will surely be well 

accustomed to plaque formation and the 

inflammatory component of gingivitis and 

periodontitis. What is special about molars 

in this context? In general, it can be stated 

that furcations are more prone to plaque 

adhesion and less likely to stay plaque free. 

The anatomy of the furcation favours reten-

tion of bacterial deposits and renders hygiene 

procedures difficult (Matthews and Tabesh 

2004). In 1987, Nordland et  al. monitored 

2472 sites in 19 periodontal patients for 

24  months after periodontal therapy, and 

reported that furcation sites responded less 

favourably to therapy and were more likely to 

exhibit higher plaque and gingivitis scores. 

Apart from that, it is assumed that furcation 

areas are an extension of periodontal pock-

ets, because unique histological features are 

lacking (Glickman 1950; Al‐Shammari et al. 

2001). Thus, plaque formation follows the 

same process in molars and their furcations 

as in the remaining dentition (Leknes 1997).

1.5.2  Occlusal Trauma

Trauma from occlusion is suspected to 

be  another aetiological factor contributing 

to  periodontal destruction in molars. 

Two groups of researchers, Glickman and 

co‐workers as well as Lindhe and co‐workers, 

focused on this topic in animal studies apply-

ing excessive occlusal forces on molars. In 

their classic studies on beagle dogs, Lindhe 

and Svanberg (1974) and Nyman et al. (1978) 

reported significant alterations in tooth 

mobility combined with angular bony defects 

and loss of periodontal support in artificially 

created, gingivally inflamed multi‐rooted 

teeth carrying splints, compared to teeth 

with inflammation but carrying no addi-

tional occlusal load. Even before that, 

Glickman et al. (1961) compared the effect of 

occlusal force on splinted and non‐splinted 

teeth in rhesus monkeys, and suggested that 

the fibre orientation in the furcation area 

makes multi‐rooted teeth more susceptible 

to increased functional forces. More recently, 

Nakatsu et  al. (2014) confirmed the afore-

mentioned findings in an observation in rats. 

On the other hand, Waerhaug (1980) con-

cluded from his observations of 46 human 

molars (extracted because of advanced peri-

odontal destruction) that increased mobility 

and occlusal trauma are not involved in the 

aetiology of the FI and are instead a late 

symptom of periodontal disease. Thus, the 

impact of occlusal forces in the aetiology of 

periodontitis in general and FI in particular 

remains controversial (Al‐Shammari et  al. 

2001; Reinhardt and Killeen 2015). In a 

review, Harrel (2003) suggest that occlusal 

interferences should be regarded as a poten-

tial risk factor comparable to smoking, rather 

than a causative or aetiological factor.

1.5.3  Vertical Root Fractures

It is generally agreed that vertical root frac-

tures, which can occur in a longitudinal 

direction on any surface of the root, are dif-

ficult to diagnose because they share symp-

toms with other dental conditions (Matthews 

and Tabesh 2004). Additionally, in most cases 

mild pain or a dull discomfort is the only 

clinical symptom of a vertical root fracture 

(Meister at al. 1980). They result in rapid 

localized loss of attachment and bone 

(Walton et  al. 1984) and can lead to FI 

depending on their position. Mostly, a poor 

prognosis is assigned to teeth exhibiting ver-

tical root fractures (Al‐Shammari et al. 2001; 

Matthews and Tabesh 2004).

1.5.4  Endodontic Origin 

and Pulpal Pathology

Accessory canals are quite common in molar 

teeth. A study of 46 extracted molars of both 


background image

Anatomy of Multi-rooted Teeth  11

jaws found accessory canals in 59% of exam-

ined teeth (Lowman et al. 1973). Burch and 

Hulen (1974) reported ‘openings’ in 76% of 

the furcations of maxillary and mandibular 

molars. These canals allow for products of 

pulpal necrosis to enter the furcation area 

and cause an inflammatory lesion (Carnevale 

et al. 1995). Thus, a pulpal pathosis can result 

in FI. Carnevale et  al. (1995) reported that 

proximal and inter‐radicular bone destruc-

tion of endodontic origin is reversible after 

root canal treatment. Periodontal therapy 

only becomes necessary in the case of a 

 persistent lesion after the endodontic treat-

ment. A more detailed description of the 

associations between FI and endodontic 

pathology is provided in Chapter 4.

1.5.5  Iatrogenic Factors

Generally, overhanging dental restorations 

or discrepancies of the subgingival margin in 

any kind of restoration or even orthodontic 

bands allow for adhesion of plaque and show 

detrimental effects on adjacent gingival tis-

sues; additionally, the fit of  prosthetic resto-

rations is mostly less than perfect (Leknes 

1997) and builds a niche, where plaque 

 formation is facilitated and cleansing diffi-

cult. According to a study by Lang et  al. 

(1983) in dental students with healthy gingi-

vae who received proximal inlays with 1 mm 

overhangs, the microbial composition of the 

subgingival biofilm shifted from healthy to a 

composition characteristically found in peri-

odontitis. Thus, the authors concluded that 

the changes observed in the subgingival 

microflora  document a potential mechanism 

for the initiation of periodontal disease asso-

ciated with iatrogenic factors. Wang et  al. 

(1993) focused on molars and assessed the 

correlation between FI and the presence of a 

crown or proximal restoration in 134 perio-

dontal patients during maintenance therapy. 

Their results showed a significant associa-

tion between FI as well as periodontal attach-

ment loss and the presence of a crown or 

restoration.

Additionally, Matthews and Tabesh (2004) 

commented that overhangs not only build a 

plaque retention niche, but also impinge on 

the biological width (between the depth of a 

healthy sulcus and the alveolar crest) and 

thus cause damage. They report ranges of 

overhangs in restored teeth from 18 to 87% 

(Matthews and Tabesh 2004). In general, the 

placement of restorative margins subgingi-

vally results in more plaque, more gingival 

inflammation and deeper periodontal 

pockets.

It can be concluded that special care needs to 

be taken when placing restorations, and over-

hangs need to be diagnosed and removed as 

early as possible. Should a restoration margin 

need to be placed subgingivally, the biological 

width has to be kept in mind and crown length-

ening considered. Thus, a dento‐gingival attach-

ment may be achieved (Herrero et al. 1995).

 Summary  of Evidence

 

Numerous anatomical factors like furca-

tion entrance area, bifurcation ridges, 

root surface area, and root trunk length 

need to be considered in the diagnosis and 

periodontal treatment of molars. The 

periodontist should be aware of these fac-

tors because they may have a significant 

impact on the prognosis and therapeutic 

outcome of multi‐rooted teeth.

 

Iatrogenic factors should be tackled early 

on (at the beginning of periodontal ther-

apy), thus allowing for improvement of 

gingival and periodontal conditions.


background image

Chapter 1  

12

 References

Akgül, N., Caglayan, F., Durna, N. et al. (2012). 

Evaluation of enamel pearls by cone‐beam 

computed tomography (CBCT). Medicina 

Oral Patologica Oral y Cirurgia Bucal 17, 

e218–e222.

Al‐Shammari, K.F., Kazor, C.E., and Wang, 

H.‐L. (2001). Molar root anatomy and 

management of furcation defects. Journal of 

Clinical Periodontology 28, 730–740.

Anderson, R.W., McGarrah, H.E., Lamb, R.D., 

and Eick, J.D. (1983). Root surface 

measurements of mandibular molars using 

stereophotogrammetry. Journal of the 

American Dental Association 107, 613–615.

Atkinson, S.R. (1949). Changing dynamics of 

the growing face. American Journal of 

Orthodontics 35, 815–836.

Bates, J.F., Stafford, G.D., and Harrison, A. 

(1975). Masticatory function – a review of 

the literature: 1. The form of the masticatory 

cycle. Journal of Oral Rehabilitation 2 (3), 

281–301.

Bell, T. (1835). The Anatomy, Physiology, and 

Diseases of the Teeth. London: S. Highley.

Bhusari, P., Sugandhi, A., Belludi, S.A., and 

Shoyab Khan, S. (2013). Prevalence of 

enamel projections and its co‐relation with 

furcation involvement in maxillary and 

mandibular molars: A study on dry skull. 

Journal of the Indian Society of 

Periodontology 17, 601–604.

Bhussry, B.R. (1980). Development and growth 

of teeth. In: Orban’s Oral Histology and 

Embryology (ed. G.S. Kumar), 23–44. St 

Louis, MO: C.V. Mosby.

Bissada, N.F., and Abdelmalek, R.G. (1973). 

Incidence of cervical enamel projections and 

its relationship to furcation involvement in 

Egyptian skulls. Journal of Periodontology 

44, 583–585.

Blake, R. (1801). An Essay on the Structure and 

Formation of the Teeth in Man and Various 

Animals. Dublin: Porter.

Bower, R.C. (1979a). Furcation morphology 

relative to periodontal treatment: Furcation 

entrance architecture. Journal of 

Periodontology 50, 23–27.

Bower, R.C. (1979b). Furcation morphology 

relative to periodontal treatment: Furcation 

root surface anatomy. Journal of 

Periodontology 50, 366–374.

Bower, R.C. (1983). Furcation development of 

human mandibular first molar teeth: A 

histologic graphic reconstructional study. 

Journal of Periodontal Research 18, 412–419.

Burch, J.G., and Hulen, S. (1974). A study of 

the presence of accessory foramina and the 

topography of molar furcations. Oral 

Surgery, Oral Medicine, Oral Pathology 38, 

451–455.

Carnevale, G., Pontoriero, R., and Hürzeler, 

M.B. (1995). Management of furcation 

involvement. Periodontology 2000 9, 69–89.

Chiu, B.M., Zee, K.Y., Corbet, E.F., and 

Holmgren, C.J. (1991). Periodontal 

implications of furcation entrance dimensions 

in Chinese first permanent molars. Journal 

of Periodontology 62, 308–311.

Chrcanovic, B.R., Abreu, M.H.N.G., and 

Custódio A.L.N. (2010). Prevalence of 

enamel pearls in teeth from a human teeth 

bank. Journal of Oral Science 52, 257–260.

Churchill, H.R. (1935). Meyer’s Normal 

Histology and Histogenesis of the Human 

Teeth and Associated Parts (trans. and ed. 

H.R. Churchill). Philadelphia, PA: J.B. 

Lippincott.

Çolak, H., Hamidi, M.M., Uzgur, R. et al. 

(2014). Radiographic evaluation of the 

prevalence of enamel pearls in a sample 

adult dental population. European Review 

for Medical and Pharmacological Sciences 

18, 440–444.

Darwazeh, A., and Hamasha, A.A. (2002). 

Radiographic evidence of enamel pearls in 

Jordanian dental patients. Oral Surgery, Oral 

Medicine, Oral Pathology, Oral Radiology 

Endodontology 89, 255–258.

dos Santos, K.M., Pinto, S.C., Pochapski, M.T. 

et al. (2009). Molar furcation entrance and 

its relation to the width of curette blades 

used in periodontal mechanical therapy. 

International Journal of Dental Hygiene 7, 

263–269.


background image

Anatomy of Multi-rooted Teeth  13

Dunlap, R.M., and Gher, M.E. (1985). Root 

surface measurements of the mandibular 

first molar. Journal of Periodontology 56 (4), 

234–248.

Eickholz, P. (2005). Clinical and radiographic 

diagnosis and epidemiology of furcation 

involvement. In: Parodontologie: Praxis der 

Zahnheilkunde Band 4 (ed. D. Heidemann), 

Chapter 2. Munich: Urban & Fischer/

Elsevier.

Eickholz, P., and Hausmann, E. (1998). 

Diagnostik der Furkationsbeteiligung: Eine 

Übersicht. Quintessenz 49 (1), 59–67.

Everett, F.G., Jump, E.B., Holder, T.D., and 

Williams, G.C. (1958). The intermediate 

bifurcational ridge: A study of the 

morphology of the bifurcation of the lower 

first molar. Journal of Dental Research 37, 

162–169.

Gher, M.W. Jr, and Dunlap, R.M. (1985). Linear 

variation of the root surface area of the 

maxillary first molar. Journal of 

Periodontology 56, 39–43.

Gher, M.E., and Vernino, A.R. (1980). Root 

morphology: Clinical significance in 

pathogenesis and treatment of periodontal 

disease. Journal of the American Dental 

Association 101, 627–633.

Glickman, I. (1950). Bifurcation involvement 

in periodontal disease. Journal of the 

American Dental Association 40, 528–538.

Glickman, I., Stein, R.S., and Smulow, J.B. 

(1961). The effect of increased functional 

forces upon the periodontium of splinted 

and non‐splinted teeth. Journal of 

Periodontology 32, 290–300.

Hamp, S.‐E., Nyman, S., and Lindhe, J. (1975). 

Periodontal treatment of multirooted teeth: 

Results after 5 years. Journal of Clinical 

Periodontology 2, 126–135.

Harrel, S.K. (2003). Occlusal forces as a risk 

factor for periodontal disease. 

Periodontology 2000 32, 111–117.

Hermann, D.W., Gher, M.E., Jr, Dunlap, R.M., 

and Pelleu, G.B., Jr (1983). The potential 

attachment area of the maxillary first molar. 

Journal of Periodontology 54, 431–434.

Herrero, F., Scott, J.B., Maropis, P.S., and 

Yukna R.A. (1995). Clinical comparison of 

desired versus actual amount of surgical 

crown lengthening. Journal of 

Periodontology 66, 568–571.

Hiiemäe, K.M. (1967). Masticatory function in 

the mammals. Journal of Dental Research 

46, 883–893.

Horwitz, J., Machtei, E.E., Reitmeir, P. et al. 

(2004). Radiographic parameters as 

prognostic indicators for healing of class II 

furcation defects. Journal of Clinical 

Periodontology 31, 105–111.

Hou, G.L., and Tsai, C.C. (1987). 

Relationship between periodontal furcation 

involvement and molar cervical enamel 

projections. Journal of Periodontology 58, 

715–721.

Hou, G.L., and Tsai, C.C. (1997a). Cervical 

enamel projections and intermediate 

bifurcational ridge correlated with molar 

furcation involvements. Journal of 

Periodontology 68, 687–693.

Hou, G.L., and Tsai, C.C. (1997b). Types and 

dimensions of root trunk correlating with 

diagnosis of molar furcation involvements. 

Journal of Clinical Periodontology 24, 

129–135.

Hou, G.L., Chen, S.F., Wu, Y.M., and Tsai, C.C. 

(1994). The topography of the furcation 

entrance in Chinese molars: Furcation 

entrance dimensions. Journal of Clinical 

Periodontology 21, 451–456.

Hujoel, P.P. (1994). A meta‐analysis of normal 

ranges for root surface areas of the 

permanent dentition. Journal of Clinical 

Periodontology 21, 225–229.

Jepsen, A. (1963). Root surface measurement 

and a method for x‐ray determination of 

root surface area. Acta Odontologica 

Scandinavica 21, 35–46.

Lang, N.P., Kiel, R.A., and Anderhalden, K. 

(1983). Clinical and microbiological effects 

of subgingival restorations with overhanging 

or clinically perfect margins. Journal of 

Clinical Periodontology 10, 563–578.

Leknes, K.N. (1997). The influence of anatomic 

and iatrogenic root surface characteristics 

on bacterial colonization and periodontal 

destruction: A review. Journal of 

Periodontology 68, 507–516.


background image

Chapter 1  

14

Lim, H.‐C., Jeon, S.‐K., Cha, J.‐K. et al. (2016). 

Prevalence of cervical enamel projection 

and its impact on furcation involvement in 

mandibular molars: A cone‐beam computed 

tomography study in Koreans. The 

Anatomical Record 299, 379–384.

Lindhe, J., and Svanberg, G. (1974). Influence 

of trauma from occlusion on progression of 

experimental periodontitis in the beagle dog. 

Journal of Clinical Periodontology 1, 3–14.

Loevy, H.T., and Kowitz, A.A. (1997). The 

dawn of dentistry: Dentistry among the 

Etruscans. International Dental Journal 47, 

279–284.

Lowman, J.V., Burke, R.S., and Pelleu, G.B. 

(1973). Patent accessory canals: Incidence in 

molar furcation region. Oral Surgery Oral 

Medicine Oral Pathology 38, 451–455.

Mandelaris, G.A., Wang, H.L., and MacNeil, 

R.L. (1998). A morphometric analysis of the 

furcation region of mandibular molars. 

Compendium of Continuing Education in 

Dentistry 19, 113–120.

Masters, D.H., and Hoskins, S.W. (1964). 

Projection of cervical enamel into molar 

furcations. Journal of Periodontology 35,  

49–53.

Matthews, D., and Tabesh, M. (2004). 

Detection of localized tooth‐related factors 

that predispose to periodontal infections. 

Periodontology 2000 34, 136–150.

Meister, F., Lommel, T.J., and Gerstein, H. 

(1980). Diagnosis and possible causes of 

vertical root fractures. Oral Surgery, Oral 

Medicine, Oral Pathology 49, 243–253.

Moskow, B.S., and Canut, P.M. (1990). Studies 

on root enamel. Journal of Clinical 

Periodontology 17, 275–281.

Nakatsu, S., Yoshinaga, Y., Kuramoto, A. et al. 

(2014). Occlusal trauma accelerates 

attachment loss at the onset of experimental 

periodontitis in rats. Journal of Periodontal 

Research 49, 314–322.

Nordland, P., Garrett, S., Kiger, R.D. et al. 

(1987). The effect of plaque control and root 

debridement in molar teeth. Journal of 

Clinical Periodontology 14, 231–236.

Nyman, S., Lindhe, J., and Ericsson, I. (1978). 

The effect of progressive tooth mobility on 

destructive periodontitis in the dog. Journal 

of Clinical Periodontology 5, 213–225.

Orban, B., and Mueller, E. (1929). The 

development of the bifurcation of 

multirooted teeth. Journal of the American 

Dental Association 16, 297–319.

Reinhardt, R.A., and Killeen, A.C. (2015). Do 

mobility and occlusal trauma impact 

periodontal longevity? Dental Clinics of 

North America 59, 873–883.

Rifkin, B.A., and Ackerman, M.J. (2011). 

Human Anatomy: A Visual History from the 

Renaissance to the Digital Age. New York, 

NY: Abrams Books.

Santana, R.B., Uzel, I.M., Gusman, H. et al. 

(2004). Morphometric analysis of the 

furcation anatomy of mandibular molars. 

Journal of Periodontology 75, 824–829.

Svärdström, G., and Wennström, J.L. (1988). 

Furcation topography of the maxillary and 

mandibular first molars. Journal of Clinical 

Periodontology 15, 271–275.

Swan, R.H., and Hurt, W.C. (1976). Cervical 

enamel projections as an etiologic factor in 

furcation involvement. Journal of the 

American Dental Association 93, 342–345.

Thesleff, I., and Hurmerinta, K. (1981). Tissue 

interactions in tooth development. 

Differentiation 18, 75–88.

Waerhaug, J. (1980). The furcation problem: 

Etiology, pathogenesis, diagnosis, therapy 

and prognosis. Journal of Clinical 

Periodontology 7, 73–95.

Walton, R.E., Michelich, R.J., and Smith, G.N. 

(1984). The histopathogenesis of vertical 

root fractures. Journal of Endodontics 10, 

48–56.

Wang, H.L., Burgett, F.G., and Shyr, Y. (1993). 

The relationship between restoration and 

furcation involvement on molar teeth. 

Journal of Periodontology 64, 302–305.


background image

Diagnosis and Treatment of Furcation-Involved Teeth, First Edition. Edited by Luigi Nibali. 

© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd. 

Companion website: www.wiley.com/go/nibali/diagnosis

Chapter No.: 1  Title Name: <TITLENAME> 

c02.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:18:51 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 15

15

2.1   Introduction

In single‐rooted teeth, periodontal destruc-

tion proceeds from the cemento‐enamel 

junction (CEJ) apically, predominantly in a 

vertical direction. The vertical attachment 

loss is assessed as vertical probing attach-

ment loss (PAL‐V) from the CEJ, or if the CEJ 

is destroyed by a restoration from the resto-

ration margin (RM) to the bottom of the per-

iodontal pocket. Vertical bone loss is assessed 

radiographically or by vertical probing bone 

level (PBL‐V) from the CEJ or RM to the 

alveolar crest. If periodontitis affects multi‐

rooted teeth, the tissues are not only 

destroyed vertically but also horizontally 

between the roots, creating furcation involve-

ment. This dimension of periodontal 

destruction (horizontal attachment and bone 

loss) may be assessed as horizontal probing 

attachment loss (PAL‐H) or horizontal 

 probing bone level (PBL‐H).

Horizontal probing attachment loss and 

bone loss in the furcation area create a niche 

(furcation involvement), which impedes 

accessibility for individual oral hygiene in the 

molar region (Lang et al. 1973) and profes-

sional root debridement (Fleischer et  al. 

1989). This adds to the factors contributing 

to more severe disease progression in 

 furcation‐involved molars, recurrent perio-

dontal infection, and as a result an inferior 

long‐term prognosis of these teeth (McGuire 

and Nunn 1996; Dannewitz et al. 2006, 2016; 

Pretzl et  al. 2008; Salvi et  al. 2014; Graetz 

et  al. 2015). Furcation‐involved molars 

respond less favourably to periodontal ther-

apy than molars without furcation involve-

ment or single‐rooted teeth, and are at 

greater risk for further attachment loss 

(Nordland et al. 1987; Loos et al. 1989; Wang 

et al. 1994) than other teeth. Addressing this 

issue, Kalkwarf et al. (1988) reported the suc-

cess of different surgical and non‐surgical 

treatment modalities in 158 molars. 

Irrespective of the therapy performed, the 

horizontal defect in the furcation area 

increased during the two‐year follow‐up. 

Thus, reliable diagnosis of incidence and 

extent of furcation involvement is decisive 

for prognosis and treatment planning.

2.2   Clinical  Furcation 

Diagnosis

Furcation involvement can only be found in 

multi‐rooted teeth (Table  2.1). More than 

one root is regularly found in maxillary and 

mandibular molars as well as in first maxillary 

Chapter 2

Clinical and Radiographic Diagnosis and Epidemiology 
of Furcation Involvement

Peter Eickholz

1

 and Clemens Walter 

2

1

 Poliklinik für Parodontologie, Zentrum der Zahn‐ Mund‐ und Kieferheilkunde (Carolinum), Johann Wolfgang Goethe‐Universität 

Frankfurt, Frankfurt am Main, Germany

2

 Klinik für Parodontologie, Endodontologie und Kariologie, Universitätszahnkliniken, Universitäres Zentrum für Zahnmedizin Basel,  

Basel, Switzerland


background image

Chapter 2 

16

premolars (see Chapter  1). However, two‐

rooted variants may be found in second max-

illary premolars and mandibular anteriors. 

Rarely, three‐rooted variants may be found in 

mandibular molars and maxillary premolars 

(Mohammadi et  al. 2013). Those sites at 

which furcation entrances are regularly 

expected have to be examined for furcation 

involvement on a regular basis in the course 

of periodontal examination. Search for and 

scoring of furcation involvement are funda-

mental elements of periodontal examination.

Particularly in untreated periodontal 

patients, furcation entrances do not lie open. 

In most cases they are covered by gingiva. 

Thus, furcation involvement cannot be seen 

simply with the naked eye, but has to be 

probed below the gingival margin. The 

bizarre anatomy of furcations (Schroeder 

and Scherle 1987), their curved course, and 

the fact that the furcation entrances of maxil-

lary premolars and molars open into inter-

proximal spaces require the use of particular 

curved furcation probes in furcation diagno-

sis (e.g. Nabers probe; Figure 2.1). The probe 

is placed onto the tooth surface coronally of 

the gingival margin at the site where a furca-

tion entrance is expected (e.g. lingual of a 

mandibular molar). Then the probe is pushed 

apically, gently displacing the gingiva in 

 zigzag movements until the bottom of the 

sulcus or pocket is reached. If the probe falls 

into a pit horizontally, in most cases furca-

tion involvement has been detected.

Straight rigid periodontal probes (e.g. 

PCPUNC15) are inappropriate for furcation 

Table 2.1 

Regularly multi‐rooted teeth with location of roots and location 

of furcation entrances.

Tooth type

Location of 
roots

Location of furcation 
entrance

Maxillary molars

Mesio‐buccal

Disto‐buccal

Palatal

Buccal

Mesio‐palatal

Disto‐palatal

Maxillary premolars

Buccal

Palatal

Mesial

Distal

Mandibular molars

Mesial

Distal

Buccal

Lingual

Figure 2.1 

Curved furcation probes: Nabers probes (left: without markings; right: marked in 3 mm steps up to 

12 mm).


background image

Clinical and Radiographic Diagnosis and Epidemiology  17

diagnosis because they fail to follow the 

curved course of most furcations. Their use 

bears a high risk of underestimating the 

extent of the furcation involvement (Eickholz 

and Kim 1998).

2.2.1  Classification of Furcation 

Involvement

Besides the simple fact of the existence of a 

 furcation involvement and its location, the 

severity of furcation involvement is of major 

significance. Severity of furcation involve-

ment is assessed by probing the respective 

furcation in a horizontal direction using a 

rigid curved probe (e.g. Nabers probe) and 

measuring the distance from the probe tip to 

a virtual tangent to the root convexities adja-

cent to the furcation (Figure 2.2). Measuring 

this distance allows assessment of different 

degrees of furcation involvement or the 

amount of horizontal attachment loss in mil-

limetres (horizontal probing/clinical attach-

ment level: PAL‐H/CAL‐H; Figures 2.2–2.4). 

Whereas assessment of the continuous vari-

able horizontal attachment loss provides 

information on small changes of inter‐radicular 

tissues (since they are relevant after regener-

ative therapy), the categorical classification 

of inter‐radicular t issue destruction as degree 

(a)

(b)

(c)

(d)

Figure 2.2 

Furcation involvement degree I (Eickholz and Staehle 1994; Table 2.4): horizontal loss of periodontal 

tissue support up to 3 mm: (a) schematic (maxillary molar, buccal furcation entrance): horizontal probing/clinical 

attachment level 2.5 mm; (b) mesial tooth 24 with neighbouring tooth; (c) buccal tooth 46: the probe does not 

penetrate more than 3 mm between the two buccal roots; (d) disto‐palatal tooth 16 with neighbouring tooth.


background image

Chapter 2 

18

of furcation involvement provides suffi-

ciently relevant information for prognosis 

and decision regarding therapy of the respec-

tive multi‐rooted tooth.

The different classifications of furcation 

involvement basically exhibit differences 

only in the details (Tables 2.2–2‐3). The clas-

sification by Glickman (1953) provides some-

what vague criteria to distinguish classes of 

furcation involvement, and also considers 

radiographic information which is known to 

be of low reliability (Table 2.2; Ammons and 

Harrington 2006). The criteria for the Hamp 

et al. (1975) classification are based on meas-

urements  (threshold:  PAL‐H = 3 mm).  The 

colour‐coded version of the Nabers probe, 

marked in 3 mm steps (PQ2N; Figure 2.1), is 

particularly suitable for scoring degrees of 

furcation involvement, according to Hamp 

et  al. (1975; Eickholz and Kim 1998). 

However, there exist also furcation probes 

with 2 mm markings (Zappa probe ZA 2).

The distinction between degrees I and II of 

the Glickman classification is not as clear or 

definite as the distinction between degrees I 

and II according to Hamp et al. (1975); that 

is, horizontal loss of periodontal tissue sup-

port less than 3 mm (degree I) or exceeding 

3 mm (degree II). Degrees III and IV of the 

Glickman classification describe two severity 

grades of the situation where the desmodon-

tal fibres are detached from the furcation 

 fornix/dome throughout the diameter of 

the  tooth; that is, horizontal ‘through‐ 

and‐through’ destruction of the periodontal 

 tissue in the furcation (degree III according 

to Hamp et al. 1975).

The criteria for assigning a degree III 

(Hamp et al. 1975) to a furcation have also 

been modified. For Graetz et al. (2014), it was 

required to see the tip of the furcation probe 

(Nabers) at the opposite furcation opening to 

assign a degree III. For all other cases of deep 

but not completely penetrating horizontal 

probing, a degree II was assigned (Graetz 

et  al. 2014). Walter et  al. (2009) created a 

degree II–III for the situation of horizontal 

probing of more than 6 mm, but not com-

pletely penetrating to the opposite furcation 

entrance (Table  2.3). This at least partially 

(a)

(b)

Figure 2.3 

Furcation involvement degree II (Hamp et al. 1975; Tables 2.3 and 2.4): horizontal loss of support 

exceeding 3 mm, but not encompassing the total width of the furcation area: (a) schematic (maxillary molar, 

buccal furcation entrance): horizontal probing/clinical attachment level 5 mm; (b) tooth 47: the 9 mm marking 

is at the gingival margin. However, the 6 mm marking is at the height of the virtual tangent placed to the roots 

adjacent to the furcation. Source: Eickholz (2010).


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c02.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:18:51 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 19

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 2.4 

Furcation involvement degree III (Ammons and Harrington 2006): horizontal ‘through‐and‐through’ 

destruction of the periodontal tissue in the furcation: (a) schematic (maxillary molar, buccal to interproximal 

furcation entrance); (b) tooth 46 (occlusal view); (c) lingual view; (d) tooth 14; (e) tooth 16 without 

neighbouring tooth from mesio‐palatal to disto‐palatal; (f) respective radiograph; (g) tooth 46: the interdental 

bone is destroyed, and the soft tissues have receded apically so that the furcation opening is clinically visible. 

A tunnel therefore exists between the roots of such an affected tooth (Glickman degree IV); (h) respective 

radiograph. Source: d and e, Eickholz (2010).


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c02.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:18:51 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 20

Table 2.2 

Classification of furcation involvement according to Glickman (1953).

Degree 0

No furcation involvement.

Degree I

Early/incipient stage of furcation involvement.

The pocket is suprabony and primarily affects the soft tissue.

Early bone loss may have occurred with an increase in probing depth.

Radiographic changes are not usually found.

Degree II

Can affect one or more of the furcations of the same tooth.

The furcation lesion is essentially a cul‐de‐sac with a definite horizontal component.

If multiple defects are present, they do not communicate with each other because a portion 

of alveolar bone remains attached to the tooth.

The extent of the horizontal probing of the furcation determines whether the defect is early 

or advanced.

Vertical bone loss may be present and represents a therapeutic complication.

Radiographs may or may not depict the furcation involvement, particularly with maxillary 

molars because of the radiographic overlap of the roots. In some views, however, the 

presence of furcation ‘arrows’ indicates possible furcation involvement.

Degree III

The bone is not attached to the dome of the furcation.

In early degree III involvement, the opening may be filled with soft tissue and may not be 

visible. The clinician may not even be able to pass a periodontal probe completely through 

the furcation because of interference with the bifurcational ridges or facial/lingual bony 

margins. However, if the clinician adds the buccal and lingual probing dimensions and 

obtains a cumulative probing measurement that is equal to or greater than the buccal/

lingual dimension of the tooth at the furcation orifice, the clinician must conclude that a 

degree III furcation exists (Figure 2.5).

Properly exposed and angled radiographs of early degree III furcations display the defect as 

a radiolucent area in the crotch of the tooth.

Degree IV

The interdental bone is destroyed, and the soft tissues have receded apically so that the 

furcation opening is clinically visible.

A tunnel therefore exists between the roots of such an affected tooth.

The periodontal probe passes readily from one aspect of the tooth to another.

Source: A mmons and Harrington (2006).

Table 2.3 

Classification of furcation involvement according to Hamp et al. (1975).

Degree 0

No furcation involvement.

Degree I

Horizontal loss of periodontal tissue support less than 3 mm (Figure 2.2).

Modifications by:

 

Eickholz and Staehle (1994): horizontal loss of periodontal tissue support up to 3 mm.

 

Carnevale et al. (1995): horizontal loss of periodontal support not exceeding 

one‐third of the width of the tooth.

Degree II

Degree II–III

Horizontal loss of support exceeding 3 mm, but not encompassing the total width of 

the furcation area (Figure 2.3).

Modifications by:

 

Carnevale et al. (1995): horizontal loss of periodontal support exceeding one‐

third of the width of the tooth, but not encompassing the total width of the 

furcation area.

 

Walter et al. (2009): degree II – horizontal loss of support exceeding 3 mm, but 

no more than 6 mm.

 

Walter et al. (2009): horizontal loss of support exceeding 6 mm, but no detectable 

‘through‐and‐through’ destruction.

Degree III

Horizontal ‘through‐and‐through’ destruction of the periodontal tissue in the 

furcation (Figure 2.4).

Modification by:

 

Graetz et al. (2014): through‐and‐through furcation (requiring seeing the tip of 

the Nabers probe at the contralateral furcation opening).

Source: Hamp et al. (1975).


background image

Clinical and Radiographic Diagnosis and Epidemiology  21

explains the low validity of detecting degree 

III furcations accurately by clinical probing 

compared to cone‐beam computer tomography 

(CBCT; Walter et  al. 2009) or intrasurgical 

assessments (Graetz et al. 2014).

Svärdström and Wennström (1996) pro-

posed another classification that does not 

count millimetres but estimates horizontal 

probing: degree 0 = the furcation site not pro-

beable; degree 1 = the root trunk coronal to 

the furcation entrance probeable; degree 

2 = the tip of the probe passes horizontally 

into the furcation but does not reach the cen-

tre of the furcation area; degree 3 = the tip of 

the probe reaches to or beyond the centre of 

the furcation area (Svärdström & Wennström 

1996). The definition of degree 3 is quite sim-

ilar to Walter et  al.’s (2009) degree II–III. 

However, this classification does not con-

sider the case of a clearly probeable through‐

and‐through furcation.

2.2.2  Distinction Between Degree II 

and Degree III Furcation Involvement

The distinction between degree II (Hamp 

et  al. 1975; Figure  2.3) and through‐and‐

through furcation (degree III; Figure 2.4) is of 

decisive significance for either prognosis as 

well as choice of therapy:

 

Molars with degree III furcation defects 

have a worse long‐term prognosis than 

degree II lesions (McGuire and Nunn 1996; 

Dannewitz et  al. 2006, 2016; Salvi et  al. 

2014; Graetz et al. 2015).

 

Whereas buccal and lingual degree II 

lesions at least can be improved by regen-

erative therapy, there is no clinical evidence 

for any benefit of regenerative treatment 

in through‐and‐through  furcations (Sanz 

et al. 2015; see Chapters 6 and 7).

Particularly from interproximally located 

furcation entrances in the presence of 

 adjacent teeth, a furcation probe cannot be 

completely pushed through the whole furca-

tion area involved. Nevertheless, hard and 

soft tissue may be detached from the furca-

tion fornix; that is, furcation involvement 

degree III. In the definition of degree III by 

Graetz et al. (2014), this situation would be 

rated degree II. Walter et  al. (2009) would 

rate this situation degree II–III. In these 

cases, it is recommended to follow Ammons 

and Harrington (2006): in cases where the 

clinician may not even be able to pass a peri-

odontal probe completely through the furca-

tion because of interference with the 

bifurcational ridges or facial/lingual bony 

margins, they may add the buccal and lin-

gual probing dimensions. If a cumulative 

probing measurement is obtained that is 

equal to or greater than the buccal/lingual 

dimension of the tooth at the furcation ori-

fice, the furcation is rated degree III 

Table 2.4 

Recommended classification of furcation involvement.

Degree 0

No furcation involvement.

Degree I

Horizontal loss of periodontal tissue support up to 3 mm (Eickholz and Staehle 1994).

Degree II

Horizontal loss of support exceeding 3 mm, but not encompassing the total width of the 

furcation area (Hamp et al. 1975).

Degree III

Horizontal ‘through‐and‐through’ destruction of the periodontal tissue in the furcation.

In early degree III involvement, the opening may be filled with soft tissue and may not be 

visible. The clinician may not even be able to pass a periodontal probe completely through 

the furcation because of interference with the bifurcational ridges or facial/lingual bony 

margins. However, if the clinician adds the buccal and lingual probing dimensions and 

obtains a cumulative probing measurement that is equal to or greater than the buccal/

lingual dimension of the tooth at the furcation orifice, the clinician must conclude that a 

degree III furcation exists (Ammons and Harrington 2006).

Sources: Hamp et al. (1975); Eickholz and Staehle (1994); Ammons and Harrington (2006).


background image

Chapter 2 

22

(Tables 2.2 and 2.4). Thus, underestimation 

of furcation involvement as observed by 

Walter et al. (2009) and Graetz et al. (2014) 

can be avoided.

2.2.3  The Vertical Dimension 

of Furcation Involvement

The central problem about furcation involve-

ment is the difficult‐to‐access horizontal 

niche between the roots of multi‐rooted 

teeth. Thus, the classifications referred to 

consider mainly the horizontal component of 

attachment/bone loss. However, it is plausi-

ble that in addition to horizontal attachment/

bone loss, vertical attachment/bone loss in 

the furcation area plays a role. It has been 

demonstrated that survival of molars after 

furcation therapy does not only depend on 

baseline furcation involvement, but also on 

baseline bone loss (Dannewitz et  al. 2006; 

Park et  al. 2009). Thus, a subclassification 

has been proposed that measures the probe-

able vertical depth from the roof of the furca-

tion apically. Subclass A indicates a probeable 

vertical depth of 1–3 mm, B 4–6 mm, and C 

7 mm or more of probeable depth from the 

roof of the furcation apically. Furcations 

would thus be classified as IA, IB, IC, IIA, 

IIB, IIC, and IIIA, IIIB, IIIC (Tarnow and 

Fletcher 1984). The more severe the vertical 

component the worse is long-term prognosis 

of molars with degree II furcation involve-

ment (Tonetti et al. 2017). Prognosis also 

depends on the remaining circular attach-

ment of each root (Walter et al. 2009).

2.2.4  Reproducibility and Validity 

of the Assessment of Furcation 

Involvement

Furcation involvement is difficult to access for 

hygiene. How reliably can furcation lesions be 

diagnosed; that is, scored? Whereas for buccal, 

lingual, and mesio‐ lingual scoring of furcation 

degrees excellent intrarater reproducibility is 

reported, disto‐lingual furcation lesions pro-

vide only moderate reproducibility. Similar 

results are reported for PAL‐H measurements 

(excluding degree III furcation involvement). 

Intrarater reproducibility in disto‐lingual 

furcations is significantly worse than for all 

other locations. In mesio‐buccal furcations, a 

neighbouring tooth is associated with higher 

variability (Eickholz and Staehle 1994; Eickholz 

and Kim 1998). Interproximal furcations, in 

particular the disto‐lingual site and in the pres-

ence of a neighbouring tooth, are more difficult 

to access and to measure than the other loca-

tions. This fact has to be kept in mind when 

the clinical examiner scores maxillary molars 

in particular.

How accurately does the clinical measure-

ment assess the intrasurgically measured fur-

cation involvement (PBL‐H)? Disto‐ lingual 

location and a neighbouring tooth are also 

associated with less accuracy. Furthermore, a 

curved rigid furcation probe (Nabers probe) 

demonstrated better accuracy than a straight 

rigid (PCPUNC 15) and flexible plastic (TPS) 

probe (Eickholz and Kim 1998). Interestingly, 

clinical PAL‐H measurements on average 

overestimated intrasurgically measured 

PBL‐H. However, the difference was only sig-

nificant for measurements with a Nabers 

probe in degree I furcation lesions (Eickholz 

1995; Eickholz and Kim 1998).

2.2.5 Documentation 

of Furcation Involvement

As documented in Chapter 5, differentiated 

documentation of furcation involvement 

according to extent (degree) and location is a 

prerequisite for proper prognosis and treat-

ment planning (Figure 2.5). In the meantime, 

many computer programs for dental patient 

charting provide the necessary differentiated 

digital documentation (Florida probe chart; 

Figure 2.6).

2.3   Radiographic  Diagnosis 

of Furcation Involvement

In general, radiographs provide information 

on the translucency to X‐rays of different tis-

sues. The denser a tissue (e.g. compact 

bone) is, the less translucent it is for X‐rays. 

Thus, both two‐ and three‐dimensional radi-

ographic images primarily provide information 


background image

Clinical and Radiographic Diagnosis and Epidemiology  23

on bone in contrast to soft tissue. However, 

furcation involvement is not only a matter of 

bone, but also of connective tissue attach-

ment. Therefore, radiographs tell a substan-

tial part of but not the whole story about 

furcation involvement. This is particularly 

true after regenerative treatment, where 

there may be a new connective tissue attach-

ment without new bone formation within a 

furcation.

Using two‐dimensional radiographic tech-

niques (projection radiography: periapical 

and panoramic radiographs), reliable diagno-

sis of furcation involvement is not provided 

(Topoll et al. 1988). For maxillary premolars, 

the furcation channel is oriented perpendic-

ularly to the central beam. Thus, furcation 

involvement in maxillary premolars cannot 

be visualized using projection radiography. In 

three‐rooted maxillary molars, the furcation 

channel between mesio‐ and disto‐palatal 

furcation entrances also runs parallel to the 

plane of the radiographic film or sensor and 

perpendicular to the central beam. The buc-

cal furcation entrance is in most cases over-

lapped by the palatal root. Thus, in maxillary 

molars inter‐radicular bone can be judged 

only to a very limited extent. Only in man-

dibular molars is the  

furcation channel 

located perpendicularly to the plane of the 

film/sensor and parallel to the central beam. 

Therefore, under conditions of orthoradial 

projection, inter‐radicular bone may be 

assessed in mandibular molars. However, 

radiographs only provide information on 

resorption or density of bone. Reduced bone 

density may be due to periodontal destruc-

tion or reduced bone density caused by loose 

spongeous structure. Thus, conventional 

radiographs may only provide hints for a sus-

picion of furcation involvement; this suspi-

cion has to be confirmed or rejected by 

furcation probing using a curved probe.

Additional to degree of furcation involve-

ment, radiographs may provide information 

to judge whether a buccal or lingual degree II 

furcation may benefit from regenerative 

therapy. In molars with class II furcation 

involvement, a long root trunk, a furcation 

fornix located coronally of the adjacent inter-

proximal alveolar crest, and a wide furcation 

are associated with less favourable horizontal 

attachment gain after regenerative therapy 

(Horwitz et al. 2004).

(a)

(b)

Figure 2.5 

Furcation probing at tooth 16: (a) from mesio‐palatal – probing (PAL‐H)/clinical horizontal 

attachment loss (CAL‐H) = 9 mm; (b) from disto‐palatal – probing (PAL‐H)/clinical horizontal attachment loss 

(CAL‐H) = 6 mm. In tooth 16 the PAL‐H/CAL‐H measurements add up to 15 mm. At the furcation entrances 

tooth 16 has a width less than 15 mm. Thus the furcation is through and through (degree III; Table 2.4). Source

Eickholz (2010).


background image

Chapter 2 

24

Figure 2.6 

Differentiated documentation of furcation scores: (a) periodontal chart from the Department of 

Periodontology of the Johann Wolfgang Goethe‐Universität, Frankfurt am Main: tooth 17 – buccal degree I 

furcation; through‐and‐through furcation from mesio‐palatal to disto‐palatal (Grade III); tooth 16 – through‐

and‐through furcation at all furcation entrances; tooth 14 – distal degree I furcation. (b) Florida Probe: tooth 

17 – buccal degree I furcation; through‐and‐through furcation from mesio‐palatal to disto‐palatal (Grade III); 

tooth 16 – through‐and‐through furcation at all furcation entrances; tooth 14 – distal degree I furcation.

(a)

Furkation

b

0

AL

ST/LG

b

0

b

0

(b)

2 2 2

6

3

8

1

1

111

44

3

3

4

4

10

–1

Tooth #

1

GM

GM

3

3

3

3

3

3

3

1

1

3

6

3

7

2

6

0 1

0

2

4

400

0

4

3

5

4

3

5

000

0

3

7

1 3

0

1

Recession

Mobility

Depth

Recession

Right

Depth

2

3

4

5


background image

Clinical and Radiographic Diagnosis and Epidemiology  25

2.3.1  Digital Subtraction 

Radiography

A highly specialized and technically sensitive 

radiographic method may be used to follow 

up changes of inter‐radicular bone in molar 

furcations: digital subtraction radiography 

(DSR; (Eickholz and Hausmann 1997). Two 

consecutively obtained radiographs (e.g. prior 

to and 12 months after therapy) of the same 

tooth are overlapped in such a way that cor-

responding structures are positioned exactly 

over one another. The grey values of the 

 baseline radiograph are inverted (white to 

black, black to white) and added to those of 

the follow‐up radiograph. In two completely 

identical radiographs that overlap perfectly, a 

middle grey value will result. An increase of 

bone density (bony fill) results in lighter grey 

values, a decrease of bone density (bone loss) in 

darker grey values (Eickholz and Hausmann 

1997; Figure 2.7). However, DSR requires strict 

standardization of projection geometry and is 

highly sensitive to misalignment. Thus, the 

technique is rarely applied in clinical practice.

(a)

(b)

(c)

(d)

Figure 2.7 

Follow‐up of inter‐radicular bone at teeth 46 and 47 using digital subtraction radiography (DSR): 

(a) standardized radiograph of teeth 46 and 47 prior to regenerative therapy; (b) intrasurgical view – buccal 

degree II furcation involvement at both teeth; (c) standardized radiograph six months after regenerative 

therapy; (d) subtraction image – increase of bone density within the furcations of 46 and 47. Source

Eickholz (2010).


background image

Chapter 2 

26

2.3.2 Three‐dimensional 

Radiography

Since conventional two‐dimensional radio-

graphic imaging may have some clinically rel-

evant drawbacks, it might be useful to analyse 

distinct clinical situations, particularly in 

maxillary molar teeth, with a suitable three‐

dimensional diagnostic approach with appro-

priate exposure to radiation (Laky et al. 2013; 

Walter et  al. 2016). Cone Beam Computed 

Tomography (CBCT) has been validated in 

vivo for the assessment of furcation‐involved 

maxillary molars (Walter et al. 2016). CBCT 

data were found to be accurate in assessing 

the amount of periodontal tissue loss and in 

classifying the degree of furcation involve-

ment in maxillary molars (Walter et al. 2009, 

2010, 2016). In addition, the three‐dimensional 

images revealed several findings, such as the 

surrounding bony support of each maxillary 

molar root, fusion or proximity of roots, 

 periapical lesions, root perforations, and/or 

missing bony walls (Walter et al. 2009). The 

clinical relevance of these radiographic data 

was analysed regarding the decision‐making 

process for resective or non‐resective thera-

pies (Figures  2.8 and 2.9). These treatment 

options were classified according to their 

graduation of invasiveness (GoI), ranging 

from minimally invasive SPT to maximally 

invasive extraction and implant restoration: 

GoI 0 = supportive periodontal treatment 

Figure 2.8 

Diagnosis and treatment planning using cone‐beam computed tomography (CBCT). CBCT images 

with horizontal, sagittal, and transversal sections of first and second left maxillary molars. According to the 

bone loss around the disto‐buccal root and the remaining periodontal attachment around the mesio‐buccal 

and palatal root, it was decided to extract the distobuccal root. Source: Walter et al. (2010).


background image

Clinical and Radiographic Diagnosis and Epidemiology  27

(SPT); GoI 1 = open flap debridement with or 

without gingivectomy or  apically repositioned 

flap and/or tunnelling; GoI 2 = root separa-

tion; GoI 3 = amputation/trisection of one 

root (with or without root separation or tun-

nel preparation; GoI 4 = amputation/trisec-

tion of two roots; and GoI 5 = extraction of 

the entire tooth. Significant discrepancies 

between conventional and CBCT‐based 

treatment approaches were found in most 

situations, which possibly necessitates intras-

urgical changes in the treatment plan in those 

cases where no CBCT is available (Walter 

et al. 2009).

(a)

(b)

(c)

(d)

(e)

Figure 2.9 

Root resection in a maxillary first molar: (a) pre‐surgical view; (b) tri‐section of the distobuccal root; 

(c) the flap is fixed with monofil synthetic sutures 5 × 0; (d) four months post‐operation, the wound healing was 

uneventful; (e) a crown with an extended metal margin is placed and the patient is introduced to meticulous 

oral hygiene.


background image

Chapter 2 

28

However, the findings from a cost-benefit 

analysis indicate the need for a critical 

appraisal of CBCT applications in upper 

molars (Walter et  al. 2012). In most cases 

with clinically based GoI ≤ 1, CBCT imaging 

seems to have no or only minor impact on 

economic benefit and to reduce treatment 

time only slightly, if at all. With more inva-

sive clinically based treatment decisions 

(GoI > 1), however, the benefits of using 

CBCT were greater, probably because the 

indication for tooth extraction is clarified. 

On the one hand, a straightforward tooth 

extraction followed by implant placement 

and restoration is feasible, thereby avoiding 

explorative periodontal surgeries when the 

tooth is not maintainable. On the other 

hand, unnecessary tooth extractions and 

implant placement in sites where teeth 

would be maintainable may be avoided. 

Moreover, root canal treatments in sites 

planned for GoI degrees 2, 3, or 4 may be 

prevented, when CBCT reveals morphologi-

cal variations such as root proximities or 

root fusions, which preclude clinically based 

resective treatment planning.

The main goal of diagnostic radiology is to 

keep the radiation dose as low as reasonably 

achievable (ALARA), and this should also be 

a prerequisite for CBCT application in den-

tistry, since increased radiation in the dental 

office may potentially cause malignancies, 

including thyroid cancer or intracranial 

 meningioma (Hallquist and Näsman 2001; 

Longstreth et  al. 2004; Hujoel et  al. 2006). 

The potential risks associated with additional 

radiation exposure are only justified in single 

cases and have to be evaluated in each indi-

vidual situation.

2.4   Epidemiology  of 

Furcation Involvement

How frequent is furcation involvement? 

There exists only one population‐representative 

study from the USA on the frequency of 

 furcation involvement. Even in periodontitis 

patients, studies reporting the frequency of 

furcation involvement differentiated accord-

ing to degree are rare and relatively small.

For the third National Health and Nutrition 

Examination Survey (NHANES III), 9689 

individuals representative of the US popula-

tion received periodontal examinations 

including furcation scores. Partial furcation 

involvement was scored in sites where the 

explorer was definitely catching into but did 

not pass through the furcation. This repre-

sents degrees I and II of the Hamp et  al. 

(1975) classification (Table 2.3). Total furca-

tion involvement was assigned when the 

explorer could be passed between the roots 

and through the entire furcation. This repre-

sents degree III of the Hamp et  al. (1975) 

classification (Table 2.3). The prevalence of 

furcation involvement for all age groups was 

13.7%, and the extent was 6.8% of posterior 

teeth per person. The prevalence of through‐

and‐through furcation involvement was 0.9% 

(extent: 0.5%). The prevalence of furcation‐

involved teeth (all/through‐and‐through) 

increased with age (60–69 years: 27.6/2.1%; 

70–79: 31.7/3.2%; 80–89: 37.9/3.4%) and was 

higher in males (17.8/1.2%) than in females 

(11.3/0.7%; Albandar et al. 1999).

For a sample of 71 periodontally diseased 

patients in Germany, Dannewitz et al. (2006) 

reported tooth‐based furcation involvement; 

that is, they assigned to each molar the most 

severe furcation involvement that was 

observed within the particular tooth. Using 

this mode, the information relevant for prog-

nosis is given for each molar. However, the 

frequency of less severe furcation degrees is 

underestimated. They observed degree I 

 furcation lesions in 23%, and degree II and III 

furcation lesions in 24% and 13% of all 

molars, respectively. No furcation involve-

ment at all was exhibited in 40% of all molars. 

Premolars were not scored (Dannewitz et al. 

2006).

In a sample of 345 periodontitis patients 

(Eickholz et al. 2016), the degree of furcation 

involvement of all sites was reported (site 

based). This enlarges the proportion of less 

severe furcation lesions in comparison to 

reporting tooth‐based furcation involvement. 


background image

Clinical and Radiographic Diagnosis and Epidemiology  29

There was no furcation involvement in 45% 

of all furcation sites, which approximately 

confirms the frequency reported for molars 

(Dannewitz et al. 2006). The study observed 

degree I furcation lesions in 36%, and degree 

II and III furcation lesions in 13.5% and 5.5% 

of all molars and first maxillary premolars, 

respectively. Considering this and the fact 

that Dannewitz et  al. (2006) did not report 

premolars, the data on frequency of furcation 

lesions roughly confirm the earlier  findings in 

a much larger sample (Eickholz et al. 2016).

In individuals aged 40 years or older, every 

second molar was affected by advanced peri-

odontal destruction (score 2–3) in at least one 

furcation site (Svärdström and Wennström 

1996). Furcation involvement was found 

more frequently in the maxilla than in the 

mandible (Svärdström and Wennström 1996; 

Dannewitz et al. 2006). However, this may be 

due simply to the fact that maxillary molars 

have more sites at risk than mandibular 

molars (maxillary molars with three, man-

dibular with two furcation entrances).

At least in periodontitis patients, furcation 

involvement is a frequent finding. In perio-

dontally diseased patients, roughly one‐third 

of all molars and almost one‐fifth of all 

 furcation sites exhibit degree II and III furca-

tion involvement, which affects prognosis 

and choice of therapy for the respective 

multi‐rooted teeth.

 References

Albandar, J.M., Brunelle, J.A., and Kingman, A. 

(1999). Destructive periodontal disease in 

adults 30 years of age and older in the 

United States, 1988–1994. Journal of 

Periodontology 70, 13–29.

Ammons, W.F., and Harrington G.W. (2006). 

Furcation: Involvement and treatment. In: 

Carranza’s Clinical Periodontology (ed. M.G. 

Newman, H.H. Takei, P.R. Klokkevold, and 

F.A. Carranza), 991–1004. St. Louis, MO: 

Saunders Elsevier.

Carnevale, G., Pontoriero, R., and Hürzeler, 

M.B. (1995) Management of furcation 

involvement. Periodontology 2000 9, 69–89.

Dannewitz, B., Krieger, J.K., Hüsing, J., and 

Eickholz, P. (2006). Loss of molars in 

periodontally treated patients: A 

retrospective analysis five years or more 

after active periodontal treatment. Journal 

of Clinical Periodontology 33, 53–61.

Dannewitz, B., Zeidler, A., Hüsing, J. et al. 

(2016). Loss of molars in periodontally 

 Summary  of Evidence

 

Reliable clinical furcation diagnosis 

requires a rigid curved furcation probe 

(e.g. colour‐coded Nabers probe).

 

The distinction between degree II (Hamp 

et al. 1975) and through‐and‐through fur-

cation (degree III) is as difficult as it is of 

decisive significance for either prognosis 

as well as choice of therapy.

 

A modified classification of furcation 

involvement is recommended.

 

Conventional radiographs may only pro-

vide hints for a suspicion of furcation 

involvement. However, this suspicion has 

to be confirmed or rejected by furcation 

probing using a curved probe. CBCT may 

provide additional information for deci-

sion-making particularly in maxillary 

molars if periodontal surgery is required.

 

In periodontally diseased patients, roughly 

one‐third of all molars and almost one‐

fifth of all furcation sites exhibit degree II 

and III furcation involvement.


background image

Chapter 2 

30

treated patients: Results ten years and 

more after active periodontal therapy. 

Journal of Clinical Periodontology 43, 

53–62.

Eickholz, P. (1995). Reproducibility and 

validity of furcation measurements as 

related to class of furcation invasion. Journal 

of Periodontology 66, 984–989.

Eickholz, P. (2010). Glossar der Grundbegriffe 

für die Praxis: Parodontologische Diagnostik 

6: Furkationsdiagnostik. Parodontologie 21, 

261–266.

Eickholz, P., and Hausmann, E. (1997). 

Evidence for healing of class II and III 

furcations after GTR‐therapy: Digital 

subtraction and clinical measurements. 

Journal of Periodontology 68, 636–644.

Eickholz, P., and Kim, T.‐S. (1998). 

Reproducibility and validity of the 

assessment of clinical furcation parameters 

as related to different probes. Journal of 

Periodontology 69, 328–336.

Eickholz, P., and Staehle, H.J. (1994). The 

reliability of furcation measurements. 

Journal of Clinical Periodontology 21, 

611–614.

Eickholz, P., Nickles, K., Koch, R. et al. (2016). 

Is furcation class involvement affected by 

adjunctive systemic amoxicillin plus 

metronidazole? A clinical trial’s exploratory 

subanalysis. Journal of Clinical 

Periodontology 43 (10), 839–848.

Fleischer, H.C., Mellonig, J.T., Brayer, W.K. 

et al. (1989). Scaling and root planing 

efficacy in multirooted teeth. Journal of 

Periodontology 60, 402–409.

Glickman, I. (1953). Clinical Periodontology

Philadelphia, PA: Saunders.

Graetz, C., Plaumann, A., Wiebe, J.F. et al. 

(2014). Periodontal probing versus 

radiographs for the diagnosis of furcation 

involvement. Journal of Periodontology 85, 

1371–1379.

Graetz, C., Schützhold, S., Plaumann, A. et al. 

(2015). Prognostic factors for the loss of 

molars – an 18‐years retrospective cohort 

study. Journal of Clinical Periodontology 42, 

943–950.

Hallquist, A., and Näsman, A. (2001). Medical 

diagnostic X‐ray radiation: An evaluation 

from medical records and dentist cards in a 

case‐control study of thyroid cancer in the 

northern medical region of Sweden. 

European Journal of Cancer Prevention 10, 

147–152.

Hamp, S.‐E., Nyman, S., and Lindhe, J. (1975). 

Periodontal treatment of multirooted teeth: 

Results after 5 years. Journal of Clinical 

Periodontology 2, 126–135.

Horwitz, J., Machtei, E.E., Reitmeir, P. et al. 

(2004). Radiographic parameters as 

prognostic indicators for healing of class II 

furcation defects. Journal of Clinical 

Periodontology 31, 105–111.

Hujoel, P., Hollender, L., Bollen, A.M. et al. 

(2006). Radiographs associated with one 

episode of orthodontic therapy. Journal of 

Dental Education 70, 1061–1065.

Kalkwarf, K.L., Kaldahl, W.B., and Patil, K.D. 

(1988). Evaluation of furcation region 

response to periodontal therapy. Journal of 

Periodontology 59, 794–804.

Laky, M., Majdalani, S., Kapferer, I., et al. 

(2013). Periodontal probing of dental 

furcations compared with diagnosis by 

low‐dose computed tomography: A case 

series. Journal of Periodontology 84, 

1740–1746.

Lang, N.P., Cumming, B., and Löe, H. (1973). 

Toothbrushing frequency as it relates to 

plaque development and gingival health. 

Journal of Periodontology 44, 396–405.

Longstreth, W.T., Jr, Phillips, L.E., Drangsholt, 

M. et al. (2004). Dental X‐rays and the risk of 

intracranial meningioma: A population‐based 

case‐control study. Cancer 100, 1026–1034.

Loos, B., Nylund, K., Claffey, N., and Egelberg, 

J. (1989). Clinical effects of root 

debridement in molar and non‐molar teeth: 

A 2‐year follow‐up. Journal of Clinical 

Periodontology 16, 498–504.

McGuire, M.K., and Nunn, M.E. (1996). 

Prognosis versus actual outcome. III: The 

effectiveness of clinical parameters in 

developing an accurate prognosis. Journal of 

Periodontology 67, 666–674.


background image

Clinical and Radiographic Diagnosis and Epidemiology  31

Mohammadi, Z., Shalavi, S., and Jafarzadeh, H. 

(2013). Extra roots and root canals in 

premolar and molar teeth: Review of an 

endodontic challenge. Journal of 

Contemporary Dental Practice 14, 980–986.

Nordland, P., Garrett, S., Kriger, R. et al. 

(1987). The effect of plaque control and root 

debridement in molar teeth. Journal of 

Clinical Periodontology 14, 231–236.

Park, S.Y., Shin, S.Y., Yang, S.M., and Kye, S.B. 

(2009). Factors influencing the outcome of 

root‐resection therapy in molars: A 10‐year 

retrospective study. Journal of 

Periodontology 80, 32–40.

Pretzl, B., Kaltschmitt, J., Kim, T.‐S. et al. 

(2008). Tooth loss after active periodontal 

therapy. 2: Tooth‐related factors. Journal of 

Clinical Periodontology 35, 175–182.

Salvi, G.E., Mischler, D.C., Schmidlin, K. et al. 

(2014). Risk factors associated with the 

longevity of multi‐rooted teeth: Long‐term 

outcomes after active and supportive 

periodontal therapy. Journal of Clinical 

Periodontology 41, 701–707.

Sanz, M., Jepsen, K., Eickholz, P., and Jepsen, 

S. (2015). Clinical concepts for regenerative 

therapy in furcations. Periodontology 2000 

68, 308–332.

Schroeder, H.E., and Scherle, W.F. (1987). 

Warum die Furkation menschlicher Zähne 

so unvorhersehbar bizarr gestaltet ist. 

Schweizerische Monatsschrift für 

Zahnmedizin 97, 1495–1508.

Svärdström, G., and Wennström, J.L. (1996). 

Prevalence of furcation involvements in 

patients referred for periodontal treatment. 

Journal of Clinical Periodontology 23, 

1093–1099.

Tarnow, D., and Fletcher, P. (1984). 

Classification of the vertical component of 

furcation involvement. Journal of 

Periodontology 55, 283–284.

Tonetti, M.S., Christiansen A.L., and 

Cortellini, P. (2017). Vertical 

subclassification predicts survival of molars 

with class II furcation involvement during 

supportive periodontal care. J Clin 

Periodontol 44, 1140–1144.

Topoll, H.H., Streletz, E., Hucke, H.P., and 

Lange, D.E. (1988). Furkationsdiagnostik: 

Ein Vergleich der Aussagekraft von OPG, 

Röntgenstatus und intraoperativem Befund. 

Deutsche Zahnärztliche Zeitschrift 43, 

705–708.

Walter, C., Kaner, D., Berndt, D.C. et al. (2009). 

Three‐dimensional imaging as a pre‐

operative tool in decision making for 

furcation surgery. Journal of Clinical 

Periodontology 36, 250–257.

Walter, C., Schmidt, J.C., Dula, K. et al. (2016). 

Cone beam computed tomography (CBCT) 

for diagnosis and treatment planning in 

periodontology: A systematic review. 

Quintessence International 47, 25–37.

Walter, C., Weiger, R., Dietrich, T. et al. (2012). 

Does three‐dimensional imaging offer a 

financial benefit for the treatment of 

maxillary molars with furcation involvement? 

A pilot clinical case series. Clinical Oral 

Implants Research 23, 351–358.

Walter, C., Weiger, R., and Zitzmann, N.U. 

(2010). Accuracy of three‐dimensional 

imaging in assessing maxillary molar 

furcation involvement. Journal of Clinical 

Periodontology 37, 436–441.

Wang, H.L., Burgett, F.G., Shyr, Y., and 

Ramfjord, S. (1994). The influence of molar 

furcation involvement and mobility on 

future clinical periodontal attachment loss. 

Journal of Periodontology 65, 25–29.


background image

Diagnosis and Treatment of Furcation-Involved Teeth, First Edition. Edited by Luigi Nibali. 

© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd. 

Companion website: www.wiley.com/go/nibali/diagnosis

Chapter No.: 1  Title Name: <TITLENAME> 

c03.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:19:19 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 33

33

3.1   Introduction

An experimental gingivitis model in humans 

established that microbial plaque is the aetio-

logical factor of gingivitis (Loe et  al. 1965). 

A 26‐year longitudinal study on well‐maintained 

Norwegian males found that sites with per-

sistent plaque‐induced gingival inflamma-

tion had 70% more clinical attachment loss 

(odds ratio [OR] = 3.22) compared to sites 

that were always healthy, thereby supporting 

the concept that gingivitis is a prerequisite 

for the inception of periodontitis (Schatzle 

et  al. 2003). Microbial plaque exists in the 

oral cavity as biofilms, which are consortia of 

micro‐organisms interacting with the sur-

rounding environment in a dynamic manner. 

Subgingival plaque samples from 588 patients 

with chronic periodontitis demonstrated 

that with increasing probing depth, there was 

a significant increase in the ‘orange’ and ‘red 

complex’ microbes (Socransky and Haffajee 

2005). These Gram‐negative bacteria release 

molecules such as lipopolysaccharide and 

extracellular proteolytic enzymes, which 

interact with the innate host inflammatory 

surveillance system to mount an immune 

response against the invading bacteria 

(Darveau et  al. 1997). The inflammatory 

response results in breakdown of the con-

nective tissue attachment and supporting 

bone, leading to established periodontitis 

lesions (Page and Kornman 1997). The 

microbial nature of periodontitis is very 

complex; it is thought that alterations in the 

composition of the subgingival biofilm (dys-

biosis) involving ‘accessory’ and ‘keystone’ 

pathogens and pathobionts drive periodonti-

tis in a susceptible host (Hajishengallis and 

Lamont 2012).

In order to arrest the initiation and pro-

gression of periodontitis, its management is 

predominantly focused on removing micro-

bial plaque and its retentive factors from root 

surfaces and gingival sulci. This is primarily 

achieved by professional supra‐ and subgin-

gival mechanical debridement, with the aim 

of disrupting the microbial biofilm growing 

on the root surface. Subgingival tooth 

debridement has traditionally been referred 

to as ‘scaling and root planing’, although the 

importance of necessarily planing or smooth-

ening the root surface has been questioned 

(Checchi and Pelliccioni 1988; Smart et  al. 

1990). Microbial biofilm disruption leads to a 

reduction of the host response cascade, 

which halts periodontal destruction and thus 

results in improvement of the clinical signs of 

disease. Immediately after scaling and root 

planing, the denuded root surface will be 

partially covered by fibrin and polymorpho-

nuclear leukocytes. The junctional epithelium 

Chapter 3

How Good are We at Cleaning Furcations? Non‐surgical 
and Surgical Studies

Jia‐Hui Fu

1

 and Hom‐Lay Wang

2

1

 Discipline of Periodontics, Faculty of Dentistry, National University of Singapore, Singapore

2

 Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA


background image

Chapter 3 

34

will start to migrate apically towards the per-

iodontal ligament. Granulation tissue will 

form in the transseptal fibre region. By the 

third week, the apical migration of the junc-

tional epithelium will terminate at the apical 

end of the root instrumentation, with the 

periodontal ligament fibres oriented parallel 

to the root surface. Some root resorption or 

even crestal bone loss may occur along the 

root surface at areas that are not covered by 

the long junctional epithelium. As a result, 

the healing after scaling and root planing is 

therefore mainly by periodontal repair, with 

the formation of the long junctional epithe-

lium and gingival recession (Tagge et  al. 

1975; Biagini et al. 1988).

It is relatively straightforward to debride 

single‐rooted teeth; however, in multi‐rooted 

teeth the furcal areas are anatomically chal-

lenging to access because of their configura-

tions. Several anatomical factors related to 

furcations and roots, covered by Pretzl in 

Chapter  1, contribute to the aetiology and 

compromised prognoses of furcation‐

involved teeth. These factors include furca-

tion entrance width, root trunk length, and 

the presence of root concavities, cervical 

enamel projections, bifurcation ridges, and 

enamel pearls. An evaluation of 50 mandibu-

lar molars revealed variations in the furca-

tion area, with 48%, 34%, and 18% having flat, 

convex, and concave domes, respectively 

(Matia et  al. 1986). Therefore, it has been 

reported that complete plaque and calculus 

removal in the furcation is highly unlikely 

(Matia et  al. 1986; Parashis et  al. 1993a, b; 

Kocher et  al. 1998a, b). The imperfect 

debridement can be attributed to the pres-

ence of difficult‐to‐reach root concavities, 

which are commonly found in the furcal 

areas, with an incidence of 100% in maxillary 

premolars, 17–94% in maxillary molars, and 

99–100% in mandibular molars (Bower 

1979a, b; Booker and Loughlin 1985). In 

addition, furcation entrances are generally 

narrower (less than 0.75 mm) than the blade 

of conventional curettes (0.75–1.10 

mm; 

Bower 1979a, b; Chiu et al. 1991; dos Santos 

et al. 2009). Therefore, this chapter attempts 

to provide an overview of the efficacy of 

non‐surgical and surgical debridement of 

furcal areas, using instruments such as 

curettes, ultrasonic scalers, lasers, photody-

namic therapy, and interdental brushes.

3.2   Longitudinal  Studies 

on Management of 

Furcation‐involved Teeth

Ramfjord and colleagues first introduced 

the concept of longitudinal studies in 1968, 

where they compared different treatment 

modalities in a large subject population over 

time using the split‐mouth design. This 

approach allowed clinicians to better appre-

ciate the possible treatment outcomes that 

will arise over time with minimal host varia-

bility. Subsequently, several research groups 

have adopted this approach to evaluate the 

treatment outcomes of non‐surgical and 

 surgical debridement of single‐ and multi‐

rooted teeth. These studies are generally 

described based on geographical locations 

and treatment modalities performed, 

including scaling and root planing, subgingi-

val curettage, modified Widman flap, modi-

fied Kirkland’s flap, pocket elimination, and 

apically positioned flap with and without 

osseous resection. Clinical parameters, such 

as clinical attachment level gain, probing 

depth reduction, bleeding on probing, and 

plaque index, were used to determine the 

outcome of the treatment rendered. Table 3.1 

shows a summary of longitudinal studies that 

reported data on multi‐rooted teeth. The 

results described the treatment outcomes 

specific to multi‐rooted teeth.

Results from the Michigan longitudinal 

studies reported more tooth loss in teeth 

with baseline furcation involvement (FI) 

despite surgical interventions, thus imply-

ing that the quality of surgical debridement 

or post‐surgical home or professional care 

did not deter disease progression in the long 

term (Ramfjord et  al. 1968, 1987; Wang 

et  al. 1994). The authors believed that 

although flap elevation would improve 

access to the furcation areas, complete 


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c03.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:19:19 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 35

  Table 3.1   

 Summary of some longitudinal studies that evaluated multi‐rooted teeth. 

Group

 Author/ 
 Year 

Sample 
Size

No. of 
Teeth

Treatment Modalities

Follow‐Up 
Years

SPT Protocol Results    

Michigan  Ramfjord et al.   1968    32

729

 Initial SRP with curettes. 

 Subgingival curettage vs 

gingivectomy/APF with 

osseous resection as needed. 

2

3 months

Baseline FI did not significantly affect CAL in molars in 

the short term.  

 Ramfjord et al.   1987    72

1881

 Initial SRP with curettes. 

 Surgical pocket elimination 

vs MWF vs subgingival 

curettage vs SRP 

5

3 months

 

Out of 17 teeth that were lost due to periodontal reasons:

 

  16 had FI at baseline. 

 

 15 were treated with surgical interventions and 2 were 

treated with SRP.     

 Wang et al.   1994   

24

165

 Initial SRP with curettes. 

 Surgical pocket elimination 

vs MWF vs subgingival 

curettage vs SRP. 

8

3 months

FI molars had 2.54 times greater risk of being lost.  

Minnesota  Pihlstrom et al.   1984    10

266

SRP alone vs SRP with 

MWF vs subgingival 

curettage vs SRP

6.5

3–4 months   Compared to non‐molars:

 

  Molars with baseline PPD 4–6 mm: significantly deeper 

residual PPD (1.05 mm) and greater apical CAL 

(0.54 mm) after SRP alone. 

 

 Molars with baseline PPD of 4–6 mm: significantly 

deeper residual PPD (1.02 mm) and greater apical CAL 

(1.27 mm) after SRP with MWF. 

 

 Molars with baseline PPD ≥ 7 mm: no significant 

difference in PPD or CAL, for both treatment 

modalities.   

 9/11 teeth lost after completion of treatment were molars.   

Loma Linda   Nordland et al.   1987    19

Initial SRP with curettes 

and ultrasonic scaler

2

3 months   Compared to non‐molar or non‐furcation sites, molar FI 

sites had:

 

  More bleeding on probing. 

 

 Higher bleeding scores of 60% to 70% and > attachment 

loss (1 out of 5 molars) when PPDs were 7 mm or more. 

 

 Lowest post‐treatment reduction was in PPD (1.0 mm). 

 

 0.5 mm loss of CAL instead of attachment gain.     

(Continued)


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c03.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:19:19 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 36

Table 3.1 

(Continued)

Group

 Author/ 
 Year 

Sample 
Size

No. of 
Teeth

Treatment Modalities

Follow‐Up 
Years

SPT Protocol Results    

 Loos et al.   1988   

11

43

Initial SRP with ultrasonic 

scaler.

1.1

3 months

 

Compared to non‐molar sites, molar FI sites had:

 

  Greater tendency to rebound after treatment. 

 

 Mean probing attachment level gain of 0.1 mm (0.7 mm 

at non‐molar sites). 

 

 Significantly higher microbial count.     

 Loos et al.   1989   

12

1682

Initial SRP with ultrasonic 

or sonic scaler.

2

3 months

 

Molar FI sites:

 

  Similar PPD and CAL pre‐ and post‐treatment. 

 

 With at least 7.0 mm PPD had lower PPD reduction 

after treatment. 

 

 Did not have significant changes in CAL. 

 

 Had greater percentage of sites worsening over time 

(38.5%).     

Nebraska   Kalkwarf et al.   1988    82

1394

 Initial scaling with curettes 

and ultrasonic scaler. 

 Coronal scaling only vs SRP 

vs SRP with MWF vs SRP 

with flap and osseous 

resection. 

2

3 months

 

  FI sites tended to progress with horizontal probing 

attachment loss irrespective of treatment. 

 

 Periodontal breakdown rate was 2.6% for sites that had 

osseous resection, 5.9% for sites that had MWF, 8.4% 

for sites that had SRP, and 8.3% for sites that had 

coronal scaling only.    

North 

Carolina

 Hirschfeld and 

Wasserman   1978   

600

15 666 SRP, gingivectomy, 

gingivoplasty, and APF 

with osseous surgery.

15

4–6 months

 

  19.3% of FI molars were lost compared to 1.7% of 

incisors in a well‐maintained population.    

 McFall   1982   

100

2627

SRP, curettage, gingivectomy, 

gingivoplasty, and APF with 

osseous surgery.

15

3–6 months

 

  27.3% of FI molars were lost compared to 0.6% of 

incisors in a well‐maintained population.    

 Wood et al.   1989   

63

1607

SRP.

13.6

6–9 months

 

  23.2% of FI molars were lost compared to 0.8% of 

incisors in a well‐maintained population.    


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c03.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:19:19 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 37

Table 3.1 

(Continued)

Group

 Author/ 
 Year 

Sample 
Size

No. of 
Teeth

Treatment Modalities

Follow‐Up 
Years

SPT Protocol Results    

 Loos et al.   1988   

11

43

Initial SRP with ultrasonic 

scaler.

1.1

3 months

 

Compared to non‐molar sites, molar FI sites had:

 

  Greater tendency to rebound after treatment. 

 

 Mean probing attachment level gain of 0.1 mm (0.7 mm 

at non‐molar sites). 

 

 Significantly higher microbial count.     

 Loos et al.   1989   

12

1682

Initial SRP with ultrasonic 

or sonic scaler.

2

3 months

 

Molar FI sites:

 

  Similar PPD and CAL pre‐ and post‐treatment. 

 

 With at least 7.0 mm PPD had lower PPD reduction 

after treatment. 

 

 Did not have significant changes in CAL. 

 

 Had greater percentage of sites worsening over time 

(38.5%).     

Nebraska   Kalkwarf et al.   1988    82

1394

 Initial scaling with curettes 

and ultrasonic scaler. 

 Coronal scaling only vs SRP 

vs SRP with MWF vs SRP 

with flap and osseous 

resection. 

2

3 months

 

  FI sites tended to progress with horizontal probing 

attachment loss irrespective of treatment. 

 

 Periodontal breakdown rate was 2.6% for sites that had 

osseous resection, 5.9% for sites that had MWF, 8.4% 

for sites that had SRP, and 8.3% for sites that had 

coronal scaling only.    

North 

Carolina

 Hirschfeld and 

Wasserman   1978   

600

15 666 SRP, gingivectomy, 

gingivoplasty, and APF 

with osseous surgery.

15

4–6 months

 

  19.3% of FI molars were lost compared to 1.7% of 

incisors in a well‐maintained population.    

 McFall   1982   

100

2627

SRP, curettage, gingivectomy, 

gingivoplasty, and APF with 

osseous surgery.

15

3–6 months

 

  27.3% of FI molars were lost compared to 0.6% of 

incisors in a well‐maintained population.    

 Wood et al.   1989   

63

1607

SRP.

13.6

6–9 months

 

  23.2% of FI molars were lost compared to 0.8% of 

incisors in a well‐maintained population.    

Group

 Author/ 
 Year 

Sample 
Size

No. of 
Teeth

Treatment Modalities

Follow‐Up 
Years

SPT Protocol Results    

New 

Jersey

 Ross and 

Thompson   1978   

100

387

Scaling, curettage, 

gingivectomy, gingivoplasty, 

and APF

5–24

 

   12% of FI maxillary molars were extracted, of which 

22% had been present for at least 6 years and 33% for 

11–18 years. 

 

 Changes in bone support of FI maxillary molars at 

5–24 years post‐treatment:

 

–    75% had no significant change. 

 

–   11% had bone loss. 

 

–   2% had slight improvement. 

 

–   12% were extracted.  

     

Sweden

 Lindhe et al.   1982   

15

SRP vs MWF.

2

2 weeks for 

6 months, 

followed by 

once every 

3 months

 

  Reduction in mean plaque index scores was greater in 

non‐molars. 

 

 In surgically treated sites, greater PPD reduction in 

non‐molars, but in non‐surgically treated sites it was 

comparable between non‐molars and molars.    

Germany   Dannewitz 

et al.   2006   

71

505

Initial SRP, followed by OFD, 

GTR, root resection or 

separation, or tunnelling 

procedure.

>5 years

 

  3.8% of FI molars lost after active therapy. 

 

 31.8% of FI molars lost over time after SRP. 

 

 34.6% of FI molars lost over time after SRP and flap 

surgery. 

 

 Molars with class III FI tended to deteriorate 

significantly over time.    

 Dannewitz 

et al.   2016   

136

Initial SRP

13.2

 

  Molars with class III furcations had 4.68 times higher 

risk of being lost compared to non‐FI molars.  

  APF = apically positioned flap; CAL = clinical attachment level; FI = furcation involvement; GTR = guided tissue regeneration; MWF = modified Widman flap; OFD = open‐flap 

debridement; PPD = probing pocket depth; SRP = scaling and root planning; SPT = supportive periodontal therapy.  


background image

Chapter 3 

38

debridement was difficult to achieve and 

maintain post‐surgically due to the complex 

configurations of the furcal area; therefore, 

furcation‐involved teeth had a poorer long‐

term prognosis. In addition, it was hard to 

maintain furcated molars, thus they had a 

2.54 times greater susceptibility of being 

lost during the periodontal maintenance 

phase (Wang et  al. 1994). A longitudinal 

study by the Minnesota group demonstrated 

that molars compared to non‐molars had 

significantly greater post‐treatment pocket 

depth and clinical attachment level changes 

at sites with baseline pocket depths of 

4–6 mm, regardless of the treatment ren-

dered. However, at deeper sites (pocket 

depth of 7 mm or more), no significant dif-

ferences were detected between molars and 

non‐molars in the long term. Although the 

authors did not report the severity of FI in 

the molars in their study, 9 out of the 11 

teeth that were extracted at the end of treat-

ment were molars (Pihlstrom et al. 1984).

The Loma Linda group evaluated the 

effectiveness of plaque control and subgin-

gival root debridement of non‐molar, molar 

non‐furcation, and molar furcation sites 

over a two‐year period and found that 

molar furcation sites had persistent inflam-

mation, the poorest response to treatment 

in terms of pocket depth reduction and 

clinical attachment gain, and a significant 

tendency to rebound to baseline status after 

treatment (Nordland et al. 1987; Loos et al. 

1988, 1989). The Nebraska group compared 

coronal scaling alone, complete scaling 

and root planing alone and followed by 

modified Widman flap or osseous‐respec-

tive surgery in the management of molars 

with FI. Their results showed that osseous 

resection had the greatest probing depth 

reduction with the least tendency for fur-

ther breakdown (Kalkwarf et al. 1988). The 

North Carolina group evaluated patients 

over 13–15 years and found that molars 

with FI were lost 10–27 times more fre-

quently compared to  incisors, despite hav-

ing non‐surgical and surgical periodontal 

treatment with regular maintenance 

(Hirschfeld and Wasserman 1978; McFall 

1982; Wood et al. 1989).

A group in New Jersey evaluated 384 

 maxillary molars with varying degrees of FI 

over 5–24 years. They used a combination 

of scaling, curettage, gingivectomy and/or 

gingivoplasty, and apically positioned flap 

to manage the furcation‐involved maxillary 

molars. Their results showed that the ther-

apies rendered were able to maintain maxil-

lary molars with FI over that period, with 

only 12% of molars being lost over time. 

However, the therapies did not have any 

effect on the bone support, as 75% of the 

molars had no significant changes in bone 

levels. On the contrary, 11% had detectable 

bone loss and 12% were extracted (Ross and 

Thompson 1978). A German group evalu-

ated only molars in 136 patients over a 

mean follow‐up period of 13 years. They 

reported that similar percentages of molars 

were lost when treated with both closed‐ 

and open‐flap scaling and root planing 

(Dannewitz et  al. 2006, 2016). A group in 

Sweden too found that reduction in the 

mean plaque index score was greater in 

non‐molars compared to molars (Lindhe 

et al. 1982).

A review of the longitudinal studies seemed 

to show that debridement of the furcation 

areas during root planing or with a surgical 

procedure, for instance apically positioned 

flap with osseous surgery, did not signifi-

cantly improve the long‐term prognosis of 

these teeth. Although furcation‐involved 

teeth might survive in the long term, their 

survival rates were substantially lower than 

single‐rooted teeth such as incisors. The 

authors alluded that the anatomy of the fur-

cation area complicated both professional 

debridement and patient home care, imply-

ing that the quality of debridement might not 

be ideal and thereby indicating that molar 

teeth are tougher to maintain successfully 

over time. A summary on the long‐term sur-

vival of molars with FI is provided in 

Chapter 5.


background image

How Good are We at Cleaning Furcations?  39

3.3   Professional 

Debridement

Conventionally, scaling and root planing are 

carried out using manual instruments, such 

as curettes, sickles, chisels, hoes, and files, or 

power‐driven scalers, for example sonic or 

ultrasonic scalers. These instruments can be 

used in both the non‐surgical and surgical 

phases of periodontal therapy. Curettes, for 

instance universal and Gracey, are double‐

ended instruments with customized cutting 

edges, shank lengths, blade lengths, and 

angulations. Therefore, each one of the nine 

standard Gracey curettes is designed to scale 

and root plane a specific area in the mouth. 

These curettes have a blade width of at least 

0.76 mm and a blade length of 5 mm (Oda 

et al. 2004).

Powered scalers are either sonic or ultra-

sonic. In sonic scalers, compressed air causes 

the working tip to vibrate in an elliptical fash-

ion at frequencies of 2000 to 6000 Hz under a 

water spray. Ultrasonic scalers, on the other 

hand, are subclassified into magnetostrictive 

and piezoelectric scalers. The magnetostric-

tive scalers, such as Cavitron® (Dentsply, 

USA), work by creating a magnetic field 

where an expanding and contracting coil, 

together with an alternating current, results 

in vibrations that are transmitted to the 

working tip. The tip moves in an elliptical 

motion, thus all sides of the tip are active. In 

the piezoelectric scalers, such as Piezon 

Master® (EMS, Switzerland), reactive ceramic 

crystals undergo dimensional changes when 

subjected to an alternating electrical current. 

The expansion and contraction result in 

vibrations that are transmitted to the work-

ing tip, which moves in a linear manner, thus 

only the lateral sides of the tip act as the 

active sides. The average ultrasonic scaler tip 

width is 0.55 mm (Oda et al. 2004).

A comparison between the use of hand 

instruments and ultrasonic scalers showed 

that the latter were better suited for the 

debridement of narrow furcation areas, as 

their tips were narrower than curettes and 

thus could debride the hard‐to‐reach areas 

(Matia et  al. 1986; Sugaya et  al. 2002). In 

addition, they were able to significantly 

reduce the bacterial counts for all degrees of 

FI and were more effective in debriding the 

class II and III furcations compared to 

curettes (Leon and Vogel 1987). A study that 

evaluated the efficacy of four ultrasonic 

sharp tips (Cavitron TFI 10 tip, Cavitron 

EWPP [Probe] tip, Titan‐S Universal tip, and 

Titan‐S Sickle tip) showed that there were no 

significant differences in calculus removal 

when different tips were used (Patterson 

et al. 1989). When sharp tips were compared 

to ball tips, the Titan sonic scaler with uni-

versal tip and Cavitron with ball tip were the 

most efficient at debriding both maxillary 

and mandibular molars, especially the furca-

tion roofs (Takacs et al. 1993). Other similar 

studies evaluated modified sonic tips with 

different angulations, and found that angu-

lated tips provided a more thorough debride-

ment because the tips could better access the 

furcations (Kocher et al. 1996, 1998a, b). In 

addition, some of the sonic tips had an ellip-

soidal terminal end of 0.8 mm in diameter, 

which would provide more intimate contact 

with the root concavities and the furcation 

dome, thus improving the quality of the 

instrumentation. Diamond‐coated ultra-

sonic and sonic scaler tips were found to 

remove calculus 2–3.3 times faster than 

manual curettes, but they were prone to 

remove cementum and dentine during 

debridement (Kocher and Plagmann 1999; 

Scott et al. 1999).

A study that investigated the quality of the 

mechanical and chemical debridement of root 

surfaces on 90 periodontally involved 

extracted teeth found that with unlimited 

access to the root surfaces, all mechanical 

debridement methods – that is, curettes, and 

ultrasonic with regular or diamond‐coated 

P‐10 tip  –  were equally effective. Thus, this 

study suggested that access was the main criti-

cal factor that affected the quality of root sur-

face debridement (Eschler and Rapley 1991). 

In addition, it was reported that interproximal 


background image

Chapter 3 

40

FIs responded less favourably to mechanical 

debridement compared to their buccal and 

lingual counterparts. This phenomenon 

could be due to the increased difficulty in 

accessing the interproximal furcations for 

debridement (Del Peloso Ribeiro et  al. 

2007).

Besides modifying the scaler tips, root 

surface debridement can be performed 

through a non‐surgical (closed) or surgical 

(open) approach. It was reported that sig-

nificantly more residual calculus was found 

in groups that had the closed approach 

(34.1–37.0%) compared to the open 

approach (1.0–2.7%; Matia et  al. 1986). In 

addition, clinical experience and proficiency 

did significantly affect the quality of debride-

ment at the furcations. Less experienced 

residents left significantly more calculus‐

free surfaces with the open approach (43%) 

compared to the closed approach (8%). This 

percentage of only 8% calculus‐free furca-

tion surfaces for less experienced operators 

with a closed approach was particularly 

striking. On the other hand, there was no 

significant difference between the open and 

closed approaches for experienced perio-

dontists (Fleischer et  al. 1989). Using the 

open approach, experienced periodontists 

had 68% calculus‐free furcation surfaces 

compared to 44% with a closed approach. 

Although the percentages were not statisti-

cally significant, they were clinically impor-

tant, because almost a quarter of the root 

surfaces had residual calculus when the 

closed approach was used. However, despite 

the increased visibility with the open 

approach, the use of hand instruments at the 

furcal areas was ineffective (Fleischer et al. 

1989; Wylam et al., 1993).

Figure  3.1 shows an extracted maxillary 

first molar which had received what was 

defined as ‘deep cleaning’ by a general dental 

practitioner. The tooth was extracted, since it 

was deemed hopeless due to bone loss to the 

apex and mobility degree III. The images 

show very extensive deposits of calculus in 

the furcation region.

Table 3.2 shows a summary of the studies 

that evaluated the effectiveness of mechanical 

and chemical debridement at multi‐rooted 

teeth. It is obvious that there is a paucity of 

available literature on the effectiveness of 

mechanical debridement in furcation areas. 

A  systematic review of 13 randomized 

 controlled clinical trials revealed that there 

(a)

(b)

(c)

Figure 3.1 

The upper right maxillary molar (UR6) of a 53‐year‐old female patient affected by generalized 

advanced chronic periodontitis, extracted as deemed hopeless due to bone loss to the apex and mobility 

degree III. This tooth had received what was defined as ‘deep cleaning’ by a general dental practitioner. 

However, the images show very extensive deposits of calculus in the furcation region, testifying to the 

difficulty of achieving good subgingival debridement in furcation regions.


background image

  Table 3.2   

 Summary of studies that evaluated efficacy of mechanical debridement. 

 Author/ 
 Year 

Sample 
Size

No. of Teeth

Study Design

Results    

 Matia et al. 

  1986   

48

50 mandibular 

molars with class II 

or III FI

Curette (closed approach) vs curette 

(open approach) vs ultrasonic (closed 

approach) vs ultrasonic (open approach) 

vs no treatment.

 

  Closed approach: ultrasonic scaler and curette had 

37.7% and 34.1% of residual calculus, respectively. 

 

 Open approach: ultrasonic scaler and curette had 

1.0% and 2.7% of residual calculus, respectively. 

 

 More calculus was removed with the open 

approach. 

 

 Ultrasonic scaling removed more calculus in 

narrow furcations (<2.3 mm) compared to curette.    

 Leon and 

Vogel   1987   

6

33 maxillary and 

mandibular molars 

(class I, II, and III FI)

Gracey curettes vs ultrasonic scaler 

(Cavitron® with P‐10 tip) vs no 

treatment.

 

  Ultrasonic scaling was significantly more effective 

than curettes in reducing the bacterial counts for all 

degrees of FI. 

 

 Ultrasonic scaling was more effective in the class II 

and III FI.    

 Oda and 

Ishikawa 

  1989   

120 extracted 

maxillary and 

mandibular molars

Gracey curettes #11/12 and #13/14 vs 

standard tip for ultrasonic scaler (ST‐08) 

vs newly designed spherical tip (0.8 mm 

diameter).

 

  Mean % of residual marks that represents calculus: 

15.1%, 50.3%, and 61.1% for newly designed tip, 

conventional ultrasonic scaler tip, and Gracey 

curettes, respectively, in maxillary molars (16.7%, 

44.1%, and 39.5%, respectively, in mandibular molars). 

 

 The newly designed tip produced surfaces that 

were as smooth as those produced by the Gracey 

curettes. 

 

 The newly designed tip was more effective in 

debriding the furcation area.    

 Patterson 

et al.   1989   

24 extracted 

mandibular molars 

mounted on a 

typodont

Cavitron TFI 10 tip vs Cavitron EWPP 

(Probe) tip vs Titan‐S Universal tip vs 

Titan‐S Sickle tip.

 

  Mean % of residual calculus: 13 mm 

2

 , 11 mm 

2

 , 

9 mm 

2

 , and 8 mm 

2

  for Cavitron TFI 10 tip, Cavitron 

EWPP (Probe) tip, Titan‐S Universal tip, and 

Titan‐S Sickle tip (no significant differences). 

 

 On average 25–30% of calculus remained after 

debridement. 

 

 No significant differences between the efficacy of 

the four ultrasonic tips.    

(Continued)


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c03.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:19:19 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 42

Table 3.2 

(Continued)

 Author/ 
 Year 

Sample 
Size

No. of Teeth

Study Design

Results    

 Scott et al. 

  1999   

60 extracted 

mandibular molars

Cavitron TFI‐10 tip vs Gracey curettes 

vs fine‐ or medium‐grit diamond‐coated 

ultrasonic tips.

 

  Ultrasonic scaling was significantly faster than 

hand curettes in calculus removal.    

 Parashis 

et al.   1993b   

23

30 mandibular 

molars (60 

furcations)

SRP with closed approach vs SRP with 

open approach vs SRP with open 

approach + rotary diamond 

instrumentation.

 

  The use of the rotary diamond tip significantly 

removed more calculus in the furcation area.    

 Kocher 

et al.   1996   

24 acrylic molars

Universal curettes vs sonic scaler vs 

modified sonic scaler with bud‐shaped 

tips and different angulations vs 

modified sonic scaler tips with plastic 

coating.

 

  Ultrasonic scaling was more effective than hand 

instrumentation. 

 

 Specific angulations of the scaler tips were more 

suited for distal furcations or the root of the 

furcations. 

 

 Sonic scaler tips with plastic coatings appeared to 

remove only plaque and thus were not suitable for 

furcation debridement.    

 Kocher 

et al.   1998a   

15 extracted 

maxillary and 

mandibular molars 

placed in a dummy 

model

Curettes vs diamond bur and curettes vs 

ultrasonic scaler vs sonic scaler vs 

diamond‐coated sonic scaler tips 

(angulated like Gracey curette #13/14 

with 1.5 mm diameter and 45 microns 

diamond grit size).

 

  Ultrasonic and sonic scalers cleaned only 70% of 

the root surfaces compared to the other groups 

(85%). 

 

 Only the diamond‐coated sonic scaler managed to 

effectively clean the maxillary molars (85% of the 

root surfaces were clean compared to 75% by 

curettes).    

 Kocher 

et al.   1998b   

15 extracted 

maxillary and 

mandibular molars 

placed in a dummy 

model

Curettes vs diamond‐coated sonic scaler 

tips (angulated like Gracey curette 

#13/14 and universal curette, with 1 mm 

diameter and 15 microns diamond grit 

size).

 

  Mandibular molars were better debrided compared 

to maxillary molars. 

 

 Diamond‐coated sonic scalers do damage the root 

surfaces to the same degree as hand curettes (more 

definitive notches were seen on the palatal roots). 

 

 Diamond‐coated sonic scaler tips with varying 

angulations did improve root surface debridement.    


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c03.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:19:19 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 43

Table 3.2 

(Continued)

 Author/ 
 Year 

Sample 
Size

No. of Teeth

Study Design

Results    

 Scott et al. 

  1999   

60 extracted 

mandibular molars

Cavitron TFI‐10 tip vs Gracey curettes 

vs fine‐ or medium‐grit diamond‐coated 

ultrasonic tips.

 

  Ultrasonic scaling was significantly faster than 

hand curettes in calculus removal.    

 Parashis 

et al.   1993b   

23

30 mandibular 

molars (60 

furcations)

SRP with closed approach vs SRP with 

open approach vs SRP with open 

approach + rotary diamond 

instrumentation.

 

  The use of the rotary diamond tip significantly 

removed more calculus in the furcation area.    

 Kocher 

et al.   1996   

24 acrylic molars

Universal curettes vs sonic scaler vs 

modified sonic scaler with bud‐shaped 

tips and different angulations vs 

modified sonic scaler tips with plastic 

coating.

 

  Ultrasonic scaling was more effective than hand 

instrumentation. 

 

 Specific angulations of the scaler tips were more 

suited for distal furcations or the root of the 

furcations. 

 

 Sonic scaler tips with plastic coatings appeared to 

remove only plaque and thus were not suitable for 

furcation debridement.    

 Kocher 

et al.   1998a   

15 extracted 

maxillary and 

mandibular molars 

placed in a dummy 

model

Curettes vs diamond bur and curettes vs 

ultrasonic scaler vs sonic scaler vs 

diamond‐coated sonic scaler tips 

(angulated like Gracey curette #13/14 

with 1.5 mm diameter and 45 microns 

diamond grit size).

 

  Ultrasonic and sonic scalers cleaned only 70% of 

the root surfaces compared to the other groups 

(85%). 

 

 Only the diamond‐coated sonic scaler managed to 

effectively clean the maxillary molars (85% of the 

root surfaces were clean compared to 75% by 

curettes).    

 Kocher 

et al.   1998b   

15 extracted 

maxillary and 

mandibular molars 

placed in a dummy 

model

Curettes vs diamond‐coated sonic scaler 

tips (angulated like Gracey curette 

#13/14 and universal curette, with 1 mm 

diameter and 15 microns diamond grit 

size).

 

  Mandibular molars were better debrided compared 

to maxillary molars. 

 

 Diamond‐coated sonic scalers do damage the root 

surfaces to the same degree as hand curettes (more 

definitive notches were seen on the palatal roots). 

 

 Diamond‐coated sonic scaler tips with varying 

angulations did improve root surface debridement.    

 Author/ 
 Year 

Sample 
Size

No. of Teeth

Study Design

Results    

 Kocher 

and 

Plagmann 

  1999   

15

45 maxillary and 

mandibular molars

OFD with hand curettes (Barnhart 

curette #5/6 and Gracey curettes #7/8, 

#11/12, and #13/14) vs diamond‐coated 

sonic scaler.

 

  Diamond‐coated sonic scalers cleaned two times 

faster than hand curettes. 

 

 The initial reduction in probing depths at the 

furcations was not maintained over time in both 

groups.    

 Auplish 

et al.   2000   

Acrylic molars in 

dummy head

Curettes (Gracey #11/12 and #13/14) vs 

diamond‐coated sonic scaler vs sonic 

scaler.

 

  Diamond‐coated sonic scaler took the least time to 

complete the debridement. 

 

 Diamond‐coated sonic scaler significantly removed 

more calculus compared to the sonic scalers or 

curettes.    

 Fleischer 

et al.   1989   

36

61

Curette (closed approach) by 

experienced periodontist vs curette 

(open approach) by experienced 

periodontist vs ultrasonic (closed 

approach) by less experienced residents 

vs ultrasonic (open approach) by less 

experienced residents vs no treatment.

 

  Experienced periodontists: significantly greater 

calculus‐free area (78%) in open approach vs closed 

approach (36%). 

 

 Less experienced residents: significantly greater 

calculus‐free area (45%) in open approach vs closed 

approach (18%). 

 

 At the furcal areas, less experienced residents: 

significantly greater calculus‐free surface with open 

approach (43%) vs closed approach (8%). 

 

 At the furcal areas, no significant difference 

between the open (68%) and closed (44%) 

approaches for experienced periodontists.    

 Eschler and 

Rapley   1991   

90 extracted teeth

Grouping (1) curette (Columbia #13/14) 

vs (2) curette (Columbia #13/14), 

antiformin‐citric acid vs (3) ultrasonic 

with P‐10 tip vs (4) ultrasonic with 

diamond‐coated P‐10 tip vs (5) ultrasonic 

with diamond‐coated P‐10 

tip + antiformin‐citric acid vs (6) 

ultrasonic with diamond‐coated P‐10 tip 

and curette (Columbia #13/14) vs (7) 

ultrasonic with diamond‐coated P‐10 tip 

and curette (Columbia 

#13/14) + antiformin‐citric acid vs (8) 

antiformin‐citric acid vs (9) no treatment.

 

  All groups that had mechanical debridement had 

significantly less residual stains compared to groups 

that had no treatment and antiformin‐citric acid 

treatment (chemical root preparation did not 

improve stain removal). 

 

 Debridement with ultrasonic with P‐10 tip: 

significantly greater residual stains vs debridement 

with diamond‐coated P‐10 tip and curette. 

 

 With unlimited access, all mechanical debridement 

methods appeared to be equally effective.    

(Continued)


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c03.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:19:19 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 44

Table 3.2 

(Continued)

 Author/ 
 Year 

Sample 
Size

No. of Teeth

Study Design

Results    

 Takacs 

et al.   1993   

100 extracted molars 

with FI

Cavitron® ultrasonic with 0.8 mm ball tip 

vs Cavitron ultrasonic with 

EWP12R/12 L pointed tip vs ENAC 

ultrasonic with furcation 0.8 mm ball tip 

vs EVA contra‐angle reciprocating 

handpiece with Per‐Io‐Tor #1 and #2 tips 

(similar to threaded fissure bur) vs 

Titan‐S sonic scaler with universal tip.

 

  On average 74.2% of calculus was left behind at the 

furca roof of mandibular molars after debridement 

(the pointed tip and universal tip removed the most 

calculus). 

 

 On average 76.4% of calculus was left behind at the 

furca roof of maxillary molars after debridement 

(Cavitron ball tip and universal tip removed the 

most calculus). 

 

 Titan sonic scaler with universal tip and Cavitron 

with ball tip were the most efficient at debriding 

molars.    

 Wylam 

et al.   1993   

26

60 molars with class 

II or III FI

Curettes (closed approach) vs curettes 

(open approach) vs no treatment.

 

  Molars after non‐surgical SRP: significantly greater 

residual calculus (54.3%) vs open approach (33.0%). 

 

 At the furcal area, molars after non‐surgical SRP: 

slightly greater residual calculus (93.2%) vs open 

approach (91.1%). 

 

 Hand instrumentation was unable to effectively 

clean the furcal area.    

 Otero‐

Cagide and 

Lang 

 1997 

100 artificial teeth

Curettes (Vision curvettes #11/12 and 

#13/14) vs ultrasonic with EWP‐12 L‐R 

scaler tip.

 

  Debridement with curettes had significantly less 

residual calculus compared to ultrasonics.  

  FI = furcation involvement; OFD = open‐flap debridement; SRP = scaling and root planing.  


background image

How Good are We at Cleaning Furcations?  45

was no evidence on the efficacy of powered 

scalers in debriding multi‐rooted teeth. This 

outcome needs to be interpreted with  caution, 

because out of the 13 studies, 7 evaluated 

only single‐rooted teeth, and the remaining 

6  studies focused on patient healing out-

comes. In addition, the instruments used in 

the studies were conventional Gracey and 

Columbia curettes and Cavitron ultrasonic 

tips, which have thicker blade widths than the 

instruments that are available today. The 

 evidence, however, did show that powered 

scalers debride faster than hand curettes 

(Tunkel et al. 2002).

In recent years, advancements in material 

science have allowed curettes and ultrasonic 

tips to be stronger and thinner than in past 

decades. Gracey curettes are available in 

 different angulations, for example Gracey 

curette #17/#18, or blade widths, for instance 

Micro Mini Five® Gracey curettes. The newer 

Micro Mini Five curettes have a shorter blade 

length (2 mm) and thinner blade width 

(0.6 

mm) compared to regular Gracey 

curettes, with a blade length and width of 

5mm and 0.9mm respectively. A study of 100 

artificial teeth used Vision curvettes that had 

50% shorter blades and increased blade cur-

vature to debride the furcation of mandibular 

molars. The authors reported that the modi-

fied blades were more effective than ultra-

sonic scalers in the debridement of the 

furcation area (Otero‐Cagide and Long 

1997). Besides curettes, ultrasonic tips are 

now slimmer with improved angulations. 

For example, the Cavitron ultrasonic tips 

THINserts® are 47% thinner than the 

Slimline® inserts (diameter 0.5 mm), with an 

additional 9° backbend to gain better access 

to the  subgingival areas. The EMS Piezon 

Master universal ultrasonic tips are 0.6 mm 

in diameter, and are thus able to access most 

furcation areas (<0.75 mm). Certain systems, 

such as Kavo®, have an inbuilt light‐emitting 

diode (LED) to improve visibility in the more 

 posterior areas of the oral cavity. All these 

modifications aim to improve the access 

of  instruments into the furcation area 

(Figures 3.2–3.5).

Other authors have also proposed the use 

of chemotherapeutics, such as chlorhexidine, 

essential oils, locally delivered tetracycline, 

and doxycycline, to facilitate microbial 

 biofilm removal at the furcation areas, with 

contradictory results. A more detailed review 

of this topic is provided in Chapter 10.

Figures  3.6 and 3.7 show two cases of FI 

with pre‐, intra‐, and post‐treatment views, 

showing limitations in non‐surgical debride-

ment of furcation defects and tools used for 

intrasurgical furcation debridement.

3.4   Patient Home Care

It has been shown that poor plaque control 

results in suboptimal treatment outcome 

(Rosling et  al. 1976). The clinician can 

 perform effective instrumentation, but the 

patient must be able to maintain the root 

 surface free of microbial biofilm. Numerous 

tools are available for the patient to clean 

their furcation‐involved multi‐rooted teeth. 

These are manual and powered toothbrushes, 

interspace brushes, interdental brushes, and 

the WaterPik®. A recent Cochrane systematic 

review conducted a meta‐analysis on 51 clini-

cal trials concluded that powered tooth-

brushes, compared to manual ones, were 

more effective in reducing plaque and gingi-

val inflammation in both the short and long 

term (Yaacob et  al. 2014). Powered tooth-

brushes have different modes of action, 

namely side to side, counter‐oscillation, rota-

tion oscillation, multi‐dimensional, and cir-

cular. The rotating oscillating powered 

toothbrushes were found to significantly 

reduce plaque and gingivitis in the short and 

long term, with the greatest benefit at the lin-

gual surfaces (Klukowska et  al. 2014a, b). 

Another Cochrane review evaluated 17 rand-

omized controlled trials comparing the effi-

cacy of powered toothbrushes with different 

modes of action (Deacon et al. 2010). It was 

reported that powered toothbrushes with 

the rotation oscillation motion performed 

better than those with the side‐to‐side action. 

However, limited studies with short follow‐up 

Table 3.2 

(Continued)

 Author/ 
 Year 

Sample 
Size

No. of Teeth

Study Design

Results    

 Takacs 

et al.   1993   

100 extracted molars 

with FI

Cavitron® ultrasonic with 0.8 mm ball tip 

vs Cavitron ultrasonic with 

EWP12R/12 L pointed tip vs ENAC 

ultrasonic with furcation 0.8 mm ball tip 

vs EVA contra‐angle reciprocating 

handpiece with Per‐Io‐Tor #1 and #2 tips 

(similar to threaded fissure bur) vs 

Titan‐S sonic scaler with universal tip.

 

  On average 74.2% of calculus was left behind at the 

furca roof of mandibular molars after debridement 

(the pointed tip and universal tip removed the most 

calculus). 

 

 On average 76.4% of calculus was left behind at the 

furca roof of maxillary molars after debridement 

(Cavitron ball tip and universal tip removed the 

most calculus). 

 

 Titan sonic scaler with universal tip and Cavitron 

with ball tip were the most efficient at debriding 

molars.    

 Wylam 

et al.   1993   

26

60 molars with class 

II or III FI

Curettes (closed approach) vs curettes 

(open approach) vs no treatment.

 

  Molars after non‐surgical SRP: significantly greater 

residual calculus (54.3%) vs open approach (33.0%). 

 

 At the furcal area, molars after non‐surgical SRP: 

slightly greater residual calculus (93.2%) vs open 

approach (91.1%). 

 

 Hand instrumentation was unable to effectively 

clean the furcal area.    

 Otero‐

Cagide and 

Lang 

 1997 

100 artificial teeth

Curettes (Vision curvettes #11/12 and 

#13/14) vs ultrasonic with EWP‐12 L‐R 

scaler tip.

 

  Debridement with curettes had significantly less 

residual calculus compared to ultrasonics.  

  FI = furcation involvement; OFD = open‐flap debridement; SRP = scaling and root planing.  


background image

Chapter 3 

46

periods (three months or less) and unclear 

risk of bias were included. Therefore, the 

results of the review should be interpreted 

with caution.

There is only one study that evaluated the 

efficacy of brushing instruments at the furcal 

areas (Bader and Williams 1997). The authors 

compared a pointed‐end tufted powered brush 

and a small‐head powered toothbrush, and 

found that the former was more effective in 

removing plaque at the furcal area. The pointed 

tip is able to fit into the furcal area to remove 

the plaque. As the end‐tufted brush looks simi-

lar to the interspace brush, it might be inferred 

that the interspace brush will be effective in 

maintaining the furcation area free of biofilm.

Interdental brushes come in various sizes 

and shapes. They can be conical or cylindrical 

in shape, have angled or straight handles, 

have regular nylon bristles or rubber bristles, 

and be of different sizes. They are used to 

(a)

(b)

(c)

Figure 3.2 

(a) Mini Five® Gracey curettes #11/12 and #13/14 with blade width of 0.76 mm; (b) Micro Mini Five® 

Gracey curettes #11/12 and #13/14 with blade width of 0.6 mm; (c) difference in the blade widths of the Micro 

Mini Five Gracey curette #11/12 (left) and Mini Five Gracey curette #11/12 (right).

Figure 3.3 

Traditional piezoelectric ultrasonic scaler 

tips with a diameter of 0.7–0.8 mm.


background image

How Good are We at Cleaning Furcations?  47

clean the interproximal surfaces or furcation 

areas. A comparison between dental floss 

and the interdental brush showed that the 

latter was significantly more effective in 

removing plaque (mean proximal plaque 

score: 1.22 for interdental brush and 1.71 for 

dental floss; Kiger et  al. 1991), hence it is 

 better suited for cleaning proximal surfaces. 

As evidenced by the significantly higher 

bleeding and plaque scores, a short‐term 

study found that conical interdental brushes 

did not clean the lingual proximal surface as 

well as their cylindrical counterparts (Larsen 

et al. 2017). Also, straight brushes can clean 

better than angled ones (Jordan et al. 2014). 

It seemed that rubber‐bristled interdental 

brushes were as effective as regular interden-

tal brushes in terms of plaque removal and 

patients found them more comfortable to use 

(Abouassi et al. 2014). Therefore, in patients 

with periodontitis, and possibly interproxi-

mal FI, interdental brushes remove more 

plaque than flossing or brushing alone 

(Christou et al. 1998).

The WaterPik is an oral irrigator introduced 

in 1962 that uses pulsating hydrodynamic 

force to remove food debris from the tooth 

surface. Its clinical benefits include removal of 

subgingival bacteria, clinical and histological 

reduction in gingival inflammation, down‐

regulation of pro‐inflammatory cytolines, 

reduction of probing depths, improvement of 

clinical attachment loss, being safe for gingival 

tissues, and minimal bacteremia (Jolkovsky 

and Lyle 2015; Cutler et al. 2000). Therefore, 

in patients with less than ideal oral hygiene, 

supragingival irrigation will flush out the sub-

gingival bacteria, reducing gingival inflamma-

tion to a degree greater than toothbrushing 

alone (Research, Science and Therapy 

Committee of the American Academy of 

Periodontology 2001). In comparison to the 

Sonicare Airfloss®, which uses a fluid spray of 

micro‐bubbles to disrupt the plaque, the 

WaterPik may be more effective in terms of 

removing plaque and consequently reducing 

the bleeding score (Goyal et al. 2015).

Evidence on home care of furcations is 

scarce. As such, results from studies that 

assessed interproximal cleaning was used to 

infer the effectiveness of these brushes in 

removing plaque from the tooth surfaces. It 

appears that powered toothbrushes with the 

rotation oscillation action, interspace 

brushes, straight cylindrical interdental 

brushes with rubber or nylon bristles, and 

the WaterPik are effective in cleaning inter-

proximal areas and potentially furcations.

(a)

(b)

(c)

Figure 3.4 

EMS Piezon® Master 

ultrasonic scaler and tips: (a) PL1 tip 

with a diameter of 0.5 mm for 

debridement of hard‐to‐reach 

interproximal areas; (b) PL5 tip with a 

ball end of diameter 0.8 mm for 

debridement of furcations and 

concavities; (c) PS universal tip with a 

diameter of 0.6 mm for debridement of 

deep pockets.

Figure 3.5 

Cavitron® Slimline™ insert with a 

diameter of 0.5 mm.


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c03.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:19:19 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 48

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 3.6 

(a) The maxillary right first molar presented with a Grade I cervical enamel projection, 6 mm 

pockets, and a class II furcation. (b) Periapical radiograph showed radiolucency in the furcation area. 

(c) Cervical enamel projection was evident and seen protruding into the furcation. (d) Furcal area was debrided 

with After‐5 Gracey curettes (Hu‐Friedy, USA) and Piezo ultrasonic scalers (EMS, Switzerland). (e) Newmeyer’s 

rotary bur was used to remove the cervical enamel projection and any remaining granulomatous tissue. 

(f) Clinical photo showed the defect after cleaning. (g) Defect was grafted with human cancellous allograft 

(LifeNet, USA). (h) The graft was then protected with a well‐trimmed collagen membrane (2–3 mm beyond the 

defect margin all around). 


background image

How Good are We at Cleaning Furcations?  49

(i)

(j)

(k)

(l)

(m)

Figure 3.6 (Continued) 

(i) The flap was then coronally advanced and sutured. (j) At the two‐year post‐surgery 

follow‐up visit, the probing pocket depth at the furcation area was reduced to 3 mm and (k) radiographic bone fill 

was observed. (l) The furcation area remained stable clinically and (m) radiographically even at the four‐year post‐

surgery follow‐up visit. Further details and indications of furcation regenerative therapy are given in Chapter 7.


background image

Chapter 3 

50

(a)

(b)

(c)

(d)

Figure 3.7 

The mandibular left second molar presented with a grade III cervical enamel projection, 6–8 mm 

pockets, and a class III furcation. (a) Residual calculus observed on flap elevation, reflecting the ineffectiveness 

of non‐surgical debridement. (b) Surgical open‐flap scaling and root planing with fine ultrasonic inserts 

(Cavitron®, Dentsply, USA) and Gracey curettes (Hu‐Friedy, USA) were performed to achieve a smooth root 

surface. The flap was repositioned and sutured apically, exposing the class III furcation involvement. (c) At the 

two‐year post‐surgery follow‐up visit, there was recurrence of the pocket to 5 mm at the midlingual site (d) 

with bleeding on probing, despite the patient using an interdental brush of the appropriate size and being on 

a strict three‐monthly periodontal maintenance regimen. This therefore concurs with the literature that plaque 

removal at the furcation area is unpredictable, even when exposed and visible.

 Summary  of Evidence

 

Longitudinal studies show that, compared 

to single‐rooted teeth, furcation‐involved 

teeth respond poorly to non‐surgical and 

surgical treatment. Improvements in the 

furcation area, if any, are also less sustain-

able over time.

 

Finer and angulated ultrasonic tips can 

better debride the furcation area than 

hand instruments, e.g. Gracey curettes.

 

There is limited evidence on home care of 

furcations, however tools such as pow-

ered toothbrushes, interspace brushes, 

interdental brushes, and the WaterPik 

may be useful in removing plaque from 

the furcation area.


background image

How Good are We at Cleaning Furcations?  51

 References

Abouassi, T., Woelber, J.P., Holst, K. et al. 

(2014). Clinical efficacy and patients’ 

acceptance of a rubber interdental bristle: 

A randomized controlled trial. Clinical Oral 

Investigations 18, 1873–1880. doi: 10.1007/

s00784‐013‐1164‐3.

Auplish, G., Needleman, I.G., Moles, D.R., and 

Newman, H.N. (2000). Diamond‐coated 

sonic tips are more efficient for open 

debridement of molar furcations: A 

comparative manikin study. Journal of 

Clinical Periodontology 27, 302–307.

Bader, H., and Williams, R. (1997). Clinical and 

laboratory evaluation of powered electric 

toothbrushes: Comparative efficacy of two 

powered brushing instruments in furcations 

and interproximal areas. Journal of Clinical 

Dentistry 8, 91–94.

Biagini, G., Checchi, L., Miccoli, M.C. et al. 

(1988). Root curettage and gingival repair in 

periodontitis. Journal of Periodontology 59, 

124–129. doi: 10.1902/jop.1988.59.2.124.

Booker, B.W., III, and Loughlin, D.M. (1985). 

A morphologic study of the mesial root 

surface of the adolescent maxillary first 

bicuspid. Journal of Periodontology 56, 

666–670. doi: 10.1902/jop.1985.56.11.666.

Bower, R.C. (1979a). Furcation morphology 

relative to periodontal treatment: Furcation 

entrance architecture. Journal of 

Periodontology 50, 23–27. doi: 10.1902/

jop.1979.50.1.23.

Bower, R.C. (1979b). Furcation morphology 

relative to periodontal treatment: Furcation 

root surface anatomy. Journal of 

Periodontology 50, 366–374. doi: 10.1902/

jop.1979.50.7.366.

Checchi, L., and Pelliccioni, G.A. (1988). Hand 

versus ultrasonic instrumentation in the 

removal of endotoxins from root surfaces in 

vitro. Journal of Periodontology 59, 398–402. 

doi: 10.1902/jop.1988.59.6.398.

Chiu, B.M., Zee, K.Y., Corbet, E.F., and 

Holmgren, C.J. (1991). Periodontal 

implications of furcation entrance 

dimensions in Chinese first permanent 

molars. Journal of Periodontology 62, 

308–311. doi: 10.1902/jop.1991.62.5.308.

Christou, V., Timmerman, M.F., Van der 

Velden, U., and Van der Weijden, F.A. 

(1998). Comparison of different approaches 

of interdental oral hygiene: Interdental 

brushes versus dental floss. Journal of 

Periodontology 69, 759–764. doi: 10.1902/

jop.1998.69.7.759.

Cutler, C.W., Stanford, T.W., Abraham, C. et al. 

(2000). Clinical benefits of oral irrigation for 

periodontitis are related to reduction of 

pro‐inflammatory cytokine levels and 

plaque. Journal of Clinical Periodontology 

27, 134–143.

Dannewitz, B., Krieger, J.K., Husing, J., and 

Eickholz, P. (2006). Loss of molars in 

periodontally treated patients: A 

retrospective analysis five years or more 

after active periodontal treatment. Journal 

of Clinical Periodontology 33, 53–61. doi: 

10.1111/j.1600‐051X.2005.00858.x.

Dannewitz, B., Zeidler, A., Husing, J. et al. 

(2016) Loss of molars in periodontally 

treated patients: Results 10 years and more 

after active periodontal therapy. Journal of 

Clinical Periodontology 43, 53–62. doi: 

10.1111/jcpe.12488.

Darveau, R.P., Tanner, A., and Page, R.C. 

(1997). The microbial challenge in 

periodontitis. Periodontology 2000 14, 

12–32.

Deacon, S.A., Glenny, A.M., Deery, C. et al. 

(2010). Different powered toothbrushes for 

plaque control and gingival health. Cochrane 

Database of Systematic Reviews 12 (Art. No. 

CD004971). doi: 10.1002/14651858.

CD004971.pub2.

Del Peloso Ribeiro, E., Bittencourt, S., Nociti, 

F.H., Jr. et al. (2007). Comparative study of 

ultrasonic instrumentation for the non‐

surgical treatment of interproximal and 

non‐interproximal furcation involvements. 

Journal of Periodontology 78, 224–230. doi: 

10.1902/jop.2007.060312.

dos Santos, K.M., Pinto, S.C., Pochapski, M.T. 

et al. (2009). Molar furcation entrance and 

its relation to the width of curette blades 

used in periodontal mechanical therapy. 

International Journal of Dental Hygiene 7, 


background image

Chapter 3 

52

263–269. doi: 10.1111/j.1601‐5037. 

2009.00371.x.

Eschler, B.M., and Rapley, J.W. (1991). 

Mechanical and chemical root preparation 

in vitro: Efficiency of plaque and calculus 

removal. Journal of Periodontology 62, 

755–760. doi: 10.1902/jop.1991.62.12.755.

Fleischer, H.C., Mellonig, J.T., Brayer, W.K. 

et al. (1989). Scaling and root planing 

efficacy in multirooted teeth. Journal of 

Periodontology 60, 402–409. doi: 10.1902/

jop.1989.60.7.402.

Goyal, C.R., Lyle, D.M., Qaqish, J.G., and 

Schuller, R. (2015). Efficacy of two 

interdental cleaning devices on clinical signs 

of inflammation: A four‐week randomized 

controlled trial. Journal of Clinical Dentistry 

26, 55–60.

Hajishengallis, G., and Lamont, R.J. (2012). 

Beyond the red complex and into more 

complexity: The polymicrobial synergy and 

dysbiosis (PSD) model of periodontal 

disease etiology. Molecular and Oral 

Microbiology 27, 409–419.

Hirschfeld, L., and Wasserman, B. (1978). A 

long‐term survey of tooth loss in 600 treated 

periodontal patients. Journal of 

Periodontology 49, 225–237. doi: 10.1902/

jop.1978.49.5.225.

Jolkovsky, D.L., and Lyle, D.M. (2015). Safety of 

a water flosser: A literature review. 

Compendium of Continuing Education in 

Dentistry 36, 146–149.

Jordan, R.A., Hong, H.M., Lucaciu, A., and 

Zimmer, S. (2014). Efficacy of straight versus 

angled interdental brushes on interproximal 

tooth cleaning: A randomized controlled 

trial. International Journal of Dental Hygiene 

12, 152–157. doi: 10.1111/idh.12042.

Kalkwarf, K.L., Kaldahl, W.B., and Patil, K.D. 

(1988). Evaluation of furcation region 

response to periodontal therapy. Journal of 

Periodontology 59, 794–804. doi: 10.1902/

jop.1988.59.12.794.

Kiger, R.D., Nylund, K., and Feller, R.P. 

(1991). A comparison of proximal plaque 

removal using floss and interdental 

brushes. Journal of Clinical Periodontology 

18, 681–684.

Klukowska, M., Grender, J.M., Conde, E. et al. 

(2014a). A randomized 12‐week clinical 

comparison of an oscillating‐rotating 

toothbrush to a new sonic brush in the 

reduction of gingivitis and plaque. Journal of 

Clinical Dentistry 25, 26–31.

Klukowska, M., Grender, J.M., Conde, E. et al. 

(2014b). A six‐week clinical evaluation of 

the plaque and gingivitis efficacy of an 

oscillating‐rotating power toothbrush with a 

novel brush head utilizing angled CrissCross 

bristles versus a sonic toothbrush. Journal of 

Clinical Dentistry 25, 6–12.

Kocher, T., and Plagmann, H.C. (1999). Root 

debridement of molars with furcation 

involvement using diamond‐coated sonic 

scaler inserts during flap surgery: A pilot study. 

Journal of Clinical Periodontology 26, 525–530.

Kocher, T., Gutsche, C., and Plagmann, H.C. 

(1998a). Instrumentation of furcation with 

modified sonic scaler inserts: Study on 

manikins, part I. Journal of Clinical 

Periodontology 25, 388–393.

Kocher, T., Ruhling, A., Herweg, M., and 

Plagman, H.C. (1996). Proof of efficacy of 

different modified sonic scaler inserts used 

for debridement in furcations: A dummy 

head trial. Journal of Clinical Periodontology 

23, 662–669.

Kocher, T., Tersic‐Orth, B., and Plagmann, 

H.C. (1998b). Instrumentation of furcation 

with modified sonic scaler inserts: A study 

on manikins, part II. Journal of Clinical 

Periodontology 25, 451–456.

Larsen, H.C., Slot, D.E., Van Zoelen, C. et al. 

(2017). The effectiveness of conically shaped 

compared with cylindrically shaped 

interdental brushes: A randomized 

controlled clinical trial. International 

Journal of Dental Hygiene 13 (3), 211–218. 

doi: 10.1111/idh.12189.

Leon, L.E., and Vogel, R.I. (1987). A 

comparison of the effectiveness of hand 

scaling and ultrasonic debridement in 

furcations as evaluated by differential dark‐

field microscopy. Journal of Periodontology 

58, 86–94. doi: 10.1902/jop.1987.58.2.86.

Lindhe, J., Westfelt, E., Nyman, S. et al. (1982). 

Healing following surgical/non‐surgical 


background image

How Good are We at Cleaning Furcations?  53

treatment of periodontal disease: A clinical 

study. Journal of Clinical Periodontology 9, 

115–128.

Loe, H., Theilade, E., and Jensen, S.B. (1965). 

Experimental gingivitis in man. Journal of 

Periodontology 36, 177–187. doi: 10.1902/

jop.1965.36.3.177.

Loos, B., Claffey, N., and Egelberg, J. (1988). 

Clinical and microbiological effects of root 

debridement in periodontal furcation pockets. 

Journal of Clinical Periodontology 15, 453–463.

Loos, B., Nylund, K., Claffey, N., and Egelberg, 

J. (1989). Clinical effects of root 

debridement in molar and non‐molar teeth: 

A 2‐year follow‐up. Journal of Clinical 

Periodontology 16, 498–504.

Matia, J.I., Bissada, N.F., Maybury, J.E., and 

Ricchetti, P. (1986). Efficiency of scaling of the 

molar furcation area with and without surgical 

access. International Journal of Periodontics 

and Restorative Dentitry 6, 24–35.

McFall, W.T., Jr (1982). Tooth loss in 100 

treated patients with periodontal disease: A 

long‐term study. Journal of Periodontology 

53, 539–549. doi: 10.1902/jop.1982.53.9.539.

Nordland, P., Garrett, S., Kiger, R. et al. (1987). 

The effect of plaque control and root 

debridement in molar teeth. Journal of 

Clinical Periodontology 14, 231–236.

Oda, S., and Ishikawa, I. (1989). In vitro 

effectiveness of a newly‐designed ultrasonic 

scaler tip for furcation areas. Journal of 

Periodontology 60, 634–639. doi: 10.1902/

jop.1989.60.11.634.

Oda, S., Nitta, H., Setoguchi, T. et al. (2004). 

Current concepts and advances in manual 

and power‐driven instrumentation. 

Periodontology 2000 36, 45–58. doi: 

10.1111/j.1600‐0757.2004.03674.x.

Otero‐Cagide, F.J., and Long, B.A. (1997). 

Comparative in vitro effectiveness of closed 

root debridement with fine instruments on 

specific areas of mandibular first molar 

furcations. II. Furcation area. Journal of 

Periodontology 68, 1098–1101. doi: 10.1902/

jop.1997.68.11.1098.

Page, R.C., and Kornman, K.S. (1997). The 

pathogenesis of human periodontitis: An 

introduction. Periodontology 2000 14, 9–11.

Parashis, A.O., Anagnou‐Vareltzides, A., and 

Demetriou, N. (1993a). Calculus removal 

from multirooted teeth with and without 

surgical access. I: Efficacy on external and 

furcation surfaces in relation to probing 

depth. Journal of Clinical Periodontology 20, 

63–68.

Parashis, A.O., Anagnou‐Vareltzides, A., and 

Demetriou, N. (1993b). Calculus removal 

from multirooted teeth with and without 

surgical access. II: Comparison between 

external and furcation surfaces and effect of 

furcation entrance width. Journal of Clinical 

Periodontology 20, 294–298.

Patterson, M., Eick, J.D., Eberhart, A.B. et al. 

(1989). The effectiveness of two sonic and 

two ultrasonic scaler tips in furcations. 

Journal of Periodontology 60, 325–329. doi: 

10.1902/jop.1989.60.6.325.

Pihlstrom, B.L., Oliphant, T.H., and McHugh, 

R.B. (1984). Molar and nonmolar teeth 

compared over 6½ years following two 

methods of periodontal therapy. Journal of 

Periodontology 55, 499–504. doi: 10.1902/

jop.1984.55.9.499.

Ramfjord, S.P., Caffesse, R.G., Morrison, E.C. 

et al. (1987). 4 modalities of 

periodontal treatment compared over 5 

years. Journal of Clinical Periodontology 

14, 445–452.

Ramfjord, S.P., Nissle, R.R., Shick, R.A., and 

Cooper, H., Jr (1968). Subgingival curettage 

versus surgical elimination of periodontal 

pockets. Journal of Periodontology 39, 

167–175.

Research, Science and Therapy Committee of 

the American Academy of Periodontology 

(2001). Treatment of plaque‐induced 

gingivitis, chronic periodontitis, and other 

clinical conditions. Journal of Periodontology 

72, 1790–1800. doi: 10.1902/

jop.2001.72.12.1790.

Research, Science and Therapy Committee of 

the American Academy of Periodontology 

(2005). Position paper: The role of supra‐ 

and subgingival irrigation in the treatment 

of periodontal diseases. Journal of 

Periodontology 76, 2015–2027. doi: 10.1902/

jop.2005.76.11.2015.


background image

Chapter 3 

54

Rosling, B., Nyman, S., and Lindhe, J. (1976). 

The effect of systematic plaque control on 

bone regeneration in infrabony pockets. 

Journal of Clinical Periodontology 3, 38–53.

Ross, I.F., and Thompson, R.H., Jr (1978). 

A long term study of root retention in the 

treatment of maxillary molars with furcation 

involvement. Journal of Periodontology 49, 

238–244. doi: 10.1902/jop.1978.49.5.238.

Schatzle, M., Loe, H., Burgin, W. et al. (2003). 

Clinical course of chronic periodontitis. 

I: Role of gingivitis. Journal of Clinical 

Periodontology 30, 887–901.

Scott, J.B., Steed‐Veilands, A.M., and Yukna, 

R.A. (1999). Improved efficacy of calculus 

removal in furcations using ultrasonic 

diamond‐coated inserts. International 

Journal of Periodontics and Restorative 

Dentistry 19, 355–361.

Smart, G.J., Wilson, M., Davies, E.H., and 

Kieser, J.B. (1990). The assessment of 

ultrasonic root surface debridement by 

determination of residual endotoxin levels. 

Journal of Clinical Periodontology 17, 

174–178.

Socransky, S.S., and Haffajee, A.D. (2005). 

Periodontal microbial ecology. 

Periodontology 2000 38, 135–187. doi: 

10.1111/j.1600‐0757.2005.00107.x.

Sugaya, T., Kawanami, M., and Kato, H. (2002). 

Effects of debridement with an ultrasonic 

furcation tip in degree II furcation 

involvement of mandibular molars. Journal 

of the International Academy of 

Periodontology 4, 138–142.

Tagge, D.L., O’Leary, T.J., and El‐Kafrawy, A.H. 

(1975). The clinical and histological 

response of periodontal pockets to root 

planing and oral hygiene. Journal of 

Periodontology 46, 527–533. doi: 10.1902/

jop.1975.46.9.527.

Takacs, V.J., Lie, T., Perala, D.G., and Adams, 

D.F. (1993). Efficacy of 5 machining 

instruments in scaling of molar furcations. 

Journal of Periodontology 64, 228–236. doi: 

10.1902/jop.1993.64.3.228.

Tunkel, J., Heinecke, A., and Flemmig, T.F. 

(2002). A systematic review of efficacy of 

machine‐driven and manual subgingival 

debridement in the treatment of chronic 

periodontitis. Journal of Clinical 

Periodontology 29 (Suppl. 3), 72–81; 

discussion 90–91.

Wang, H.L., Burgett, F.G., Shyr, Y., and 

Ramfjord, S. (1994). The influence of molar 

furcation involvement and mobility on 

future clinical periodontal attachment loss. 

Journal of Periodontology 65, 25–29. doi: 

10.1902/jop.1994.65.1.25.

Wood, W.R., Greco, G.W., and McFall, W.T., Jr 

(1989). Tooth loss in patients with moderate 

periodontitis after treatment and long‐term 

maintenance care. Journal of Periodontology 

60, 516–520. doi: 10.1902/jop.1989.60.9.516.

Wylam, J.M., Mealey, B.L., Mills, M.P. et al. 

(1993). The clinical effectiveness of open 

versus closed scaling and root planing on 

multi‐rooted teeth. Journal of 

Periodontology 64, 1023–1028. doi: 10.1902/

jop.1993.64.11.1023.

Yaacob, M., Worthington, H.V., Deacon, S.A. 

et al. (2014). Powered versus manual 

toothbrushing for oral health. Cochrane 

Database of Systematic Reviews 6 (Art. No.: 

CD002281). doi:10.1002/14651858.

CD002281.pub3.


background image

Diagnosis and Treatment of Furcation-Involved Teeth, First Edition. Edited by Luigi Nibali. 

© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd. 

Companion website: www.wiley.com/go/nibali/diagnosis

Chapter No.: 1  Title Name: <TITLENAME> 

c04.indd

Comp. by: KJAYASEELAN  Date: 14 May 2018  Time: 04:19:46 PM  Stage: Proof  WorkFlow:

CSW

 

Page Number: 55

55

4.1   Introduction

To avoid contact with the exogenous sub-

stances of the oral cavity, pulp and dentine are 

genetically protected by the overlying enamel 

and cementum. Despite these defensive phys-

ical barriers, the pulp can be threatened by 

manifold insults, such as caries, restorative 

procedures, and mechanical, chemical, and 

thermal trauma. In periodontitis‐affected 

patients, periodontal pathogens can induce 

pulp infection because of the vascular inter-

connections between periodontium and 

endodontium. Through the accessory canals 

or exposed dentinal tubules, bacteria and tox-

ins might gain the access to the pulp. The 

effect is generally atrophy and is comparable 

with ‘pulp aging’. Likewise, endodontic infec-

tions can influence periodontal health. When 

the  noxae of degenerated pulp involve the 

supporting periodontium, rapid inflamma-

tory responses, characterized by bone loss, 

tooth mobility, and/or sinus tract formation, 

might develop. These clinical conditions 

where both endodontium and periodontium 

are simultaneously affected in what appears 

to be a single periodontal lesion are known as 

endodontic‐periodontal lesions.

Despite the topic of the book regarding 

exclusively furcation pathology, the ethi-

opathogenesis of endodontic‐periodontal 

disease cannot be described by merely 

 considering the inter‐radicular space only. 

Therefore, the present chapter aims to com-

prehensively detail the aetiology and devel-

opment of endodontic‐periodontal lesions, 

with particular emphasis on the diagnosis, 

management, and long‐term prognoses of 

the affected teeth, especially when the furca-

tion region is involved.

4.2   Pathways  Between 

Endodontium and 

Periodontium: Anatomical 

Considerations

Because of the anatomical and vascular inter-

connections, periodontium and endodon-

tium can influence each other during 

function and should therefore be considered 

as one biological unit. The main pathways 

involved in the development of endodontic‐

periodontal lesions are the dentinal tubules, 

the lateral and accessory canals, and the 

 apical foramen or foramina (Seltzer et al. 1963).

4.2.1  Dentinal Tubules

Crown and root dentinal tubules, which 

extend from the pulp to the amelodentinal 

and dentinocemental junctions, respectively, 

are permeable structures. Their permeability 

varies with regard to the dentine type, tooth 

Chapter 4

Furcation: The Endodontist’s View

Federica Fonzar and Riccardo Fabian Fonzar

Private practice, Udine, Italy


background image

Chapter 4

56

area, and functional tubular diameter 

(Pashley 1990).

The root dentine is less patent than the 

coronal. The number of tubules generally 

ranges from approximately 42 000/mm

2

 in 

the cervical area to about 8000/mm

2

 in the 

radicular. By the lower permeability, roots 

and furcation dentine act as a real protective 

barrier (Rapp et al. 1992). From the outer to 

the closer surfaces to the pulp, tubules, which 

follow an S‐shaped path, are denser, wider, 

more patent, and therefore greater in flow 

rate (Ghazali 2003). With ageing or as a 

response to continuous low‐grade stimuli, 

diameters and patency might decrease 

through the apposition of highly mineralized 

peritubular dentine.

On healthy teeth, enamel and cementum 

usually prevent the pulpo‐dentinal complex 

from contact with the oral cavity micro‐

organisms. Owing to developmental defects, 

caries, trauma, restorative procedures, or 

periodontal disease, cementum might not 

cover the underlying dentine any longer, and 

the exposed dentinal tubules might serve as 

communication pathways between the endo-

dontium and periodontium (Adriaens et al. 

1988; Love and Jenkinson 2002). Bacteria and 

bacterial products can therefore induce 

 pulpal reactions by migrating towards the 

pulp (Langeland et  al. 1974; Bergenholtz 

1981; Adriaens et al. 1988). By colonizing the 

root dentine tubules of periodontally diseased 

teeth, pathogens might act as a reservoir for 

pocket recolonization after debridement 

(Adriaens et al. 1987). As proof of this, micro-

biological investigations revealed the presence 

of Gram‐negative and Gram‐positive species 

in the root dentine (Adriaens et  al. 1988; 

Guiliana et al. 1997).

While it has been proved that bacteria are 

able to invade radicular dentine from the 

periodontal pocket, it remains unclear 

whether bacteria invade the healthy cemen-

tum before penetrating the dentine, or reach 

the root dentine through breaches in the 

cementum layer (Adriaens et al. 1987, 1988; 

Guiliana et  al. 1997; Love and Jenkinson 

2002). Cementum is a thin, often discontinuous 

layer that commonly shows surface defects, 

for instance in the sites where Sharpey’s 

fibres attach to its matrix (Adriaens et  al. 

1987). Its exposure to crevicular fluid, bacte-

rial enzymes, or acidic metabolites might 

induce physicochemical and structural alter-

ations, such as localized resorptive lacunae 

or demineralization (Daly et  al. 1982; 

Adriaens et  al. 1987). It can be speculated, 

therefore, that cementum might be structur-

ally damaged by physiological, bacterial, and 

environmental factors, and that this altera-

tion might facilitate bacterial penetration 

within the exposed root of periodontally 

 diseased  teeth.

The vitality of the tooth is another variable 

that might play an important role in hinder-

ing bacteria migration towards the pulp. By 

exposing the dentine surface to the oral envi-

ronment for 150 days, bacterial invasion 

occurs faster in non‐vital rather than vital 

teeth (Nagaoka et al. 1995). A possible expla-

nation of this finding might be sought in the 

resistance offered by outward dentinal fluid 

movement and the presence of odontoblast 

processes in the tubules of vital teeth 

(Vongsavan and Matthews 1991, 1992; 

Pashley et al. 2002). In addition, antibodies 

and anti‐microbial components contained 

within the dentinal fluid might also help the 

vital teeth to be more properly defended 

(Hahn and Overton 1997).

4.2.2  Lateral and Accessory 

Canals

An accessory canal is any branch starting 

from the pulp chamber or the main root 

canal that communicates with the external 

surface of the root. When the location is 

the  coronal or middle third of the root, 

and the orientation is horizontal with respect 

to the main canal, accessory canals are named 

lateral canals (American Association of 

Endodontists 2015).

It is estimated that 30–40% of teeth exhibit 

accessory canals, most of which are found in 

the apical third of the root (De Deus 1975). 

Their prevalence might vary within the teeth, 


background image

The Endodontist’s View 57

and was seen to be greater in mandibular 

molars and premolars than in maxillary 

molars and lateral incisors (Kirkham 1975). 

In addition, it can also change according to 

the root third analysed. In fact, De Deus 

(1975) found that 17%, 9%, and less than 2% 

of teeth showed accessory canals in the api-

cal, middle, and coronal third, respectively. 

With regard to the number of accessory 

canals per tooth, 17% and 6% of teeth have 

one or two accessory canals (Kirkham 1975). 

Despite these anatomical considerations, the 

prevalence of periodontal disease associated 

with accessory canals seems to be relatively 

low (Rotstein and Simon 2004).

In multi‐rooted teeth, furcation dentine 

might represent a communication pathway 

between endodontium and periodontium. In 

fact, the vascular system of the pulp is con-

nected to that of periodontium through the 

accessory canals. At the furcation, their 

 prevalence generally ranges from 23 to 76% 

(Lowman et al. 1973; Burch and Hulen 1974; 

Goldberg et al. 1987), but the extension rarely 

covers the entire distance between the pulp 

chamber and the furcation floor (Goldberg 

et al. 1987) and only 30–60% of molars have 

patent canals connecting the main root canal 

system and the periodontal ligament (see 

Figure  4.1). In particular, mandibular molars 

have a higher incidence (56%) than maxillary 

(48%) (Lowman et  al. 1973; Gutmann 1978; 

Vertucci 2005). Because of these interconnec-

tions, pulp inflammation might have  detrimental 

consequences on the furcation by inducing 

inflammatory responses on the inter‐radicular 

periodontal tissues (Seltzer et al. 1963).

4.2.3  Apical Foramen or Foramina

The major connections between periodontal 

and pulp tissues are the apical foramina. The 

(a)

(b)

(c)

(d)

Figure 4.1 

Accessory canal located distally to the mesial root on 4.6 (LR6) (a). Interradicular radiolucency on 

3.6 (LL6) (b). After root canal therapy, the accessory canal located distally to the mesial root was filled with 

cement (c). Complete remineralization after four‐year follow‐up (d).


background image

Chapter 4

58

morphology of the apex might be quite varia-

ble. All the teeth have at least one accessory 

foramen. Generally, there are fewer primary 

dentinal tubules in the apical root third than 

in the coronal dentine. Their direction and 

density might be somewhat irregular, and 

some areas can be completely free of tubules 

(Mjör et al. 2001). Maxillary premolars have 

the most complicated apical morphology with 

the largest accessory foramina, followed by 

maxillary and mandibular molars (Marroquin 

et al. 2004), and this makes the prognosis of 

endodontic therapy in premolars and molars 

more uncertain than for other teeth.

4.2.4 Non‐physiological 

Communications

Root perforation, vertical root fracture, and 

inflammatory root resorption are artificial 

pathways between periodontal and pulpal 

tissues.

Iatrogenic root canal perforations are 

 serious complications that originate from 

manual/rotatory instrumentation or post‐

space preparation, and can threaten the 

prognosis of the tooth (Tsesis et  al. 2010; 

Gorni et  al. 2016). The treatment outcome 

depends on several factors that should be 

evaluated early, such as the size and position 

of the root  perforation, the time elapsed 

before making the diagnosis and treatment, 

the degree of periodontal involvement, and 

the sealing ability and biocompatibility of the 

sealant. The faster the sealing, the more con-

trolled the infection. Hence, time elapsed 

before treatment seems to be crucial for 

 

success. Among sealants, reinforced zinc 

oxide‐eugenol cements and bioceramic mate-

rials, such as mineral trioxide aggregate, are 

used most for this purpose (Weldon et  al. 

2002; Parirokh and Torabinejad 2010; 

Haapasalo et al. 2015; Gorni et al. 2016).

Vertical root fractures (see Figures 4.2 and 

4.3) are generally caused by loading trauma 

and occur more frequently in non‐vital teeth 

(Chan et al. 1999; Sugaya et al. 2015). In vital 

teeth, vertical fractures can initiate coronally 

in ‘cracked tooth syndrome’ (Cameron 1964) 

or can involve the root only (Chan et al. 1999; 

Sugaya et al. 2015). While in the past endo-

dontically treated teeth were considered to 

be weaker due to structural changes in den-

tine composition, such as water and collagen 

cross‐linking loss, currently it is believed that 

the greater brittleness is linked to the loss of 

structural integrity. In fact, the extension 

of cavity access might influence the degree of 

cuspal deflection during function, increasing 

the risk of fracture. Furthermore, a history of 

extensive restorations, especially in mandib-

ular posterior teeth, might make the tooth 

even more susceptible to fracture, especially 

in elderly patients (Lewinstein and Grajower 

1981; Huang et al. 1992; Cheron et al. 2011; 

Faria et al. 2011).

Root resorption is a pathological process 

associated with dentine, cementum, and/or 

(a)

(b)

Figure 4.2 

Vertical root fracture starting from the apex on 2.7 (UL7). The lesion resembled an endodontic 

infection (a). Complete failure after two years follow‐up (b). Root resection was not possible due to 

unfavourable anatomy.


background image

The Endodontist’s View 59

bone loss. It can be external or internal, 

depending on whether the origin is the peri-

odontium or the pulp. The aetiopathogenesis 

is far from being completely understood. 

Mechanical and infective factors such as 

orthodontic treatment, trauma, intracoronal 

bleaching, periodontitis, and thermal stimuli 

might be considered as predisposing factors. 

The presence of profuse bleeding on prob-

ing, granulation tissue, and hard cavity 

 bottom might confirm the diagnosis of exter-

nal inflammatory root resorption. Electric 

and cold pulp tests might be positive. 

However, sensitivity tests alone do not differ-

entiate this pathological process from dental 

caries or internal resorption. Radiographic 

evaluation reveals that the canal profile is 

well defined in internal resorption, and 

rather undefined and faded in external. 

External resorption progression (see 

Figure  4.4) can lead to the invasion of the 

pulp space as a last resort. Likewise, untreated 

internal resorption can establish a communi-

cation between endodontium and periodon-

tium by breaking the external root surface 

(Tronstad 1988; Trope 1998; Andreasen and 

Andersson 2007; Patel et al. 2010).

4.3   Bacteria Involved in 

Endodontic‐periodontal Disease

Periodontal diseases are mixed anaerobic 

infections, modulated by a complex interplay 

between local and host factors (Page 1999). 

Similarly, endodontic infection has an anaer-

obic nature. Most of the species found in 

infected root canals are also present in perio-

dontal pockets. However, the endodontic 

 biofilm seems to be less complex than the 

periodontal biofilm (Trope et  al. 1988; 

Kobayashi et  al. 1990; Sundqvist 1994; 

Kurihara et  al. 1995; Zehnder et  al. 2002). 

Root canal infection is a dynamic process, 

and different bacterial species can apparently 

prevail at different stages. The most prevalent 

named species detected in primary endodon-

tic infections, including abscessed cases, 

belong to diverse genera of Gram‐negative 

(Fusobacterium,  Dialister,  Porphyromonas

Prevotella

Tannerella

Treponema

Campylobacter, and Veillonella) and Gram‐

positive bacteria (Parvimonas,  Filifactor

Pseudoramibacter,  Olsenella,  Actinomyces

Peptostreptococcus,  Streptococcus,  Propioni­

bacterium, and Eubacterium). Conversely, 

the microflora changes if endodontic therapy 

fails. Several culture and molecular biology 

studies revealed that Enterococcus faecalis is 

the most frequent species in root canal–

treated teeth, with a prevalence of up to 90% 

of cases and a strong association with persis-

tent infections (Rôças et al. 2004; Mohammadi 

et  al. 2013). Canals that are apparently well 

treated might contain from 1 to 5 bacterial 

species; however, in those not properly 

treated, the number might vary from 10 to 30, 

which is very similar to that of untreated 

canals (Sundqvist et al. 1998; Pinheiro et al. 

2003; Sakamoto et al. 2008).

(a)

(b)

(c)

Figure 4.3 

Vertical fracture of the distal root on 3.6 (LL6) (a). Rizectomy of the distal root (b) and after healing (c).


background image

Chapter 4

60

4.4   Relationship  Between 

Periodontal Disease and 

Histological Pulp Changes

Many controversies still exist about the rela-

tionship between periodontal inflammation 

and pulp health (see Table  4.1). However, it 

seems to be widely accepted that periodontitis 

and periodontal therapy can induce pathologi-

cal changes in the pulp. Periodontal disease 

progression can lead to the exposure and bacte-

rial contamination of the accessory canals, 

more frequent in the apical third of the tooth 

and at the furcation (Seltzer et al. 1963; Rubach 

and Mitchell 1965), or it can reach the root 

apex with subsequent neuro‐vascular bundle 

damage (Langeland et al. 1974; De Deus 1975). 

Cementum removal, resulting from scaling and 

root planing, can expose the dentinal tubules 

and accessory canals (Adriaens et  al. 1988), 

therefore the micro‐organisms can migrate 

towards the pulp, inducing hystological 

changes (Rubach and Mitchell 1965; see 

Figure 4.5). However, the deposition of repara-

tive dentine (Bergenholtz and Lindhe 1978; 

Nilvéus and Selvig 1983; Hattler and Listgarten 

1984), the outward movement of the dentinal 

fluid (Vongsavan and Matthews 1991, 1992; 

Pashley et  al. 2002), the presence of odonto-

blast processes in the tubules (Nagaoka et al. 

1995; Pasley et al. 2002), and the presence of 

antibodies and anti‐microbial components 

within the dentinal fluid (Hahn and Overton 

1997) can act as a defense system, preventing 

the bacteria from reaching the pulp. In refer-

ence to this, we should stress that, as mentioned 

in Chapter 3, subgingival debridement is now 

moving away from the concept of ‘root planing’ 

and ‘removal of all diseased cementum’ (Aleo 

et al. 1974) towards an emphasis on disruption 

of the subgingival biofilm, with minimal altera-

tion to the cementum (Nibali et al. 2015).

Figure 4.4 

Disto‐lingual external progressive root resorption on 4.7 (LR7). Initally, the invisible resorption 

induced pulpitis and root canal therapy was performed.


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c04.indd

Comp. by: KJAYASEELAN  Date: 14 May 2018  Time: 04:19:46 PM  Stage: Proof  WorkFlow:

CSW

 

Page Number: 61

  Table 4.1   

 Effect of periodontal disease on pulp tissue. 

Do progressive periodontitis and periodontal 
treatment affect the pulp?

Pulp damage

Pulp response    

Progressive 

periodontal 

disease

Yes

  Apex 

 Apical foramen 

 (Langeland et al.   1974  ; 

Harrington et al.   2002  ; 

Sheykhrezaee et al.   2007  ; 

Aguiar et al.   2014  ; Rathod 

et al.   2014  ) 

 Neuro‐vascular 

bundle damage 

 Main canal involved 

Irreversible

 Inflammatory 

 Degenerative 

 (Rubach and Mitchell   1965  ; Zehnder   2001  ; 

Sheykhrezaee et al.   2007  ; Aguiar et al.   2014  ; 

Rathod et al.   2014  ) 

Complete necrosis  

 Apical root third 

 (Rubach and Mitchell   1965  ; 

Adriaens et al.   1988  ; 

Sheykhrezaee et al.   2007  ; 

Zuza et al.   2012  ) 

Bacteria and toxins 

migrate towards the 

pulp through the 

accessory canals

 Irreversible 

 or 

 Reversible 

 Inflammatory 

 Degenerative 

 (Rubach and Mitchell   1965  ; Sheykhrezaee et al. 

  2007  ; Rathod et al.   2014  ) 

 Fibrosis 

 Calcification 

 Inflammation 

 Odontoblast integrity loss 

 Neuro‐vascular alteration 

 Partial/complete necrosis   

 Furcation 

 (Rubach and Mitchell   1965  ; 

Bender and Seltzer   1972  ; 

Adriaens et al.   1988  ; Zuza 

et al.   2012  ) 

 Reparative 

 (Mazur and Massler   1964  ; Bender and Seltzer 

  1972  ; Langeland et al.   1974  ; Lantelme et al. 

  1976  ; Bergenholtz and Lindhe   1978  ; Ross and 

Thompson   1978  ; Czarnecki and Schilder   1979  ; 

Torabinejad and Kiger   1985  ; Cortellini and 

Tonetti   2001  ; Harrington et al.   2002  ; Aguiar 

et al. 2014) 

 Calcification 

 Fibrosis 

 Vascular 

alteration 

 Nerve 

alteration 

≈ pulp ageing  

Periodontal 

treatment 

(scaling and 

root planing)

 Yes 

 (Rubach and Mitchell   1965  ; 

Adriaens et al.   1988  ) 

 Neuro‐vascular 

bundle damage 

 Main canal involved 

Irreversible

 Inflammatory 

 Degenerative 

 (Rubach and Mitchell   1965  ; Sheykhrezaee et al. 

  2007  ; Rathod et al.   2014  ) 

Complete necrosis  

(Continued )


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c04.indd

Comp. by: KJAYASEELAN  Date: 14 May 2018  Time: 04:19:46 PM  Stage: Proof  WorkFlow:

CSW

 

Page Number: 62

Do progressive periodontitis and periodontal 
treatment affect the pulp?

Pulp damage

Pulp response    

Cementum removal: 

bacteria and toxins 

migrate towards the 

pulp through the 

accessory canals and 

the exposed dentinal 

tubules

 Irreversible 

 or 

 Reversible 

 Inflammatory 

 Degenerative 

 (Rubach and Mitchell   1965  ; Sheykhrezaee et al. 

  2007  ; Rathod et al.   2014  ) 

 Fibrosis 

 Calcification 

 Inflammation 

 Odontoblast integrity loss 

 Vascular alteration 

 Partial/complete necrosis   

 Reparative 

 (Mazur and Massler   1964  ; Bender and Seltzer 

  1972  ; Langeland et al.   1974  ; Lantelme et al.   1976  ; 

Bergenholtz and Lindhe   1978  ; Ross and 

Thompson   1978  ; Czarnecki and Schilder   1979  ; 

Torabinejad and Kiger   1985  ; Cortellini and 

Tonetti   2001  ; Harrington et al.   2002  ; Aguiar et al. 

  2014  ) 

 Calcification 

 Fibrosis 

 Vascular 

alteration 

 Nerve 

alteration 

≈ pulp ageing  

 No 

 (Bergenholtz and Lindhe 

  1978  ; Nilvéus and Selvig 

  1983  ; Hattler and 

Listgarten   1984  ; Nagaoka 

et al.   1995  ; Hahn and 

Overton   1997  ; Pashley 

et al.   2002  ) 

No bacteria and 

toxins migrate 

towards the pulp 

through the 

accessory canals and 

the exposed dentinal 

tubules

Reversible

 Reparative dentine (Bergenholtz and Lindhe   1978  ; Hattler and Listgarten   1984  ; 

Vongsavan and Matthews   1991  ) 

 + 

 Dentinal fluid (Vongsaven and Matthews 1991, 1992; Pashley et al.   2002  ) 

 + 

 Odontoblast processes (Nagaoka et al.   1995  ; Pashley et al.   2002  )   
 Antibodies/antimicrobial components within the dentinal fluids 

 (Hahn and Overton   1997  ) 

Table 4.1 

(Continued)


background image

The Endodontist’s View 63

Pulp response might vary, from normal 

(Mazur and Massler 1964; Smukler and 

Tagger 1976; Czarnecki and Schilder 1979; 

Torabinejad and Kiger 1985) to reparative 

(Mazur and Massler 1964; Langeland et  al. 

1974; Czarnecki and Schilder 1979; 

Torabinejad and Kiger 1985; Harrington 

et  al. 2002) or degenerative (Rubach and 

Mitchell 1965; Sheykhrezaee et  al. 2007; 

Zuza et al. 2012; Aguiar et al. 2014; Rathod 

et al. 2014). Repaired vital pulp is calcificated, 

fibrotic, and has fewer blood vessels and 

nerve fibres (Mazur and Massler 1964; 

Langeland et al. 1974; Czarnecki and Schilder 

1979; Torabinejad and Kiger 1985; Harrington 

et  al. 2002). Conversely, degenerated pulp 

exhibits fibrosis, calcification, inflammation, 

vascular alteration, loss of odontoblast integ-

rity, and partial necrosis (Rubach and 

Mitchell 1965; Aguiar et  al. 2014; Rathod 

et al. 2014). Complete necrosis seems to only 

occur if the apical neuro‐vascular bundle is 

involved (Langeland et  al. 1974; Zehnder 

2001; Harrington et  al. 2002; Sheykhrezaee 

et al. 2007; Aguiar et al. 2014; Rathod et al. 

2014).

The lack of randomized clinical trials with 

test and control groups prevents a clear asso-

ciation between progressive periodontal 

 disease and pulp alterations being established. 

Data have to be carefully interpreted, since 

pulpal alterations might be the result of multi-

ple factors, such as periodontal disease, history 

of caries, physiological pulp ageing, previous 

ignored trauma, or pulp tissue fixation. Indeed, 

pulp fixation is challenging and artifacts result-

ing from improper specimen preparation 

might lead to misjudgements (Harrington 

et al. 2002; Sheykhrezaee et al. 2007).

At the current stage of scientific knowl-

edge, we could summarize that periodontal 

disease might induce reparative or degenera-

tive pulp changes. Pulp necrosis is rather rare 

and occurs when the defect is up to the apical 

third of the tooth and the neuro‐vascular 

bundle is involved. If the blood supply 

through the apical foramen remains intact, 

the pulp is usually able to withstand the 

physiological insults induced by both perio-

dontal disease and therapy.

4.5   Endodontic‐periodontal 

Disease

Because of their anatomical and functional 

interconnection, pulp and periodontium can 

be simultaneously affected in what appears 

to be a single periodontal lesion. This clinical 

scenario, known as ‘endodontic‐periodontal 

lesion’ (Bergenholtz and Hasselgreen 2008) 

was first described by Simring and Goldberg 

in 1964.

4.5.1 Classification

Despite the many attempts to classify endo-

dontic‐periodontal lesions, the Simon, Glick, 

and Frank (1972) classification remains the 

most widely accepted point of reference (see 

Figure 4.5 

Pulp necrosis on 3.6 (LL6) after deep root debridement. Source: Courtesy Dr Cristiano Luciano.

Do progressive periodontitis and periodontal 
treatment affect the pulp?

Pulp damage

Pulp response    

Cementum removal: 

bacteria and toxins 

migrate towards the 

pulp through the 

accessory canals and 

the exposed dentinal 

tubules

 Irreversible 

 or 

 Reversible 

 Inflammatory 

 Degenerative 

 (Rubach and Mitchell   1965  ; Sheykhrezaee et al. 

  2007  ; Rathod et al.   2014  ) 

 Fibrosis 

 Calcification 

 Inflammation 

 Odontoblast integrity loss 

 Vascular alteration 

 Partial/complete necrosis   

 Reparative 

 (Mazur and Massler   1964  ; Bender and Seltzer 

  1972  ; Langeland et al.   1974  ; Lantelme et al.   1976  ; 

Bergenholtz and Lindhe   1978  ; Ross and 

Thompson   1978  ; Czarnecki and Schilder   1979  ; 

Torabinejad and Kiger   1985  ; Cortellini and 

Tonetti   2001  ; Harrington et al.   2002  ; Aguiar et al. 

  2014  ) 

 Calcification 

 Fibrosis 

 Vascular 

alteration 

 Nerve 

alteration 

≈ pulp ageing  

 No 

 (Bergenholtz and Lindhe 

  1978  ; Nilvéus and Selvig 

  1983  ; Hattler and 

Listgarten   1984  ; Nagaoka 

et al.   1995  ; Hahn and 

Overton   1997  ; Pashley 

et al.   2002  ) 

No bacteria and 

toxins migrate 

towards the pulp 

through the 

accessory canals and 

the exposed dentinal 

tubules

Reversible

 Reparative dentine (Bergenholtz and Lindhe   1978  ; Hattler and Listgarten   1984  ; 

Vongsavan and Matthews   1991  ) 

 + 

 Dentinal fluid (Vongsaven and Matthews 1991, 1992; Pashley et al.   2002  ) 

 + 

 Odontoblast processes (Nagaoka et al.   1995  ; Pashley et al.   2002  )   
 Antibodies/antimicrobial components within the dentinal fluids 

 (Hahn and Overton   1997  ) 

Table 4.1 

(Continued)


background image

Chapter 4

64

also Gargiulo 1984; Guldener 1985; Abbott 

and Salgado 2009; Kerns and Glickman 

2011). According to Simon et al., endodon-

tic‐periodontal lesions are classified as:

 

Primary endodontic lesion.

 

Primary periodontal lesion.

 

Primary endodontic lesion with secondary 

periodontal involvement.

 

Primary periodontal lesion with secondary 

endodontic involvement.

 

True combined lesion.

4.5.1.1  Primary Endodontic Lesion

Primary endodontic lesions (Box  4.1 and 

Table 4.2) mostly involve decayed, restored, or 

traumatized teeth. As a result of the endodon-

tic inflammatory process, bone resorption 

occurs at the apex, along the lateral aspect of 

the root, or at the furcation area when multi‐

rooted teeth are affected (see Figures 4.6 and 4.7). 

Because of the suppurative process, the sinus 

tract can develop through the periodontal lig-

ament space or the cortical bone in accord-

ance with the locus minoris resistentiae (place 

of least resistance) principle. For multi‐rooted 

teeth, the tract can drain off into the furcation 

area, resembling a class III periodontal defect.

Pain, tooth mobility, tenderness to pres-

sure and percussion, and periodontal 

abscess‐like swelling can be the related clini-

cal inflammatory signs.

Sensitivity tests show necrotic pulp, even 

though in multi‐rooted teeth the response 

can be positive because of the partial necrosis. 

As the lesion has an endodontic origin, root 

canal treatment (European Society of 

Endodontology 2006) is mandatory for sinus 

tract resolution without any associated peri-

odontal therapy (Zehnder et  al. 2002; 

Bergenholtz and Hasselgreen 2008; Shenoy 

and Shenoy 2010; Kerns and Glickman 2011). 

Sometimes, a period of up to four or five 

years might be required for the complete 

radiographic healing of the periapical lesion 

(Ng et  al. 2007; Zitzmann et  al. 2009). 

Incongruous root canal treatment or 

untreated canals (i.e. MB2 in first maxillary 

molars or D2 in lower molars) might prevent 

the lesion from healing, because of the 

high  residual bacterial load within the 

endodontium.

4.5.1.2  Primary Periodontal Lesion

Periodontitis (Box 4.2 and Table 4.3) is a pro-

gressive inflammatory process that starts in 

the sulcus and moves towards the apex due 

to the accumulation of plaque and calculus 

on the root surface. The final effect is the loss 

of alveolar bone and supporting tissues 

around the teeth. This process can also be 

accompanied by periodontal abscess in the 

acute phases of the disease (Toto and 

Gargiulo 1970; Hoffman and Gold 1971). 

Clinical examination reveals soft‐tissue 

inflammation, tooth mobility, bleeding on 

probing, and the presence of wide pockets 

(i.e. accessible at different points on the 

Box 4.1  Primary endodontic lesion.

 

Tooth history: caries, cracks, extensive restoration, crown or bridge abutment, incongruous 
root canal treatment, dental trauma,* root resorption.**

 

Root surface: smooth on probing. No presence of subgingival calculus.

 

Pocket conformation: narrow if the pocket is present.

 

Sensitivity pulp test response: generally negative. However, it might be positive in multi‐rooted 
teeth.

 

Radiographic sign: lateral, apical and/or inter‐radicular radiolucency.

 

Treatment: root canal treatment.

* Post‐traumatic pulp healing, especially after luxation injuries, is characterized by temporary loss of sensitivity. 
All sensitivity tests show low reliability right after the trauma (Bastos et al. 2014).
** Root resorption might affect the external surfaces of the tooth (external resorption) or the internal dentine (inter-
nal resorption) after being started in the periodontium or within the pulp space, respectively.


background image

The Endodontist’s View 65

Table 4.2 

Primary endodontic lesions.

Diagnostic Elements

Findings

Clinical Management

Presence of caries/restorations/cracks

+

Anamnesis

Clinical examination

Periodontal probing

Radiographic examination

Sensitivity tests

Endodontic treatment

Re‐evaluation after a few months

Subgingival calculus

History of trauma

+/−

Abscess

+*

Narrow deep pocket

+/−

Bleeding on probing

Thermal test

−/+**

Electric test

−/+**

Radiolucency

+

Mobility

+/−

Palpation test

+

Percussion test

+

* In the acute phase.

** The test is negative if all the pulp tissue is necrotic, except in case of gases‐related thermal expansion.

The test could be positive in case of partial necrosis.
Differential Diagnosis

Vertical root fractures

Primary periodontal lesions

Favourable Endodontic

Prognostic Factors

Congruous endodontic treatment

No symptoms

No probing within 30 days

Fistular track closure within 30 days

Radiolucency improvement within 6 months

Source: Adapted from AIE – Collana di Monografie Piccin Nuova Libraria S.p.A 2014.

Figure 4.6 

Pulpitis on 3.6 (LL6). Inter‐radicular and periapical radiolucencies due to bacterial toxins. Five‐year 

follow‐up after root canal therapy.


background image

Chapter 4

66

tooth) supported by plaque and calculus 

along the root. It should be noted that perio-

dontal pockets might also originate from 

anomalies in the root development (Rotstein 

and Simon 2004). During the diagnostic 

phase, pulp sensitivity tests generally reveal 

positive responses. However, negative 

responses can also be recorded and do not 

necessarily account for pulp necrosis. Owing 

to dystrophic calcifications, the pulp space 

might be reduced and the tooth might not 

respond to the sensitivity tests despite its 

vitality (Abou‐Rass 1982).

On the basis of the previous considera-

tions, the prognosis would mainly depend on 

the extension of the periodontal disease, the 

outcome of the periodontal therapy, and the 

patient’s ability to comply with potential 

long‐term maintenance (Bergenholtz and 

Hasselgreen 2008; Kerns and Glickman 

2011).

Primary Endodontic Lesion with Secondary 
Periodontal Involvement

Periodontal pathogens might induce perio-

dontitis by migrating apically into the patent 

sinus tract when the endodontic infection is 

not treated or persists after root canal ther-

apy. At the radiographic evaluation, angular 

intrabony or inter‐radicular osseous defects 

are appreciated. Plaque and calculus are 

detected on probing, therefore healing 

requires both endodontic and periodontal 

therapies for necrotic pulp removal and root 

debridement. Since root canal treatment 

resolves only a part of the defect (European 

Society of Endodontology 2006; Shenoy and 

Shenoy 2010), dental prognosis relies on the 

extent and severity of the osseous defect, and 

on the efficacy of the periodontal therapy.

For suppurative processes fistulizing 

through the cortical bone, bacteria from the 

oral cavity might colonize first the fistula and 

Box 4.2  Primary periodontal lesion.

 

Tooth history: periodontal pocket, attach-
ment loss, bleeding on probing.

 

Root surface: rough on probing because 
of subgingival plaque and calculus.

 

Pocket conformation: wide, often multiple 
pockets.

 

Sensitivity pulp test response: generally 
positive.

 

Radiographic sign: lateral and/or inter‐
radicular radiolucency, apical radiolu-
cency in advanced disease.

 

Treatment: oral hygiene instructions (OHI) 
and root debridement.

Figure 4.7 

Primary endodontic lesion with inter‐radicular and apical involvement on 4.6 (LR6). No furcation 

probing after three months and partial healing after one‐year follow‐up.


background image

The Endodontist’s View 67

then the apex, affecting the tooth prognosis. 

Primary endodontic lesion with secondary 

periodontal involvement (Box  4.3 and 

Table 4.4) might also occur in endodontically 

treated teeth because of root perforation 

and/or fracture. Once the communication 

between endodontium and periodontium is 

established, the secondary periodontal lesion 

can develop as a result of the micro‐organ-

isms’ migration from the root canal to the 

periodontium.

The clinical signs may range from local 

periodontal pocket deepening to abscess for-

mation associated with pain, exudate, and 

tooth mobility. In single‐rooted teeth, the 

prognosis is usually poor if the defect is close 

to the apex. In multi‐rooted teeth, the prog-

nosis might be better, since the tooth can be 

maintained by resecting the affected root, if 

the anatomy is indicated for this procedure 

Table 4.3 

Primary periodontal lesions.

Diagnostic Elements

Findings

Clinical Management

Presence of caries/restorations/cracks

+/−

Anamnesis

Clinical examination

Periodontal probing

Radiographic examination

Sensitivity tests

Splinting of mobile teeth (if needed)

Oral hygiene instructions and periodontal 

non‐surgical therapy

Periodontal re‐evaluation after a few months

Periodontal surgical therapy (if needed)

Subgingival calculus

+

History of trauma

+/−

Abscess

+*

Wide, not isolated, deep pocket/furcation

+

Bleeding on probing

+

Thermal test

+

Electric test

+

Lateral/interradicular radiolucency

+

Mobility

+

Palpation test

+*

Percussion test

+*

* In the acute phase.
Differential Diagnosis

Endodontic‐periodontal lesions

Favourable

Prognostic Factors

No symptoms

Pulpal vitality

No bleeding on probing

Probing pocket depth reduction

Mobility reduction

Radiographic bone remineralization in the apical part 

of the defect

Source: Adapted from AIE – Collana di Monografie Piccin Nuova Libraria S.p.A 2014.

Box 4.3  Primary endodontic lesion 
with secondary periodontal involvement.

 

Tooth history: caries, cracks, extensive 
 restoration, crown or bridge abutment, 
incongruous root canal treatment, dental 
trauma.

 

Root surface: rough on probing because 
of subgingival plaque and calculus.

 

Pocket conformation: narrow to wide, 
depending on the exposition time 
of  the sinus tract to periodontal 
pathogens.

 

Sensitivity pulp test response: negative.

 

Radiographic sign: lateral, apical, and/or 
inter‐radicular radiolucency.

 

Treatment: root canal treatment, oral 
hygiene instructions (OHI), and root 
debridement.


background image

Chapter 4

68

(Cameron 1964; Chan et  al. 1999; Zehnder 

et  al. 2002; Sunitha et  al. 2008; Kerns and 

Glickman 2011; Sugaya et al. 2015; see also 

Chapter 8).

Primary Periodontal Lesion with Secondary 
Endodontic Involvement

Primary periodontal lesion with secondary 

endodontic involvement (Box  4.4 and 

Table  4.5) differs from primary endodontic 

lesion with secondary periodontal involve-

ment only in the temporal sequence of the 

disease processes. If periodontitis remains 

untreated, periodontal pathogens can reach 

the pulp through the accessory canals or 

Table 4.4 

Primary endodontic lesions with secondary periodontal involvement.

Diagnostic Elements

Findings

Clinical Management

Presence of caries/restorations/cracks

+

Anamnesis

Clinical examination

Periodontal probing

Radiographic examination

Sensitivity tests

Splinting of mobile teeth (if 

needed)

Oral hygiene instructions and 

non‐surgical periodontal therapy

§

Endodontic treatment

Re‐evaluation after a few months

Surgical periodontal therapy (if 

needed)

Subgingival calculus

+

History of trauma

+/−

Abscess

+*

Narrow to wide deep pocket

+

Bleeding on probing

+

Thermal test

Electric test

Radiolucency

+

Mobility

+

Palpation test

+

Percussion test

+

* In the acute phase

§

 Deep Root Debridement Should Be Avoided Before Determining The Endodontic 

Component Of The Defect (See Section 4.5.3)

Differential Diagnosis

Primary periodontal lesion with secondary endodontic 

involvement

Vertical root fracture

Root/furcation perforation in endodontically treated 

teeth

Favourable Endodontic

Prognostic Factors

Congruous endodontic treatment

No symptoms

Partial probing depth reduction within 30 days

Fistular track closure within 30 days

Mobility reduction

Partial radiolucency improvement within 6 months

Source: Adapted from AIE – Collana di Monografie Piccin Nuova Libraria S.p.A 2014.

Box 4.4  Primary periodontal lesion with 
secondary endodontic involvement.

 

Tooth history: probing pocket depth 
deepening, bleeding on probing.

 

Root surface: rough on probing because 
of subgingival plaque and calculus.

 

Pocket conformation: wide, often multiple 
pockets.

 

Sensitivity pulp test response: generally 
negative.

 

Radiographic sign: lateral, apical, and/or 
inter‐radicular radiolucency.

 

Treatment: root canal treatment, oral hygiene 
instructions (OHI), and root debridement.


background image

The Endodontist’s View 69

 apical foramina. Pulp necrosis occurs and an 

endodontic‐periodontal lesion develops 

(Rubach and Mitchell 1965; Aguiar et  al. 

2014). Periodontal therapy can also lead to 

secondary pulp involvement. By exposing 

lateral canals and dentine during scaling and 

root planing or surgical flap procedures, 

blood supply might be interrupted and 

micro‐organisms might penetrate into the 

tubules, resulting in pulp inflammation and/

or necrosis (Adriaens et al. 1988).

To differentiate between endodontic‐ 

periodontal lesions with primary periodontal 

and endodontic origin, anamnesis and 

 clinical examination have to be exhaustively 

performed (see Figure  4.8). A history of 

 generalized periodontitis might suggest a 

primary periodontal origin. The number and 

conformation of pockets can help in the 

diagnosis. Wider or narrower defects gener-

ally suggest a periodontal or endodontic 

 origin of the lesions, respectively (Zehnder 

et  al. 2002; Sunitha et  al. 2008; Kerns and 

Glickman 2011). In addition, periodontal 

probing may reveal the presence of calculus 

on the root surface. Pulp sensitivity tests are 

generally negative when the endodontium is 

involved, whereas the radiographic evalua-

tion does not prove the primary origin of the 

lesion.

Once the endodontic therapy is properly per-

formed (European Society of Endodontology 

Table 4.5 

Primary periodontal lesions with secondary endodontic involvement.

Diagnostic Elements

Findings

Clinical Management

Presence of caries/restorations/cracks

+/−

Anamnesis

Clinical examination

Periodontal probing

Radiographic examination

Sensitivity tests

Splinting of mobile teeth (if 

needed)

Oral hygiene instructions and 

non‐surgical periodontal therapy

§

Endodontic treatment

Periodontal re‐evaluation after a 

few months

Surgical periodontal therapy (if 

needed)

Subgingival calculus

+

History of trauma

+/−

Abscess

+*

Not isolated, wide deep pocket/furcation

+

Bleeding on probing

+

Thermal test

−**

Electric test

−**

Lateral/apical/inter‐radicular radiolucency

+

Mobility

+

Palpation test

+

Percussion test

+

* In the acute phase.

** The test is negative if all the pulp tissue is necrotic, except in case of gases‐related thermal expansion.

The test could be positive in the case of partial necrosis.

§

 Deep Root Debridement Should Be Avoided Before Determining The Endodontic Component of 

The Defect (See Section 4.5.3)
Differential Diagnosis

Primary endodontic lesions with secondary periodontal 

involvement

Favourable Endodontic

Prognostic Factors

Congruous endodontic treatment

No symptoms

Partial probing depth reduction within 30 days

Fistular track closure within 30 days

Mobility reduction

Partial radiolucency improvement within 6 months

Source: Adapted from AIE – Collana di Monografie Piccin Nuova Libraria S.p.A 2014.


background image

Chapter 4

70

2006; Shenoy and Shenoy 2010), clinical  success 

basically depends on the outcome of the 

 periodontal therapy and the patient’s ability to 

comply with potential long‐term maintenance. 

As previously mentioned, multi‐rooted teeth 

might have a better prognosis than single‐

rooted teeth, since root resection represents an 

alternative for tooth survival.

True Combined Lesion

A true combined lesion (Box  4.5 and 

Table  4.6) means that the endodontic and 

periodontal infections simultaneously exist 

as independent, separated, or merging 

lesions. When the periodontal pocket deep-

ens up to the periapical lesion, the endodon-

tic and periodontal components of the defect 

are unidentifiable. Symptoms are similar to 

Figure 4.8 

Degree III furcation involvement on 4.6 (LR6) with progressive deepening of the defect and 

secondary pulp necrosis after 14 years. Root canal therapy led to resolution of the endodontic component of 

the defect. Besides scaling and root planing and oral hygiene instructions, no further periodontal treatment 

was performed.

Box 4.5  True combined lesions.

 

Tooth history: caries, cracks, extensive 
 restoration, crown or bridge abutment, 
incongruous root canal treatment, dental 
trauma, probing pocket depth deepen-
ing, bleeding on probing.

 

Root surface: rough on probing because 
of subgingival plaque and calculus.

 

Pocket conformation: wide and conical 
pocket.

 

Sensitivity pulp test response: negative.

 

Radiographic signs: communicating or 
non‐communicating extensive apical, lat-
eral, and/or inter‐radicular radiolucencies.

 

Treatment: root canal treatment, oral hygiene 
instructions (OHI), and root debridement.


background image

The Endodontist’s View 71

those previously mentioned for the com-

bined lesions with primary endodontic or 

periodontal origin. The radiographic evalua-

tion shows extensive osseous radiolucencies, 

communicating or not, similar to those of 

vertically fractured teeth. Indeed, pulp space 

invasion through vertical root fracture might 

also be considered as a true combined lesion.

Prior to endodontic therapy, mobile teeth 

should be splinted and carefully debrided. 

Once the root canal treatment is properly per-

formed (European Society of Endodontology 

2006), the endodontic component of the 

defect is expected to heal within a couple of 

months (Shenoy and Shenoy 2010; see 

Figure  4.9). Tooth prognosis would entirely 

depend on both the periodontal pocket depth 

and the related periodontal therapy. Uncertain 

prognosis concerns more single‐rooted that 

multi‐rooted teeth, since root resection might 

be a treatment option if not all the roots are 

severely involved and tooth anatomy is indica-

tive for this procedure (Zehnder et al. 2002; 

Rotstein and Simon 2004; Sunitha et al. 2008).

4.5.2  Diagnosis of Endodontic‐

periodontal Disease

Diagnosis of endodontic‐periodontal lesions 

can be easily performed when the patient has 

been monitored over time. Similar clinical 

and radiographic findings might make the 

differential diagnosis somewhat challenging. 

To avoid any misinterpretation, comprehen-

sive information can be obtained through 

detailed anamnesis and clinical examination, 

and by the use of specific tests aimed to assess 

the vitality of the pulp. Primary endodontic 

Table 4.6 

True periodontal‐endodontic combined lesions.

Diagnostic Elements

Findings

Clinical Management

Presence of caries/restorations/cracks

+

Anamnesis

Clinical examination

Periodontal probing

Radiographic examination

Sensitivity tests

Splinting of mobile teeth (if needed)

Oral hygiene instructions and 

non‐surgical periodontal therapy

§

Endodontic treatment

Periodontal re‐evaluation after a 

few months

Surgical periodontal therapy (if 

needed)

Subgingival calculus

+

History of trauma

+/−

Abscess

+*

Not isolated, wide deep pocket/furcation

+

Bleeding on probing

+

Thermal test

Electric test

Lateral/apical/inter‐radicular radiolucency

+

Mobility

+

Palpation test

+

Percussion test

+

* It depends on whether the phase is acute or chronic.

§

 Deep Root Debridement Should Be Avoided Before Determining The Endodontic 

Component Of The Defect (see Section 4.5.3)

Differential Diagnosis

Vertical root fracture

Favourable Endodontic

Prognostic Factors

Congruous endodontic treatment

No symptoms

Partial probing depth reduction within 30 days

Fistular track closure within 30 days

Mobility reduction

Partial radiolucency improvement within 6 months

Source: Adapted from AIE – Collana di Monografie Piccin Nuova Libraria S.p.A 2014.


background image

Chapter 4

72

lesions generally originate from infected and 

non‐vital pulp, whereas vital teeth are more 

characteristic of primary periodontal disease 

(Rotstein and Simon 2004; Bergenholtz and 

Hasselgreen 2008; Sunitha et al. 2008; Parolia 

et al. 2013).

4.5.2.1  Clinical Examination

Pulpal and periodontal diseases might have 

many clinical signs in common, such as gin-

gival swelling, pus discharge, probing, tooth 

mobility, and tenderness to percussion. Teeth 

have to be evaluated for caries, incongruous 

under‐ or over‐contoured restorations, loss 

of marginal seal, erosions, abrasions, cracks, 

and fractures. All these situations are more 

related to endodontic disease.

4.5.2.2 Palpation

Palpation is performed by applying firm dig-

ital pressure in correspondence with the 

root and the apex, with the index finger 

pressing the mucosa against the underlying 

cortical bone. A positive response might 

indicate an active periradicular inflamma-

tory process. However, this test does not 

indicate whether the origin is endodontic or 

periodontal. The test should be compared to 

control teeth.

4.5.2.3 Percussion

This test indicates the presence of periradic-

ular inflammation without revealing the 

 status of the pulp. An abnormal positive 

response shows inflammation of the perio-

dontal ligament, but it does not indicate 

whether the origin is endodontic or perio-

dontal. The test should be compared to 

 control  teeth.

4.5.2.4  Bite Test

This test does not disclose the condition of 

the pulp. However, it might be positive in 

vital teeth affected by cracked tooth syn-

drome (Cameron 1964) and in non‐vital 

teeth with periradicular inflammation.

4.5.2.5 Mobility

This clinical sign does not prove whether the 

origin of the lesion is primarily periodontal 

or endodontic. It might be speculated that its 

primary cause is periodontitis. In fact, tooth 

mobility depends on the amount and inflam-

mation of the residual supporting tissues. 

The greater the bone loss, the higher the 

mobility. However, periradicular oedema or 

trauma, with or without tooth fracture, can 

also lead to similar mobility (Biancu et  al. 

1995; Séguier et al. 2000).

Figure 4.9 

Class 3 inter‐radicular defect and concomitant decay of the furcation roof on 4.7 (LR7). The caries 

progression led to pulp necrosis. Tunnelling spontaneously occurred after non‐surgical periodontal treatment. 

One‐year follow‐up after root canal therapy.


background image

The Endodontist’s View 73

4.5.2.6  Fistula Tracking

Endodontic and periodontal diseases can 

lead to the formation of a fistulous sinus 

track. Following a minor resistance path, 

inflammatory exudate drains off into the oral 

mucosa through the attached buccal gingiva 

or the vestibule. The track is generally more 

representative of the endodontic infection 

rather than the periodontal disease, which 

often drains through the periodontal pocket 

without any fistulous sinus track formation. 

Fistula tracking is performed by inserting a 

semirigid radiopaque material, commonly a 

gutta‐percha cone, into the sinus track until 

resistance is met (see Figure 4.10). A radio-

graph is taken to identify the course of the 

sinus tract and, therefore, the tooth involved.

4.5.2.7  Cracked Tooth Testing

Cracked teeth (Cameron 1964) or vertical 

root fractures can be diagnosed through the 

observation of incomplete or complete 

cracks by transillumination. The fibre‐optic 

light source is directly placed on the cleaned 

tooth. Cracks can be appreciated with a mag-

nification source by evaluating the disrup-

tion of the light transmission (Liewehr 2001; 

Liewehr et  al. 2010). Unlike a vertical root 

fracture with a ‘tear‐shaped’ radiographic 

radiolucency, cracked teeth do not generally 

show any pathognomonic radiographic signs.

4.5.2.8 Radiographs

Despite the benefits of radiographs, consist-

ing in the detection of caries, over‐ or 

 

under‐ 

contoured restorations, pulp caps, 

periradicular radiolucencies, periodontal 

ligament widening, calculus, alveolar bone 

loss, and root fractures, this examination 

alone does not indicate whether the radiolu-

cency has an endodontic, periodontal, or any 

additional origin. It is important to consider 

that some other pathologies, such as cysts 

and neoplasia, can resemble periodontal or 

endodontic lesions in radiographic 

appearance.

Occlusal trauma may also lead to radio-

graphic radiolucencies on the lateral, apical, 

or inter‐radicular aspect of the root. In 

 periodontally involved teeth suffering from 

occlusal trauma, the amount of deminerali-

zation is not quantitatively reflected in the 

probing pocket depth, which is less deep 

than could be guessed radiographically. 

Occlusal adjustment might be necessary and 

must always precede any endodontic or 

 

periodontal therapy. Demineralization 

resolves within a few months when the 

occlusal interferences and the mobility are 

eliminated by grinding and splinting, respec-

tively [75,81,96,97] (Bergenholtz and 

Hasselgreen 2008; Carnevale et  al. 2008; 

Lindhe et al. 2008; Kerns and Glickman 2011; 

see Figures 4.11 and 4.12).

4.5.2.9  Pocket Probing

To assess whether the origin of the lesion is 

endodontic or periodontal, probing can be 

crucial in the diagnosis (Harrington and 

Steiner 2002). Defects are evaluated for 

(a)

(b)

Figure 4.10 

Fistulous sinus track between 1.6 (UR6) and 1.7 (UR7) (a). Fistula tracking revealed the origin of the 

endodontic infection on 1.7 (b).


background image

Chapter 4

74

extent, severity, and shape by means of a 

 calibrated periodontal probe. The presence 

of plaque and calculus, detected by sounding 

the root surface with the tip of the probe, 

explains the periodontal involvement, 

although this may not be necessarily easy to 

detect. Primary periodontal lesions are fre-

quently characterized by wide calculus‐

induced defects in patients with further 

periodontal pockets, whereas primary endo-

dontic lesions typically show narrow solitary 

calculus‐free defects. Inter‐radicular involve-

ment without further signs of periodontal 

disease might indicate the endodontic origin 

of the lesion.

Periodontal probing can be considered as a 

prognostic indicator in the short term. In 

fact, early fistulous sinus track resolution 

after root canal therapy (Shenoy and Shenoy 

2010) might confirm the endodontic origin 

of the defect without any further concomi-

tant causes, such as vertical root fracture or 

periodontal involvement. On the contrary, a 

persisting sinus track might imply periodon-

tal involvement or unsolved endodontic 

infection (Harrington and Steiner 2002; 

Walton and Torabinejad 2002; Rotstein and 

Simon 2004).

4.5.2.10  Pulp Vitality Tests

Pulp vitality tests are very important to eval-

uate whether the lesion has an endodontic or 

periodontal origin (Walton and Torabinejad 

2002). The sensitivity rather than the vitality 

of the pulp is assessed through sensory nerve 

stimulation. Two different stimuli, electric 

and/or thermal (cold or hot), can be applied, 

and complaints and painful sensations are 

recorded. Figure 4.13 summarizes the diag-

nostic tests for pulp health assessment, and 

(a)

(b)

Figure 4.11 

Radiographic radiolucency on 3.6 (LL6) affected by secondary occlusal trauma without furcation 

involvement (a). Six‐month follow‐up after root debridement and occlusal adjustment (b). Source: AIE—Collana 

di Monografie Piccin Nuova Libraria S.p.A 2014, p. 139.

Figure 4.12 

Degree II furcation defect (lingual) on 3.6 (LL6) affected by secondary occlusal trauma. Being the 

possible result of jiggling movements, the apical radiolucency present on the mesial root disappeared after 

the occlusal adjustment. Twenty‐year follow‐up after non‐surgical periodontal therapy and oral hygiene 

instructions. Source: AIE—Collana di Monografie Piccin Nuova Libraria S.p.A 2014, p. 140.


background image

The Endodontist’s View 75

Box 4.6 considers how sensitivity tests might 

be misinterpreted.

Vital teeth react to cold and hot stimuli by 

exhibiting short‐lasting sharp pain or mild 

heat sensation, respectively. Intense and 

long‐lasting painful reactions might indicate 

irreversible pulp changes. In molars, tissue 

degeneration might be limited to part of the 

pulp only (see Figure 4.14) and the reliability 

of the tests might be questioned, as false 

 negatives can be wrongly recorded (Abou‐

Rass 1982; Mejàre et al. 2012; Levin 2013). A 

lack of response is often associated with pulp 

necrosis (Rowe and Pitt Ford 1990; Peters 

et al. 1994).

Vital teeth react to an electric test by exhib-

iting tingling, slight discomfort, or a burning 

sensation. Scored values per se do not mean 

the presence or absence of pathology, since 

no general threshold for pulpal disease has 

been established so far. As a general rule, the 

higher the scored values, the higher the prob-

ability of irreversible pulpal alterations. To 

better assess the response, healthy teeth 

should be taken as controls. By comparing the 

values obtained at different follow‐up stages, 

more clinical information is provided for the 

diagnosis. However, false negatives and posi-

tives might make clinical evaluation some-

what challenging (Rotstein and Simon 2004; 

Gopikrishna et  al. 2007; Chen and Abbott 

2009; Jafarzadeh and Abbott 2010; Mejàre 

et al. 2012; Alghaithy and Qualtrough 2017).

Figure 4.13 

Diagnostic tests for pulp health assessment. Source: AIE—Collana di Monografie Piccin Nuova 

Libraria S.p.A 2014, pp. 266–268, 271.

Box 4.6  Clinical situations where pulp 
response to sensitivity tests might be 
misinterpreted.

 

Teeth with calcified root canals.

 

Multi‐rooted teeth with partially affected 
pulp.

 

Teeth with partial‐ or full‐coverage 
restorations.

 

Traumatized teeth.

 

Endodontically treated teeth with untreated 
canals.


background image

Chapter 4

76

While a lack of response can be associated 

with pulp necrosis, exaggerated or misleading 

responses following cold or electric tests can 

be the result of pulpitis, patient anxiety, 

 dentinal hypersensitivity, trauma, or enamel‐

to‐dentine cracks (Abou‐Rass 1982; Eli 1993; 

Peters et al. 1994; Bastos et al. 2014). Cold and 

hot stimuli can respectively mitigate or exacer-

bate the symptoms in partially necrotic teeth.

Vital teeth with a history of deep caries, 

periodontitis, bruxism, or trauma may not 

respond to thermal or electrical stimuli 

because of the reparative changes in the pulp 

tissues (Bastos et  al. 2014). Partial‐ or full‐

coverage restorations can also act as a barrier 

to thermal and, to a lesser degree, electrical 

stimuli, preventing the pulp from being 

properly evaluated (Rowe and Pitt Ford 1990; 

Peters et  al. 1994; Myers 1998; Petersson 

et al. 1999).

The vitality rather than the sensitivity of 

the pulp can be assessed by measuring the 

pulp blood flow through laser doppler flow-

metry or similar procedures. Many investiga-

tions have been conducted to validate the 

efficacy of these tests. However, their clinical 

applicability is still questioned (Gopikrishna 

et al. 2007; Mejàre et al. 2012; Alghaithy and 

Qualtrough 2017).

4.5.2.11  Cavity Test

By drilling the cavity without anaesthetic, the 

pulp status can be objectively evaluated 

through patient‐referred symptoms. The so‐

called cavity test can be performed when all 

the aforementioned tests have failed to give 

comprehensive information about the  vitality 

of the pulp. Positive and negative responses 

indicate vital and necrotic pulp, respectively. 

If no symptoms are reported by extending 

the cavity towards the pulp chamber, partial 

or complete pulp necrosis is confirmed and 

the endodontic treatment can be started 

(Kerns and Glickman 2011).

Figure 4.14 

Pulp necrosis limited to the distal root on 4.6 (LR6) and result after root canal therapy.


background image

The Endodontist’s View 77

4.5.2.12  Selective Anaesthesia Test

To determine the origin of pain, teeth might 

be selectively anaesthetized by carefully 

injecting the anaesthetic through the perio-

dontal ligament. Periodontal intraligament 

injection is limited to a single tooth without 

involving the adjacent teeth. The test is use-

ful to identify the origin of pulpitis‐related 

radiating pain (D’Souza et al. 1987; Rotstein 

and Simon 2004).

4.5.3  Management of 

Endodontic‐periodontal Disease

To properly manage endodontic‐periodontal 

pathology (Box 4.7; Berner and Graber 2008), 

prognosis and treatment decision‐making 

should be based on scrupulous diagnosis. 

The pulp should be assessed for sensitivity, 

whereas bone defects should be assessed for 

severity, extension, and shape.

Primary endodontic disease is character-

ized by necrotic pulp and narrower calculus‐

free defect, thus the prognosis would mainly 

depend on the outcome of root canal therapy. 

Once calculus‐related pockets are excluded 

and root canal treatment is properly per-

formed, the diagnosis of primary endodontic 

lesions is confirmed by the disappearance of 

symptoms, physiological values on soft tissue 

probing, and bony remineralization on recall 

radiographs.

Primary periodontal lesions show vital 

pulp and a wide calculus‐associated pocket. 

In this case, the prognosis depends on peri-

odontal disease severity, treatment execu-

tion, and patient response, motivation, and 

compliance.

Despite the similar clinical and radio-

graphic findings, the presence of plaque and 

calculus is crucial for the diagnosis and prog-

nosis of combined or true endodontic‐ 

periodontal lesions. From a treatment 

viewpoint, the calculus, if present, might be 

useful to detect the limit between the perio-

dontal (rough surfaces due to calculus) and 

endodontic component of the defect (smooth 

surfaces without calculus). When this differ-

ential diagnosis is not possible, deep and 

heavy debridement should be avoided before 

root canal therapy, since healthy cementum 

might be wrongly removed, and a second re‐

evaluation of the site should be made two to 

three months after the endodontic treatment 

(Zehnder 2001; Parolia et al. 2013; Paul and 

Hutter 1997). This time is required for the 

initial bone remineralization, thus the extent 

of the periodontal component can be more 

precisely assessed.

Tooth maintainability should be deeply 

questioned once the extent of the defect is 

seen to depend more on periodontal than 

endodontic disease. The prognosis depends 

on periodontal disease severity, overall treat-

ment execution, and patient response, 

 motivation, and compliance. Cases of true 

combined disease might have more a guarded 

prognosis than the combined endodontic‐

periodontal lesions (Paul and Hutter 1997; 

Rotstein and Simon 2004; Bergenholtz and 

Hasselgreen 2008; Kerns and Glickman 2011; 

Schmidt et al. 2014).

4.5.4  Endodontic‐periodontal Disease 

in Endodontically Treated Teeth

Sensitivity tests cannot be used for diagnostic 

purposes in endodontically treated teeth. 

Improper root canal treatment (see Figure 4.15) 

or iatrogenic injuries (see Figure 4.16), such as 

stripping or perforation, should be radio-

graphically detected to determine whether the 

origin of the lesion is endodontic, particularly 

if there are no signs of periodontal disease. The 

diagnostic dilemma can only be solved through 

proper endodontic retreatment. By controlling 

the infection, clinical and radiographic healing 

Box 4.7  Proper management of 
endodontic‐periodontal pathology.

 

Collect all the information referred to by 
the patient (i.e. previous trauma, pulp 
capping).

 

Perform all the tests mentioned.

 

Match and interprete the data collected.


background image

Chapter 4

78

can be expected within two to three months 

after the retreatment (European Society of 

Endodontology 2006; Shenoy and Shenoy 

2010). If resolution does not occur, periodontal 

disease, vertical root fracture, or persisting 

endodontic infection can be individually con-

sidered as possible causes of the disease 

(Rotstein and Simon 2004).

4.6   Relationship  Between 

Pulp and Periodontal 

Furcation Therapies

4.6.1  Non‐surgical Periodontal Therapy

The previous chapter discussed how, since 

bacteria are the primary aetiological factor in 

Figure 4.15 

True combined lesion on 3.6 (LL6) with an incongruous root canal therapy. The endodontic 

infection led to the apical resorption of the distal root. Despite the inter‐radicular radiolucency, furcation 

probing was negative. A periodontal defect was present on the distal aspect of the tooth. Two‐year follow‐up 

after non‐surgical periodontal therapy, oral hygiene instructions, and root canal retreatment.

Figure 4.16 

Inter‐radicular defect on 3.6 (LL6) due to stripping of the mesial root and results after rizectomy.


background image

The Endodontist’s View 79

periodontal disease, periodontal furcation 

therapy aims to subgingivally remove plaque 

and calculus from the contaminated root 

surfaces (Wennström et al. 2005; Tomasi and 

Wennström 2009). Despite the benefits for 

periodontal health (Löe et al. 1965), mechan-

ical instrumentation might have some side 

effects on root integrity and, therefore, on 

the endodontium. Following root cementum 

and superficial dentine removal, bacteria can 

more easily penetrate into the tubules and 

induce a localized inflammatory response on 

the pulp (Adriaens et  al. 1988; Bergenholtz 

and Ricucci 2008). Nevertheless, some 

authors have reported that cementum and 

dentine removal do not appear to have con-

sequences for pulp health (Bergenholtz and 

Lindhe 1978), even when the exposed root is 

in contact with plaque (Nilvéus and Selvig 

1983; Hattler and Listgarten 1984). In fact, 

the incidence of pulp lesions was seen to be 

similar between scaling and root planing–

treated and untreated teeth (Bergenholtz and 

Lindhe 1978).

Among the instrumentation‐related side 

effects, root dentine hypersensitivity is 

widely reported as a complaint by patients. 

In fact, half of cases usually report sensitivity 

after subgingival scaling and root planning 

(von Troil et  al. 2002). Painful symptoms, 

which affect the upper premolars and first 

molars more than the rest of the teeth 

(Bartold 2006), are normally evoked by evap-

orative, tactile, thermal, or osmotic stimuli, 

and can prevent the patient from undertak-

ing daily oral hygiene procedures. In accord-

ance with the most accredited hydrodynamic 

theory, fluid shift across the exposed tubules 

can be responsible for the painful sensation 

(Pashley et al. 1996).

Generally, root dentine hypersensitivity 

disappears within a couple of weeks after 

subgingival debridement because of the nat-

ural occlusion of the tubules. Mineral crystal 

deposition on the tubular lumen inactivates 

the hydrodynamic mechanism for dentinal 

pain and limits the potential for an inward 

diffusion of bacterial elements towards the 

pulp (Yoshiyama et al. 1989; 1990).

Besides the patient’s pain perception and 

threshold, eating habits, such as consumption 

of citrus fruit, fruit juice, yogurt, and wine, 

can promote the onset of root dentine hyper-

sensitivity. Acid nourishment can act as 

 conditioners for mineralized tissues, prevent-

ing the tubules from occluding (Bergenholtz 

and Ricucci 2008; Addy et al. 1987).

A wide number of treatment options seem 

to be effective in the management of dentinal 

hypersensitivity. Chemical or physical agents 

are professionally or domestically applied, to 

either desensitize the nerve or cover the 

exposed dentinal tubules (Gillam and 

Orchardson 2006). Sometimes, for stressed 

patients with poor eating habits and a low 

pain threshold, dentinal hypersensitivity can 

persist for months or years after mechanical 

instrumentation, and root canal treatment 

might be required to improve their daily oral 

hygiene and the related quality of life (Bartold 

2006; Gillam and Orchardson 2006).

4.6.2  Regenerative Furcation 

Therapy

Chapters 6 and 7 will cover the regenerative 

options for periodontal furcation involve-

ment (FI). Despite the effort to establish 

whether a negative effect of guided tissue 

regeneration (GTR) on the pulp exists, clear 

evidence is still lacking (Chen et  al. 1997). 

According to Cortellini and Tonetti (2001), 

GTR of deep intrabony defects extended to 

the apical third of the root does not nega-

tively influence the vitality of the tooth. This 

is particularly evident when the neuro‐vas-

cular bundle is not damaged by debridement. 

Clinical attachment level (CAL) gain follow-

ing GTR appears to be quite similar between 

vital and endodontically treated teeth. In 

fact, the healing process does not seem to be 

influenced by root canal therapy successfully 

performed prior to the regeneration 

(Cortellini and Tonetti 2001).

As reported by other authors (Lasho et al. 

1983; Polson et al. 1984; Gkranias et al. 2012; 

Garg et al. 2015), conditioners, such as citric 

acid and ethylenediaminetetraacetic acid 


background image

Chapter 4

80

(EDTA), are effective in smear layer, endo-

toxins, and anaerobic bacteria removal. Root 

conditioning improves the attractiveness of 

the surface as a substrate to which cells/

blood components can adhere (Boyko et al. 

1980), therefore the exposed collagen fibres 

can act as a matrix for a new connective tissue 

attachment to cementum (Pitaru and Melcher 

1987). Conversely, smear layer dissolution 

can threaten pulp health. By removing this 

protective barrier, dentine permeability 

increases and the pulp might be more likely to 

be injured (Ryan et al. 1984; McInnes‐Ledoux 

et al. 1985). As observed by Cotton and Siegel 

(1977), citric acid application on freshly cut 

dentine may have a detrimental toxic effect 

on human pulp. However, several studies do 

not endorse this finding (Nilvéus and Selvig 

1983; Lambrianidis et al. 1988).

Without evidence‐based operating proto-

cols, the recommendations in Box 4.8 should 

be followed.

4.6.3  Resective Therapy

As discussed by Rotundo and Fonzar in 

Chapter 8, endodontic treatment is manda-

tory before resective therapy whenever the 

tooth is vital or the previous endodontic 

treatment is incongruous (see Figures  4.17 

and 4.18). Rubber dam is required for  optimal 

working conditions (Ahmad 2009; Lin et al. 

2014). During cleaning and shaping, root 

integrity has to be preserved as much as pos-

sible by minimally removing the dentine 

along the canals. To avoid resection‐related 

gutta‐percha exposure, the canal space has to 

be filled 2–3 mm apical to the furcation 

(Marin et  al. 1989). Prior to the resective 

therapy, resin composites can be used to 

adhesively build up the abutment. Endodontic 

posts or screws might be necessary whenever 

the retention for the build‐up material is 

poor. When the endodontic and restorative 

protocols are properly followed, retention‐

related complications such as build‐up 

debonding or breaking are generally avoided 

(Carnevale et al. 2008).

Occasionally, the FI might be preoperatively 

or intraoperatively underestimated and its 

resolution might not be obtained by barrelling 

only (Jameson and Malone 1982). The exposed 

root canal entrances have to be carefully 

sealed after the resective therapy, since the 

incidence of pulp failures increases over time 

(Smukler and Tagger 1976). In particular, 41%, 

Box 4.8  Recommendations for regenerative furcation therapy.

 

For deep periodontal defects, with or without furcation involvement, on impairment‐free vital 
teeth, regenerative therapy may be performed without endodontic pre‐treatment, since pulp 
vitality is likely to be preserved.

 

For up‐to‐the‐apex periodontal defects, scaling and root planing (SRP) procedures might dam-
age the neuro‐vascular bundle of the tooth. Since pulp necrosis might occur during periodon-
tal healing, according to some authors root canal treatment could be preventively performed 
to avoid any interference with the regeneration process (Cortellini and Tonetti 2001).

 

For deep periodontal defects on asymptomatic congruously root‐filled teeth with periapical 
radiolucency, root canal retreatment should be delayed, since a periapical lesion might require 
up to five years for comprehensive radiographic healing (Molven et al. 2002; Zitzmann et al. 
2009; Abbott 2011).

 

For deep periodontal defects on symptomatic incongruously root‐filled teeth with periapical 
radiolucency, root canal retreatment is mandatory before proceeding with guided tissue 
regeneration therapy.

 

For deep periodontal defects on symptom‐free incongruously root‐filled teeth without peria-
pical translucency, no evidence‐based endodontic protocol has been defined so far, thus root 
canal retreatment may be performed or not, depending on restorative purposes.


background image

The Endodontist’s View 81

62%, and 87% of resected teeth show pulp 

necrosis after six months, one year, and five 

years, respectively (Filipowicz et  al. 1984). 

Because of the poor short‐term endodontic 

prognosis, vital teeth should be devitalized 

before the resective therapy, or at least 

within  two weeks afterwards (Smukler and 

Tagger 1976).

The operating recommendations in 

Box 4.9 should be followed.

Figure 4.17 

Pulp exposure after resective therapy on vital 4.6 (LR6). Root canal treatment was performed one 

week later.

Figure 4.18 

Degree II furcation defect (mesial and distal) on 2.6 (UL6). Minimally invasive access to the 

endodontic space was obtained after isolation with rubber dam. Canals were conservatively shaped and filled 

with gutta‐percha apical to the furcation floor. Resin composite was used to fill the root canal entrances and to 

build up the cavity access. The rizotomy (root separation) of the mesio-buccal and palatal roots and the rizectomy 

(root amputation) of the disto-buccal root were performed after endodontic treatment. All the root canals 

were endodontically treated, since there was no pre‐operative certainty of the extraction of the distal root.


background image

Chapter 4

82

 References

Abbott, P.V. (2011). Diagnosis and 

management planning for root‐filled teeth 

with persisting or new apical pathosis. 

Endodontic Topics 19, 1–21.

Abbott, P.V., and Salgado, J.C. (2009). 

Strategies for the endodontic management 

of concurrent endodontic and periodontal 

diseases. Australian Dental Journal 54, 

70–85.

Abou‐Rass, M. (1982). The stressed pulp 

condition: An endodontic‐restorative 

diagnostic concept. Journal of Prosthetic 

Dentistry 48, 264–267.

Addy, M., Mostafa, P., and Newcombe, R.G. 

(1987). Dentine hypersensitivity: The 

distribution of recession, sensitivity and 

plaque. British Dental Journal 162, 253–256.

Adriaens, P.A., De Boever, J.A., and Loesche, 

W.J. (1987). Bacterial invasion in root 

cementum and radicular dentin of 

periodontally diseased teeth in humans: 

A reservoir of periodontopathic bacteria. 

Journal of Periodontology 59, 222–230.

Adriaens, P.A., Edwards, C.A., De Boever, J.A., 

and Loesche, W.J. (1988). Ultrastructural 

observations on bacterial invasion in 

Box 4.9  Recommendations for resective therapy.

 

Cleaning and shaping should be conservatively performed, and residual dentine thickness 
should be preserved as much as possible to avoid root weakening.

 

For canal filling, gutta‐percha should be extended 2–3 mm apical to the furcation.

 

For the build‐up, resin composite should be used to adhesively restore the abutment.

 

Endodontic posts or screws should be placed only in low‐retention teeth.

 

Vital resected teeth should be endodontically treated within two weeks after the resective 
therapy.

 Summary  of Evidence

 

Endodontium and periodontium influ-

ence each other during health, function, 

and disease.

 

The histological pulp changes induced by 

periodontal disease can be reparative or 

degenerative. Pulp necrosis generally 

occurs when the apical neuro‐vascular 

bundle is involved.

 

Accessory canals in the furcation 

region are frequent and might repre-

sent a  communication pathway between 

endodontic and periodontal patholo-

gies through the induction of inflam-

matory responses.

 

Primary endodontic lesions might resem-

ble a furcation class III periodontal defect, 

when the fistulous sinus tract drains 

through the periodontal ligament in the 

inter‐radicular space of multi‐rooted teeth.

 

Pulp sensitivity tests and periodontal 

probing are essential for the differential 

diagnosis of endodontic and periodontal 

diseases.

 

When combined endodontic and perio-

dontal lesions merge, root canal therapy 

should be carried out a few months before 

any further surgical periodontal treat-

ment, in order to evaluate the part of the 

defect originating from the endodontic 

disease.

 

The vitality of the pulp seems to hinder 

bacteria migration from the periodontal 

pocket to the endodontium.

 

Except for root resective therapy, non‐ 

surgical, surgical, and regenerative perio-

dontal therapies for furcation lesions do 

not benefit from any preventive root canal 

treatment.


background image

The Endodontist’s View 83

cementum and radicular dentin of 

periodontally diseased human teeth. Journal 

of Periodontology 59, 493–503.

Aguiar, T.R., Tristao, G.C., Mandarino, D. et al. 

(2014). Histopathologic changes in dental 

pulp of teeth with chronic periodontitis. 

Compendium of Continuing Education in 

Dentistry 35, 344–351.

Ahmad, I.A. (2009). Rubber dam usage for 

endodontic treatment: A review. International 

Endodontic Journal 42, 963–972.

AIE Accademia Italiana di Endodonzia (2014). 

Patologia da carico e sovraccarico dentale. 

In: Elementi di anatomia, fisiologia e 

patologia del complesso pulpo‐dentinale: La 

diagnosi (ed. F. Fonzar and M. Venturi), 139. 

Padova: Piccin Nuova Libraria.

Aleo, J,J., De Renzis, F.A., Farber, P.A., and 

Varboncoeur, A.P. (1974), The presence and 

biologic activity of cementum‐bound 

endotoxin. Journal of Periodontology 45, 

672–675.

Alghaithy, R.A., and Qualtrough, A.J. (2017). 

Pulp sensibility and vitality tests for 

diagnosing pulpal health in permanent 

teeth: A critical review. International 

Endodontic Journal 50, 135–142.

American Association of Endodontists (2015). 

Glossary of Endodontic Terms, 9th edn. 

Chicago, IL: American Association of 

Endodontists.

Andreasen, F.M., and Andersson, L. (2007). 

Textbook and Color Atlas of Traumatic 

Injuries to the Teeth, 4th edn. Oxford: 

Blackwell.

Bartold, P.M. (2006). Dentinal hypersensitivity: 

A review. Australian Dental Journal 51, 

212–218.

Bastos, J.V., Goulart, E.M., and de Souza 

Côrtes, M.I. (2014). Pulpal response to 

sensibility tests after traumatic dental 

injuries in permanent teeth. Dental 

Traumatology 30, 188–192.

Bender, I.B., and Seltzer, S. (1972). The effect 

of periodontal disease on the pulp. Oral 

Surgery, Oral Medicine, Oral Pathology 33, 

458–474.

Bergenholtz, G. (1981). Inflammatory 

response of the dental pulp to bacterial 

irritation. Journal of Endodontics 7, 

100–104.

Bergenholtz, G., and Hasselgreen, G. (2008). 

Endodontics and periodontics. In: Clinical 

Periodontology and Implant Dentistry, 5th 

edn (ed. J. Lindhe, N.P. Lang, and T. 

Karring), 848–874. Oxford: Blackwell 

Munksgaard.

Bergenholtz, G., and Lindhe, J. (1978). Effect of 

experimentally induced marginal 

periodontitis and periodontal scaling on the 

dental pulp. Journal of Clinical 

Periodontology 5, 59–73.

Bergenholtz, G., and Ricucci, D. (2008). 

Lesions of endodontic origin. In: Clinical 

Periodontology and Implant Dentistry, 5th 

edn (ed. J. Lindhe, N.P. Lang, and T. 

Karring), 518–519. Oxford: Blackwell 

Munksgaard.

Berner, E.S., and Graber, M.L. (2008). 

Overconfidence as a cause of diagnostic 

error in medicine. American Journal of 

Medicine 121, 2–23.

Biancu, S., Ericsson, I., and Lindhe, J. (1995). 

Periodontal ligament tissue reactions to 

trauma and gingival inflammation: An 

experimental study in the beagle dog. 

Journal of Clinical Periodontology 22, 

772–779.

Boyko, G.A., Brunette, D.M., and Melcher, 

A.H. (1980). Cell attachment to 

demineralized root surfaces in vitro. Journal 

of Periodontal Research 15, 297–303.

Burch, J.G., and Hulen, S. (1974). A study of 

the presence of accessory foramina and the 

topography of molar furcations. Oral 

Surgery, Oral Medicine, Oral Pathology 38, 

451–455.

Cameron, C.E. (1964). Cracked‐tooth 

syndrome. Journal of the American Dental 

Association 68, 405–411.

Carnevale, G., Pontoriero, R., and Lindhe, J. 

(2008). Treatment of furcation‐involved 

teeth. In: Clinical Periodontology and 

Implant Dentistry, 5th edn (ed. J. Lindhe, 

N.P. Lang, and T. Karring), 349–374. 

Oxford: Blackwell Munksgaard.

Chan, C.P., Lin, C.P., Tseng, S.C., and Jeng, J.H. 

(1999). Vertical root fracture in 


background image

Chapter 4

84

endodontically versus non endodontically 

treated teeth: A survey of 315 cases in 

Chinese patients. Oral Surgery, Oral 

Medicine, Oral Pathology, Oral Radiology, 

Endodontics 87, 504–507.

Chen, E., and Abbott, P.V. (2009). Dental pulp 

testing: A review. International Journal of 

Dentistry 2009, 1–12.

Chen, S.Y., Wang, H.L., and Glickman, G.N. 

(1997). The influence of endodontic 

treatment upon periodontal wound healing. 

Journal of Clinical Periodontology 24, 

449–456.

Cheron, R.A., Marshall, S.J., Goodis, H.E., and 

Peters, O.A. (2011). Nanomechanical 

properties of endodontically treated teeth. 

Journal of Endodontics 37, 1562–1565.

Cortellini, P., and Tonetti, M.S. (2001). 

Evaluation of the effect of tooth vitality on 

regenerative outcomes in infrabony defects. 

Journal of Clinical Periodontology 28, 

672–679.

Cotton, W.R., and Siegel, R.L. (1977). Pulp 

response to citric acid cavity cleanser. US 

Navy Medicine 68, 27–29.

Czarnecki, R.T., and Schilder, H. (1979). A 

histological evaluation of the human pulp in 

teeth with varying degrees of periodontal 

disease. Journal of Endodontics 5, 242–253.

Daly, C.G., Seymour, G.J., Kieser, J.B., and 

Corbet, E.F. (1982). Histological assessment 

of periodontally involved cementum. 

Journal of Clinical Periodontology 9, 

266–274.

De Deus, Q.D. (1975). Frequency, location, and 

direction of the lateral, secondary, and 

accessory canals. Journal of Endodontics 1, 

361–366.

D’Souza, J.E., Walton, R.E., and Peterson, L.C. 

(1987). Periodontal ligament injection: An 

evaluation of the extent of anaesthesia and 

postinjection discomfort. Journal of the 

American Dental Association 114, 341–344.

Eli, I. (1993). Dental anxiety: A cause for 

possible misdiagnosis of tooth vitality. 

International Endodontic Journal 26, 

251–253.

European Society of Endodontology (2006). 

Quality guidelines for endodontic treatment: 

Consensus report of the European Society of 

Endodontology. International Endodontic 

Journal 39, 921–930.

Faria, A.C., Rodrigues, R.C., de Almeida 

Antunes, R.P. et al. (2011). Endodontically 

treated teeth: Characteristics and 

considerations to restore them. Journal of 

Prosthodontic Research 55, 69–74.

Filipowicz, F., Umstott, P., and England, M. 

(1984). Vital root resection in maxillary 

molar teeth: A longitudinal study. Journal of 

Endodontics 10, 264–268.

Garg, J., Maurya, R., Gupta, A. et al. (2015). An 

in vitro scanning electron microscope study 

to evaluate the efficacy of various root 

conditioning agents. Journal of Indian 

Society of Periodontology 19, 520–524.

Gargiulo, A.V., Jr (1984). Endodontic‐

periodontic interrelationships: Diagnosis 

and treatment. Dental Clinics of North 

America 28, 767–781.

Ghazali, F.B. (2003). Permeability of dentine. 

Malaysian Journal of Medical Sciences 10, 

 27–36.

Gillam, D.G., and Orchardson, R. (2006). 

Advances in the treatment of root dentine 

sensitivity: Mechanisms and treatment 

principles. Endodontic Topics 13, 13–33.

Giuliana, G., Ammatuna, P., Pizzo, G. et al. 

(1997). Occurrence of invading bacteria in 

radicular dentin of periodontally diseased 

teeth: Microbiological findings. Journal of 

Clinical Periodontology 24, 478–485.

Gkranias, N.D., Graziani, F., Sculean, A., and 

Donos, N. (2012). Wound healing following 

regenerative procedures in furcation degree 

III defects: Histomorphometric outcomes. 

Clinical Oral Investigation 16, 239–249.

Goldberg, F., Massone, E.J., Soares, I., and 

Bittencourt, A.Z. (1987). Accessory orifices: 

Anatomical relationship between the pulp 

chamber floor and the furcation. Journal of 

Endodontics 13, 176–181.

Gopikrishna, V., Tinagupta, K., and 

Kandaswamy, D. (2007). Comparison of 

electrical, thermal, and pulse oximetry 

methods for assessing pulp vitality in 

recently traumatized teeth. Journal of 

Endodontics 33, 531–535.


background image

The Endodontist’s View 85

Gorni, F.G., Andreano, A., Ambrogi, F. et al. 

(2016). Patient and clinical characteristics 

associated with primary healing of 

iatrogenic perforations after root canal 

treatment: Results of a long‐term Italian 

study. Journal of Endodontics 42, 211–215.

Guldener, P.H. (1985). The relationship 

between periodontal and pulpal disease. 

International Endodontic Journal 18, 41–54.

Gutmann, J.L. (1978). Prevalence, location, and 

patency of accessory canals in the furcation 

region of permanent molars. Journal of 

Periodontology 49, 21–26.

Haapasalo, M., Parhar, M., Huang, X. et al. 

(2015). Clinical use of bioceramic materials. 

Endodontic Topics 32, 97–117.

Hahn, C.L., and Overton, B. (1997). The effects 

of immunoglobulins on the convective 

permeability of human dentine in vitro. 

Archives of Oral Biology 42, 835–843.

Harrington, G.W., and Steiner, D.R. (2002). 

Periodontal‐endodontic considerations. In: 

Principles and Practice of Endodontics, 3rd 

edn (ed. R.E. Walton and M. Torabinejad), 

466–484. Philadelphia, PA: W.B. Saunders.

Harrington, G.W., Steiner, D.R., and Ammons, 

W.F. (2002). The periodontal‐endodontic 

controversy. Periodontology 2000 30, 

123–130.

Hattler, A.B., and Listgarten, M.A. (1984). 

Pulpal response to root planing in a rat 

model. Journal of Endodontics 10,  

471–476.

Hoffman, I.D., and Gold, W. (1971). Distances 

between plaque and remnants of attached 

periodontal tissues on extracted teeth. 

Journal of Periodontology 42, 29–30.

Huang, T.J., Schilder, H., and Nathanson, D. 

(1992). Effects of moisture content and 

endodontic treatment on some mechanical 

properties of human dentin. Journal of 

Endodontics 18, 209–215.

Jafarzadeh, H., and Abbott, P.V. (2010). Review 

of pulp sensibility tests. Part II: Electric pulp 

tests and test cavities. International 

Endodontic Journal 43, 945–958.

Jameson, L.M., and Malone, W.F. (1982). 

Crown contours and gingival response. 

Journal of Prosthetic Dentistry 47, 620–624.

Kerns, D.G., and Glickman G.N. (2011). 

Endodontic and periodontal 

interrelationships. In: Cohen’s Pathways of 

the Pulp, 10th edn (ed. K.M. Hargraves and 

S. Cohen), 655–670. St Louis, MO: 

Elsevier.

Kirkham, D.B. (1975). The location and 

incidence of accessory pulpal canals in 

periodontal pockets. Journal of the 

American Dental Association 91, 353–356.

Kobayashi, T., Hayashi, A., Yoshikawa, R. et al. 

(1990). The microbial flora from root canals 

and periodontal pockets of non‐vital teeth 

associated with advanced periodontitis. 

International Endodontic Journal 23, 

100–106.

Kurihara, H., Kobayashi, Y., Francisco, I.A. et al. 

(1995). A microbiological and immunological 

study of endodontic‐periodontic lesions. 

Journal of Endodontics 21, 617–621.

Lambrianidis, T., Tziafas, D., and Kolokuris, I. 

(1988). Pulpal response to topical 

application of citric acid to root dentin. 

Endodontics and Dental Traumatology 4, 

12–15.

Langeland, K., Rodrigues, H., and Dowden, W. 

(1974). Periodontal disease, bacteria, and 

pulpal histopathology. Oral Surgery, Oral 

Medicine, Oral Pathology 37, 257–270.

Lantelme, R.L., Handelman, S.L., and 

Herbison, R.J. (1976). Dentin formation in 

periodontally diseased teeth. Journal of 

Dental Research 55, 48–51.

Lasho, D.J., O’Leary, T.J., and Kafrawy, A.H. 

(1983). A scanning electron microscope 

study of the effects of various agents on 

instrumented periodontally involved root 

surfaces. Journal of Periodontology 54, 

210–220.

Levin, L.G. (2013). Pulp and periradicular 

testing. Journal of Endodontics 39, 13–19.

Lewinstein, I., and Grajower, R. (1981). Root 

dentin hardness of endodontically treated 

teeth. Journal of Endodontics 7, 421–422.

Liewehr, F.R. (2001). An inexpensive device for 

transillumination. Journal of Endodontics 27, 

130–131.

Lin, P.Y., Huang, S.H., Chang, H.J., and Chi, 

L.Y. (2014). The effect of rubber dam usage 


background image

Chapter 4

86

on the survival rate of teeth receiving initial 

root canal treatment: A nationwide 

population‐based study. Journal of 

Endodontics 40, 1733–1737.

Lindhe, J., Nyman S., and Ericsson I. (2008). 

Trauma from occlusion: Periodontal tissues. 

In: Clinical Periodontology and Implant 

Dentistry, 5th edn (ed. J. Lindhe, N.P. Lang, 

and T. Karring), 349–374. Oxford: Blackwell 

Munksgaard.

Löe H., Theilade, E., and Jensen, S.B. (1965). 

Experimental gingivitis in man. Journal of 

Periodontology 36, 177–187.

Love, R.M., and Jenkinson, H.F. (2002). 

Invasion of dentinal tubules by oral bacteria. 

Critical Reviews in Oral Biology and 

Medicine 13, 171–183.

Lowman, J.V., Burke, R.S., and Pelleu, G.B. 

(1973). Patent accessory canals: Incidence in 

molar furcation region. Oral Surgery, Oral 

Medicine, Oral Pathology 36, 580–584.

Lubisich, E.B., Hilton, T.J., and Ferracane, J. 

(2010). Cracked teeth: A review of the 

literature. Journal of Esthetic and Restorative 

Dentistry 22, 158–167.

Marin, C., Carnevale, G., Di Febo, G., and 

Fuzzi, M. (1989). Restoration of 

endodontically treated teeth with 

interradicular lesions before root removal 

and/or root separation. International 

Journal of Periodontics and Restorative 

Dentistry 9, 42–57.

Marroquin, B.B., El‐Sayed, M.A., and 

Willershausen‐Zönnchen, B. (2004). 

Morphology of the physiological foramen: I. 

Maxillary and mandibular molars. Journal 

of Endodontics 30, 321–328.

Mazur, B., and Massler, M. (1964). Influence of 

periodontal disease on the dental pulp. Oral 

Surgery, Oral Medicine, Oral Pathology 17, 

592–603.

McInnes‐Ledoux, P., Cleaton‐Jones, P.E., and 

Austin, J.C. (1985). The pulpal response to 

dilute citric acid smear removers. Journal of 

Oral Rehabilitation 12, 215–228.

Mejàre, I.A., Axelsson, S., Davidson, T. et al. 

(2012). Diagnosis of the condition of the 

dental pulp: A systematic review. 

International Endodontic Journal 45, 

597–613.

Mjör, I.A., Smith, M.R., Ferrari, M., and 

Mannocci, F. (2001). The structure of dentin 

in the apical region of human teeth. 

International Endodontic Journal 34, 

346–353.

Mohammadi, Z., Palazzi, F., Giardino, L., and 

Shalavi, S. (2013). Microbial biofilms in 

endodontic infections: An update review. 

Biomedical Journal 36, 59–70.

Molven, O., Halse, A., Fristad, I., and 

MacDonald‐Jankowski, D. (2002). Periapical 

changes following root‐canal treatment 

observed 20–27 years postoperatively. 

International Endodontic Journal 35, 

784–790.

Myers, J.W. (1998). Demonstration of a 

possible source of error with an electric pulp 

tester. Journal of Endodontics 24, 199–200.

Nagaoka, S., Miyazaki, Y., Liu, H.J. et al. (1995). 

Bacterial invasion into dentinal tubules of 

human vital and nonvital teeth. Journal of 

Endodontics 21, 70–73.

Ng, Y.L., Mann, V., Rahbaran, S. et al. (2007). 

Outcome of primary root canal treatment: 

Systematic review of the literature. Part 1: 

Effects of study characteristics on 

probability of success. International 

Endodontic Journal 40, 921–939.

Nibali, L., Pometti, D., Chen, T.T., and Tu, Y.K. 

(2015). Minimally invasive non‐surgical 

approach for the treatment of periodontal 

intrabony defects: A retrospective analysis. 

Journal of Clinical Periodontology 42, 

853–859.

Nilvéus, R., and Selvig, K.A. (1983). Pulpal 

reactions to the application of citric acid to 

root‐planed dentin in beagles. Journal of 

Periodontal Research 18, 420–428.

Page, R.C. (1999). Milestones in periodontal 

research and the remaining critical issues. 

Journal of Periodontal Research 34, 

331–339.

Parirokh, M., and Torabinejad, M. (2010). 

Mineral trioxide aggregate: 

A comprehensive literature review. Part III: 

Clinical applications, drawbacks, and 


background image

The Endodontist’s View 87

mechanism of action. Journal of Endodontics 

36, 400–413.

Parolia, A., Gait, T.C., Porto, I.C.C.M., and 

Mala, K. (2013). Endo‐perio lesion: A 

dilemma from 19th until 21st century. 

Journal of Interdisciplinary Dentistry 3, 2–11.

Pashley, D.H. (1990). Mechanisms of dentin 

sensitivity. Dental Clinics of North America 

34, 449–473.

Pashley, D.H., Matthews, W.G., Zhang Y., and 

Johnson, M. (1996). Fluid shifts across 

human dentine in vitro in response to 

hydrodynamic stimuli. Archives of Oral 

Biology 41, 1065–1072.

Pashley, D.H., Pashley, E.L., Carvalho, R.M., 

and Tay, F.R. (2002). The effects of dentin 

permeability on restorative dentistry. Dental 

Clinics of North America 46, 211–245.

Patel, S., Ricucci, D., Durak, C., and Tay, F. 

(2010). Internal root resorption: A review. 

Journal of Endodontics 36, 1107–1121.

Paul, B.F., and Hutter, J.W. (1997). The 

endodontic‐periodontal continuum revisited: 

New insights into aetiology, diagnosis and 

treatment. Journal of the American Dental 

Association 128, 1541–1548.

Peters, D.D., Baumgartner, J.C., and Lorton, L. 

(1994). Adult pulpal diagnosis. I: Evaluation 

of the positive and negative responses to 

cold and electrical pulp tests. Journal of 

Endodontics 20, 506–511.

Petersson, K., Söderström, C., Kiani‐Anaraki, 

M., and Lévy, G. (1999). Evaluation of the 

ability of thermal and electrical tests to 

register pulp vitality. Endodontics and 

Dental Traumatology 15, 127–131.

Pinheiro, E.T., Gomes, B.P., Ferraz, C.C. et al. 

(2003). Microorganisms from canals of 

root‐filled teeth with periapical lesions. 

International Endodontic Journal 36, 1–11.

Pitaru, S., and Melcher, A.H. (1987). 

Organization of an oriented fiber system in 

vitro by human gingival fibroblasts attached 

to dental tissue: Relationship between cells 

and mineralized and demineralized tissue. 

Journal of Periodontal Research 22, 6–13.

Polson, A.M., Frederick, G.T., Ladenheim, S., 

and Hanes, P.J. (1984). The production of a 

root surface smear layer by instrumentation 

and its removal by citric acid. Journal of 

Periodontology 55, 443–446.

Rapp, R., Matthews, G., Simpson, M., and 

Pashley, D.H. (1992). In vitro permeability of 

furcation dentin in permanent teeth. Journal 

of Endodontics 18, 444–447.

Rathod, S.R., Fande P., and Sarda, T.S. (2014). 

The effect of chronic periodontitis on dental 

pulp: A clinical and histopathological study. 

Journal of the International Clinical Dental 

Research Organization 6, 107–111.

Rôças, I.N., Siqueira, J.F., Jr, and Santos, K.R. 

(2004). Association of Enterococcus faecalis 

with different forms of periradicular 

diseases. Journal of Endodontics 30, 

315–320.

Ross, I.F., and Thompson, R.H. (1978). A long 

term study of root retention in the 

treatment of maxillary molars with furcation 

involvement. Journal of Periodontology 49, 

238–244.

Rotstein, I., and Simon, J.H.S. (2004). 

Diagnosis, prognosis and decision‐making 

in the treatment of combined periodontal‐

endodontic lesions. Periodontology 2000 34, 

165–203.

Rowe, A.H., and Pitt Ford, T.R. (1990). The 

assessment of pulpal vitality. International 

Endodontic Journal 23, 77–83.

Rubach, W.C., and Mitchell, D.F. (1965). 

Periodontal disease, age, and pulp status. 

Oral Surgery, Oral Medicine, Oral Pathology 

19, 482–493.

Ryan, P.C., Newcomb, G.M., Seymour, G.J., 

and Powell, R.N. (1984). The pulpal 

response to citric acid in cats. Journal of 

Clinical Periodontology 11, 633–643.

Sakamoto, M., Siqueira, J.F., Jr, Rôças, I.N., and 

Benno, Y. (2008). Molecular analysis of the 

root canal microbiota associated with 

endodontic treatment failures. Oral 

Microbiology and Immunology 23, 275–281.

Schmidt, J.C., Walter, C., Amato, M., and 

Weiger, R. (2014). Treatment of periodontal‐

endodontic lesions: A systematic review. 

Journal of Clinical Periodontology 41, 

779–790.


background image

Chapter 4

88

Séguier, S., Godeau, G., and Brousse, N. (2000). 

Collagen fibers and inflammatory cells in 

healthy and diseased human gingival tissues: 

A comparative and quantitative study by 

immunohistochemistry and automated 

image analysis. Journal of Periodontology 71, 

1079–1085.

Seltzer, S., Bender, I.B., and Ziontz, M. (1963). 

The interrelationship of pulp and 

periodontal disease. Oral Surgery, Oral 

Medicine, Oral Pathology 16, 1474–1490.

Shenoy, N., and Shenoy, A. (2010). Endo‐perio 

lesions: Diagnosis and clinical 

considerations. Indian Journal of Dental 

Research 21, 579–585.

Sheykhrezaee, M.S., Eshghyar, N., 

Khoshkhounejad, A.A., and 

Khoshkhounejad, M. (2007). Evaluation of 

histopathologic changes of dental pulp in 

advanced periodontal diseases. Acta Medica 

Iranica 45, 51–57.

Simon, J.H., Glick, D.H., and Frank, A.L. 

(1972). The relationship of endodontic‐

periodontic lesions. Journal of 

Periodontology 43, 202–208.

Simring, M., and Goldberg, M. (1964). The 

pulpal pocket approach: Retrograde 

periodontitis. Journal of Periodontology 35, 

22–48.

Smukler, H., and Tagger, M. (1976). Vital root 

amputation: A clinical and histological 

study. Journal of Periodontology 47, 

324–330.

Sugaya, T., Nakatsuka, M., Inoue, K. et al. 

(2015). Comparison of fracture sites and 

post lengths in longitudinal root fractures. 

Journal of Endodontics 41, 159–163.

Sundqvist, G. (1994). Taxonomy, ecology, and 

pathogenicity of the root canal flora. Oral 

Surgery, Oral Medicine, Oral Pathology 78, 

522–530.

Sundqvist, G., Figdor, D., Persson, S., and 

Sjögren, U. (1998). Microbiologic analysis of 

teeth with failed endodontic treatment and 

the outcome of conservative re‐treatment. 

Oral Surgery, Oral Medicine, Oral Pathology, 

Oral Radiology, Endodontics 85, 86–93.

Sunitha, V.R., Emmadi, P., Namasivayam, A. 

et al. (2008). The periodontal‐endodontic 

continuum: A review. Journal of 

Conservative Dentistry 11, 54–62.

Tomasi, C., and Wennström, J.L. (2009). 

Full‐mouth treatment vs. the conventional 

staged approach for periodontal infection 

control. Periodontology 2000 51, 45–62.

Torabinejad, M., and Kiger, R.D. (1985). A 

histologic evaluation of dental pulp tissue of 

a patient with periodontal disease. Oral 

Surgery, Oral Medicine, Oral Pathology 59, 

198–200.

Toto, P.D., and Gargiulo, A.W. (1970). Epithelial 

and connective tissue changes in periodontitis. 

Journal of Periodontology 41, 587–590.

Tronstad, L. (1988). Root resorption: 

Aetiology, terminology and clinical 

manifestations. Endodontics and Dental 

Traumatology 4, 241–252.

Trope, M. (1998). Subattachment 

inflammatory root resorption: Treatment 

strategies. Practical Periodontics and 

Aesthetic Dentistry 10, 1005–1010.

Trope, M., Tronstad, L., Rosenberg, E.S., and 

Listgarten, M. (1988). Darkfield microscopy 

as a diagnostic aid in differentiating 

exudates from endodontic and periodontal 

abscesses. Journal of Endodontics 14, 35–38.

Tsesis, I., Rosenberg, E., Faivishevsky, V. et al. 

(2010). Prevalence and associated 

periodontal status of teeth with root 

perforation: A retrospective study of 2,002 

patients’ medical records. Journal of 

Endodontics 36, 797–800.

Vertucci, F.J. (2005). Root canal morphology 

and its relationship to endodontic 

procedures. Endodontic Topics 10, 3–29.

von Troil, B., Needleman, I., and Sanz, M. 

(2002). A systematic review of the 

prevalence of root sensitivity following 

periodontal therapy. Journal of Clinical 

Periodontology 29, 173–177.

Vongsavan, N., and Matthews, B. (1991). The 

permeability of cat dentine in vivo and in 

vitro. Archives of Oral Biology 36, 641–646.

Vongsavan, N., and Matthews, B. (1992). Fluid 

flow through cat dentine in vivo. Archives of 

Oral Biology 37, 175–185.

Walton, R.E., and Torabinejad, M. (2002). 

Diagnosis and treatment planning. In: 


background image

The Endodontist’s View 89

Principles and Practice of Endodontics, 3rd 

edn (ed. R.E. Walton and M. Torabinejad), 

49–70. Philadelphia, PA: W.B. Saunders.

Weldon, J.K., Jr, Pashley, D.H., Loushine, R.J. 

et al. (2002). Sealing ability of mineral 

trioxide aggregate and super‐EBA when 

used as furcation repair materials: A 

longitudinal study. Journal of Endodontics 

28, 467–470.

Wennström, J.L., Tomasi, C., Bertelle, A., and 

Dellasega, E. (2005). Full‐mouth ultrasonic 

debridement versus quadrant scaling and 

root planing as an initial approach in the 

treatment of chronic periodontitis. Journal 

of Clinical Periodontology 32, 851–859.

Yoshiyama, M., Masada, J., Uchida, A., and 

Ishida, H. (1989). Scanning electron 

microscopic characterization of sensitive 

vs. insensitive human radicular dentin. 

Journal of Dental Research 68, 

1498–1502.

Yoshiyama, M., Noiri, Y., Ozaki, K. et al. 

(1990). Transmission electron microscopic 

characterization of hypersensitive human 

radicular dentin. Journal of Dental Research 

69, 1293–1297.

Zehnder, M. (2001). Endodontic infection 

caused by localized aggressive periodontitis: 

A case report and bacteriologic evaluation. 

Oral Surgery, Oral Medicine, Oral Pathology, 

Oral Radiology, Endodontics 92, 440–445.

Zehnder, M., Gold, S.I., and Hasselgren, G. 

(2002). Pathologic interactions in pulpal and 

periodontal tissues. Journal of Clinical 

Periodontology 29, 663–671.

Zitzmann, N.U., Krastl, G., Hecker, H. et al. 

(2009). Endodontics or implants? A review 

of decisive criteria and guidelines for single 

tooth restorations and full arch 

reconstructions. International Endodontic 

Journal 42, 757–774.

Zuza, E.P., Carrareto, A.L., Lia, R.C. et al. 

(2012). Histopathological features of dental 

pulp in teeth with different levels of chronic 

periodontitis severity. International Scholarly 

Research Notices Dentistry 2012, 1–6.


background image

Diagnosis and Treatment of Furcation-Involved Teeth, First Edition. Edited by Luigi Nibali. 

© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd. 

Companion website: www.wiley.com/go/nibali/diagnosis

Chapter No.: 1  Title Name: <TITLENAME> 

c05.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:20:17 PM  Stage: <STAGE>  WorkFlow:

CSW

 

Page Number: 91

91

5.1   Introduction

Chapter  1 highlighted how the anatomy of 

multi‐rooted teeth favours microbial accu-

mulation, leading to periodontal breakdown 

inside the root separation area. Furthermore, 

we have now learned (see Chapter  3) that 

plaque removal inside the furcation area is a 

rather daunting and difficult task, both for 

the clinician and for patients themselves. It is 

therefore natural to assume that teeth 

affected by furcation involvement (FI), being 

more exposed to the microbial challenge, will 

develop periodontal progression more rap-

idly and will have a higher risk of tooth loss. 

This chapter reviews the evidence for this 

and aims to provide long‐term data on tooth 

loss in teeth with FI. This answers the ques-

tion ‘Why do really we care about furca-

tions?’ and perhaps provides the rationale for 

the whole book, justifying the interest in 

 furcations as a therapeutic challenge for peri-

odontists, general dentists, and hygienists.

5.2   Measures  of Disease 

Progression

The reader of this book will be well aware that 

periodontitis causes inflammatory resorption 

of the attachment apparatus of the tooth, 

which results in gingival bleeding, discomfort, 

and eventually tooth mobility and exfoliation. 

This is also potentially associated with onset 

of systemic diseases like diabetes mellitus, 

rheumatoid arthritis, and cardiovascular dis-

ease (EFP 2014). Therefore, the ‘effects’ or 

end‐points of periodontitis could be meas-

ured as tooth loss, decreased patient quality of 

life (QOL), and perhaps systemic effects of the 

periodontal inflammatory reaction. It is logi-

cal to assume that these would be the out-

comes measured by any study assessing the 

impact of periodontitis. However, reality tells 

us that, since periodontitis is a chronic disease 

that usually occurs over a long time span, most 

periodontal studies focus on other, shorter‐

term measures of disease as main outcomes, 

such as probing pocket depth (PPD), clinical 

attachment levels (CAL), and bleeding on 

probing (BOP). This is done with the under-

standing that these are surrogate markers of 

the really relevant outcomes just described.

Recent systematic reviews on furcations 

followed this approach and focused on short‐

term outcomes after regenerative surgery 

(Graziani et  al. 2015; Reddy et  al. 2015; see 

Chapters 6 and 7). This clearly represents a 

limitation as, although an association exists 

between these clinical parameters and  disease 

progression and tooth loss (Claffey and 

Egelberg 1995; Chambrone et al. 2010), it is a 

Chapter 5

Why do We Really Care About Furcations? Long‐term 
Tooth Loss Data

Luigi Nibali

Centre for Immunobiology and Regenerative Medicine, Centre for Oral Clinical Research, Institute of Dentistry, Barts and the London 
School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK


background image

Chapter 5  

92

far from ideal approach. On the other end, the 

outcome ‘tooth loss’ is severely influenced by 

the treating clinician, and by their treatment 

philosophy and inclination to be more or less 

conservative. With this in mind, in the view of 

this author studies on FI should ideally meas-

ure ‘tooth loss’, QOL measures, and measures 

of systemic burden of periodontitis as out-

comes. In reality, what emerges from the peri-

odontal literature is that only the outcome 

‘tooth loss’ has been assessed by a large 

enough number of studies to allow for making 

conclusions on how it can be influenced by FI.

5.3   Tooth  Loss

Although natural tooth exfoliation can still 

occur in the general population, it is assumed 

that ‘tooth loss’ usually occurs as tooth extrac-

tion performed by a dentist, at least in indus-

trialized countries. Severe periodontitis is 

estimated to be the sixth most prevalent 

chronic disease in humans (Kassebaum et al. 

2014) and it is considered one of the main 

causes of tooth loss (Hull et  al. 1997; Al‐

Shammari et  al. 2005; Akhter et  al. 2008). 

Periodontal treatment classically consists of 

oral hygiene instructions, supra‐ and subgin-

gival tooth debridement (with or without 

adjunctive therapy such as antimicrobials), 

followed by a re‐evaluation. At this stage, 

cases deemed to have reached stability will 

enter a phase named ‘maintenance care’ or 

‘supportive periodontal therapy’ (SPT) 

directly or after the provision of surgical ther-

apy, depending on the case (see Figure 5.1).

Provision of regular SPT, consisting of oral 

hygiene reinforcement and motivation, peri-

odontal charting, and supra‐ and subgingival 

debridement, is associated with a reduced risk 

of tooth loss (Lee et al. 2015). Long‐term lon-

gitudinal studies in unspecified periodontitis 

cohorts or chronic periodontitis in SPT 

reported tooth loss of approximately 0.10 

(Hirschfeld and Wasserman 1978), 0.13 

(McGuire and Nunn 1996), 0.15 (Eickholz 

et al. 2008), 0.18 (McFall 1982), and up to 0.30 

teeth per patient per year (Tsami et al. 2009). 

A systematic review of studies including peri-

odontal maintenance care following compre-

hensive periodontal treatment showed that in 

the studies included, 3919 teeth from a total of 

41 404 were lost during the maintenance 

period. From 36 to 88.5% of patients did not 

experience tooth loss during the follow‐up 

period in the different studies. The percent-

ages of tooth loss due to periodontal reasons 

varied from 1.5 to 9.8%. Patient‐related fac-

tors (i.e. age and smoking) and tooth‐related 

factors (tooth type and location, and the initial 

tooth prognosis) were associated with tooth 

loss (Chambrone et al. 2010). In a more recent 

systematic review, Trombelli and co‐workers 

Corrective 

(surgical) therapy

Supportive 

periodontal therapy 

(Maintenance)

Cause-related

therapy

Periodontal visit

Periodontitis

Re-evaluation

Re-evaluation

Health

Figure 5.1 

The different steps of periodontal therapy.


background image

Long-term Tooth Loss Data 93

observed a weighted mean yearly tooth loss 

rate during SPT of 0.15 and 0.09 teeth/patient/

year for follow‐up of 5 years and 12–14 years, 

respectively (Trombelli et al. 2015). Another 

 systematic review in aggressive periodontitis 

(AgP) cases, including 16 longitudinal studies, 

revealed that the average tooth loss for all AgP 

cases was 0.09 teeth/patient/year (95% confi-

dence interval [CI] = 0.06–0.16), therefore in 

line with chronic periodontitis (CP) studies 

(Nibali et al. 2013).

But what is the relative contribution of FI 

to the tooth loss outcome? The following 

paragraphs will review the evidence from the 

periodontal literature for tooth loss in molars 

with FI.

5.4   Tooth Loss for Untreated 

Furcation‐involved Teeth

Although it seems almost obvious from what 

has been discussed so far that molars with FI 

have a greater risk of being extracted com-

pared with molars with no FI, very few stud-

ies have systematically assessed this question 

and the magnitude of such a risk, especially 

in untreated populations. Bjorn and Hjort 

(1982) published the results of a longitudinal 

study on a sample of 221 staff members of a 

Swedish industrial company, originally 

examined in 1965 and then re‐examined in 

1978. These subjects were not receiving a 

specific treatment protocol. Radiographic 

mandibular molar inter‐radicular bone 

destruction was used for furcation diagnosis, 

in the absence of clinical data. Only 1.1–2.7% 

of the molars had bone loss affecting more 

than 50% of the distance vertex to apex, and 

bone loss in furcation increased from 18 to 

32% in the 13‐year follow‐up period. During 

this time, 9% of furcated molars were lost, 

but only 2.5% were estimated to have been 

lost due to progressive FI. Although these 

percentages are relatively low, we should 

highlight that this was a general population 

(not specifically subjects selected for hav-

ing  periodontitis) and it is not clear what 

treatment if any they received during the 

 follow‐up  period.

Similarly, data were recently published on a 

total of 3267 molars of 1897 subjects partici-

pating in the 11‐year follow‐up of the Study 

of Health in Pomerania (SHIP; Nibali et  al. 

2017). All subjects had half‐mouth periodon-

tal examinations, including FI measurements 

with a straight probe in one upper and one 

lower molar at baseline. Only 28% of subjects 

reported having had some form of unspeci-

fied ‘gum treatment’ throughout the course 

of the observational period. In total, 375 sub-

jects (19.8%) lost molars during the follow‐

up period. Respectively 5.6%, 12.7%, 34.0%, 

and 55.6% of molars without FI, degree I FI, 

degree II FI, and degree III FI were lost. As 

well as initial PPD and CAL and diagnosis of 

periodontitis (p < 0.001), FI was associated 

with molar loss in the 11‐year follow‐up. The 

calculated incidence rate ratios (IRR) for 

molar loss were 1.73 (95% CI = 1.34–2.23, 

p < 0.001) for degree I FI and 3.88 (95% 

CI = 2.94–5.11,  p < 0.001)  for  degree  II–III, 

compared with without FI at baseline. These 

results were confirmed in subanalysis of the 

72% of subjects who had no periodontal 

treatment during the course of the study 

(who could more genuinely be considered 

‘untreated’; Nibali et al. 2017).

5.5   Tooth Loss for Treated 

Furcation‐involved Teeth

Fu and Wang summarized in Table 3.1 some 

longitudinal studies reporting tooth loss by 

FI by research groups in the USA and Europe. 

The classic study by Hirschfeld and 

Wasserman (1978) was perhaps the first large 

published study assessing long‐term tooth 

prognosis in patients with periodontitis. 

Following up 600 patients during SPT for at 

least 15 years retrospectively (average 

22  years), the authors observed that 300 

patients had lost no teeth from periodontal 

disease, 199 had lost 1–3 teeth, 76 had lost 

4–9 teeth, and 25 had lost 10–23 teeth. These 


background image

Chapter 5  

94

figures helped identify three different groups 

of patients based on progression pattern: 

‘well‐maintained’ (the great majority), ‘down-

hill’, and ‘extreme downhill’. Of 1464 teeth 

which originally had FI, 460 were lost after 

the average 22 years follow‐up, 240 of them 

by one‐sixth of the patients who deteriorated 

the most.

A systematic review on long‐term tooth 

loss related to FI revealed that the survival 

rate of molars treated non‐surgically was 

more than 90% after 5–9 years, with different 

breakdowns according to treatment proto-

cols and varying degrees of disease severity 

(Huynh‐Ba et al. 2009). Although no meta‐

analysis could be produced, the authors con-

cluded that initial FI (degree I) could be 

successfully managed by non‐surgical 

mechanical debridement, and that vertical 

root fractures and endodontic failures were 

the most frequent complications observed 

following resective procedures of molars 

with FI.

A more recent systematic review tried to 

answer the focused question: ‘What is the 

risk of tooth loss in teeth with furcation 

involvement and which factors affect the 

outcome?’ (Nibali et al. 2016). Longitudinal 

human studies in patients with CP present-

ing data on furcation diagnosis and tooth loss 

were considered eligible. In order to be 

included, studies had to have ‘secure’ furca-

tion diagnosis (clinical with Nabers probe or 

equivalent), treatment of FI provided, a fol-

low‐up of at least three years, and had to 

report tooth loss data by furcation diagnosis. 

The literature search was conducted at Ovid 

Medline, Embase, LILACS, and Cochrane 

Library and complemented by a hand search. 

Studies were selected in two‐stage screening 

carried out by two independent reviewers. 

Following an initial screening of 1207 arti-

cles, full‐text review resulted in 21 articles 

which met the defined inclusion criteria.

Table 5.1 reports the characteristics of the 

sample included in the reviewed studies, 

which had been carried out in the USA 

(n = 11),  Germany  (n = 6),  Sweden  (n = 2), 

Switzerland (n = 1), and Italy (n = 1) across 

five decades from the 1970s to the 2010s, and 

the interventions of these studies (divided 

into active and supportive periodontal ther-

apy). Five of the included papers focused on 

specific treatment for a specific group of 

 furcation‐involved teeth (Haney et al. 1997; 

Yukna and Yukna 1997; Eickholz and 

Hausmann 2002; Little et  al. 1995; 

Zafiropoulos et  al. 2009), while fourteen 

papers assessed long‐term tooth loss in 

cohorts of periodontitis patients during 

maintenance care and were suitable for 

meta‐analysis. SPT protocols (when speci-

fied) generally included periodic (3‐ to 6‐ to 

12‐monthly) periodontal clinical measure-

ments, oral hygiene instructions, and subgin-

gival debridement and a range of different 

periodontal surgeries if considered neces-

sary. The risk of bias analyses performed 

using the Newcastle Ottawa scale showed 

that study quality scores ranged from a total 

of 3 to a total of 5 (out of a maximum total of 

9 stars). The asymmetrical results of funnel 

plots of meta‐analysis of relative risk for 

tooth loss based on follow‐up periods 

revealed potential publication bias (see 

Nibali et al. 2016).

Data on tooth loss by furcation diagnosis 

was obtained, when possible with a break-

down on first, second, and third molars. 

Although studies focusing only on AgP had 

been excluded, some of the included studies 

incorporated a small subset of AgP cases 

(Dannewitz et  al. 2006; Pretzl et  al. 2008; 

Salvi et al. 2014; Graetz et al. 2015) and only 

in one of these papers was it possible to 

obtain separate data on CP from the authors 

(Dannewitz et al. 2006). Only data on tooth 

loss following initial therapy (during mainte-

nance care) were analysed.

5.5.1  Tooth Loss for FI vs No FI

Grouping studies reporting data on tooth loss 

for molars with and without FI, a total of 8143 

molars without FI and a total of 5772 molars 

with FI were included. Tooth survival ranged 

from 94 to 100% after 4–7.5 years in regenera-

tion studies (Haney et  al. 1997; Yukna and 


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c05.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:20:17 PM  Stage: <STAGE>  WorkFlow:

CSW

 

Page Number: 95

  Table 5.1   

 Summary of study procedures for all included studies. 

Author/ Year

Sample no.

Follow‐up years 
(range)

Inclusion/disease classification

Active periodontal therapy (APT)

Supportive periodontal therapy 
(SPT)    

 Lindhe and 

Nyman   1975   

75

5

≥50% loss of periodontal support and 

optimal oral hygiene

OHI, SRP, restorative therapy if needed, 

periodontal surgery in PPDs > 4 mm 

(gingivectomy, Widman flaps, bone 

recontouring, furcation plasty, tunnelling, 

root resection as indicated)

3–6 monthly OHI and 

prophylaxis by hygienist, yearly 

periodontal examinations and 

radiographs  

 Hirschfeld and 

Wasserman   1978   

600

22 (15–53)

‘Early’: PPD of 4 mm or less, with 

gingival inflammation and subgingival 

calculus; ‘intermediate’: PPD of 

4–7 mm; ‘advanced’: PPD > 7 mm, 

furcation involvement

Subgingival scaling with or without 

surgery (additional surgical procedure or 

non‐surgical procedure performed 

depending on tooth diagnosis)

 Deep scaling + ‘problem areas’ 

retreated when necessary, 

occlusion 

 checked and adjusted as 

indicated, OHI   

 McFall   1982   

100

19 (15–29)

‘Early’: PPD ≤ 4 mm (n = 11); 

‘intermediate’: PPD 4–7 mm (n = 53); 

‘advanced’ PPD > 7 mm (n = 36)

Supragingival and subgingival scaling, 

polishing, OHI, occlusal adjustment and 

biteguards if needed, gingival curettage, 

gingivectomy, gingivoplasty, ostectomy, 

osteoplasty

Generally every 3–4 to 6 months 

(including curettage, muco‐

periosteal flaps, osseous surgery, 

root resection if needed)  

 Goldman et al. 

  1986   

211

22.2 (15–34)

CP

Oral physiotherapy, supragingival and 

subgingival scaling, OHI

3–6‐month recalls (selective 

grinding and coronal reshaping, 

adjunct restorative treatment if 

needed)  

 Wood et al.   1989    63

13.6 (10–34)

Patients with moderate periodontitis 

treated and maintained by SRP for 10 

years or longer

OHI, non‐surgical (SRP, curettage, 

occlusal adjustment) and surgical 

treatment (gingivectomy, flap surgery, flap 

curettage, osseous contouring, osseous 

grafting, root amputation)

Not reported  

 Kuhrau et al.   1990    59

5.8 (4–8)

Patients with periodontitis with 

furcation‐involved teeth treated 

surgically

Surgical therapy (modified Widman flap, 

root resection, tunnelling)

‘Regular’  

 Wang et al.   1994   

24

8

Patients with CP who had completed 

an 8‐year clinical trial and had no 

more than 2 first or second molars 

missing at baseline

 SRP followed by one of three procedures: 

pocket elimination 

 surgery, modified Widman flap surgery, or 

gingival 

 curettage 

3‐month recall interval for 

maintenance prophylaxis and 

yearly examinations  

(Continued)


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c05.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:20:17 PM  Stage: <STAGE>  WorkFlow:

CSW

 

Page Number: 96

Table 5.1 

(Continued)

Author/ Year

Sample no.

Follow‐up years 
(range)

Inclusion/disease classification

Active periodontal therapy (APT)

Supportive periodontal therapy 
(SPT)    

 Little et al.   1995    18

4.6

Patient with periodontal disease with 

deep class Il or III molar furcation 

invasion

Surgical therapy consisting of osseous 

resectioning and/or recontouring to the 

adjacent mesial tooth and tunnelling

 3‐monthly following surgery to 

control plaque and potential 

bacterial 

 pathogens   

 McGuire and 

Nunn   1996   

100

10

Chronic generalized moderate to 

severe adult periodontitis

SRP, OHI, removal of fremitus, surgery if 

indicated (osseous surgery, open SRP, 

rarely bone grafts)

 2‐ or 3‐month intervals (majority 

 under a 3‐month interval) – SRP, 

polishing, minor occlusal 

adjustments   

 Haney et al.   1997    13

4–5

CP

Coronally advanced flap procedures and 

citric acid root treatment with or without 

adjunctive implantation of freeze‐dried, 

demineralized, allogeneic bone

6‐monthly for 5 years  

 Yukna and Yukna 

  1997   

13

6.7 (6–7.5)

 Grade II molar furcation 

 defects, with adjacent bone crest 

height > 75% of the root length and 

coronal to the furcation bone level 

Regenerative surgery with bone grafts and 

coronally advanced flaps

Weekly, then monthly deplaquing 

until surgical re‐entry at 6–12 

months, then 3‐month recalls  

 McLeod et al. 

  1998   

114

12.5 (5–29)

 Moderate to advanced 

 periodontitis with 4–7 mm or greater 

AL 

 Non‐surgical therapy (OHI, SRP, occlusal 

adjustment, 

 occasional use of systemic AB) followed by 

surgical treatment (pocket reduction, 

pocket elimination, occasional 

regeneration) 

6‐monthly  

 Eickholz and 

Hausmann   2002   

9

5

Advanced periodontal disease

Guided tissue regeneration

3‐monthly for the first 2 years 

(OHI and professional tooth 

cleaning), then 3–6‐monthly 

according to individual risk  

 Checchi et al. 

  2002   

92

6.7 (3–12)

Chronic adult periodontitis who 

completed APT and have been on a 

recall SPT schedule

OHI, SRP, re‐evaluation, and periodontal 

surgery

3–4‐monthly hygienist 

appointment recall  


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c05.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:20:17 PM  Stage: <STAGE>  WorkFlow:

CSW

 

Page Number: 97

Table 5.1 

(Continued)

Author/ Year

Sample no.

Follow‐up years 
(range)

Inclusion/disease classification

Active periodontal therapy (APT)

Supportive periodontal therapy 
(SPT)    

 Little et al.   1995    18

4.6

Patient with periodontal disease with 

deep class Il or III molar furcation 

invasion

Surgical therapy consisting of osseous 

resectioning and/or recontouring to the 

adjacent mesial tooth and tunnelling

 3‐monthly following surgery to 

control plaque and potential 

bacterial 

 pathogens   

 McGuire and 

Nunn   1996   

100

10

Chronic generalized moderate to 

severe adult periodontitis

SRP, OHI, removal of fremitus, surgery if 

indicated (osseous surgery, open SRP, 

rarely bone grafts)

 2‐ or 3‐month intervals (majority 

 under a 3‐month interval) – SRP, 

polishing, minor occlusal 

adjustments   

 Haney et al.   1997    13

4–5

CP

Coronally advanced flap procedures and 

citric acid root treatment with or without 

adjunctive implantation of freeze‐dried, 

demineralized, allogeneic bone

6‐monthly for 5 years  

 Yukna and Yukna 

  1997   

13

6.7 (6–7.5)

 Grade II molar furcation 

 defects, with adjacent bone crest 

height > 75% of the root length and 

coronal to the furcation bone level 

Regenerative surgery with bone grafts and 

coronally advanced flaps

Weekly, then monthly deplaquing 

until surgical re‐entry at 6–12 

months, then 3‐month recalls  

 McLeod et al. 

  1998   

114

12.5 (5–29)

 Moderate to advanced 

 periodontitis with 4–7 mm or greater 

AL 

 Non‐surgical therapy (OHI, SRP, occlusal 

adjustment, 

 occasional use of systemic AB) followed by 

surgical treatment (pocket reduction, 

pocket elimination, occasional 

regeneration) 

6‐monthly  

 Eickholz and 

Hausmann   2002   

9

5

Advanced periodontal disease

Guided tissue regeneration

3‐monthly for the first 2 years 

(OHI and professional tooth 

cleaning), then 3–6‐monthly 

according to individual risk  

 Checchi et al. 

  2002   

92

6.7 (3–12)

Chronic adult periodontitis who 

completed APT and have been on a 

recall SPT schedule

OHI, SRP, re‐evaluation, and periodontal 

surgery

3–4‐monthly hygienist 

appointment recall  

Author/ Year

Sample no.

Follow‐up years 
(range)

Inclusion/disease classification

Active periodontal therapy (APT)

Supportive periodontal therapy 
(SPT)    

 Dannewitz et al. 

  2006   

71

5

 

CP or AgP 

 (≥50% bone loss in at least 2 

permanent teeth) 

 OHI, professional tooth cleaning, SRP, 

 surgical intervention included access flap 

surgery, GTR, tunnelling, resective 

procedures, or tooth extraction 

3–6‐ or 12‐monthly (clinical 

measurements, plaque score, and 

if needed re‐instrumentation of 

PPD ≥ 4 mm and BOP, or ≥ 5 mm  

Pretzl. et al. 2008 100

10

Generalized moderate CP and 

generalized severe or aggressive 

periodontitis

Subgingival debridement under local 

anaesthesia and periodontal surgery if 

required

Patients with and without SPT 

(3–6‐monthly including OHI, 

professional tooth cleaning, 

polishing, application of a 

fluoride gel)  

 Zafiropoulos et al. 

  2009   

60

Min. 4

CP with a minimum of 4 sites with 

CAL loss < 4 mm, radiographic 

evidence of bone loss, and BOP in 

4 sites

56 mandibular first and second molars 

treated by hemisection (Group H, n = 32); 

36 implants in the mandible to replace 

periodontally involved first and second 

molars (Group I, n = 28).

6‐monthly (OHI, supra‐ and 

subgingival debridement, 

polishing)  

 Johansson et al. 

  2013   

64

14.8 (13–16)

Patients referred to the Department 

of Periodontology

OH, supra‐ and subgingival scaling, 

selective periodontal surgeries 

(occasionally regenerative)

3–4‐monthly for 2 years by dental 

hygienists (then referred back to 

general dentist/hygienist for 

supportive care)  

 Miller et al.   2014    106

15

Moderate to severe CP

Non‐surgical and surgical periodontal 

treatment

Lasted for as long as the patient 

continued to be seen (periodontal 

health and oral hygiene 

assessment, retreatment and 

surgery when necessary)  

 Salvi et al.   2014   

199

11.5

CP or AgP (Level 1: proximal 

AL ≥ 3 mm at ≥ 2 non‐adjacent teeth; 

level 2: proximal AL ≥ 5 mm in ≥ 30% 

of teeth)

OHI, SRP, surgery if needed (OFD, 

regeneration, tunnelling, or resective 

surgery)

SPT at Department of 

Periodontology or private 

practice according to needs 

(some ‘non‐compliers’)  

 Graetz et al.   2015    379

18.3

Chronic or aggressive periodontitis 

with at least one first or second molar 

present, regular SPT, and complete 

radiological documentation at 

baseline and last visit

SRP, OFD in case of PPD ≥ 5 mm with 

BOP, or PPD ≥ 6 mm (tunnelling or root 

resection when needed)

3–12‐monthly (non‐surgical or 

surgical subgingival debridement 

with or without AB)

  AB = antibiotic; AgP = aggressive periodontitis); AL = attachment loss: APT = active periodontal treatment; BOP = bleeding on probing; CP = chronic periodontitis; OFD = Open 

flap debridement; OHI = oral hygiene instructions; PPD = probing pocket depth; SPT = supportive periodontal therapy; SRP = scaling and root planing.  

  Source : Adapted from Nibali et al. (  2016  ). 


background image

Chapter 5  

98

Yukna 1997; Eickholz and Hausmann 2002), 

89% after 5.8 years in a tunnelling study (Little 

et al. 1995), 79% after a minimum of 4 years in 

a root resection study (Zafiropoulos et  al. 

2009), and 43–100% after 5–53 years for stud-

ies including combined therapies (Hirschfeld 

and Wasserman 1978; McFall 1982; Goldman 

et  al. 1986; Wood et  al. 1989; Kuhrau et  al. 

1990; Wang et al. 1994; McGuire and Nunn 

1996; Checchi et  al. 2002; Dannewitz et  al. 

2006; Pretzl et al. 2008; Johansson et al. 2013; 

Miller et al. 2014; Salvi et al. 2014; Graetz et al. 

2015). Among teeth reported in these studies, 

the average tooth loss/patient/year was 0.01 

and 0.02 for molars without and with FI, 

respectively. Periodontal progression, endo-

dontic complications, caries, and fractures 

were reported as main causes of tooth loss 

(Kuhrau et al. 1990; McLeod et al. 1998; Haney 

et al. 1997; Yukna and Yukna 1997; Dannewitz 

et al. 2006).

In studies reporting data for only first and 

second molars (Hirschfeld and Wasserman 

1978; McFall 1982; Goldman et  al. 1986; 

Wood et  al. 1989; Dannewitz et  al. 2006; 

Pretzl et  al. 2008; Johansson et  al. 2013; 

Miller et  al. 2014; Graetz et  al. 2015), the 

 following relative risks (RR) of tooth loss 

were detected (see Figure 5.2):

 

RR = 2.90  (95%  CI = 2.01–4.18)  for  molars 

with FI vs no FI (p < 0.0001; various lengths 

of follow‐up).

 

RR = 1.46 (95% CI = 0.99–2.15, p = 0.06) for 

molars with FI vs no FI (p < 0.0001; 5–10 

years follow‐up).

Total events

Heterogeneity: Tau

2

 = 0.00; Chi

2

 = 0.75, df = 1 (P = 0.39); I

2

 = 0%

Test for overall effect: Z = 1.90 (P = 0.06)

74

35

2006

2.13 [0.83, 5.45]

6.9%

111

5

240

23

2008

1.35 [0.88, 2.06]

11.0%

309

30

390

51

Dannewitz et al. 2006
Pretzl et al. 2008

Total events

Heterogeneity: Tau

2

 = 0.00; Chi

2

 = 0.92, df = 2 (P = 0.63); I

2

 = 0%

Test for overall effect: Z = 7.30 (P < 0.0001)

192

116

Miller et al. 2014

127

419

Subtotal (95% Cl)

664

50

397
879

2014

11.9%

2.41 [1.79, 3.24]

Johansson et al. 2013

30

94

37

267

2013

11.1%

2.18 [1.44, 3.31]

Wood et al. 1989

35

151

27

215

1989

10.7%

1.86 [1.17, 2.91]

33.7%

2.21 [1.79, 2.74]

Subtotal (95% Cl)

630

420 17.9%

1.67 [1.14, 2.43]

Study or Subgroup

5–10 years

10–15 years

Total events

Heterogeneity: Tau

2

 = 0.28; Chi

2

 = 67.73, df = 3 (P = 0.00001); I

2

 = 96%

Test for overall effect: Z = 5.49 (P < 0.0001)

192

116

Goldman et al. 1986

235

562

Subtotal (95% Cl)

3177

110

835

4599

1986

12.4%

3.17 [2.60, 3.88]

Graetz et al. 2015

315 1183

118 1022

2015

0.01

0.1

Favors FI

Favors No FI

1

10

100

12.4%

2.31 [1.90, 2.80]

McFall 1982

82

147

25

492

1982

11.1% 10.98 [7.30, 16.51]

Hirchfeld & Wasserman 1978

384 1285

124 2250

1978

12.5%

5.42 [4.48, 6.56]

38.4%

4.46 [2.62, 7.62]

>15 years

With FI

Events Total

No FI

Events Total Weight IV. Random, 95% Cl Year

Risk Ratio

IV. Random, 95% Cl

Risk Ratio

Total events

Heterogeneity: Tau

2

 = 0.27; Chi

2

 = 104.40, df = 8 (P < 0.00001); I

2

 = 92%

Test for overall effect: Z = 5.72 (P < 0.0001)

1282

528

Total (95% Cl)

4471

5898 100.0%

2.90 [2.01, 4.18]

Figure 5.2 

Forest plot presenting relative risk (RR) of tooth loss based on follow‐up periods (excluding third 

molars). Meta‐analysis for the comparison of tooth loss among selected studies presented an overall odds ratio 

of 2.90 (95% confidence interval [CI] = 2.01–4.18, p < 0.0001). For studies with a follow‐up period of 5–10 years, 

10–15 years, and > 15 years, the RR of tooth loss between teeth with and without furcation involvement was 

1.46 (95% CI = 0.99–2.15, p = 0.06), 2.21 (95% CI = 1.79–2.74, p < 0.0001), and 4.46 (95% CI = 2.62–7.62, 

p < 0.0001), respectively. Source: Nibali et al. (2016).


background image

Long-term Tooth Loss Data 99

 

RR = 2.21  (95%  CI = 1.79–2.74,  p < 0.0001) 

for molars with FI vs no FI (p < 0.0001; 

10–15 years follow‐up).

 

RR = 4.46  (95%  CI = 2.62–7.62,  p < 0.0001) 

for molars with FI vs no FI (p < 0.0001; > 15 

years follow‐up).

Only the comparison for studies over more 

than 15 years had a high degree of heteroge-

neity (p value for chi‐square test < 0.0001 and 

I

2

 test = 96%), hence it needs to be interpreted 

cautiously. When third molars were included, 

only small changes to the summary estimate 

for risk of tooth loss by FI were detected (see 

Nibali et al. 2016 for details).

5.5.2  Tooth loss by Different 

Furcation Degree

An important question with clinical relevance 

is whether the degree of FI affects the risk of 

tooth loss. We previously (Section  5.4) dis-

cussed an increased risk of tooth loss by 

increased degree of FI in a largely untreated 

population participating in the SHIP in 

Pomerania (Nibali et al. 2017). When studies 

included in Nibali et  al.’s (2016) systematic 

review of treated patients reporting tooth loss 

by degree of FI were considered (McGuire and 

Nunn 1996; Dannewitz et al. 2006; Johansson 

et al. 2013; Salvi et al. 2014, Graetz et al. 2015), 

8%, 18%, and 30% of the total of teeth with fur-

cation degrees I, II, and III, respectively, were 

lost in the follow‐up period (0.01, 0.02, and 0.03 

teeth/patient/year). Meta‐analysis for tooth 

loss among the included studies (see Figure 5.3) 

presented a relative risk of tooth loss of:

 

RR = 1.67  (95%  CI = 1.14–2.43,  p = 0.008) 

for FI degree II vs I.

 

RR = 1.83  (95%  CI = 1.37–2.45,  p < 0.0001) 

for FI degree III vs II.

 

RR = 3.13  (95%  CI = 2.30–4.24,  p < 0.0001) 

for FI degree III vs I.

The comparisons presented a low to moder-

ate degree of heterogeneity among the 

selected studies (p value for chi‐square 

test = 0.04, 0.20, and 0.26, and I

2

  test = 61%, 

33%,and 25%, for degree II vs I, III vs II, and 

III vs I comparisons, respectively).

5.5.3  Tooth Loss by Vertical 

Furcation Component

The previous discussion points to the fact that 

the great majority of long‐term follow‐up stud-

ies of molars with FI have focused on the hori-

zontal component, as measured by the Hamp 

classification (Hamp et  al. 1975). Chapter  2 

also introduced the concept of ‘vertical’ FI and 

its relative subclassification into A, B, and C 

(Tarnow and Fletcher 1984), which could be 

associated with the measure of horizontal 

involvement. A recent paper hypothesized that 

different levels of vertical FI may have a bear-

ing on the risk of tooth loss of horizontal 

degree II FI (Tonetti et al. 2017). The authors 

retrospectively assessed 200 molars followed 

up for 10 years of supportive therapy after con-

servative periodontal surgery with limited 

osseous surgery. Vertical furcation subclassifi-

cation was established according to a modifi-

cation of the classification proposed by Tarnow 

and Fletcher (1984) using bone loss observed 

in a periapical radiograph and clinical probing 

depths/CAL. A gradually higher incidence of 

tooth loss was observed for degree II FI with 

bone loss up to the apical third, middle third, 

or coronal third of the root (respectively 77%, 

33%, and 9% tooth loss at 10 years). The 

authors advocated that the vertical component 

might be an important predictor of tooth loss 

in molars with degree II horizontal FI. They 

also suggested that vertical involvement of the 

apical third is often associated with the 

 presence of an intrabony defect within the fur-

cation defect. Treating such intrabony defects 

may reduce the level of vertical FI, thus poten-

tially reducing the future risk of molar loss 

(Tonetti et al. 2017).

5.6   Conclusions on Risk of 

Tooth Loss by Furcation 

Involvement

Based on the review presented here (Nibali 

et al. 2016), FI approximately doubles the risk 

of tooth loss for molars in supportive perio-

dontal therapy for up to 10–15 years. In 


background image

Chapter 5  

100

 particular, first and second molars with FI had 

an RR of tooth loss of 1.46 (p = 0.06) up to 10 

years and of 2.21 from 10 to 15 years 

(p < 0.0001), compared with molars with no FI 

(RR 1.69 and 2.06, respectively, including third 

molars). Studies up to 15 years of follow‐up 

had consistent results and reported similar 

relative risk for tooth loss. This may be attrib-

utable to the similar designs of these studies, 

consisting of initial periodontal therapy, surgi-

cal therapy when needed (including access 

flaps, osseous resective surgery, root resec-

tion, tunnelling, or occasionally regenerative 

surgery), and then supportive periodontal 

therapy (at regular intervals for most studies, 

generally every 3, 4, 6, or up to 12 months). 

A three to four times higher risk of tooth loss 

was observed for studies with longer follow‐

ups (>15 years, up to 53 years), although data 

relative to this outcome have to be interpreted 

cautiously due to high heterogeneity. A similar 

and perhaps higher risk of tooth loss could be 

attributed to molars with furcation not under-

going regular periodontal treatment (Nibali 

et al. 2017). Furthermore, there is enough evi-

dence that the degree of FI (Hamp et al. 1975) 

is significantly associated with risk of tooth 

loss during supportive periodontal therapy, 

increasing from furcation degree I to II to III 

(Nibali et al. 2016, 2017). The vertical furca-

tion subclassification and potential intrabony 

defects associated with one or multiple roots 

within the furcation may also affect the long‐

term tooth loss risk (Tonetti et al. 2017).

Based on the available evidence, it is 

worth mentioning that it is not possible to 

discriminate the relative contribution of FI 

and PPD on molar loss. In other words, we 

cannot be certain that the higher risk of 

tooth loss in molars with FI is due to them 

having FI rather than to them having a deep 

pocket. The relative contribution of FI to 

Study or Subgroup

McGuire & Nunn 1996

Total events

Heterogeneity: Tau

2

 = 0.10; Chi

2

 = 10.50, df = 4 (P = 0.03); I

2

 = 62%

Test for overall effect: Z = 2.66 (P = 0.008)

27

176

198

153

Dannewitz et al. 2006

Johansson et al. 2013

3

10

98

25

Salvi et al. 2014

28

118

Graetz et al. 2015

108

357

Subtotal (95% Cl)

751

14

9

18

36

121

178

95

67

376

638

1354

6.1%

2.24 [1.22, 4.12]

1996

2006

2013

2014

2015

2.4%

6.0%

7.7%

10.2%

0.32 [0.09, 1.16]

1.49 [0.80, 2.77]

2.48 [1.58, 3.88]

1.60 [1.27, 2.00]

32.3%

1.67 [1.14, 2.43]

McGuire & Nunn 1996

Total events

Heterogeneity: Tau

2

 = 0.05; Chi

2

 = 7.21, df = 4 (P = 0.12); I

2

 = 45%

Test for overall effect: Z = 4.05 (P < 0.0001)

19

148

176

64

Dannewitz et al. 2006

Johansson et al. 2013

11

2

47

2

Salvi et al. 2014

30

69

Graetz et al. 2015

86

188

Subtotal (95% Cl)

370

27

3

10

28

108

153

98

25

118

357
751

7.1%

1.68 [1.01, 2.80]

1996

2006

2013

2014

2015

2.5%

5.4%

8.0%

10.2%

7.65 [2.24, 26.11]

2.06 [1.04, 4.11]

1.83 [1.20, 2.79]

1.51 [1.27, 1.89]

33.3%

1.83 [1.37, 2.45]

Larger degree
Events Total

Lesser degree
Events Total Weight IV. Random, 95% Cl Year

Risk Ratio

IV. Random, 95% Cl

Risk Ratio

III vs. II

McGuire & Nunn 1996

Total events

Heterogeneity: Tau

2

 = 0.06; Chi

2

 = 8.01, df = 4 (P = 0.09); I

2

 = 50%

Test for overall effect: Z = 7.32 (P < 0.0001)

19

148

198

64

Dannewitz et al. 2006

Johansson et al. 2013

11

2

47

2

Salvi et al. 2014

30

69

Graetz et al. 2015

86

188

Subtotal (95% Cl)

370

14

9

18

36

212

178

95

67

376

357

1354

5.9%

3.77 [2.01, 7.08]

1996

0.01

0.1

1

Favors larger degree

Favors lesser degree

10

100

2006

2013

2014

2015

4.5%

5.8%

8.1%

10.2%

2.47 [1.10, 5.55]

3.06 [1.62, 5.80]

4.54 [3.01, 6.85]

2.41[1.93, 3.02]

34.5%

3.13 [2.30, 4.24]

III vs. I

II vs. I

Figure 5.3 

Forest plot presenting relative risk (RR) of tooth loss based on degrees of furcation involvement 

(excluding third molars). Meta‐analysis for the comparison of tooth loss among selected studies presented an 

RR of 1.67 (95% confidence interval [CI] = 1.14–2.43, p = 0.008), 1.83 (95% CI = 1.37–2.45, p < 0.0001), and 3.13 

(95% CI = 2.30–4.24, p < 0.0001) when comparing degree II to I, degree III to II, and degree III to I furcation 

involvement, respectively. Source: Nibali et al. (2016).


background image

Long-term Tooth Loss Data 101

molar loss could be tested by assessing risk 

of tooth loss prospectively in molars with 

similar pocket depth differing only by FI (for 

example, a 6 mm vertical PPD in a buccal 

surface of a lower molar with no FI vs a 6 mm 

vertical PPD of a lower molar with degree II 

FI). However, we are not aware of any studies 

testing this hypothesis. An indirect compar-

ison of the risk of tooth loss attributable only 

to residual PPD is difficult, as limited data 

are available and merely on single‐rooted 

teeth, since most studies present short‐term 

disease progression data only (Badersten 

et  al. 1984) or tooth loss data for all teeth 

combined (Matuliene et al. 2008).

In conclusion, in patients undergoing com-

prehensive periodontal treatment (cause‐

related, surgical therapy if needed, and SPT), 

most molars affected by FI respond well to 

periodontal treatment, judging by the fact 

that even in the presence of degree III FI, 

only 30% of molars were lost with up to 

15 years of follow‐up (see Figure 5.4).

The risk of tooth loss (for FI vs non‐FI molars) 

is in the region of 1.5–2.2 up to 15  years in 

maintenance. Such risk seems to increase 

sharply after the 15‐year time point, although 

study heterogeneity does not allow clear con-

clusions on this. Similarly, an increased risk of 

tooth loss by FI exists for cases not undergoing 

periodontal maintenance. Among the relevant 

long‐term outcomes introduced in Section 5.2, 

we are not aware of any studies specifically 

assessing the effect of FI on the systemic inflam-

matory burden, while patient‐reported out-

comes are covered in Chapter 13.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.4 

(a, b) Clinical photographs of 55‐year‐old male patient affected by chronic periodontitis; (c) 

periapical radiographs of upper right molars showing triple degree III furcation involvement on UR6 and 7; (d, e) 

clinical photographs taken 10 years after tunnelling surgery; (f) Periapical photographs at 10‐year follow‐up.

 Summary  of Evidence

 

Periodontal treatment and maintenance 

care lead to low tooth loss rates of molars 

with furcation involvement (FI).

 

The tooth loss of molars with FI is approx-

imately double that of molars without FI 

up to 15 years of follow‐up.

 

Degree of horizontal FI affects risk of 

tooth loss (increasing from degree I to II 

to III).

 

Degree of vertical FI may also affect the 

risk of tooth loss (increasing from subclas-

sification A to B to C).


background image

Chapter 5  

102

 References

Akhter, R., Hassan, N.M., Aida, J. et al. (2008). 

Risk indicators for tooth loss due to caries 

and periodontal disease in recipients of free 

dental treatment in an adult population in 

Bangladesh. Oral Health & Preventive 

Dentistry 6, 199–207.

Al‐Shammari, K.F., Al‐Khabbaz, A.K., Al‐

Ansari, J.M. et al. (2005). Risk indicators for 

tooth loss due to periodontal disease. 

Journal of Periodontology 76, 1910–1918.

Badersten, A., Nilveus, R., and Egelberg, J. 

(1984). Effect of nonsurgical periodontal 

therapy. II. Severely advanced periodontitis. 

Journal of Clinical Periodontology 11, 

63–76.

Bjorn, A.L., and Hjort, P. (1982). Bone loss of 

furcated mandibular molars: A longitudinal 

study. Journal of Clinical Periodontology 9, 

402–408.

Chambrone, L., Chambrone, D., Lima, L.A., 

and Chambrone, L.A. (2010). Predictors of 

tooth loss during long‐term periodontal 

maintenance: A systematic review of 

observational studies. Journal of Clinical 

Periodontology 37, 675–684.

Checchi, L., Montevecchi, M., Gatto, M.R., and 

Trombelli, L. (2002). Retrospective study of 

tooth loss in 92 treated periodontal patients. 

Journal of Clinical Periodontology 29, 

651–656.

Claffey, N., and Egelberg, J. (1995). Clinical 

indicators of probing attachment loss 

following initial periodontal treatment in 

advanced periodontitis patients. Journal of 

Clinical Periodontology 22, 690–696.

Dannewitz, B., Krieger, J.K., Husing, J., and 

Eickholz, P. (2006). Loss of molars in 

periodontally treated patients: A 

retrospective analysis five years or more 

after active periodontal treatment. Journal 

of Clinical Periodontology 33, 53–61.

Eickholz, P., and Hausmann, E. (2002). 

Evidence for healing of periodontal defects 

5 years after conventional and regenerative 

therapy: Digital subtraction and bone level 

measurements. Journal of Clinical 

Periodontology 29, 922–928.

Eickholz, P., Kaltschmitt, J., Berbig, J. et al. 

(2008). Tooth loss after active periodontal 

therapy. 1: Patient‐related factors for risk, 

prognosis, and quality of outcome. Journal 

of Clinical Periodontology 35, 165–174.

EFP European Federation of Periodontology 

(2004). EFP Manifesto: Perio and General 

Health. http://www.efp.org/efp‐manifesto/

index.html (accessed 6 February 2018).

Goldman, M.J., Ross, I.F., and Goteiner, D. 

(1986). Effect of periodontal therapy on 

patients maintained for 15 years or longer: 

A retrospective study. Journal of 

Periodontology 57, 347–353.

Graetz, C., Schutzhold, S., Plaumann, A. et al. 

(2015). Prognostic factors for the loss of 

molars: An 18‐years retrospective cohort 

study. Journal of Clinical Periodontology 42, 

943–950.

Graziani, F., Gennai, S., Karapetsa, D. et al. 

(2015). Clinical performance of access flap 

in the treatment of class II furcation defects: 

A systematic review and meta‐analysis of 

randomized clinical trials. Journal of 

Clinical Periodontology 42, 169–181.

Hamp, S.E., Nyman, S., and Lindhe, J. (1975). 

Periodontal treatment of multirooted teeth: 

Results after 5 years. Journal of Clinical 

Periodontology 2, 126–135.

Haney, J.M., Leknes, K.N., and Wikesjo, U.M. 

(1997). Recurrence of mandibular molar 

furcation defects following citric acid root 

treatment and coronally advanced flap 

procedures. International Journal of 

Periodontics and Restorative Dentistry 17, 

528–535.

Hirschfeld, L., and Wasserman, B. (1978). 

A long‐term survey of tooth loss in 600 

treated periodontal patients. Journal of 

Periodontology 49, 225–237.

Hull, P.S., Worthington, H.V., Clerehugh, V. 

et al. (1997). The reasons for tooth 

extractions in adults and their validation. 

Journal of Dentistry 25, 233–237.

Huynh‐Ba, G., Kuonen, P., Hofer, D. et al. 

(2009). The effect of periodontal therapy on 

the survival rate and incidence of 


background image

Long-term Tooth Loss Data 103

complications of multirooted teeth with 

furcation involvement after an observation 

period of at least 5 years: A systematic 

review. Journal of Clinical Periodontology 

36, 164–176.

Johansson, K.J., Johansson, C.S., and Ravald, N. 

(2013). The prevalence and alterations of 

furcation involvements 13 to 16 years after 

periodontal treatment. Swedish Dental 

Journal 37, 87–95.

Kassebaum, N.J., Bernabe, E., Dahiya, M. et al. 

(2014). Global burden of severe 

periodontitis in 1990–2010: A systematic 

review and meta‐regression. Journal of 

Dental Research 93, 1045–1053.

Kuhrau, N., Kocher, T., and Plagmann, H.C. 

(1990). [Periodontal treatment of furcally 

involved teeth: With or without root 

resection?] Deutsche Zahnarztliche 

Zeitschrift 45, 455–457.

Lee, C.T., Huang, H.Y., Sun, T.C., and 

Karimbux, N. (2015). Impact of patient 

compliance on tooth loss during supportive 

periodontal therapy: A systematic review 

and meta‐analysis. Dental Research 94, 

777–786.

Lindhe, J., and Nyman, S. (1975). The effect of 

plaque control and surgical pocket 

elimination on the establishment and 

maintnance of periodontal health: A 

longitudinal study of periodontal therapy in 

cases of advanced disease. Journal of 

Clinical Periodontology 2, 67–79.

Little, L.A., Beck, F.M., Bagci, B., and Horton, 

J.E. (1995). Lack of furcal bone loss 

following the tunnelling procedure. Journal 

of Clinical Periodontology 22, 637–641.

Matuliene, G., Pjetursson, B.E., Salvi, G.E. et al. 

(2008). Influence of residual pockets on 

progression of periodontitis and tooth loss: 

Results after 11 years of maintenance. 

Journal of Clinical Periodontology 35, 

685–695.

McFall, W.T., Jr (1982). Tooth loss in 100 

treated patients with periodontal disease: 

A long‐term study. Journal of Periodotology 

53, 539–549.

McGuire, M.K., and Nunn, M.E. (1996). 

Prognosis versus actual outcome. III: The 

effectiveness of clinical parameters in 

accurately predicting tooth survival. Journal 

of Periodontology 67, 666–674.

McLeod, D.E., Lainson, P.A., and Spivey, J.D. 

(1998). The predictability of periodontal 

treatment as measured by tooth loss: 

A retrospective study. Quintessence 

International 29, 631–635.

Miller, P.D., Jr, McEntire, M.L., Marlow, N.M., 

and Gellin, R.G. (2014). An evidenced‐based 

scoring index to determine the periodontal 

prognosis on molars. Journal of 

Periodontology 85, 214–225.

Nibali, L., Farias, B.C., Vajgel, A. et al. (2013). 

Tooth loss in aggressive periodontitis: 

A systematic review. Journal of Dental 

Research 92, 868–875.

Nibali, L., Krajewski, A. Donos, N. et al. 

(2017). The effect of furcation involvement 

on tooth loss in a population without 

regular periodontal therapy. Journal of 

Clinical Periodontology 44, 813–821.

Nibali, L., Zavattini, A., Nagata, K. et al. 

(2016). Tooth loss in molars with and 

without furcation involvement: A systematic 

review and meta‐analysis. Journal of Clinical 

Periodontology 43, 156–166.

Pretzl, B., Kaltschmitt, J., Kim, T.S. et al. 

(2008). Tooth loss after active periodontal 

therapy. 2: Tooth‐related factors. Journal of 

Clinical Periodontology 35, 175–182.

Reddy, M.S., Aichelmann‐Reidy, M.E., 

Avila‐Ortiz, G. et al. (2015). Periodontal 

regeneration – furcation defects: 

A consensus report from the AAP 

Regeneration Workshop. Journal of 

Periodontology 86, S131–S133.

Salvi, G.E., Mischler, D.C., Schmidlin, K. et al. 

(2014). Risk factors associated with the 

longevity of multi‐rooted teeth: Long‐term 

outcomes after active and supportive 

periodontal therapy. Journal of Clinical 

Periodontology 41, 701–707.

Tarnow, D., and Fletcher, P. (1984). 

Classification of the vertical component of 

furcation involvement. Journal of 

Periodontology 55, 283–284.

Tonetti, M., Christianes, A., and Cortellini, P. 

(2017). Vertical sub‐classification predicts 


background image

Chapter 5  

104

survival of molars with class II furcation 

involvement during supportive periodontal 

care. Journal of Clinical Periodontology 44, 

1140–1144.

Trombelli, L., Franceschetti, G., and Farina, R. 

(2015). Effect of professional mechanical 

plaque removal performed on a long‐term, 

routine basis in the secondary prevention of 

periodontitis: A systematic review. Journal 

of Clinical Periodontology 42 (Suppl. 16), 

S221–S236.

Tsami, A., Pepelassi, E., Kodovazenitis, G., and 

Komboli, M. (2009). Parameters affecting 

tooth loss during periodontal maintenance in 

a Greek population. Journal of the American 

Dental Association 140, 1100–1107.

Wang, H.L., Burgett, F.G., Shyr, Y., and 

Ramfjord, S. (1994). The influence of molar 

furcation involvement and mobility on 

future clinical periodontal attachment loss. 

Journal of Periodontology 65, 25–29.

Wood, W.R., Greco, G.W., and McFall, W.T., Jr 

(1989). Tooth loss in patients with moderate 

periodontitis after treatment and long‐term 

maintenance care. Journal of Periodontology 

60, 516–520.

Yukna, R.A., and Yukna, C.N. (1997). Six‐year 

clinical evaluation of HTR synthetic bone 

grafts in human grade II molar furcations. 

Journal of Periodontal Research 32, 

627–633.

Zafiropoulos, G.G., Hoffmann, O., Kasaj, A. 

et al. (2009). Mandibular molar root 

resection versus implant therapy: A 

retrospective nonrandomized study. Journal 

of Oral Implantology 35, 52–62.


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c06.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:20:29 PM  Stage: <STAGE>  WorkFlow:

CSW

 

Page Number: 105

105

Diagnosis and Treatment of Furcation-Involved Teeth, First Edition. Edited by Luigi Nibali. 

© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd. 

Companion website: www.wiley.com/go/nibali/diagnosis

6.1   Introduction

In everyday clinical practice, the presence 

of  furcation involvement constitutes a sig­

nificant challenge (de Santana et  al. 1999; 

Avila‐Ortiz et al. 2015). Regeneration of the 

furcation defect with restitution ad integrum 

is a highly desirable outcome in these cases. 

This chapter and the next will review the 

 current evidence on pre‐clinical and clinical 

human studies on the potential to regenerate 

furcation defects.

The regeneration of furcation involve­

ments following the use of various bio­

logical materials, extracellular matrix 

proteins, growth factors, and cell therapy is a 

complex biological process involving various 

tissue components, including epithelium, 

connective tissue, cementum, and alveolar 

bone (Ivanovic et  al. 2014). Historically, 

 animal models have been used as proof‐of‐

principle models and for providing first‐

level in vivo evidence in potential translation 

of different regenerative materials to the 

 clinical  setting.

6.2   Available  Preclinical 

Models

Different animal species have been used 

to  evaluate the regeneration of furcation 

defects, with non‐human primates, dogs, 

rabbits, and pigs being the most commonly 

employed (Struillou et  al. 2010; Kantarci 

et  al. 2015). Variations between species 

include anatomy, dimensions of teeth and 

alveolar process, gingival biotype, local phys­

iological environment, animal behaviour, 

and healing rate (Caton et al. 1994).

Small animals (especially mice and rats) 

have generated substantial data on the patho­

genetic mechanisms of systemic inflamma­

tion and their correlation with periodontal 

disease in transgenic and knockout animal 

models (Graves et al. 2008). The major draw­

back of small animals is the limited similarity 

of their dentition to the human dentition, 

which limits the possibility of translating the 

results to the clinical situation. Conversely, 

the dental anatomy of large animals 

(mainly non‐human primates and dogs) may 

Chapter 6

Regenerative Therapy of Furcation Involvements in  
Preclinical Models: What is Feasible?

Nikolaos Donos

1

, Iro Palaska

1

, Elena Calciolari

1

, Yoshinori Shirakata

2

, and  

Anton Sculean

3

1

 Centre for Immunobiology and Regenerative Medicine, Centre for Oral Clinical Research, Institute of Dentistry, Barts and the London 

School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK

2

 Department of Periodontology, Kagoshima, University Graduate School of Medical and Dental Sciences, Kagoshima, Japan

3

 Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland


background image

Chapter 6

106

 resemble better the human dento‐alveolar 

architecture. In these animals, it has been 

suggested that it is feasible to study wound 

healing/regeneration in periodontal defects 

of clinically relevant size and configuration 

(Selvig 1994).

6.2.1  Non‐human Primates

Non‐human primates have naturally occur­

ring dental plaque, calculus, oral microbial 

pathogens, and periodontal disease, although 

this occurs late in life and the lesions tend 

to  be asymmetrical (Schou et  al. 1993; Oz 

and Puleo 2011). Therefore, if osseous lesions 

are investigated, they are usually experimen­

tally induced. Similar dental anatomy and 

periodontal wound healing (Caton and 

Kowalski 1976), suitability of furcation sites 

(Giannobile et al. 1994), and experimentally 

induced defects that do not spontaneously 

regenerate indicated that mature, adult, 

Macaca mulatta and Macaca fascicularis 

species could be used as models for evaluat­

ing periodontal regenerative procedures 

(Schou et  al. 1993). However, it should be 

emphasized that their use is controversial, as 

this model shares some structural and func­

tional features with humans, thus raising sig­

nificant ethical concerns. Besides the ethical 

issues related to the close phylogenetic rela­

tionship with humans, primate research also 

requires expensive facilities, with dedicated 

and trained personnel and environmental 

enrichment.

6.2.2  Dog Model

Dogs are among the most widely used exper­

imental animals for studying naturally occur­

ring gingivitis and periodontitis, wound 

healing, and tissue regeneration (Wikesjö 

et  al. 1994). The Beagle dog (Canis lupus 

familiaris) is commonly used because of its 

size and its cooperative nature, but several 

studies have also used mongrel dogs 

(Struillou et al. 2010). The characteristics of 

periodontal tissues and the size of teeth in 

dogs present, to a certain extent, some 

 similarity to those of humans. However, dogs 

lack lateral jaw movements and premolar 

occlusal contacts (Kantarci et  al. 2015). In 

dogs, the severity of periodontal disease 

increases with age and can result in tooth loss 

(Berglundh et al. 1991). In regenerative peri­

odontal medicine, the dog model has been 

used for the histological demonstration of 

guided tissue regeneration (GTR) in various 

defect types, such as furcations, supracrestal, 

and infrabony defects (Caffesse et al. 1990). In 

addition, the dog model has been employed 

in studies which have led to our current 

understanding of the limitations of regener­

ative approaches, including membrane‐ 

associated properties (Araujo et al. 1998).

6.2.3  Miniature Pig Model

The miniature pig model has emerged as an 

alternative to the dog model. Varieties of 

miniature pig have been extensively used in 

biomedical research (Polejaeva et  al. 2000). 

These animals have oral and maxillofacial 

structures similar to those of humans in 

terms of anatomy, physiology, and disease 

development (Wang et  al. 2007). Natural 

 gingivitis can be observed at 6 months of age. 

The pattern of disease progression follows 

the same stages as that in humans: gingival 

swelling, plaque accumulation, calculus 

 formation, and bleeding on probing (Lang 

et  al. 1998). Histologically, these clinical 

 features are accompanied by inflammatory 

cell infiltration and vasodilatation. Starting 

at 16 months of age, miniature pigs may 

develop advanced periodontitis, with pocket 

depths up to 5 mm and alveolar bone resorp­

tion (Kantarci et al. 2015).

6.3   Defect  Types

Four types of experimentally induced furca­

tion defects have been used for testing the 

effects of different therapeutic modalities in 

pre‐clinical studies. These include defects 


background image

Regenerative Therapy in Animal Models 107

resulting from naturally occurring periodon­

titis and three types of experimentally 

 

produced defects: the acute defect, the 

chronic defect, and the combined acute/

chronic defect.

6.3.1  Naturally Occurring 

Periodontitis Defects

Historically, periodontal defects caused by 

natural periodontal disease have been 

 considered as a necessity in the study of peri­

odontal regeneration (Haney et  al. 1995). 

These defects occur late in the animal’s life 

and the lesions are usually asymmetrical, 

as  they result from a gradual and variable 

destruction of the periodontium, and include 

deposition of calculus and endotoxins on 

the root surface (Haney et al. 1995). In addi­

tion, they feature compromised mucogingi­

val dimensions, which is a confounding 

factor when these models are used to study 

the  biological potential of regeneration under 

optimized conditions of wound healing 

(Wikesjö et al. 1994). Taking into account the 

aforementioned limitations, the rationale 

for  using these types of defects to study 

 

periodontal wound healing/regeneration 

appears to be limited (Caton et al. 1994).

6.3.2 Experimentally 

Induced Defects

6.3.2.1  The Acute Defect Model

In this model, mucoperiosteal flaps are 

 elevated and the bone, the periodontal liga­

ment, and cementum are surgically removed 

to create the defect type of the desired shape 

and dimension. Reference notches are usu­

ally created by a round bur on the roots, at 

the level of the reduced alveolar bone. These 

notches start on the buccal aspect of the root 

and extend into the furcation area, and they 

are used as a reference point for the histo­

logical analysis. The major drawback of the 

acute defect model is that approximately 

50–70% of spontaneous regeneration can be 

expected, thus creating an important source 

of bias when studying the effect of different 

surgical techniques and biomaterials on 

 

tissue regeneration (Caton et  al. 1994; 

Mardas et al. 2012).

6.3.2.2  The Chronic Defect Model

These defects are created by placing ortho­

dontic elastics or ligatures around the cir­

cumference of teeth, or slightly apical to 

the  gingival margin. The elastics/ligatures 

 gradually migrate apically, as plaque‐induced 

inflammation destroys the periodontal liga­

ment and supporting bone in 3–6 months 

(Caton and Kowalski 1976). Then, the root 

surfaces are carefully scaled and planed and a 

notch is placed on the roots, at the base of 

the defect, as a reference for the histological 

analysis. The advantage of this model is that 

spontaneous healing is not observed, but the 

disadvantages include the considerable time 

needed for the creation of the defects and 

the  asymmetrical nature of the defects. 

In  addition, conventional root debridement 

produces root surface conditions similar to 

those of surgically induced (acute) defects. 

Taking into account these limitations, the rel­

evance for using this type of defect to study 

periodontal wound healing/regeneration 

appears to be limited (Caton et al. 1994).

6.3.2.3  The Acute/Chronic 
Defect Model

The majority of the available pre‐clinical 

studies use this model to study wound 

 healing/periodontal regeneration in class II 

or III furcation defects. This defect is devel­

oped by surgically removing alveolar bone, 

periodontal ligament, and cementum in the 

experimental site. Prior to flap closure, the 

defect is placed into a chronically inflamed 

state to reduce spontaneous regeneration by 

placing a foreign body, such as metal strips, 

orthodontic wires and bands, impression 

material, or gutta‐percha for 1–3 months 

(Caton et al. 1994). At surgical re‐entry, the 

foreign bodies are removed, and the lesions 

are debrided from granulation tissue, plaque 

biofilm, and calculus. After the root surface 


background image

Chapter 6

108

is scaled, the tested biomaterial/active prin­

ciple can  eventually be delivered into the 

defect (Araújo and Lindhe 1997; Takayama 

et al. 2001; Donos et al. 2003b). The advan­

tages of this model are that defects are pro­

duced  rapidly, they do not heal spontaneously, 

and bilateral symmetrical periodontal tissue 

loss can be predictably induced.

6.3.3  The Critical Size Defect 

Concept in Furcation Studies

A critical size defect (CSD) is defined as 

‘the  smallest size intra‐osseous wound in 

a  particular bone and species that will not 

heal spontaneously during the lifetime of 

the   animal’ (Schmitz and Hollinger 1986). 

Even if a certain biological variability exists 

between different animal models, it is of the 

outmost importance that the experimental 

bone defect created is of a critical size for 

the animal model used, thus avoiding 

the  occurrence of spontaneous periodontal 

regeneration and allowing testing of the 

true regenerative potential of the biomateri­

als and surgical techniques investigated. 

However, because most pre‐clinical studies 

have an evaluation time limit, Gosain et al. 

(2000) state that the CSD in animal research 

refers to the size of a defect that will not heal 

over the duration of the study.

6.3.3.1  Furcation Degree II CSD

In order to test the regenerative potential of 

different regenerative treatments in class II 

furcation defects, the majority of studies 

have used surgically created CSDs measuring 

5 mm in height (from the roof of the bifurca­

tion) and 2 mm in depth (Lekovic and Kenney 

1993; Hürzeler 1997; Deliberador et al. 2006). 

After intrasulcular incisions were made from 

the mesial side of the involved teeth (mainly 

premolars) to the distal side of the molars, a 

mucoperiosteal flap was elevated to expose 

both buccal and lingual alveolar bone plates. 

The defects were then created by using 

 carbide round burs under abundant saline 

irrigation. The interproximal bone remained 

intact. Then, the surfaces were carefully 

scaled and root planed. Following removal of 

granulation tissue and complete root instru­

mentation, reference notches were placed in 

the roots at the level of the alveolar bone 

crest, using a number 1/2 round bur. These 

notches were positioned on the buccal 

aspects of the roots and extended interproxi­

mally and into the furcation areas, as deep as 

the involvement of the class II furcation 

 permits. After the root surface is scaled, 

the  tested biomaterial/active principle can 

be delivered into the defect.

6.3.3.2  Furcation Degree III CSD

The first attempts to create defects that 

would not heal spontaneously were made by 

the team of Ellegaard et  al. (1974), who 

induced through‐and‐through bifurcation 

defects in posterior teeth of Rhesus monkeys 

by passing a round bur through surgically 

denuded bifurcations. The size of the open­

ings was approximately 2 mm in diameter. 

To  avoid spontaneous healing, a steel wire 

of  periodontal dressing was placed in the 

defects for four weeks. This study has shown 

that following surgical removal of the inter‐

radicular septum and the promotion of 

plaque retention in the monkey’s posterior 

teeth, bifurcation defects may develop into 

lesions, which after six weeks of healing 

 display features similar to those of inter‐

radicular pockets in humans. Six weeks post‐

operatively the height of the bone in the 

lesions produced was essentially maintained 

at the level determined at the time of surgery. 

The lesions were characterized by chroni­

cally inflamed connective tissue covered 

with  epithelium of varying thickness, and 

they showed no tendency for spontaneous 

healing.

Based on this concept, Klinge et al. (1981), 

by using two different animal models (dog 

model and non‐human primate model), 

examined the influence of different defect 

sizes and different flap management 

 techniques on the healing potential after 

reconstructive surgery using citric acid 

 conditioning. Chronic through‐and‐through 

defects of different sizes were created. 


background image

Regenerative Therapy in Animal Models 109

Specifically, bone was surgically removed 

from the furcation area and around the cir­

cumference of the tooth, including the proxi­

mal bone (horizontal defect). Three different 

levels of bone reduction were studied (2 mm, 

3.5 mm, and 5 mm high). In addition, two 

 different positions of the flap were studied 

(coronally positioned flap and replaced flap). 

It was demonstrated that new attachment 

occurred for teeth treated with coronally 

positioned flaps regardless of the defect size. 

This implied that variations in the dimension 

of the defects played a secondary role in the 

healing potential, and that the adequate post‐

operative flap coverage of the furcation was 

the critical step for the successful healing of 

through‐and‐through defects.

In a subsequent study by Klinge et  al. 

(1985a), it was shown that healing was 

accomplished in even larger defects (~9 mm) 

when a coronal flap placement was used. It is 

possible that the magnitude of coronal flap 

positioning is of limited importance, pro­

vided a certain amount of coverage of the 

furcation is accomplished. It was also noticed 

that one important reason for the failure at 

larger defects was found to be recession of 

the flap, which resulted in early exposure of 

the furcation site (Klinge et  al. 1985a). To 

counteract such soft tissue recession, the 

authors developed a technique which 

involved the utilization of ‘crown attached’ 

sutures and reported that, provided flap 

recession was prevented, new attachment 

occurred at both large and small defects 

(Klinge et  al. 1985a). Similar results were 

obtained by Lindhe et al. (1995), who showed 

that comparatively large furcation defects 

(‘key‐hole’ defects with cross‐section dimen­

sions  of > 11 mm

2

) could be successfully 

regenerated by GTR therapy provided that 

the soft‐tissue flaps covering the membranes 

are prevented from receding apical of the 

furcation fornix during healing, and that 

the  clot in the furcation defect remains 

non‐infected.

The potential for new attachment forma­

tion after GTR was examined by Pontoriero 

et  al. (1992) in three differently shaped 

 furcation defects: (i) a small, 2 × 2 mm key‐

hole furcation defect, where the removal of 

the supporting bone and root cementum was 

confined to the furcation area, thus leaving 

intact the interdental alveolar bone; (ii) a 

large key‐hole defect about 3 mm in the 

apico‐coronal direction and 4 mm in the 

mesio‐distal direction; and (iii) a large 

‘ horizontal’ defect about 5 mm in the apico‐

coronal direction and about 4 mm in the 

mesio‐distal direction, where the removal of 

bone and root cementum was performed 

within the furcation area and extended at the 

buccal/lingual and interproximal surfaces. It 

was observed that small key‐hole, degree III 

furcation defects healed following GTR 

treatment with complete new attachment. 

At control sites, only minor amounts of new 

attachment formation occurred. In larger 

defects, it was observed that GTR therapy 

failed to generate new attachment to a degree 

where the furcation defects became closed. It 

was also observed clinically that at such sites, 

extensive flap recession occurred following 

suture removal. The study revealed that the 

size of the furcation defect and the degree of 

bone loss adjacent to the defect were deter­

mining factors for the outcome of this kind of 

treatment. Thus, if the furcation defect was 

associated with circumferential bone loss, or 

if the defect was more than 3 mm in the 

apico‐coronal direction, complete new 

attachment failed to occur. Thus, while small 

key‐hole defects  –  that is, small vertical 

defects – healed, large key‐hole defects and 

horizontal defects were consistently associ­

ated with flap recession and failure. Taking 

into consideration the CSD concept (smallest 

bone defect created), the key‐hole defect was 

optimal for testing the regenerative potential 

of different materials, and the approach 

based on this study was adopted in clinical 

studies as well.

The most widely used model in regenera­

tive studies remains the critical size supra‐

alveolar periodontal defect model, which was 

developed in beagle dogs by Wikesjö and his 

team (Wikesjö et  al. 1999). Supra‐alveolar 

critical size periodontal defects are produced 


background image

Chapter 6

110

by the resection of the buccal and lingual/

palatal bone of premolar teeth. Osseous 

resection can be restricted to the interdental 

area, which measures approximately 4–5 mm 

(height) and 3 mm (width; Araújo et al. 1998), 

or extended to create a horizontal circumfer­

ential defect up to 5–6 mm below the fornix 

of furcation (Giannobile et al. 1998; Wikesjö 

et al. 2003a, b). In this model, innate regen­

eration of alveolar bone and cementum does 

not exceed 25% of the defect height over a 

three‐week healing interval following wound 

closure or primary intention healing. 

Extending the healing interval to eight weeks 

does not result in additional regeneration 

(Wikesjö et  al. 1994, 2003a, b; Koo et  al. 

2004). This defect is a valuable model to test 

the regenerative potential of candidate 

 treatments on class III furcation defects, 

as  it  allows evaluation of the regenerative 

 potential of experimental treatments under 

optimal conditions and in a biologically 

 controlled environment. By applying this 

model, different studies have evaluated 

root‐conditioning protocols, bone grafts 

and bone substitutes, biological substances, 

and different barrier membranes (GTR) as 

stand‐alone protocols or in combination 

(Sanz et al. 2015).

6.4   Regeneration 

Treatments of Class II 

Furcation Defects

6.4.1  Guided Tissue Regeneration

The potential to regenerate furcation defects 

in a predictable manner emerged with the 

development of the concept of GTR more 

than 30 years ago (Karring and Warrer 1992; 

Karring et  al. 1993). The use of a barrier 

membrane prevents both gingival epithelial 

cells and connective tissue cells from repop­

ulating the root surface during healing, and 

allows repopulation only by cells from the 

periodontal ligament or the alveolar bone 

marrow, thus inducing the formation of new 

cementum and connective tissue attachment 

(Nyman et al. 1980; Karring et al. 1980, 1993; 

Sander and Karring 1995; Sanz et al. 2015). 

A  variety of biocompatible barriers, non‐

absorbable (Caffesse at al. 1990, 1994; 

Danesh‐Meyer et al. 1997; Bogle et al. 1997; 

Lekovic et  al. 1998; Macedo et  al. 2006) or 

bioabsorbable (Cirelli et  al. 1997; Hürzeler 

et  al. 1997; de Andrade et  al. 2007; Wang 

et al. 2014) has been used for the regenera­

tion of class II furcation defects. From a 

 clinical and histological point of view, similar 

results can be achieved in GTR, whether bio­

absorbable (such as collagen‐based) or non‐

absorbable (such as polytetrafluoroethylene, 

ePTFE) membranes are applied (Murphy and 

Gunsolley 2003). However, the bioabsorba­

ble membranes do not require a second 

 surgery for their retrieval, thus reducing 

the  patient’s discomfort and morbidity. 

The  studies applying non‐resorbable and 

resorbable membranes in critical size (5 mm 

in height × 2 mm in depth), surgically created 

furcation II defects showed a mean percent­

age of bone fill and new cementum forma­

tion ranging between 60 and 80% (Caffesse at 

al. 1990, 1994; Cirelli et  al. 1997; Danesh‐

Meyer et al. 1997; Bogle et al. 1997; Hürzeler 

et al. 1997; Lekovic et al. 1998; Macedo et al. 

2006; de Andrade et  al. 2007; Wang et  al. 

2014). The results of these studies are 

 presented in detail in Table 6.1.

6.4.2  Bone Grafts and GTR

The placement of bone grafts or alloplastic 

materials in furcation defects in association 

with flap surgery or GTR has been exten­

sively evaluated in animal experiments. 

The  biological rationale behind the use of 

grafts is the assumption that the material 

may contain bone‐forming cells (osteogene­

sis) or serve as a scaffold for bone formation 

(osteoconduction), or that the matrix may 

contain bone‐inductive substances (osteoin­

duction), which could stimulate both the 

regrowth of bone and the formation of new 

attachment (Karring and Cortellini 1999).

Limited studies in naturally occurring 

defects showed that bone grafts combined 

with different barrier membranes did 

not  enhance the regeneration process of 


background image

Regenerative Therapy in Animal Models 111

Table 6.1 

Guided tissue regeneration (GTR) in class II furcation defects.

Study

Model

Tooth

Type of membrane

Healing 
time 
(months)

Histomorphometric results

NATURALLY OCCURING PERIODONTITIS
Bogle 

et al. 1997

Dog

Mandibular 

premolars

Control: Open‐flap 

debridement

Experimental group: 

Bioabsorbable 

polylactic acid–based 

membrane

6

Cementum formation (%)

Control: 71

Test: 17*

Bone filling (%)

Control: 74

Test: 14*

ACUTE DEFECT MODEL
Caffesse 

et al. 1994

Dog

Mandibular 

premolars

Control: PTFE non‐

resorbable membrane

Test 1: Bioabsorbable 

type I barrier

Test 2: Bioabsorbable 

type II barrier

6

Notch to new 

cementum (mm)

Control: 4.42 ± 1.40

Test 1: 4.42 ± 1.08

Test 2: 5.80 ± 0.68
Notch to bone crest (mm)

Control: 2.72 ± 1.43

Test 1: 2.95 ± 1.24

Test 2: 4.55 ± 1.05

Danesh‐

Meyer 

et al. 1997

Sheep

Mandibular 

premolars

Control: Open‐flap 

debridement

Test 1: PTFE non‐

resorbable membrane

Test 2: PTFE non‐

resorbable soft‐tissue 

patch

2

Alveolar bone height (%)

Control: 61.5 ± 7.13

Test 1: 78.4 ± 6.89*

Test 2: 71.7 ± 6.73
Cementum height (%)

Control: 93.0 ± 4.34

Test 1: 98.5 ± 1.01*

Test 2: 98.4 ± 1.03*

ACUTE/CHRONIC DEFECT MODEL
Cirelli 

et al. 1997

Mongrel 

dogs

Mandibular 

premolars

Control: Open‐flap 

debridement

Test: GTR with 

anionic collagen 

membrane

3

Cementum formation (%)

Control: 59.34

Test: 92.35*
Bone filling (%)

Control: 48.58

Test: 56.33

Macedo 

et al. 2006

Dog

Mandibular 

bicuspids

Control: PTFE non‐

resorbable (Gore‐Tex

+

removed at 2 weeks

Test: PTFE non‐

resorbable (Gore‐Tex

+

removed at 4 weeks

3

New tissue (mm

2

)

Control: 12.45 ± 3.54

Test: 14.32 ± 4.01
Bone height (mm)

Control: 3.56 ± 1.21

Test: 4.03 ± 0.94

de Andrade 

et al. 2007

Dog

Mandibular 

premolars

Control: Bioabsorbable 

membrane

(polyglycolic acid)

Test: Acellular dermal 

matrix

3

New tissue (mm

2

)

Control: 8.01 ± 2.69

Test: 7.21 ± 1.33
Bone height (mm)

Control: 2.56 ± 0.84

Test: 2.86 ± 0.32

(Continued )


background image

Chapter 6

112

Table 6.1 

(Continued)

Study

Model

Tooth

Type of membrane

Healing 
time 
(months)

Histomorphometric results

Wang 

et al. 2014

Dog

Mandibular 

premolars

Control: Open‐flap 

debridement

Test 1: Open‐flap 

debridement + LIPUS

Test 2: Resorbable 

bovine collagen 

membrane (BioGide

)

Test 3: Resorbable 

bovine collagen 

membrane 

(BioGide

) + LIPUS

2

Micro‐CT scanning

New alveolar bone 

surface (mm

2

)

Control: 82.84 ± 16.67

Test 1: 98.44 ± 18.57

Test 2: 132.11 ± 22.76*

Test 3: 150 ± 21.20*

Hürzeler 

et al. 1997

Monkey

Mandibular

molars

Control: Open‐flap 

debridement

Test: Synthetic 

resorbable membrane 

Resolute

 (glycolide/

lactic copolymer)

5

Cementum 

deposition (mm)

Initial defect size: 5.05 ± 0.45

Control: 0.83 ± 0.19

Test: 2.88 ± 0.63*
Bone formation (mm)

Initial defect size: 2.81 ± 0.65

Control: 1.14 ± 0.35

Test: 2.78 ± 0.53*

CHRONIC DEFECT MODEL
Caffesse 

et al. 1990

Dog

Mandibular 

premolars,

molars

Control: Open‐flap 

debridement

Test: PTFE non‐

resorbable membrane 

(Gore‐Tex

+

)

3

Furcation fill (mm

2

)

Control: Ep + CT + B = 1.94

Experimental: Ep + CT+ 

B = 3.38

(no statistical analysis)

Lekovic 

et al. 1998

Dog

Mandibular

premolars,

molars

Control: Open‐flap 

debridement

Test 1: PTFE non‐

resorbable membrane

Test 2: Silicone rubber 

barrier material

Test 3: Polycarbonate 

filter with pore size of 

0.45 barrier material

Test 4: 

Polycarpolactone 

barrier material

6

Notch to new 

cementum (mm)

Control: 0.24 ± 0.007

Test 1: 1.96 ± 0.031*

Test 2: 2.16 ± 0.011*

Test 3: 2.18 ± 0.015*

Test 4: 2.04 ± 0.037*
Notch to bone crest (mm)

Control: 0.32 ± 0.017

Test 1: 1.18 ± 0.019*

Test 2: 1.44 ± 0.014*

Test 3: 1.32 ± 0.015*

Test 4: 1.2 ± 0.010*

*Statistically significant difference from control;

+

Gore‐Tex, W.L. Gore and Assoc., Flagstaff, AZ, USA;

Biogide, Geistlich Biomaterials, Wolhusen, Switzerland;

Resolute, W.L. Gore and Assoc., Flagstaff, AZ, USA.

CT = computed tomography; LIPUS = low‐intensity pulsed ultrasound; PTFE = polytetrafluoroethylene.


background image

Regenerative Therapy in Animal Models 113

 furcation class II defects (Caffesse et  al. 

1993; Lekovic and Kenney 1993). Likewise, 

in critical size acute defects in the dog 

model, Deliberador et al. (2006) compared 

the results of autogenous bone (AB) alone 

and in combination with a calcium sulphate 

paste as a barrier to an empty defect (con­

trol). At three months, most specimens 

failed to show complete bone fill of the fur­

cation. New bone formation was moderate 

and restricted between the notch areas to 

the mid portion of the defect. The amount 

of periodontal regeneration in the three 

groups was approximately 50% of the root 

length, without differences between the 

groups. Areas of ankyloses were also pre­

sent in some sections, but no active root 

resorption was observed. More recently, 

Struillou et  al. (2011) investigated the 

regenerative capacity of injectable biphasic 

calcium phosphate (BCP) in combination 

with injectable polymer (Si‐HPMC) in crit­

ical size (5 mm high, 3 mm deep), acute sur­

gically created defects in premolar furcation 

of beagle dogs. Three months after treat­

ment, a bone in‐growth of 23% ± 10% 

and  35.5% ± 13.9% was observed in the 

empty  and biomaterial‐filled defects, 

respectively. Although a tendency for higher 

bone in‐growth was observed in the defects 

filled with the biomaterial, this difference 

did not reach statistical significance.

Deproteinized bovine bone mineral 

(DBBM) is an extensively used bone substi­

tute with documented reconstructive poten­

tial (Baldini et al. 2011). In a mini‐pig animal 

model, the potential of porous titanium 

granules (PTGs) and DBBM in the recon­

structive treatment of surgically created 

acute buccal degree II furcation defects was 

tested. Six weeks after treatment, the histo­

logical analysis showed significantly 

increased vertical bone formation in both the 

PTG (62.5%) and control (empty; 64.3%) 

groups compared to the DBBM‐treated 

defects (41.9%, p < 0.01), which, on the con­

trary, had a reduced regenerative response. 

The micro‐computed tomography (CT) 

analysis showed significantly more buccal‐

palatal defect fill in furcation defects treated 

with PTG (96.8%) compared to the DBBM 

(62%) and control groups (72.2%, p < 0.05; 

Wohlfart et al. 2012). It should be noted that 

in this study, degree II furcation defects 

larger than what was typically used were sur­

gically created (buccal bone was removed to 

half of the root width) and this might have 

affected their regenerative potential.

6.4.3  Enamel Matrix Proteins

Biomimetic substances have been tested in 

experimental studies to assess their regener­

ative capability in furcation lesions. This 

group of proteins, which play a key role in 

root formation during odontogenesis, have 

demonstrated in both in vitro and in vivo 

studies a capacity to attract and increase the 

migration and proliferation of undifferenti­

ated mesenchymal cells, which then form 

acellular cementum, periodontal ligament, 

and alveolar bone (Zetterström et  al. 1997; 

Amin et  al. 2012, 2013, 2014, 2016). 

Remarkably, not only did regenerative tech­

niques using enamel matrix derivatives show 

enhanced hard‐tissue formation, they also 

reported increased gingival tissue thickness 

using the beagle dog model (Al Hezaimi et al. 

2012). As class II furcation defects are non‐

containing defects, it has been suggested that 

the use of biological substances may be clini­

cally applied in combination with different 

bone graft materials, although this combina­

tion therapy has not yet been experimentally 

evaluated to provide histological outcomes 

(Sculean et  al. 2007; Trombelli and Farina 

2008). In an experimental study in mongrel 

dogs, the use of enamel matrix derivative 

(EMD) alone was associated with better 

regenerative outcomes in comparison to its 

combined use with ePTFE membranes in 

critical size acute/chronic surgically created 

buccal class II furcation defects. Following 

eight weeks of healing, the EMD group 

resulted in 67% new bone formation and 94% 

new cementum. The combined approach 


background image

Chapter 6

114

resulted in compromised healing due to 

membrane exposure (28% new bone, 80% 

new cementum; Regazzini et al. 2004).

6.4.4  Growth Factors

Growth factors form a class of natural 

 polypeptides that act as biological mediators 

regulating cell proliferation, chemotaxis, 

 differentiation, and synthesis. These factors 

also play a major role during tissue regenera­

tion, by binding to specific receptors on the 

cell surface. Growth and differentiation fac­

tor technologies have been evaluated for 

their potential to enhance periodontal wound 

healing/regeneration in healthy and systemi­

cally compromised conditions (Stavropoulos 

and Wikesjö 2012; Bizenjima et  al. 2015). 

Such biologically active substances, used 

either alone or in combination with GTR, 

have also been tested for their efficacy in 

improving regeneration outcomes in critical 

size furcation lesions. In particular, fibroblast 

growth factor (FGF; Murakami et  al. 1999, 

2003; Takayama et al. 2001), bone morpho­

genetic proteins (BMPs; Ripamonti et  al. 

1996, 2001), transforming growth factor‐β 

(TGF‐β; Teares et  al. 2008, 2012), insulin 

growth factor (IGF‐1), and platelet‐derived 

growth factor (PDGF; Soares et al. 2005) are 

the most studied. The results of the applica­

tion of growth factors in class II furcation 

defects are presented in Table 6.2.

6.4.5  Cell Therapy

The most common cells applied for regener­

ation are mesenchymal stem cells (MSCs), as 

these pluripotent cells can differentiate into a 

significant number of cell types, including 

osteoblasts, fibroblasts, and cementoblasts 

(Risbud and Shapiro 2005). MSCs have been 

isolated from periodontal ligament (PDL; 

Seo et al. 2004; Trubiani et al. 2005) and it 

was demonstrated that, when they are cul­

tured in contact with native PDL cells, MSCs 

acquire the characteristics of PDL cells, 

 making them suitable for periodontal regen­

eration purposes (Kramer et al. 2004). Dogan 

and co‐workers retrieved cells from regenerated 

periodontal defects in dogs, which were then 

expanded in culture and transplanted into 

critical size surgically created class II furca­

tion defects in the same animals. At 42 days 

post‐surgery, a trend towards better bone 

formation (control 32.9% vs test 51.2%) and 

less cementum formation (control 71.7% vs 

test 75.5%) in the test group was reported, 

but no statistical analysis was performed in 

the study (Dogan et al. 2002).

The successful use of PDL cells to regener­

ate class II furcation defects was documented 

by Suaid and co‐workers in a dog model. PDL 

cells obtained from extracted teeth were cul­

tured in vitro and phenotypically character­

ized with regard to their biological properties. 

Acute CSDs were then surgically created and 

treated with either GTR (control group) or 

GTR associated to a cell‐seeded collagen 

sponge (test group). Three months after treat­

ment, the histomorphometric analysis showed 

that the cell‐treated group presented a supe­

rior length of new cementum (8.08 ± 1.08 mm 

vs 6.00 ± 1.5), a greater  extension of periodon­

tal regeneration (7.28 ± 1.00 mm vs 3.94 ± 1.20, 

p < 0.05), a lower formation of connective tis­

sue/epithelium  (0.60 ± 0.99 mm  vs  2.15 ± 1.92, 

0.05), a larger area of new bone 

(9.02 ± 2.30 mm

2

 vs 7.01 ± 0.61, p < 0.05), and a 

smaller area of connective tissue/epithelium 

(4.22 ± 0.95 mm

2

  vs  5.90 ± 1.67,  p > 0.05),  com­

pared with the control group (Suaid et  al. 

2011). More recently, Chantarawaratit et  al. 

(2014) employed primary human PDL cells 

treated with acemannan, a polysaccharide 

extracted from aloe vera gel, for the regenera­

tion of critical size acute class II furcation 

defects in mongrel dogs. It was observed that 

acemannan significantly increased the per­

centage of new bone formation at 30 and 

60 days post‐operatively, as well as the percent­

age of new cementum formation at 60 days 

post‐operatively (Chantarawaratit et al. 2013).

Simsek et  al. (2012) compared the effec­

tiveness of MSCs with platelet‐rich plasma 

(PRP) as a scaffold to PRP alone, autogenous 

cortical bone (ACB) graft alone, and the 

combination of ACB with PRP in the 

 treatment of acute/chronic class II furcation 

defects versus open flap debridement 


background image

Regenerative Therapy in Animal Models 115

Table 6.2 

Growth factors in class II furcation defects.

Study

Model

Tooth

Type of membrane

Healing 
time 
(months)

Histomorhometric 
results

ACUTE/CHRONIC DEFECT MODEL
Murakami 

et al. 1999

Dog

Mandibular 

premolars,

molars

Test 1: Gelatinous carrier 

(fibrin gel) alone

Test 2: b‐FGF + carrier

1.5

New bone formation 

rate (%)

Test 1: 42.8 ± 10.7

Test 2: 79.6 ± 16.8*
New cementum 

formation rate (%)

Test 1: 34.3 ± 14.5

Test 2: 75.8 ± 22.7*

Murakami 

et al. 1999

Non‐human 

primates

Mandibular 

molars

Test 1: Carrier alone

Test 2: b‐FGF + carrier

2

New bone formation 

rate (%)

Test 1: 54.3 ± 8.0

Test 2: 71.3 ± 13.5*
New cementum 

formation rate (%)

Test 1: 38.9 ± 9.2

Test 2: 71.2. ± 15.2*

Murakami 

et al. 2003

Dog

Mandibular 

molars

Control: Gelatinous carrier 

(fibrin gel) alone

Test 1: 0.1% b‐

FGF + gelatinous carrier

1.5

New bone formation 

rate (%)

Test 1: 35.4 ± 8.9

Test 2: 83.6 ± 14.3*
New cementum 

formation rate (%)

Test 1: 37.2 ± 15.1

Test 2: 97.7 ± 7.5*

Takayama 

et al. 2001

Non‐human 

primates

Maxillary, 

mandibular 

molars

Control: Open‐flap 

debridement

Test 1: Gelatinous carrier

Test 2: 0.1% FGF‐2

Test 3: 0.4% FGF‐2

2

New bone formation 

rate (%)

Control: 44.7 ± 6.2

Test 1: 54.3 ± 8.0

Test 2: 58.0 ± 21.9

Test 3: 71.3 ± 13.5*
New cementum 

formation rate (%)

Control: 46.7 ± 12.1

Test 1: 38.9 ± 9.2

Test 2: 79.1 ± 23.9*

Test 3: 72.2 ± 14.4*

Keles et al. 

2009

Dog

Mandibular 

premolars

Control: Open‐flap 

debridement

Test 1: Platelet pellet

Test 2: Platelet 

pellet + resorbable 

membrane of polylactic acid 

(Atrisorb

+

)

3

New cementum (%)

Control: 45.60 ± 11.92

Test 1: 83.99 ± 7.70*

Test 2: 81.63 ± 8.17*
New bone (%)

Control: 42.44 ± 6.07

Test 1: 62.64 ± 7.89

Test 2: 61.06 ± 7.90

(Continued )


background image

Chapter 6

116

Study

Model

Tooth

Type of membrane

Healing 
time 
(months)

Histomorhometric 
results

Suaid 

et al. 2010

Dog

Mandibular 

premolars

Control: Synthetic 

resorbable membrane 

Resolute† (glycolide/lactic 

copolymer) + bioactive glass 

(Perioglas

)

Test: Synthetic resorbable 

membrane Resolute 

(glycolide/lactic 

copolymer) + bioactive glass 

(Perioglas) + PRP

3

New bone (mm)

Control:4.33 ± 0.62

Test: 5.01 ± 0.63
New cementum (mm)

Control: 9.20 ± 3.21

Test: 12.45 ± 1.73*

Teares 

et al. 2008

Baboon

Mandibular 

molars

Control: Carrier alone: 

Basement membrane matrix 

(Matrigel

)

Test 1: TGF‐β3 with carrier

Test 2: TGF‐β3 with carrier 

and minced muscle tissue

2

New cementum (mm)

Control: 3.7 ± 0.7

Test 1: 3.5 ± 0.6

Test 2: 6.1 ± 0.4*
New bone (mm):

Control: 2.3 ± 0.4

Test 1: 2.8 ± 0.8

Test 2: 4.7 ± 0.3*

Teares 

et al. 2012

Baboon

Mandibular 

molars

Test 1: Matrigel containing 

25 µg of recombinant hOP‐1

Test 2: Matrigel containing 

75 µg TGF‐β3

Test 3: Matrigel with 25 µg 

hOP‐1 and 25 µg TGF‐

β3 

(20:1 ratio)

Test 4: Matrigel with 25 µg 

hOP‐1 and 1.25 µg TGF‐β3 

(20:1 ratio) plus morcellated 

autogenous muscle

2

New cementum (mm):

Test 1: 6.18 ± 0.33*

Test 2: 3.65 ± 0.88

Test 3: 5.45 ± 0.89*

Test 4: 2.69 ± 1.06
New bone (mm):

Test 1: 5.93 ± 0.92

Test 2: 5.67 ± 1.17

Test 3: 7.07 ± 0.57*

Test 4: 4.73 ± 1.08

ACUTE DEFECT MODEL
Ripamonti 

et al. 1996

Baboon

Mandibular 

molars

Control: Carrier

Test 1: Carrier + 0.1 µg/ml 

hOP‐1

Test 2: Carrier + 0.5 µg/ml 

hOP‐1

2

No bone formation 

was detected
New cementum 

formation (distal 

root)

Control: 2.6 ± 0.2

Test 1: 6.2 ± 0.5*

Test 2: 6.7 ± 0.3*

Ripamonti 

et al. 2001

Baboon

Mandibular 

molars

Test 1: BMP

2

 (100 µg/ml)

Test 2: hOP‐1 (100 µg/ml)

Test 3: hOP‐1 + BMP

2

 

(100 µg/ml)

2

New bone formation

Test 1: 4.2 ± 0.2

Test 2: 3.7 ± 0.4

Test 3: 3.1 ± 0.2
New cementum 

formation (distal 

root)

Test 1: 3.7 ± 0.4

Test 2: 5.7 ± 0.3*

Test 3: 3.6 ± 0.2

Table 6.2 

(Continued)


background image

Regenerative Therapy in Animal Models 117

( control) in the dog model. At eight weeks, 

cementum formation was significantly 

higher in the ACB, combination of ACB/PRP, 

and combination of MSCs/PRP groups com­

pared to the control group (p < 0.05). It was 

concluded that periodontal regeneration 

with complete filling of class II furcation 

defects can be obtained with the use of GTR, 

PPR, MSCs, and their combinations. Finally, 

it was shown that a collagen matrix overlaid 

with embryonic stem cells (ES) is able to 

improve the regeneration of class II furcation 

defects (4 mm wide, 5 mm deep) in mini‐pigs 

(Yang et al. 2013).

6.5   Regeneration 

Treatments of Class III 

Furcation Defects

6.5.1  Guided Tissue Regeneration

Starting from the late 1980s, the effects of 

placing non‐bioresorbable or bioabsorbable 

membranes on degree III furcation CSD 

defects (3 mm wide and 4 mm high) as 

 compared with those in control sites was 

evaluated in dogs (Niederman et  al. 1989; 

Pontoriero et  al. 1992; White et  al. 1994; 

Lindhe et al. 1995; Araújo et al. 1997, 1998). 

The results of the different studies are 

 presented in Table  6.3. GTR resulted in 

 significantly more gain of connective tissue 

attachment and regrowth of alveolar 

bone than control therapy, where no mem­

brane was used. Complete closure of class III 

furcation defects with the formation of peri­

odontal ligament and regrowth of the bone 

was achieved. It was shown that the size of 

the defect and the shape of the surrounding 

bone determined the outcome of regenera­

tion, as already mentioned. The treatment 

failures were consistently associated with 

recession of the covering flaps and exposure 

of the defect. In addition, the results also 

demonstrated that bioabsorbable mem­

branes provided a barrier that was equally 

effective to that of non‐bioabsorbable mem­

branes (Lindhe et al. 1995; Araújo et al. 1998).

6.5.2  Bone Grafts

The first attempts to treat class III furcation 

defects with the use of bone grafts (fresh 

autogenous hip marrow grafts, autogenous 

cancellous bone grafts) were made by 

Ellegaard et  al. (1974, 1975) in the monkey 

model and Nilvéus et  al. (1978) in the dog 

model. Although a higher frequency of furca­

tion closure occurred with the use of the 

Study

Model

Tooth

Type of membrane

Healing 
time 
(months)

Histomorhometric 
results

Soares 

et al. 2005

Dog

Mandibular 

molars

Control: No graft

Test: Reparative tissue of 

extraction socket enhanced 

with PDGF‐BB + IGF

45 days

New cementum

Control: 2.49 ± 0.82

Test: 2.48 ± 0.47
New bone

Control: 2.73 ± 0.42

Test: 2.49 ± 0.71

*Statistically significant difference from control;

+

Atrisorb, Atrix Laboratories, Fort Collins, CO, USA;

Perioglas, US Biomaterials, Alachua, FL, USA;

Resolute, W.L. Gore and Assoc., Flagstaff, AZ, USA;

Matrigel™, BD Biosciences, San Jose, CA, USA; b‐FGF = basic fibroblast growth factor; BMP

2

 = bone morphogenetic 

protein‐2; hOP‐1 = human osteogenic protein‐1; IGF = insulin growth factor; PDGF = platelet‐derived growth factor; 

PRP = platelet‐rich plasma; TGF = transforming growth factor.

Table 6.2 

(Continued)


background image

Chapter 6

118

Table 6.3 

Guided tissue regeneration (GTR) in class III furcation defects.

Study

Model

Tooth

Type of membrane

Healing 
time 
(months)

Histomorhometric 
results

ACUTE DEFECT MODEL
White et al. 

1994

Dog

Mandibular

premolars

Control: Open‐flap 

debridement

Test: PTFE non‐resorbable 

membrane

3

Distance from notch 

to coronal extent of 

bone (mm)

Control: ‐0.21 ± 7.27

Test: 1.50 ± 4.31

ACUTE/CHRONIC DEFECT MODEL
Pontoriero 

et al. 1992

Dog

Mandibular

premolars

Control: No membrane

Test: PTFE non‐

resorbable membrane 

(Gore‐Tex

+

)

 

Small key‐hole defect 

(2 × 2 mm)

 

Large key‐hole defect 

(3 × 4 mm)

 

Furcation defect part of 

circumferential loss of 

attachment

4

Surface area (mm

2

)

Small key‐hole 

defect

Control: 4.8 ± 1.3

Test: 4.1 ± 1.4
Large key‐hole 

defect:

Control: 13.6 ± 1

Test: 12.8 ± 2.8
Furcation defect part 

of circumferential 

loss

Control: 22.3 ± 2.8

Test: 20.9 ± 2.4

Lindhe et al. 

1995

Dog

Mandibular

premolars

Study 1:

Control: No membrane

Test: PTFE non‐resorbable 

membrane

Study 2:

Control: PTFE non‐

resorbable membrane

Test: Synthetic resorbable 

membrane made of 

glycolide/lactic copolymer 

(Resolute†)

5

Study 1

Amount of new 

cementum

Control: 43% (±12)

Test: 74% (±11)*
Height of new 

bone (mm)

Control: 0.7 ± 0.6

Test: 1.7 ± 0.5
Study 2

Amount of new 

cementum

Control: 82% (±13)

Test: 86% (±11)
Height of new 

bone (mm)

Control: 2.8 ± 1.4

Test: 3.1 ± 1.1

Araújo et al. 

1997

Dog

Mandibular

premolars

Synthetic resorbable 

membrane made of 

glycolide/lactic copolymer 

(Resolute)

5

Mineralized 

bone (%)

36 (±12.6)
PDL (%)

20 (±11.1)


background image

Regenerative Therapy in Animal Models 119

grafts, ankyloses and root resorption were 

documented as well. By using acute/chronic 

surgically created class III defects (larger 

than CSD) in dogs, Roriz et al. (2006) studied 

the regenerative potential of bovine‐derived 

bone matrix with or without ePTFE mem­

brane. Twelve weeks after treatment, it was 

concluded that both treatments had similar 

results and were not able to result in closure 

of class III furcation defects. It should be 

noted that in this study, the size of the defect 

(more than 4 mm in height) may have con­

tributed to the lack of complete fill of the fur­

cation in both groups. Another pre‐clinical 

study using the dog model showed that 

implantation of beta tricalcium phosphate 

(β‐TCP) with a tunnel pipe structure resulted 

in new bone formation and new cementum 

in acute surgically created lesions (defect 

height was 4 mm) after eight weeks of 

 treatment, but total closure of the furcation 

was not achieved (Saito et al. 2012).

6.5.3  Enamel Matrix Proteins

The first study evaluating the effect of EMD 

in combination with GTR versus GTR alone 

in class III furcation defects was performed 

by Araújo and Lindhe (1997) in surgically 

created acute/chronic lesions in the dog 

model. At four months, the central portion of 

both control and test furcation defects (4 mm 

high, 3 mm wide) was closed and the relative 

amounts of mineralized bone, bone marrow, 

Table 6.3 

(Continued)

Study

Model

Tooth

Type of membrane

Healing 
time 
(months)

Histomorhometric 
results

Araújo et al. 

1998

Dog

Mandibular

premolars

Test 1: Synthetic resorbable 

membrane made of 

glycolide/lactic copolymer 

(Resolute)

Test 2: Absorbable 

membrane made of 

polylactic acid (Guidor

)

6

Mineralized bone (%)

Test 1: 35 (±3)

Test 2: 12 (±7)*
PDL (%)

Test 1: 19 (±4)*

Test 2: 6 (±2)

Araújo et al. 

1999

Dog

Mandibular

premolars

Synthetic resorbable 

membrane made of 

glycolide/lactic copolymer 

(Resolute)

6

Bone tissue (%)

78 (±4.8)

CHRONIC DEFECT MODEL
Gonçalves 

et al. 2006

Dog

Mandibular

premolars

Control: Synthetic 

resorbable membrane 

made of glycolide/lactic 

copolymer 

(Resolute) + removal of 

cementum (scaling and 

root planing)

Test: Synthetic resorbable 

membrane made of 

glycolide/lactic copolymer 

(Resolute) + preservation of 

cementum (polishing)

4

New cementum (mm)

Control: 3.59 ± 1.67

Test: 6.20 ± 2.26 mm*
New bone (mm)

Control: 1.86 ± 1.76

Test: 4.62 ± 3.01 mm*

*Statistically significant difference from control;

+

Gore‐Tex, W.L. Gore and Assoc., Flagstaff, AZ, USA;

Resolute, W.L. Gore and Assoc., Flagstaff, AZ, USA;

Guidor, Sunstar Americas Inc., Schaumburg, IL, USA; PDL = periodontal ligament; PTFE = polytetrafluoroethylene.


background image

Chapter 6

120

and periodontal ligament were similar in 

both groups.

In a subsequent study, Donos et al. (2003b) 

evaluated the healing of mandibular degree 

III furcation treated with GTR, EMD, or a 

combination in monkeys. The dimensions of 

the furcation defects were approximately 

4 mm wide and 3 mm high, corresponding to 

the CSD. The alveolar bone on the buccal 

and lingual aspect of the mesial and distal 

root of each molar was also removed, creat­

ing a ‘horizontal’ pattern of bone loss. 

However, the height of alveolar bone on the 

mesial and distal interproximal aspect of 

each experimental tooth was maintained. At 

five months of healing, similar results in 

terms of quality of the regenerated periodon­

tal tissues were reported in the sites treated 

with GTR alone or in combination with 

EMD. Remarkably, the application of EMD 

alone resulted in unpredictable amounts of 

regenerated periodontal tissues and defect 

closure by newly formed bone (Figure  6.1). 

The same group also showed that only when 

GTR or GTR associated with EMD was 

applied was it possible to obtain complete 

defect regeneration (up to the fornix; Donos 

et al. 2003b; Gkranias et al. 2012). Moreover, 

they demonstrated different histological fea­

tures in relation to the different treatment 

modalities. The sites treated according to the 

GTR principle showed a predominance of 

cellular cementum with extrinsic fibres or 

mixed fibres, while in the sites that were 

treated with EMD or a combination of GTR 

and EMD, the cementum was characterized 

apically as acellular and with extrinsic fibres 

and coronally as mixed with stratified fibres. 

In a recent investigation in dogs, the com­

bined use of EMD with a synthetic bone graft 

(Emdogain Plus, Institut Straumann AG, 

Basel, Switzerland) was compared to coro­

nally repositioned flap for the treatment of 

surgically created acute class III furcation in 

dogs. After two months of healing, in the 

experimental group, a significant amount of 

new attachment and bone formation was 

observed in the majority of the specimens 

(Mardas et al. 2012).

A new liquid carrier for EMD, Osteogain 

(Institut Straumann AG, Basel, Switzerland), 

specifically designed for mixing with differ­

ent biomaterials, has also been for the first 

time tested in the regeneration of acute/

chronic class III furcation defects in mon­

keys (Shirakata et al. 2017). The dimensions 

of the exposed furcation defects were 5 mm 

wide and 5 mm high (Figure 6.2). When com­

paring the histological outcome of defects 

treated with open‐flap debridement (OFD; 

control), OFD and a collagen sponge satu­

rated with EMD (OFD/EMD), and OFD and 

a collagen sponge saturated with Osteogain 

(OFD/Osteogain), higher amounts of con­

nective tissue were observed in both test 

groups. Furthermore, the OFD/Osteogain 

group showed higher new attachment 

 formation, cementum, and new bone area. 

None of the treatments achieved complete 

regeneration; that is, class III furcation 

 persisted after treatment (Figure 6.3).

6.5.4  Growth Factors

These biologically active substances, used 

either alone or in combination with GTR, 

have been tested for their efficacy in improv­

ing regenerative outcomes in class III furca­

tion lesions. Rossa et al. (2000) combined the 

use of b‐FGF with GTR for the treatment of 

acute/chronic surgically created defects in 

dogs. The defects had a vertical height of 

5 mm and a horizontal width of 7 mm. The 

proximal bone crest was not removed, result­

ing in an angular‐type defect rather than a 

horizontal one. The study showed improve­

ments in histological outcomes, such as 

newly formed cementum, and lower extent 

of epithelial migration when b‐FGF was asso­

ciated with GTR in comparison to GTR 

alone. However, differences between experi­

mental and control groups did not reach sta­

tistical significance (this might be due to the 

large size of the created defects) and full clo­

sure of the furcation was not achieved in any 

of the specimens. Conversely, the combina­

tion of b‐FGF with β‐TCP was shown to 

enhance connective tissue attachment and to 


background image

Regenerative Therapy in Animal Models 121

induce higher bone formation (up to the 

 fornix) compared to b‐FGF alone in class III 

furcation acute smaller defects (4 mm high) 

created in dogs (Saito et al. 2013).

By using the supra‐alveolar, critical size 

model, the effect of recombinant human 

bone morphogenetic protein (rhBMP

2

) was 

tested and substantial regeneration of alveo­

lar bone and cementum was demonstrated 

(Wikesjö et  al. 1994). However, treatment 

with rhBMP

2

 did not appear to induce a 

functionally oriented periodontal ligament, 

and resulted in ankyloses and root resorption 

(Wikesjö et al. 1999, 2003a; Takahashi et al. 

2005). The use of PDGF in combination with 

GTR has been successfully tested by Park 

et al. (1995) in acute/chronic supra‐alveolar, 

critical size surgically created defects in bea­

gle dogs. They reported almost complete clo­

sure of the lesions without the occurrence of 

resorption or ankyloses. Using the supra‐

alveolar, critical size model, different con­

centrations of osteogenic protein‐1 (OP‐1) 

were evaluated in acute lesions in the dog. 

(a)

(b)

(c)

(d)

Figure 6.1 

Overview photomicrographs of all class III furcation defects in different groups. (a) Furcation 

treated with ethylenediaminetetraacetic acid (EDTA). Regeneration was observed only at the level of the notch, 

with connective tissue and granulation tissue plus epithelium covering the rest of the space. (b) Furcation 

treated with enamel matrix derivative (EMD). The furcation was partially closed and a layer of new cementum 

with inserting fibres identified coronal to the notch. Regenerated bone filled most of the furcation area. 

(c) Guided tissue regeneration (GTR)‐treated furcation where the membrane remained covered. The entire 

circumference of the defect is covered with a layer of new cementum. Regenerated alveolar bone fills the 

furcation defect completely. (d) Furcation treated with GTR + EMD. The furcation was closed and new 

cementum can be seen on most of the circumference of the defect. The defect was filled with new bone up 

to the fornix.


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c06.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:20:29 PM  Stage: <STAGE>  WorkFlow:

CSW

 

Page Number: 122

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 6.2 

Clinical appearance of the mandibular buccal aspect of Macaca fascicularis. (a) Induction of chronic 

inflammation. After fabrication of class III furcation defects, impression materials were placed to encourage 

growth of oral microflora along the exposed root surfaces. (b) Prior to reconstructive surgery. (c) Immediately 

after flap reflection. Note the excessive granulation tissue in the chronic defects. (d) Defects were exposed and 

debrided again at the time of reconstructive surgery. (e) Osteogain/absorbable collagen sponge (ACS) 

construct before surgical implantation. (f) Left (second molar): ACS alone; right (first molar): placement of 

Osteogain/ACS. (g) Flaps coronally repositioned and sutured. (h) 16 weeks after reconstructive surgery.


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c06.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:20:29 PM  Stage: <STAGE>  WorkFlow:

CSW

 

Page Number: 123

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

Figure 6.3 

Overview photomicrographs of all class III furcation defects in different groups (Azan‐Mallory 

staining). (a) OFD (open‐flap debridement) group overview (scale bar: 1 mm). (b) Higher magnification of framed 

area (left) in (a) (scale bar: 200 µm). (c) Higher magnification of framed area (right) in (a) (scale bar: 200 µm). 

(d) Absorbable collagen sponge (ACS) group overview (scale bar: 1 mm). (e) Higher magnification of framed area 

(left) in (d) (scale bar: 200 µm). (f) Higher magnification of framed area (right) in (d) (scale bar: 200 µm). 

(g) Emdogain/ACS group overview (scale bar: 1 mm). (h) Higher magnification of apical framed area (left) in (g) 

(scale bar: 200 µm). (i) Higher magnification of framed area (right) in (g) (scale bar: 200 µm). (j) Osteogain/ACS 

group overview (scale bar: 1 mm). Arrowhead: notch (apical extent of root planing). (k) Higher magnification of 

framed area (left) in (j) (scale bar: 200 µm). (l) Higher magnification of framed area (right) in (j) (scale bar: 200 µm). 

JE = junctional epithelium, NB = new bone; NC = new cementum; PDL = periodontal ligament.


background image

Chapter 6

124

At a dose of 7.5 µg/ml of OP‐1 in a collagen 

carrier  3.9 ± 1.7 mm  and  6.1 ± 3.4 mm

2

 of lin­

ear bone height and bone area were achieved. 

These outcomes were significantly improved 

in comparison to the outcomes achieved in 

the defects treated with surgery only or with 

carrier only (Giannobile et al. 1998).

6.5.5  Cell Therapy

Only limited studies have investigated the 

use of cell therapy in the treatment of class III 

furcation defects. Autogenous periosteal 

cells combined with the application of β‐TCP 

have shown improved periodontal tissue 

regeneration in acute/chronic surgically cre­

ated defects compared to β‐TCP‐treated and 

empty defects in a dog model. The furcation 

defects were approximately 3 mm wide and 

4 mm high (Jiang et al. 2010). More recently, 

Nagahara et al. (2015), using the same defect 

size, also confirmed that applying a β‐TCP 

scaffold to bone marrow mesenchymal stem 

cells helps enhance new bone formation in 

class III furcation defects exposed to inflam­

mation in beagle dogs.

Using the supra‐alveolar, critical size 

model, autologous periodontal ligament cells 

were isolated from extracted teeth, cultured 

and phenotypically characterized, and even­

tually applied on a collagen sponge carrier 

alone or in combination with GTR in surgi­

cally created acute/chronic defects in the 

beagle dog model (Murano et al. 2006; Suaid 

et  al. 2012). After three months of healing, 

both groups resulted in additional new 

cementum and new periodontal ligament 

production, together with a larger area of 

new bone formation.

6.6   Discussion

It is well accepted that there is no single 

 animal model that represents all aspects of 

periodontal human disease, tissue architec­

ture, and the healing and ageing processes. 

However, human studies cannot always be 

coupled with tissue harvesting, which is 

however necessary for microscopic and his­

tological analyses that define the biological 

impact of the regenerative methods and 

materials applied (Kantarci et  al. 2015). 

Therefore, it has been suggested that animal 

studies are still an important step for estab­

lishing cause‐and‐effect relationships and for 

the initial evaluation of principles in the 

development of new regenerative devices 

and advanced therapeutics.

Regenerative therapy of advanced furca­

tion involvement (classes II and III) has been 

extensively studied in pre‐clinical models, 

but the question remains whether this pre‐

clinical evidence is enough to support the 

clinical use of the different techniques and 

materials investigated in regenerative perio­

dontal therapy. The clinical challenge in fur­

cation involvement is the destruction of the 

horizontal component, but also the com­

bined need for vertical periodontal regenera­

tion within the same area. There is extensive 

evidence that, independent of the defect type 

and animal model adopted, regenerative 

 periodontal surgery using a combination of 

barrier membranes and grafting materials 

may result in periodontal regeneration to a 

varying extent (Sculean et al. 2008). GTR is 

more predictable in class II furcation than in 

class III furcation defects. Some studies 

reported failures in the closure of the furca­

tion, often associated with recession of the 

covering tissue flaps, which subsequently 

resulted in exposure of the membrane. These 

results suggested that regenerative outcomes 

in the treatment of furcation defects are only 

possible if the healing environment under 

the membrane is well protected by the flaps 

during healing, and the barrier membranes 

are not exposed and hence contaminated by 

the oral micro‐environment (Klinge et  al. 

1981, 1985a, b; Lindhe et al. 1995). Superior 

 histological outcomes, predominantly bone 

repair, following the use of a combination of 

grafting materials and barrier membranes, 

compared with grafting materials alone or 

membranes alone, were only found in non‐

contained periodontal defects (class III 

 furcation defects). However, in contained 


background image

Regenerative Therapy in Animal Models 125

defects, such as class II furcation lesions, no 

additional advantage of a combined treat­

ment was suggested overall. This implies 

that  the principal mechanism by which a 

graft material supports regeneration may 

not  be its osteoconductivity, but rather its 

space provision capacity, a question which 

warrants further investigation (Polimeni 

at al. 2004).

Biological and biomimetic substances, 

such as EMD, have also been tested in exper­

imental studies to assess their regenerative 

capability in furcation lesions. As class III 

furcation defects are non‐contained defects, 

the use of biologics is associated with impor­

tant limitations. Owing to their liquid/gel‐

like consistency, any space‐making effect is 

in fact prevented, and therefore the regenera­

tive potential of such materials may be lim­

ited in furcation defects. Remarkably, in 

some studies, the use of EMD in combina­

tion with GTR in class III furcation defects 

resulted in some periodontal regeneration. 

However, there should always be caution in 

extrapolating results from experimental 

studies in animals to the clinical scenario, 

where it has been shown that the same treat­

ment principles may not apply in class III 

clinical cases (Donos et al. 2003a, 2004).

Growth and differentiation factor technol­

ogies have also been evaluated for their 

potential to enhance periodontal wound 

healing/regeneration in furcation lesions 

(Stavropoulos and Wikesjö 2012). Such bio­

logically active substances, used either alone 

or in combination with GTR, seem to be 

promising in enhancing the regenerative out­

comes in class II and III furcation defects, 

but further pre‐clinical and clinical research 

is needed to adequately evaluate the efficacy 

of these novel treatments in periodontal 

wound healing/regeneration. Cell‐based 

therapies have also received considerable 

attention in regenerative medicine, but their 

experimental evaluation in the treatment of 

periodontal furcation lesions is still at a very 

early stage of development.

In recent years, due to the low rate of cell 

survival after cell implantation, the paracrine 

functions of mesenchymal stem cells have 

received increasing attention as a regenera­

tive mechanism (Nagata et  al. 2017). The 

possibility of enhancing the regeneration 

of  furcation defects with the help of trans­

planted conditioned medium obtained from 

cultured periodontal stem cells is certainly 

an interesting and stimulating area for future 

research.

6.6.1  Limitations of Pre‐clinical 

Studies

It is important to recognize the limitations of 

animal studies, as answers obtained from 

experiments performed under standardized 

conditions are specific to the questions 

posed, and do not necessarily translate into 

the clinical setting (Donos et  al. 2003a). In 

addition, ‘biological variability’ is still a con­

cern and is often resorted to as an explana­

tion for divergent experimental results. This 

variability may be due to the erratic behav­

iour of genetic, biochemical, physiological, 

or immunological host factors, or to the 

microbial flora associated with the individual 

animal. The lack of genetically defined stocks 

within dogs and primates (the animals mainly 

used in this field of research), together with 

the ethical concerns, may represent an 

important limiting factor in our attempts to 

reduce the effect of biological variability.

As mentioned previously, regenerative 

therapies require a histological demonstra­

tion of the actual outcome of periodontal 

regeneration by measuring the tooth‐ 

supporting tissues (i.e. cementum, periodon­

tal ligament, and alveolar bone) over a 

previously diseased root surface (Sanz et al. 

2015). The heterogeneity of the available 

studies in terms of species, study design, 

observation period, and materials makes 

them difficult to compare. The evaluation of 

the results may also be impaired by the diffi­

culty in standardizing the defect morphology 

and the extent of bone loss (horizontal and 

non‐horizontal), as well as by the different 

nature of the defects (naturally occurring vs 

ligature induced, or acute vs chronic).


background image

Chapter 6

126

The different anatomy and dimensions of 

teeth and alveolar processes in the available 

experimental animal models may reduce the 

clinical value of the outcomes. For example, 

experimental procedures performed in nar­

row and shallow two‐rooted canine mandib­

ular and maxillary premolar furcation defects 

with short trunks might translate poorly to 

clinical furcation defects in humans, espe­

cially when considering the large three‐

rooted maxillary molars.

Another important factor affecting the 

outcome of pre‐clinical studies is the concept 

of the CSD. It was shown that degree III fur­

cation involvements with a cross‐section 

dimension larger than 4 mm are more diffi­

cult to regenerate than smaller ones 

(Pontoriero et al. 1989, 1992). On the other 

hand, complete healing was reported in 

larger degree III furcation involvements 

when the membrane was kept completely 

covered by the flap during healing (Lindhe 

et al. 1995; Araújo et al. 1997, 1998; Araújo 

and Lindhe 1997). These results indicate that 

defect morphology might be less important 

than post‐surgical flap dehiscence and con­

sequent exposure of the membrane. The 

complete closure of degree III furcation is 

unpredictable and depends on the size of the 

entrance of the defect (Pontoriero et al. 1989, 

1992), the height of the defect, and the com­

plete flap coverage of the membrane during 

the healing period (Lindhe et al. 1995). Key‐

hole furcation defects without concomitant 

horizontal bone reduction seemed to provide 

better post‐operative support to the flaps 

and prevent recession. In addition, taking 

into consideration that the healing process in 

dogs is more rapid compared to humans 

(Cardarapoli et al. 2003; Mardas et al. 2012), 

the development of new, more challenging 

CSDs (width, height) should be considered to 

evaluate the regenerative potential of differ­

ent materials.

The lack of standardization in terms of 

sample orientation for histological evalua­

tion and quantitative assessment is another 

potential source of bias. In the early studies, 

the mesial‐distal section plane was the one 

most commonly employed (Crigger et  al. 

1978). The true value of the histological anal­

ysis of mesial‐distal sections in class II and III 

furcation has been questioned by Selvig 

(1994). This plane might impair interpreta­

tion, since it is very difficult to determine at 

which point in the buccal‐lingual direction 

the section was obtained. When the section 

is obtained at the most proximal point from 

the intact attachment apparatus (e.g. from 

the lingual wall of the buccal furcation 

defect), analysis might provide a false idea of 

a greater regenerative response than a sec­

tion obtained at a more distant point from 

the remaining periodontium, simply because 

of a smaller distance from precursor cells in 

the first case. According to Bogle et al. (1997), 

for a more precise histomorphometric evalu­

ation of the whole regenerative process of 

furcation lesions, buccal‐lingual histological 

sections must be obtained, because they 

allow for an analysis of the healing response 

from the lingual limits of the defect to the 

buccal cemento‐enamel junction.

Another difficulty when trying to compare 

pre‐clinical studies is the different ways of 

calculating the results. In some studies the 

attachment gain is measured in millimetres, 

while in others it is calculated as a percentage 

of the original defect height. The use of per­

centages compensates for differences in size 

between different experimental teeth and 

defects, but tends to mask the fact that a 

large percentage change may reflect a very 

small change in real units of measurement 

(Selvig 1994).

Furthermore, it is still unclear what is the 

necessary minimum observation period to 

ensure that the observed result is, in fact, the 

endpoint of the healing process. The obser­

vation period in most pre‐clinical studies 

varies from a couple of weeks up to three or 

six months. If the aim is to record the maxi­

mum extent of repair, including cementum 

and bone regeneration, a longer observation 

period should be recorded. Cementum does 

not form on root‐planed surfaces in the dog 

before approximately three weeks after sur­

gery. At six weeks, considerable amounts of 


background image

Regenerative Therapy in Animal Models 127

new cementum may have formed. Connective 

tissue attachment may be well established at 

its final level six months after surgery, but the 

final picture of mature cementum and bone 

formation may not be expressed until a 

later stage. It has been reported that regen­

erated tissues continue their formation and/

or remodelling even after three months of 

wound healing, and that this process 

can  continue for up to six months (Araújo 

et al. 1997).

6.6.2  Ethical Codes for Animal 

Experimentation

There is increasing concern in society and 

the medical profession regarding animal wel­

fare, with significant controversy surround­

ing the use of animals in research and testing 

(Biller‐Andorno et al. 2015). It has been sug­

gested that animal experiments can be sanc­

tioned if there is no alternative means of 

achieving the same scientific or educational 

objective, and if the benefits to society out­

weigh the costs in terms of animal harm 

(Rusche 2003). Harming animals is highly 

undesirable and experiments can only be jus­

tified if the social good derived from this type 

of use actively outweighs the negative aspect 

of harming a sensitive creature (Kolar 2006). 

Whenever possible, alternative methods 

should be sought. The three Rs (3Rs) princi­

ple, which should be applied as a guide when 

conducting animal research, includes 

replacement, reduction, and refinement:

 

Replacement: Using an experimental sub­

ject that is phylogenetically lower or using 

non‐animal systems. A few promising 

alternative methods put forward recently 

are in vitro techniques; tissue culture 

methods; use of lower organisms including 

microbes, tissues from slaughter, and 

autopsy embryos; and non‐animal systems 

such as computers or mathematical 

modelling.

 

Reduction: Before proposing to conduct 

animal experimentation, efforts should 

be  made to ascertain that the proposed 

animal experiment has not been done pre­

viously. Also, the minimum possible num­

ber of animals required should be used to 

yield meaningful data and not maximum 

precision.

 

Refinement: A multitude of refinements of 

technique that would reduce animal harm 

are ready for immediate application in bio­

medical research.

Since 1986, the European Union (EU) has 

had specific legislation covering the use of 

animals for scientific purposes.

The Council for International Organiz­

ations of Medical Sciences (COIMS) is an 

international non‐governmental representa­

tive of many branches of medicine and cog­

nate disciplines, which has laid down the 

guiding principles to provide a conceptual 

ethical framework acceptable to both the 

international biomedical community and 

animal welfare groups. COIMS set the fol­

lowing international guiding principles 

(Howard‐Jones 1985):

 

The use of animals for scientific purposes 

is innately undesirable.

 

Another method should be used whenever 

possible.

 

The use of animals in the present state of 

knowledge is unavoidable.

 

Scientists should have a moral obligation 

in designing the plan for the minimal num­

ber of animals to be employed.

The guiding principles are the product of 

consultation with a large and representative 

sample of the biomedical community, 

 including experts from the World Health 

Organization (WHO) and representatives of 

animal welfare groups.

6.7   Conclusions

Furcation involvement poses one of the most 

difficult challenges in periodontal therapy. 

Based on the available data, if one considers 

closure of the furcation defect as the main 

endpoint of therapy, then the results of 


background image

Chapter 6

128

regeneration have to be regarded as satisfy­

ing and predictable only for class II furcation 

involvements. Conversely, class III furcation 

defects are still considered a great challenge 

in terms of periodontal regeneration and, 

although the efficacy of different treatments 

has been demonstrated in some pre‐clinical 

studies, the effectiveness and relevance for 

clinical practice may be questioned. In the 

future, new regenerative treatment modali­

ties and the development of more challeng­

ing CSDs in pre‐clinical studies are clearly 

needed to improve the predictability of com­

plete resolution of class III furcation defects.

 References

Al‐Hezaimi, K., Al‐Fahad, H., O’Neill, R. et al. 

(2012). The effect of enamel matrix protein 

on gingival tissue thickness in vivo. 

Odontology 100, 61–66.

Amin, H.D., Olsen, I., Knowles, J.C. and 

Donos, N. (2012). Differential effect of 

amelogenin peptides on osteogenic 

differentiation in vitro: Identification of 

possible new drugs for bone repair and 

regeneration. Tissue Engineering Part A 18, 

1193–1202.

Amin, H.D., Olsen, I., Knowles, J.C. et al. 

(2013). Effects of enamel matrix proteins on 

multi‐lineage differentiation of periodontal 

ligament cells in vitro. Acta Biomaterialia 9, 

4796–4805.

Amin, H.D., Olsen, I., Knowles, J. et al. (2014). 

A tyrosine‐rich amelogenin peptide 

promotes neovasculogenesis in vitro and ex 

vivo. Acta Biomaterialia 10, 1930–1939.

Amin, H.D., Olsen, I., Knowles, J. et al. (2016). 

Interaction of enamel matrix proteins with 

human periodontal ligament cells. Clinical 

Oral Investigation 20, 339–347.

Araújo, M.G., Berglundh, T., Albrekstsson, T., 

and Lindhe, J. (1999). Bone formation in 

furcation defects: An experimental study in 

the dog. Journal of Clinical Periodontology 

26, 643–652.

Araújo, M.G., Berglundh, T., and Lindhe, J. 

(1997). On the dynamics of periodontal 

tissue formation in degree III furcation 

 Summary  of Evidence

 

Animal studies, despite their limitations, 

are an important step for establishing 

cause‐and‐effect relationships and for the 

initial evaluation of principles in the 

development of new regenerative devices 

and advanced therapeutics.

 

Independent of the defect type and animal 

model adopted, regenerative periodontal 

surgery using a combination of barrier 

membranes and grafting materials may 

result in periodontal regeneration to a 

variable extent in furcation involvements.

 

The results of regeneration have to be 

regarded as satisfying and predictable 

only for class II furcation involvements, as 

class III furcation defects are still consid­

ered a great challenge in terms of perio­

dontal regeneration, although the efficacy 

of different treatments has been demon­

strated in some pre‐clinical studies.

 

The concept of the critical size defect (CSD) 

is an important factor affecting the outcome 

in pre‐clinical studies, and new, more chal­

lenging CSDs (in width and height) should 

be developed to evaluate the regenerative 

potential of different materials in furcation 

involvement. This is in particular consider­

ation of the higher regeneration ability of 

animals in comparisons to humans.

 

Growth and differentiation factor tech­

nologies and cell‐based therapies have 

also received considerable attention in 

regenerative medicine, but their experi­

mental evaluation in the treatment of per­

iodontal furcation lesions is still at a very 

early stage of development.


background image

Regenerative Therapy in Animal Models 129

defects: An experimental study in dogs. 

Journal of Clinical Periodontology 24, 

738–746.

Araújo, M.G., Berglundh, T., and Lindhe, J. 

(1998). GTR treatment of degree III 

furcation defects with 2 different resorbable 

barriers: An experimental study in dogs. 

Journal of Clinical Periodontology 25, 

253–259.

Araújo, M.G., and Lindhe, J. (1997). GTR 

treatment of degree III furcation defects 

following application of enamel matrix 

proteins: An experimental study in dogs. 

Journal of Clinical Periodontology 25, 

524–530.

Avila‐Ortiz, G., De Buitrago, J.G., and Reddy, 

M.S. (2015). Periodontal 

regeneration – furcation defects: A 

systematic review from the AAP 

Regeneration Workshop. Journal of 

Periodontology 86 (Suppl. 2), 69–77.

Baldini, N., De Sanctis, M., and Ferrari, M. 

(2011). Deproteinized bovine bone in 

periodontal and implant surgery. Dental 

Materials 27, 61–70.

Berglundh, T., Lindhe, J., and Sterrett, J.D. 

(1991). Clinical and structural 

characteristics of periodontal tissues in 

young and old dogs. Journal of Clinical 

Periodontology 18, 616–623.

Biller‐Andorno, N., Grimm, H., and Walker, 

R.L. (2015). Professionalism and ethics in 

animal research. Natural Biotechnology 33, 

1027–1028.

Bizenjima, T., Seshima, F., Ishizuka, Y. et al. 

(2015). Fibroblast growth factor‐2 promotes 

healing of surgically created periodontal 

defects in rats with early, streptozotocin‐

induced diabetes via increasing cell 

proliferation and regulating angiogenesis. 

Journal of Clinical Periodontology 42, 62–71.

Bogle, G., Garrett, S., Stoller, N.H. et al. (1997). 

Periodontal regeneration in naturally 

occurring Class II furcation defects in 

beagle dogs after guided tissue regeneration 

with bioabsorbable barriers. Journal of 

Periodontology 68, 536–544.

Caffesse, R.G., Dominguez, L.E., Nasjleti, C.E., 

et al. (1990). Furcation defects in dogs 

treated by guided tissue regeneration (GTR). 

Journal of Periodontology 61, 45–50.

Caffesse, R.G., Nasjleti, C.E., Morrison, E.C., 

and Sanchez, R. (1994). Guided tissue 

regeneration: Comparison of bioabsorbable 

and non‐bioabsorbable membranes. 

Histologic and histometric study in dogs. 

Journal of Periodontology 65, 583–591.

Caffesse, R.G., Nasjleti, C.E., Plotzke, A.E., 

et al. (1993). Guided tissue regeneration and 

bone grafts in the treatment of furcation 

defects. Journal of Periodontology 64 (Suppl. 

11), 1145–1153.

Cardaropoli, G., Araújo, M., and Lindhe, J. 

(2003). Dynamics of bone tissue formation 

in tooth extraction sites: An experimental 

study in dogs. Journal of Clinical 

Periodontology 30, 809–818.

Caton, J.G., and Kowalski, C.J. (1976). Primate 

model for testing periodontal treatment 

procedures: II. Production of contralaterally 

similar lesions. Journal of Periodontology 47, 

506–510.

Caton, J., Mota, L., Gandini, L., and Laskaris, 

B. (1994). Non‐human primate models for 

testing the efficacy and safety of periodontal 

regeneration procedures. Journal of 

Periodontology 65, 1143–1150.

Chantarawaratit, P., Sangvanich, P., Banlunara, W. 

et al. (2014). Acemannan sponges stimulate 

alveolar bone, cementum and periodontal 

ligament regeneration in a canine class II 

furcation defect model. Journal of 

Periodontal Research 49, 164–178.

Cirelli, J.A., Marcantonio, E., Jr, Adriana, R. 

et al. (1997). Evaluation of anionic collagen 

membranes in the treatment of class II 

furcation lesions: A histometric analysis in 

dogs. Biomaterials 18, 1227–1234.

Crigger, M., Bogle, G., Nilvéus, R. et al. (1978). 

The effect of topical citric acid application 

on the healing of experimental furcation 

defects in dogs. Journal of Periodontal 

Research 13, 538–549.

Danesh‐Meyer, M.J., Pack, A.R., and 

McMillan, M.D. (1997). A comparison of 2 

polytetrafluoroethylene membranes in 

guided tissue regeneration in sheep. Journal 

of Periodontal Research 32, 20–30.


background image

Chapter 6

130

de Andrade, P.F., de Souza, S.L., de Oliveira, 

M.G. et al. (2007). Acellular dermal matrix 

as a membrane for guided tissue 

regeneration in the treatment of Class II 

furcation lesions: A histometric and clinical 

study in dogs. Journal of Periodontology 78, 

1288–1299.

Deliberador, T.M., Nagata, M.J., Furlaneto, F.A. 

et al. (2006). Autogenous bone graft with or 

without a calcium sulfate barrier in the 

treatment of Class II furcation defects: A 

histologic and histometric study in dogs. 

Journal of Periodontology 77, 780–789.

De Santana, R.B., Gusman, H.C., and Van 

Dyke, T.E. (1999). The response of human 

buccal maxillary furcation defects to 

combined regenerative techniques: Two 

controlled clinical studies. Journal of the 

International Academy of Periodontology 1, 

69–77.

Dogan, A., Ozdemir, A., Kubar, A., and Oygür, 

T. (2002). Assessment of periodontal healing 

by seeding of fibroblast‐like cells derived 

from regenerated periodontal ligament in 

artificial furcation defects in a dog: aA pilot 

study. Tissue Engineering 8, 273–282.

Donos, N., Glavind, L., Karring, T., and 

Sculean, A. (2003a). Clinical evaluation of 

an enamel matrix derivative in the treatment 

of mandibular degree II furcation 

involvement: A 36‐month case series. 

International Journal of Periodontics and 

Restorative Dentistry 23, 507–512.

Donos, N., Glavind, L, Karring T., and Sculean 

A. (2004). Clinical evaluation of an enamel 

matrix derivative and a bioresorbable 

membrane in the treatment of degree III 

mandibular furcation involvement: A series 

of nine patients. International Journal of 

Periodontics and Restorative Dentistry 200, 

362–369.

Donos, N., Sculean, A., Glavind, L. et al. 

(2003b). Wound healing of degree III 

furcation involvements following guided 

tissue regeneration and/or Emdogain: A 

histologic study. Journal of Clinical 

Periodontology 30, 1061–1068.

Ellegaard, B., Karring, T., Davies, R., and Löe, 

H. (1974). New attachment after treatment 

of intrabony defects in monkeys. Journal of 

Periodontology 45, 368–377.

Ellegaard, B., Karring, T., and Löe, H. (1975). 

The fate of vital and devitalized bone grafts 

in the healing of interradicular lesions. 

Journal of Periodontal Research 10, 88–97.

Giannobile, W.V., Finkelman, R.D., and Lynch, 

S.E. (1994). Comparison of canine and 

non‐human primate animal models for 

periodontal regenerative therapy: Results 

following a single administration of PDGF/

IGF‐I. Journal of Periodontology 65, 

1158–1168.

Giannobile, W.V., Ryan, S., Shih, M.S. et al. 

(1998). Recombinant human osteogenic 

protein‐1 (OP‐1) stimulates periodontal 

wound healing in class III furcation defects. 

Journal of Periodontology 69, 129–137.

Gkranias, N.D., Graziani, F., Sculean, A., and 

Donos, N. (2012). Wound healing following 

regenerative procedures in furcation degree 

III defects: Histomorphometric outcomes. 

Clinical Oral Investigation 16, 239–249.

Gonçalves, P.F., Gurgel, B.C., Pimentel, S.P. 

et al. (1996). Root cementum modulates 

periodontal regeneration in Class III 

furcation defects treated by the guided 

tissue regeneration technique: A histometric 

study in dogs. Journal of Periodontology 77, 

976–982.

Gosain, A.K., Song, L., Yu, P. et al. (2000). 

Osteogenesis in cranial defects: 

Reassessment of the concept of critical size 

and the expression of TGF‐beta isoforms. 

Plastic Reconstructive Surgery 106,  

360–371.

Graves, D.T., Fine D., Teng, Y.T. et al. (2008). 

The use of rodent models to investigate 

host–bacteria interactions related to 

periodontal diseases. Journal of Clinical 

Periodontology 35, 89–105.

Haney, J.M., Zimmerman, G.J., and Wikesjö, 

U.M. (1995). Periodontal repair in dogs: 

Evaluation of the natural disease model. 

Journal of Clinical Periodontology 22, 

208–213.

Howard‐Jones, N.A. (1985). CIOMS ethical 

code for animal experimentation. WHO 

Chronicles 39, 51–56.


background image

Regenerative Therapy in Animal Models 131

Hürzeler, M.B., Quiñones, C.R., Caffesse, R.G. 

et al. (1997). Guided periodontal tissue 

regeneration in Class II furcation defects 

following treatment with a synthetic 

bioabsorbable barrier. Journal of 

Periodontology 68, 498–505.

Ivanovic, A., Nikou, G., Miron, R.J. et al. 

(2014). Which biomaterials may promote 

periodontal regeneration in intrabony 

periodontal defects? A systematic review of 

preclinical studies. Quintessence 

International 45, 385–395.

Jiang, J., Wu, X., Lin, M. et al. (2010). 

Application of autologous periosteal cells for 

the regeneration of class III furcation defects 

in beagle dogs. Cytotechnology 62, 235–243.

Kantarci, A., Hasturk, H., and Van Dyke, T.E. 

(2015). Animal models for periodontal 

regeneration and peri‐implant responses. 

Periodontology 2000 68, 66–82.

Karring, T., and Cortellini, P. (1999). 

Regenerative therapy: Furcation defects. 

Periodontology 2000 19, 115–137.

Karring, T., Nyman, S., Gottlow, J., and Laurell, 

L. (1993). Development of the biological 

concept of guided tissue regeneration: 

Animal and human studies. Periodontology 

2000 1, 26–35.

Karring, T., Nyman, S., and Lindhe, J. (1980). 

Healing following implantation of 

periodontitis affected roots into bone tissue. 

Journal of Clinical Periodontology 7, 96–105.

Karring, T., and Warrer, K. (1992). 

Development of the principle of guided 

tissue regeneration. Alpha Omegan 85, 

19–24.

Keles, G.C., Cetinkaya, B.O., Baris, S. et al. 

(2009). Comparison of platelet pellet with or 

without guided tissue regeneration in the 

treatment of class II furcation defects in 

dogs. Clinical Oral Investigation 13, 

393–400.

Klinge, B., Nilvéus, R., and Egelberg, J. (1985a). 

Effect of crown‐attached sutures on healing 

of experimental furcation defects in dogs. 

Journal of Clinical Periodontology 12, 

369–373.

Klinge, B., Nilvéus, R., and Egelberg, J. (1985b). 

Bone regeneration pattern and ankylosis in 

experimental furcation defects in dogs. 

Journal of Clinical Periodontology 12, 

456–464.

Klinge, B., Nilvéus, R., Kiger, R.D., and 

Egelberg, J. (1981). Effect of flap placement 

and defect size on healing of experimental 

furcation defects. Journal of Periodontal 

Research 16, 236–248.

Kolar, R. (2006). Animal experimentation. 

Science and Engineer Ethics 12, 111–122.

Koo, K.T., Polimeni, G., Albandar, J.M., and 

Wikesjö, U.M. (2004). Periodontal repair in 

dogs: Analysis of histometric assessments in 

the supraalveolar periodontal defect model. 

Journal of Periodontology 75, 1688–1693.

Kramer, P.R., Nares, S., Kramer, S.F. et al. 

(2004). Mesenchymal stem cells acquire 

characteristics of cells in the periodontal 

ligament in vitro. Journal of Dental Research 

83, 27–34.

Lang, H., Schuler, N., and Nolden, R. (1998). 

Attachment formation following 

replantation of cultured cells into 

periodontal defects: A study in minipigs. 

Journal of Dental Research 77, 393–405.

Lekovic, V., and Kenney, E.B. (1993). Guided 

tissue regeneration using calcium phosphate 

implants together with 4 different 

membranes: A study on furcations in dogs. 

Journal of Periodontology 64, 1154–1156.

Lekovic, V., Klokkevold, P.R., Kenney, E.B. 

et al. (1998). Histologic evaluation of guided 

tissue regeneration using 4 barrier 

membranes: A comparative furcation study 

in dogs. Journal of Periodontology 69, 54–61.

Lindhe, J., Pontoriero, R., Berglundh, T., and 

Araujo, M. (1995). The effect of flap 

management and bioresorbable occlusive 

devices in GTR treatment of degree III 

furcation defects: An experimental study in 

dogs. Journal of Clinical Periodontology 22, 

276–283.

Macedo, G.O., Souza, S.L., Novaes, A.B., Jr 

et al. (2006). Effect of early membrane 

removal on regeneration of Class II 

furcation defects in dogs. Journal of 

Periodontology 77, 46–53.

Mardas, N., Kraehenmann, M., and Dard, M. 

(2012). Regenerative wound healing in acute 


background image

Chapter 6

132

degree III mandibular defects in dogs. 

Quintessence International 43, e48–e59.

Murakami, S., Takayama, S., Ikezawa, K. et al. 

(1999). Regeneration of periodontal tissues 

by basic fibroblast growth factor. Journal of 

Periodontal Research 34, 425–430.

Murakami, S., Takayama, S., Kitamura, M. 

et al. (2003). Recombinant human basic 

fibroblast growth factor (bFGF) stimulates 

periodontal regeneration in class II furcation 

defects created in beagle dogs. Journal of 

Periodontal Research 38, 97–103.

Murano, Y., Ota, M., Katayama, A. et al. 

(2006). Periodontal regeneration following 

transplantation of proliferating tissue 

derived from periodontal ligament into class 

III furcation defects in dogs. Biomedical 

Research 27, 139–147.

Murphy, K.G., and Gunsolley, J.C. (2003). 

Guided tissue regeneration for the treatment 

of periodontal intrabony and furcation 

defects: A systematic review. Annals of 

Periodontology 8, 266–302.

Nagahara, T., Yoshimatsu, S., Shiba, H. et al. 

(2015). Introduction of a mixture of 

β‐tricalcium phosphate into a complex of 

bone marrow mesenchymal stem cells and 

type I collagen can augment the volume of 

alveolar bone without impairing cementum 

regeneration. Journal of Periodontology 86, 

456–464.

Nagata, M., Iwasaki, K., Akazawa, K. et al. 

(2017). Conditioned medium from 

periodontal ligament stem cells enhances 

periodontal regeneration. Tissue 

Engineering, Part A 23, 367–377.

Niederman, R., Savitt, E.D., Heeley, J.D., and 

Duckworth, J.E. (1989). Regeneration of 

furca bone using Gore‐Tex periodontal 

material. International Journal of 

Periodontics and Restorative Dentistry 9, 

468–480.

Nilvéus, R., Johansson, O., and Egelberg, J. 

(1978). The effect of autogenous cancellous 

bone grafts on healing of experimental 

furcation defects in dogs. Journal of 

Periodontal Research 13, 532–537.

Nyman, S., Karring, T., Lindhe, J., and Plantén, 

S. (1980). Healing following implantation of 

periodontitis‐affected roots into gingival 

connective tissue. Journal of Clinical 

Periodontology 7, 394–401.

Oz, H.S., and Puleo, D.A. (2011). Animal 

models for periodontal disease. Journal of 

Biomedical Biotechnology 2011, 754857.

Park, J.B., Matsuura, M., Han, K.Y. et al. 

(1995). Periodontal regeneration in class III 

furcation defects of beagle dogs using 

guided tissue regenerative therapy with 

platelet‐derived growth factor. Journal of 

Periodontology 66, 462–477.

Polejaeva, I.A., Chen, S.H., Vaught, T.D. et al. 

(2000). Cloned pigs produced by nuclear 

transfer from adult somatic cells. Nature 

407, 86–90.

Polimeni, G., Koo, K.T., Qahash, M. et al. 

(2004). Prognostic factors for alveolar 

regeneration: Effect of a space‐providing 

biomaterial on guided tissue regeneration. 

Journal of Clinical Periodontology 31, 

725–729.

Pontoriero, R., Lindhe, J., Nyman, S., et al. 

(1989). Guided tissue regeneration in the 

treatment of furcation defects in mandibular 

molars: A clinical study of degree III 

involvements. Journal of Clinical 

Periodontology 16, 170–174.

Pontoriero, R., Nyman, S., Ericsson, I., and 

Lindhe, J. (1992). Guided tissue regeneration 

in surgically‐produced furcation defects: An 

experimental study in the beagle dog. 

Journal of Clinical Periodontology 19, 

159–163.

Regazzini, P.F., Novaes, A.B. Jr, de Oliveira, P.T. 

et al. (2004). Comparative study of enamel 

matrix derivative with or without GTR in 

the treatment of class II furcation lesions in 

dogs. International Journal of Periodontics 

and Restorative Dentistry 24, 476–487.

Ripamonti, U., Crooks, J., Petit, J.C., and 

Rueger, D.C. (2001). Tissue regeneration by 

combined applications of recombinant 

human osteogenic protein‐1 and bone 

morphogenetic protein‐2: A pilot study in 

Chacma baboons (Papio ursinus). European 

Journal of Oral Sciences 109, 241–248.

Ripamonti, U., Heliotis, M., Rueger, D.C., and 

Sampath, T.K. (1996). Induction of 


background image

Regenerative Therapy in Animal Models 133

cementogenesis by recombinant human 

osteogenic protein‐1 (hop‐1/bmp‐7) in the 

baboon (Papio ursinus). Archive of Oral 

Biology 41, 121–126.

Risbud, M.V., and Shapiro, I.M. (2005). The 

effect of brain‐derived neurotrophic factor 

on periodontal furcation defects: Stem cells 

in craniofacial and dental tissue engineering. 

Orthodontic and Craniofacial Research 8, 54.

Roriz, V.M., Souza, S.L., Taba, M., Jr, et al. 

(2006). Treatment of Class III furcation 

defects with expanded 

polytetrafluoroethylene membrane 

associated or not with anorganic bone 

matrix/synthetic cell‐binding peptide: A 

histologic and histomorphometric study in 

dogs. Journal of Periodontology 77, 490–497.

Rossa, C., Marcantonio, E., Jr, Cirelli, J.A. et al. 

(2000). Regeneration of Class III furcation 

defects with basic fibroblast growth factor 

(b‐FGF) associated with GTR: A descriptive 

and histometric study in dogs. Journal of 

Periodontology 71, 775–784.

Rusche, B. (2003). The 3Rs and animal welfare: 

Conflict or the way forward? ALTEX 20, 

63–76.

Saito, A., Saito, E., Kuboki, Y. et al. (2013). 

Periodontal regeneration following 

application of basic fibroblast growth 

factor‐2 in combination with beta tricalcium 

phosphate in class III furcation defects in 

dogs. Dental Materials Journal 232, 

256–262.

Saito, E., Saito, A., Kuboki, Y. et al. (2012). 

Periodontal repair following implantation of 

beta‐tricalcium phosphate with different 

pore structures in Class III furcation defects 

in dogs. Dental Materials Journal 31, 

681–688.

Sander, L., and Karring, T. (1995). New 

attachment and bone formation in 

periodontal defects following treatment of 

submerged roots with guided tissue 

regeneration. Journal of Clinical 

Periodontology 22, 295–299.

Sanz, M., Jepsen, K., Eickholz, P., and Jepsen, 

S. (2015). Clinical concepts for regenerative 

therapy in furcations. Periodontology 2000 

68, 308–332.

Schmitz, J.P., and Hollinger, J.O. (1986). The 

critical size defect as an experimental model 

for craniomandibulofacial nonunions. 

Clinical Orthopaedics and Related Research 

205, 299–308.

Schou, S., Holmstrup, P., and Kornman, K.S. 

(1993). Non‐human primates used in studies 

of periodontal disease pathogenesis: A 

review of the literature. Journal of 

Periodontology 64, 497–508.

Sculean, A., Nikolidakis, D., and Schwarz, F. 

(2008). Regeneration of periodontal tissues: 

Combinations of barrier membranes and 

grafting materials – biological foundation 

and preclinical evidence: A systematic 

review. Journal of Clinical Periodontology 

35, 106–116.

Sculean, A., Windisch, P., Döri, F. et al. (2007). 

Emdogain in regenerative periodontal 

therapy: A review of the literature. Fogorvosi 

Szemle 100, 220–232.

Selvig, K.A. (1994). Discussion: Animal models 

in reconstructive therapy. Journal of 

Periodontology 65, 1169–1172.

Seo, B.M., Miura, M., Gronthos, S. et al. 

(2004). Investigation of multipotent 

postnatal stem cells from human 

periodontal ligament. Lancet 10–16, 

149–155.

Shirakata, Y., Miron, R.J., Nakamura, T. et al. 

(2017). Effects of EMD liquid (Osteogain) 

on periodontal healing in class III furcation 

defects in monkeys. Journal of Clinical 

Periodontology 44, 298–307.

Simsek, S.B., Keles, G.C., Baris, S., and 

Cetinkaya, B.O. (2012). Comparison of 

mesenchymal stem cells and autogenous 

cortical bone graft in the treatment of class 

II furcation defects in dogs. Clinical Oral 

Investigation 16, 251–258.

Soares, F.P., Hayashi, F., Yorioka, C.W. et al. 

(2005). Repair of Class II furcation defects 

after a reparative tissue graft obtained from 

extraction sockets treated with growth 

factors: A histologic and histometric study 

in dogs. Journal of Periodontology 76, 

1681–1689.

Stavropoulos, A., and Wikesjö, U.M. (2012). 

Growth and differentiation factors for 


background image

Chapter 6

134

periodontal regeneration: A review on 

factors with clinical testing. Journal of 

Periodontal Research 47, 545–553.

Struillou, X., Boutigny, H., Badran, Z. et al. 

(2011). Treatment of periodontal defects in 

dogs using an injectable composite 

hydrogel/biphasic calcium phosphate. 

Journal of Material Sciences Materials in 

Medicine 22, 1707–1717.

Struillou, X., Boutigny, H., Soueidan, A., and 

Layrolle, P. (2010). Experimental animal 

models in periodontology: A review. Open 

Dental Journal 4, 37–47.

Suaid, F.A., Macedo, G.O., Novaes, A.B. et al. 

(2010). The bone formation capabilities of 

the anorganic bone matrix‐synthetic cell‐

binding peptide 15 grafts in an animal 

periodontal model: A histologic and 

histomorphometric study in dogs. Journal of 

Periodontology 81, 594–603.

Suaid, F.F., Ribeiro, F.V., Gomes, T.R. et al. 

(2012). Autologous periodontal ligament 

cells in the treatment of Class III furcation 

defects: A study in dogs. Journal of Clinical 

Periodontology 39, 377–384.

Suaid, F.F., Ribeiro, F.V., Rodrigues, T.L. et al. 

(2011). Autologous periodontal ligament 

cells in the treatment of class II furcation 

defects: A study in dogs. Journal of Clinical 

Periodontology 38, 491–498.

Takahashi, D., Odajima, T., Morita, M. et al. 

(2005). Formation and resolution of 

ankylosis under application of recombinant 

human bone morphogenetic protein‐2 

(rhBMP‐2) to class III furcation defects in 

cats. Journal of Periodontal Research 40, 

299–305.

Takayama, S., Murakami, S., Shimabukuro, Y. 

et al. (2001). Periodontal regeneration by 

FGF‐2 (bFGF) in primate models. Journal of 

Dental Research 80, 2075–2079.

Teares, J.A., Petit, J.C., and Ripamonti, U. 

(2012). Synergistic induction of periodontal 

tissue regeneration by binary application of 

human osteogenic protein‐1 and human 

transforming growth factor‐β3 in Class II 

furcation defects of Papio ursinus. Journal of 

Periodontal Research 47, 336–344.

Teares, J.A., Ramoshebi, L.N., and Ripamonti, 

U. (2008). Periodontal tissue regeneration by 

recombinant human transforming growth 

factor‐beta 3 in Papio ursinus. Journal of 

Periodontal Research 43, 1–8.

Trombelli, L., and Farina, R (2008). Clinical 

outcomes with bioactive agents alone or in 

combination with grafting or guided tissue 

regeneration. Journal of Clinical 

Periodontology 35, 117–135.

Trubiani, O., Di Primio, R., Traini, T. et al. 

(2005). Morphological and cytofluorimetric 

analysis of adult mesenchymal stem cells 

expanded ex vivo from periodontal 

ligament. International Journal of 

Immunopathology and Pharmacology 18, 

213–221.

Wang, S., Liu, Y., Fang, D., and Shi, S. (2007). 

The miniature pig: A useful large animal 

model for dental and orofacial research. 

Oral Disease 13, 530–537.

Wang, Y., Chai, Z., Zhang, Y. et al. (2014). 

Influence of low‐intensity pulsed ultrasound 

on osteogenic tissue regeneration in a 

periodontal injury model: X‐ray image 

alterations assessed by micro‐computed 

tomography. Ultrasonics 54, 1581–1584.

White, C., Jr., Hancock, E.B., Garetto, L.P., and 

Kafrawy, A.A. (1994). A histomorphometric 

study on the healing of class III furcations 

utilizing bone labelling in beagle dogs. 

Journal of Periodontology 65, 84–92.

Wikesjö, U.M., Guglielmoni, P., Promsudthi, A. 

et al. (1999). Periodontal repair in dogs: 

Effect of rhBMP‐2 concentration on 

regeneration of alveolar bone and 

periodontal attachment. Journal of Clinical 

Periodontology 26, 392–400.

Wikesjö, U.M., Kean, C.J., and Zimmerman, 

G.J. (1994). Periodontal repair in dogs: 

Supraalveolar defect models for evaluation 

of safety and efficacy of periodontal 

reconstructive therapy. Journal of 

Periodontology 65, 1151–1157.

Wikesjö, U.M., Lim, W.H., Thomson, R.C. 

et al. (2003a). Periodontal repair in dogs: 

Evaluation of a bioabsorbable space‐

providing macroporous membrane with 


background image

Regenerative Therapy in Animal Models 135

recombinant human bone morphogenetic 

protein‐2. Journal of Periodontology 74, 

635–647.

Wikesjö, U.M., Xiropaidis, A.V., Thomson, 

R.C. et al. (2003b). Periodontal repair in 

dogs: Space‐providing ePTFE devices 

increase rhBMP‐2/ACS‐induced bone 

formation. Journal of Clinical Periodontology 

30, 715–725.

Wohlfahrt, J.C., Aass, A.M., Rønold, H.J. et al. 

(2012). Microcomputed tomographic and 

histologic analysis of animal experimental 

degree II furcation defects treated with 

porous titanium granules or deproteinized 

bovine bone. Journal of Periodontology 83, 

211–221.

Yang, J.R., Hsu, C.W., Liao, S.C. et al. (2013). 

Transplantation of embryonic stem cells 

improves the regeneration of periodontal 

furcation defects in a porcine model. Journal 

of Clinical Periodontology 40, 364–371.

Zetterström, O., Andersson, C., Eriksson, L. 

et al. (1997). Clinical safety of enamel matrix 

derivative (EMDOGAIN) in the treatment 

of periodontal defects. Journal of Clinical 

Periodontology 24, 697–704.


background image

Diagnosis and Treatment of Furcation-Involved Teeth, First Edition. Edited by Luigi Nibali. 

© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd. 

Companion website: www.wiley.com/go/nibali/diagnosis

Chapter No.: 1  Title Name: <TITLENAME> 

c07.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:20:50 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 137

137

7.1   Introduction

Different strategies are available to address 

the problem of furcation involvement (FI). 

One option is the elimination of the furcation 

defect. This can be achieved by removal of the 

involved root(s) using resective approaches 

(see Chapter 8). Alternatively, periodontal tis-

sues that have been destroyed by periodonti-

tis can be regenerated, thereby decreasing the 

lesion. Regenerative periodontal therapy of 

furcation defects has proven successful in 

many experimental pre‐clinical studies (see 

Chapter 6).

This chapter reviews the evidence for the 

effectiveness of regenerative therapy for the 

treatment of furcation defects in different 

clinical scenarios, in order to address the 

question: ‘What has been achieved so far?’

7.2   Outcome  Measures 

for Regenerative Therapy 

in Furcation Defects

A variety of outcome measures can be 

 considered to assess the effectiveness of 

regenerative furcation therapies.

7.2.1  Human Histology

Evidence for periodontal regeneration requires 

the histological demonstration of restored 

tooth‐supporting tissues, including cemen-

tum, periodontal ligament, and alveolar bone, 

over a previously diseased root surface. Even 

though such outcomes have been demon-

strated in well‐controlled experimental animal 

studies for a variety of treatment modalities 

(see Chapter  6), information derived from 

human histology is scarce. Four histological 

studies investigated human degree II furcation 

defects (Harris 2002; Stoller et al. 2001; Camelo 

et  al. 2003; Nevins et  al. 2003), one studied 

degree III defects (Mellonig et al. 2009), while 

one presented data from degree II and III fur-

cation defects (Gottlow et al. 1986).

7.2.1.1  Degree II Furcation Defects

Regarding degree II defects, all five studies 

reported partial regeneration of the perio-

dontal tissues. Two studies applied deminer-

alized freeze‐dried bone allograft (DFDBA) 

combined with recombinant human platelet‐

derived growth factor‐BB (rhPDGF‐BB) and 

reported formation of bone, cementum, and 

periodontal ligament coronally to the notch 

(Camelo et al. 2003; Nevins et al. 2003). Two 

other studies used barrier membranes 

(guided tissue regeneration, GTR) and 

described formation of cementum, perio-

dontal ligament, and bone (Gottlow et  al. 

1986; Stoller et al. 2001). Harris (2002) used 

a  combination  (DFDBA + polyhydroxyal-

kanoate 

[PHA] + tetracycline + resorbable 

Chapter 7

Regenerative Therapy of Furcations in Human Clinical Studies: 
What has been Achieved So Far?

Søren Jepsen and Karin Jepsen

Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Germany


background image

Chapter 7 

138

membrane) and observed partial defect 

 closure with new bone, cementum, and con-

nective tissue attachment coronal or limited 

to the notch area.

7.2.1.2  Degree III Furcation Defects

The two studies evaluating degree III furcation 

defects reported only partial regeneration. 

Gottlow et al. (1986), using barrier membranes 

(GTR), demonstrated 2.8 mm new cementum 

with inserting collagen fibres in a 7 mm furca-

tion defect. Mellonig et al. (2009), using a com-

bined  technique   (rhPDGF + beta‐tricalcium 

phosphate [β‐TCP] + collagen  membrane) 

reported partial closure in three out of the four 

defects. The histomorphometric data revealed 

new cementum ranging from 0.0 to 5.5 mm, 

while the length of new bone and new collagen 

fibres ranged from 0.0 to 2.0 mm.

7.2.2  Clinical Outcomes

From a clinical point of view, complete elimi-

nation of the inter‐radicular defect appears to 

be the most important outcome. Decreasing 

furcation degree is associated with a 

decreased long‐term tooth loss risk (see 

Chapter 5). Thus, the main outcome variables 

for studies evaluating the efficacy of regener-

ative techniques in furcations are change of 

furcation status (conversion into class I or 

complete closure) and horizontal hard‐tissue 

fill. As histological evidence for successful 

furcation regeneration is not a practical out-

come variable for controlled clinical trials, 

changes in direct bone measurements (hori-

zontal probing bone level, at surgery and 

 during re‐entry) serve as primary outcome 

variables for evaluating clinical success, while 

clinical attachment level gain (horizontal/

vertical probing attachment level), probing 

depth reduction (horizontal/vertical), and 

radiographic assessments may serve as sec-

ondary outcomes (Machtei 1997). Bone fill 

during a re‐entry procedure is the only com-

ponent of a regenerated periodontium that 

can be accurately assessed clinically. In fact, it 

was stated at a European consensus confer-

ence that it would be desirable for all future 

GTR studies to report the reduction in hori-

zontal probing during re‐entry, and also the 

frequency (predictability) of complete furca-

tion closure (Jepsen et al. 2002).

As an alternative to open probing bone 

level assessments during a re‐entry proce-

dure, probing bone measurements were pro-

posed and evaluated (Suh et  al. 2002). In 

some clinical trials, horizontal probing bone 

level was assessed after only six months, and 

it may be speculated that this is too early for 

a final evaluation of bone fill in furcation 

defects. Patient‐reported outcomes follow-

ing regenerative furcation surgery may 

include postoperative pain, the rate of com-

plications, perceived benefit, and change in 

quality of life (see Chapter 13).

7.3   Clinical  Scenarios

Most of the currently available clinical stud-

ies to date have been devoted to mandibular 

molars with buccal/lingual degree II furca-

tion defects and maxillary molars with buc-

cal/interproximal degree II furcation defects. 

More limited information is available on 

mandibular degree III furcation defects and 

maxillary degree III furcation defects, 

whereas there is a paucity of data on regen-

erative treatment in degree I furcations and 

in maxillary premolars (Avila‐Ortiz et  al. 

2015; Reddy et al. 2015).

The efficacy of various regenerative 

approaches in furcation defects has been 

evaluated by several systematic reviews with 

or without meta‐analyses (Jepsen et al. 2002; 

Murphy and Gunsolley 2003; Reynolds et al. 

2003; Kinaia et  al. 2011; Chen et  al. 2013; 

Avila‐Ortiz et  al. 2015) and has also been 

addressed in a recent comprehensive narra-

tive review (Sanz et al. 2015), which served as 

a basis for this chapter.

7.3.1  Degree II Furcation Defects

7.3.1.1  Barrier Membranes (GTR)

After clinical case series (Becker et al. 1988) 

had demonstrated promising results for GTR 


background image

Regenerative Therapy in Human Clinical Studies 139

therapy in furcation defects using expanded 

PTFE barriers (Gore‐Tex Periodontal 

Membrane, W.L. Gore and Assoc., Flagstaff, 

AZ, USA), several randomized controlled 

clinical trials compared GTR therapy with 

open‐flap debridement (OFD, representing 

standard control treatment) in human degree 

II furcation defects. Several studies observed 

more favourable horizontal probing attach-

ment level gain and horizontal probing bone 

level gain after GTR than after OFD in degree 

II furcation defects of mandibular molars 

(Pontoriero et  al. 1988; Lekovic et  al. 1989, 

1991; Mellonig et al. 1994; Wang et al. 1994; 

Mombelli et al. 1996; Prathibha et al. 2002; 

Cury et al. 2003; Bremm et al. 2004; see also 

Table 7.1), of maxillary molars (Metzler et al. 

1991; Mellonig et  al. 1994; Pontoriero and 

Lindhe 1995a; Avera et  al. 1998; see also 

Table 7.2), and of maxillary and mandibular 

molars (Flanary et al. 1991; Paul et al. 1992; 

Twohey et al. 1992; Caton et al. 1994; Yukna 

and Yukna 1996; see also Table 7.3). Whereas 

some authors observed more favourable 

results six months after GTR therapy in 

 maxillary degree II furcations only in buccal 

sites (Pontoriero and Lindhe 1995a), others 

reported statistically better horizontal prob-

ing bone level gain also in mesiopalatal 

degree II furcations nine months following 

GTR (Avera et al. 1998).

A systematic review with meta‐analyses 

assessed the efficacy of membrane therapy in 

the treatment of periodontal furcation 

defects measured against standard surgical 

periodontal treatment (i.e. OFD; Jepsen et al. 

2002), and confirmed the superiority of GTR 

over OFD in class II furcation defects; 

 however, the results also showed significant 

heterogeneity, indicating high variability. 

These results were subsequently also con-

firmed by other systematic reviews (Murphy 

and Gunsolley 2003; Kinaia et al. 2011). This 

variability may be explained by prognostic 

factors (e.g. smoking, peri‐surgical antibiot-

ics, or defect morphology; Bowers et al. 2003; 

Horwitz et al. 2004). Deep pockets at base-

line facilitate more favourable results after 

regenerative therapy (Machtei et  al. 1994; 

Horwitz et al. 2004). However, other authors 

have found deep baseline pockets to be asso-

ciated with significant reductions in the 

number of complete furcation closures 

(Bowers et  al. 2003). This discrepancy may 

be a result of differences in bone morphol-

ogy. Wide furcations respond less favourably 

and in deep degree II furcations (≥5 mm) 

complete closure is less likely (Bowers et al. 

2003). If the fornix of the furcation is located 

apically to the interproximal alveolar crest 

(key‐hole defect), more horizontal attach-

ment gain may be expected than in teeth 

with a furcation fornix located coronally of 

the interproximal bone level. If there is bone 

coronal of the furcation fornix adjacent to 

the tooth, coverage and stabilization of the 

membrane may be achieved by a coronal 

positioning of the flap. Under such condi-

tions, the surface of the periodontal ligament 

to provide cells to colonize the blood clot 

within the defect is larger than in a tooth 

where the fornix is located coronal of the 

alveolar crest (Bowers et  al. 2003; Horwitz 

et al. 2004).

When comparing the use of non‐resorbable 

and biodegradable barrier membranes in the 

treatment of mandibular degree II furcation 

defects, similar horizontal defect fill has 

been reported (Blumenthal 1993; Bouchard 

et  al. 1993; Christgau et  al. 1995; Hugoson 

et  al. 1995; Yukna and Yukna 1996; 

Caffesse  et  al. 1997; Eickholz et  al. 1997, 

1998; Garrett et  al. 1997; Scott et  al. 1997; 

Dos Anjos et al. 1998; Pruthi et al. 2002; see 

also Table 7.4). Only a few studies have com-

pared the clinical efficacy of different bioab-

sorbable barrier membranes for treatment 

of Class II furcations; none found one bioab-

sorbable material to be superior to another 

(Vernino et al. 1999; Eickholz et al. 2000).

7.3.1.2  Combination Therapy (GTR 
and Bone Grafts)

The combination of a barrier membrane 

with a filler material may enhance the hori-

zontal fill of molars with degree II FI as 

shown in a systematic review with meta‐

analysis (Chen et al. 2013). Out of four studies 


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c07.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:20:50 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 140

Table 7.2

 

Compar

ison of clinical r

esults af

ter open‐flap debr

idemen

t and guided tissue r

egener

ation in deg

ree II fur

ca

tion def

ec

ts of maxillar

y molars

.

A

uthors

Study 

type

Par

amet

er

O

pen‐flap 

debridemen

t

baseline

(mm)

G

ain

(mm)

n

G

uided tissue 

regener

ation

baseline

(mm)

G

ain

(mm)

n

Barrier

ma

terial

Obser

va

tion

period

M

etzler e

t al. 1991

RC

T

H

or

izon

tal pr

obing 

bone le

ve

l

Bucc

al a

nd 

inter

pro

xi

ma

l

3.7

0.3

17

3.7

0.9*

17

a

Ex

pande

poly

te

traf

luor

oe

th

ylene

6 mon

ths

M

ellonig e

t al. 1994

RC

T

H

or

izon

tal pr

obing 

bone le

ve

l

4.5

0.3

8

4.9

1.0*

8

a

Ex

pande

poly

te

traf

luor

oe

th

ylene

6 mon

ths

Pon

tor

ier

o and 

Lindhe 1995a

RC

T

H

or

izon

tal pr

obing 

bone le

ve

l

Bucc

al

M

es

io

lin

gu

al

D

istol

in

gu

al

3.2 3.4 3.2

0.3 0.2 0.2

10

10 8 8

3.2 3.5 3.4

1.1* 0.4 0.2

10

a

10

a

8

a

8

a

Ex

pande

poly

te

traf

luor

oe

th

ylene

6 mon

ths

Avera e

t al. 1998

RC

T

H

or

izon

tal pr

obing 

bone le

ve

l

M

es

io

lin

gu

al

No d

at

a

‐0.69

No d

at

a

1.19*

Ex

pande

poly

te

traf

luor

oe

th

ylene

9 mon

ths

*S

ta

tistic

ally sig

nif

ic

an

t dif

fer

enc

e b

etwe

en op

en‐f

la

p de

br

idemen

t and g

uide

d ti

ssue r

egenera

tion;

  Table 7.1   

 Comparison of clinical results after open‐flap debridement and guided tissue regeneration in degree  II  furcation defects of mandibular molars. 

Authors

Study 
type

Parameter

 Open‐flap 
debridement 
 baseline 
 (mm) 

 Gain 
 (mm) 

 n 

 Guided tissue 
regeneration 
 baseline 
 (mm) 

 Gain 
 (mm) 

 n 

 Barrier 
 material/ 
 filler 

Observation 
period    

 Lekovic et al.   1989    RCT

 

Horizontal probing 

bone level 

  Buccal  

No data

‐0.14

12

No data

0.18

12   

a

   

Expanded 

polytetrafluoroethylene

6 months  

 Lekovic et al.   1991    RCT

 

Horizontal probing 

bone level 

  Buccal  

4.2

‐0.2

15

4.2

1.6  *  

15   

a

   

Connective tissue graft 

including periosteum

6 months  

 Mellonig et al. 

  1994   

RCT

Horizontal probing 

bone level

7.6

1.0

11

8.4

4.5  *  

11   

a

    Expanded 

polytetrafluoroethylene

6 months  

 Wang et al.   1994   

RCT

Horizontal probing 

bone level

5.58

1.08

12

6.00

2.04  *  

12   

a

    BioMend®   

b

   

12 months  

 Prathibha et al. 

  2002   

RCT

Horizontal probing 

bone level

4.7

0.64

10

4.79

2.38  *  

10   

a

    TefGen®   

c

   

6 months  

Comparison of open‐flap debridement with guided tissue regeneration in combination with fillers  
 Houser et al.   2001   

RCT

Horizontal probing 

bone level

6.2

0.9

13

5.7

3.0  *  

18

 BioGide®   

d

    

 and BioOss® 

  

  
 Tsao et al.   2006   

RCT

Horizontal probing 

bone level

4.7

0.2

9

 

4.3 

 4.4 

 1.1  *   

 1.1  *   

 9 

  

9

  

 Puros®   

e

    

 BioMend 

 and Puros 

6 months

   * Statistically significant difference between open‐flap debridement and guided tissue regeneration; 

  

a

 split‐mouth design; 

  

b

 bovine type 1 collagen; 

  

c

 polytetrafluoroethylene; 

  

d

 deproteinized bovine bone mineral/porcine collagen; 

  

mineralized solvent‐dehydrated bone allograft; 

 RCT = randomized controlled trial.  

   

   


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c07.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:20:50 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 141

  Table 7.2   

 Comparison of clinical results after open‐flap debridement and guided tissue regeneration in degree  II  furcation defects of maxillary molars. 

Authors

Study 
type

Parameter

 Open‐flap 
debridement 
 baseline 
 (mm) 

 Gain 
 (mm) 

 n 

 Guided tissue 
regeneration 
 baseline 
 (mm) 

 Gain 
 (mm) 

 n 

 Barrier 
 material 

 Observation 
 period     

 Metzler et al.   1991   

RCT

 

Horizontal probing 

bone level 

  Buccal and 

interproximal  

3.7

0.3

17

3.7

0.9  *  

17   

a

    Expanded 

polytetrafluoroethylene

6 months  

 Mellonig et al.   1994   

RCT

Horizontal probing 

bone level

4.5

0.3

8

4.9

1.0  *  

8   

a

   

Expanded 

polytetrafluoroethylene

6 months  

 Pontoriero and 

Lindhe   1995a   

RCT

 

Horizontal probing 

bone level 

  Buccal  

  Mesiolingual  

  Distolingual  

 3.2 

 3.4 

 3.2 

 0.3 

 0.2 

 0.2 

 10 

 10 

 8 

 8 

 3.2 

 3.5 

 3.4 

 1.1  *   

 0.4 

 0.2 

 10   

a

    

 10   

a

    

 8   

a

    

 8   

a

    

Expanded 

polytetrafluoroethylene

6 months  

 Avera et al.   1998   

RCT

 

Horizontal probing 

bone level 

  Mesiolingual  

No data

‐0.69

No data

1.19  *  

Expanded 

polytetrafluoroethylene

9 months

   * Statistically significant difference between open‐flap debridement and guided tissue regeneration; 

  

a

 split‐mouth design; 

 RCT = randomized controlled trial.  

  Table 7.1   

 Comparison of clinical results after open‐flap debridement and guided tissue regeneration in degree  II  furcation defects of mandibular molars. 

Authors

Study 
type

Parameter

 Open‐flap 
debridement 
 baseline 
 (mm) 

 Gain 
 (mm) 

 n 

 Guided tissue 
regeneration 
 baseline 
 (mm) 

 Gain 
 (mm) 

 n 

 Barrier 
 material/ 
 filler 

Observation 
period    

 Lekovic et al.   1989    RCT

 

Horizontal probing 

bone level 

  Buccal  

No data

‐0.14

12

No data

0.18

12   

a

   

Expanded 

polytetrafluoroethylene

6 months  

 Lekovic et al.   1991    RCT

 

Horizontal probing 

bone level 

  Buccal  

4.2

‐0.2

15

4.2

1.6  *  

15   

a

   

Connective tissue graft 

including periosteum

6 months  

 Mellonig et al. 

  1994   

RCT

Horizontal probing 

bone level

7.6

1.0

11

8.4

4.5  *  

11   

a

    Expanded 

polytetrafluoroethylene

6 months  

 Wang et al.   1994   

RCT

Horizontal probing 

bone level

5.58

1.08

12

6.00

2.04  *  

12   

a

    BioMend®   

b

   

12 months  

 Prathibha et al. 

  2002   

RCT

Horizontal probing 

bone level

4.7

0.64

10

4.79

2.38  *  

10   

a

    TefGen®   

c

   

6 months  

Comparison of open‐flap debridement with guided tissue regeneration in combination with fillers  
 Houser et al.   2001   

RCT

Horizontal probing 

bone level

6.2

0.9

13

5.7

3.0  *  

18

 BioGide®   

d

    

 and BioOss® 

  

  
 Tsao et al.   2006   

RCT

Horizontal probing 

bone level

4.7

0.2

9

 

4.3 

 4.4 

 1.1  *   

 1.1  *   

 9 

  

9

  

 Puros®   

e

    

 BioMend 

 and Puros 

6 months

   * Statistically significant difference between open‐flap debridement and guided tissue regeneration; 

  

a

 split‐mouth design; 

  

b

 bovine type 1 collagen; 

  

c

 polytetrafluoroethylene; 

  

d

 deproteinized bovine bone mineral/porcine collagen; 

  

mineralized solvent‐dehydrated bone allograft; 

 RCT = randomized controlled trial.  

  

a

 split‐mouth design; 

 RCT = randomized controlled trial.  


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c07.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:20:50 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 142

Table 7.3

 

Compar

ison of clinical r

esults af

ter open‐flap debr

idemen

t and guided tissue r

egener

ation in deg

ree II fur

ca

tion def

ec

ts of maxillar

y and mandibular 

molars

.

A

uthors

Study 

type

Par

amet

er

O

pen‐flap 

debridemen

t

baseline

(mm)

G

ain

(mm)

n

G

uided tissue 

regener

ation

baseline

(mm)

G

ain

(mm)

n

Barrier

ma

terial

Obser

va

tion period

Fl

anar

y e

t al. 1991

RC

T

H

or

izon

tal pr

obing 

bone le

ve

l

2.9

0.8

19

3.3

1.5*

19

a

Biobrane®

b

6 mon

ths

Pa

ul e

t al. 1992 (132)

RC

T

H

or

izon

tal pr

obing 

bone le

ve

l

3.86

0

7

4.71

0.86*

7

a

Colli

st

ar®

b

6 mon

ths

Twohe

y e

t al. 1992

RC

T

H

or

izon

tal pr

obing 

bone le

ve

l

Bucc

al

2.6

0.3

8

3.3

1.4*

8

a

Biobrane

6 mon

ths

Yuk

na and Y

uk

na 

1996

RC

T

H

or

izon

tal pr

obing 

bone le

ve

l

5.3

1.1

27

5.0

2.0*

27

a

BioM

end®

c

6–12 mon

ths

(me

an

 =

 11.1

 mon

ths)

*S

ta

tistic

ally sig

nif

ic

an

t dif

fer

enc

e b

etwe

en op

en‐f

la

p de

br

idemen

t and g

uide

d ti

ssue r

egenera

tion;

a

split‐mout

h de

sig

n;

  Table 7.3   

 Comparison of clinical results after open‐flap debridement and guided tissue regeneration in degree  II  furcation defects of maxillary and mandibular 

molars. 

Authors

Study 
type

Parameter

 Open‐flap 
debridement 
 baseline 
 (mm) 

 Gain 
 (mm) 

 n 

 Guided tissue 
regeneration 
 baseline 
 (mm) 

 Gain 
 (mm) 

 n 

 Barrier 
 material 

Observation period    

 Flanary et al.   1991   

RCT

Horizontal probing 

bone level

2.9

0.8

19

3.3

1.5  *  

19   

a

    Biobrane®   

b

    6 months  

Paul et al.   1992   (132)

RCT

Horizontal probing 

bone level

3.86

0

7

4.71

0.86  *  

7   

a

   

Collistar®   

b

    6 months  

 Twohey et al.   1992   

RCT

 

Horizontal probing 

bone level 

  Buccal  

2.6

0.3

8

3.3

1.4  *  

8   

a

   

Biobrane

6 months  

 Yukna and Yukna 

  1996   

RCT

Horizontal probing 

bone level

5.3

1.1

27

5.0

2.0  *  

27   

a

    BioMend®   

c

     6–12 months 

 (mean = 11.1 months) 

   * Statistically significant difference between open‐flap debridement and guided tissue regeneration; 

  

a

 split‐mouth design; 

  

b

 poly‐dimethyl‐siloxane mechanically bonded to a fine‐knit, flexible nylon fabric; 

  

c

 bovine type 1 collagen; 

 RCT = randomized controlled trial.  


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c07.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:20:50 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 143

  Table 7.4   

 Comparison of clinical results after guided tissue regeneration using expanded polytetrafluoroethylene and biodegradable barriers in degree  II  furcation 

defects of maxillary and/or mandibular molars. 

Authors

Defect type

Parameter

 Expanded 
polytetrafluoroethylene 
 baseline 
 (mm) 

 Gain 
 (mm)   n
 

 Biodegradable 
 baseline 
 (mm) 

 Gain 
 (mm) 

 n 

 Barrier 
 material 

Observation period    

Bouchard 

et al. 1993

Mandibular 

molars

  *  

Connective 

tissue graft

12 months  

 Buccal 

Horizontal 

probing bone level

No data

2.2

12

No data

1.5

12   

a

   

  

 Yukna and 

Yukna   1996   

Maxillary and 

mandibular 

molars

Horizontal 

probing bone level

4.3

1.7

32

4.7

1.7

32   

a

    BioMend®   

b

     6–12 months 

 (mean = 11.1 months)   

 Scott et al. 

  1997   

Mandibular 

molars

Horizontal 

probing bone level

5.0

2.2

12

5.4

2.0

12   

a

    LamBone   

c

    6 months  

Dos Anjos 

et al.   1998  

Mandibular 

molars

Horizontal 

probing bone level

3.8

2.87

15

4.0

2.93

15   

a

    Gengiflex   

d

    6 months  

 Pruthi et al. 

  2002   

Mandibular 

molars

Horizontal 

probing bone level

2.00

0.41

17

2.00

0.41

17   

a

    BioMend

12 months

   * Statistically significant difference between expanded polytetrafluoroethylene and biodegradable barriers; 

  

a

 split‐mouth design; 

  

b

 bovine type 1 collagen; 

  

c

 laminar bone membrane and particulate decalcified freeze‐dried bone; 

  

d

 cellulose.  

  Table 7.3   

 Comparison of clinical results after open‐flap debridement and guided tissue regeneration in degree  II  furcation defects of maxillary and mandibular 

molars. 

Authors

Study 
type

Parameter

 Open‐flap 
debridement 
 baseline 
 (mm) 

 Gain 
 (mm) 

 n 

 Guided tissue 
regeneration 
 baseline 
 (mm) 

 Gain 
 (mm) 

 n 

 Barrier 
 material 

Observation period    

 Flanary et al.   1991   

RCT

Horizontal probing 

bone level

2.9

0.8

19

3.3

1.5  *  

19   

a

    Biobrane®   

b

    6 months  

Paul et al.   1992   (132)

RCT

Horizontal probing 

bone level

3.86

0

7

4.71

0.86  *  

7   

a

   

Collistar®   

b

    6 months  

 Twohey et al.   1992   

RCT

 

Horizontal probing 

bone level 

  Buccal  

2.6

0.3

8

3.3

1.4  *  

8   

a

   

Biobrane

6 months  

 Yukna and Yukna 

  1996   

RCT

Horizontal probing 

bone level

5.3

1.1

27

5.0

2.0  *  

27   

a

    BioMend®   

c

     6–12 months 

 (mean = 11.1 months) 

   * Statistically significant difference between open‐flap debridement and guided tissue regeneration; 

  

a

 split‐mouth design; 

  

b

 poly‐dimethyl‐siloxane mechanically bonded to a fine‐knit, flexible nylon fabric; 

  

c

 bovine type 1 collagen; 

 RCT = randomized controlled trial.  


background image

Chapter 7 

144

on mandibular molars, two showed statisti-

cally significantly more horizontal bone fill 

following the combination therapy (Wallace 

et al. 1994; Luepke et al. 1997; Simonpietri 

et  al. 2000; Maragos et  al. 2002; see also 

Table 7.5).

7.3.1.3  Long‐term Results

Long‐term data following GTR therapy in 

furcation defects are sparse (Figueira et  al. 

2014). Using GTR, horizontal probing attach-

ment level gains from 0.75 to 4.1 mm and 

horizontal probing bone level gains from 

0.2 to 4.5 mm may be achieved, and degree II 

furcation defects may be closed or converted 

to degree I. Molars with degree I FI have a 

better long‐term prognosis than molars with 

degree II defects (McGuire and Nunn 1996), 

whereas a gradual increase in the risk of tooth 

loss was observed for molars with degree II 

and III FI (Nibali et al. 2016). To date there are 

only limited data on the long‐term results 

(≥4 years) after GTR therapy in degree II fur-

cations. Significant gains in horizontal attach-

ment (2.59 mm) were obtained one year post 

surgery for GTR‐treated sites. These changes 

were maintained over four years with a slight 

decline at the end of year 3 (Machtei et  al. 

1996). Mean horizontal probing attachment 

level gains after the use of non‐resorbable and 

biodegradable barriers could be maintained 

for five years (Eickholz et al. 2001). A 10‐year 

follow‐up of 18 teeth in 9 patients revealed 

further stability of horizontal probing attach-

ment level gains between 12 and 120 months. 

However, two molars were lost in one patient, 

and another molar lost more than 2 mm of 

horizontal probing attachment level (Eickholz 

et al. 2006).

7.3.1.4  Enamel Matrix Derivative (EMD)

Only a limited number of clinical studies 

have evaluated enamel matrix derivative 

(Emdogain, Straumann, Basel, Switzerland) 

for the treatment of FI, either alone or in 

combination with another regenerative 

therapy (for review Donos et al. 2010; Koop 

et al. 2012; Miron et al. 2014, 2016), and no 

meta‐analyses have been performed.

Mandibular Molars

In a case series study with 36 months of fol-

low‐up on 10 patients with 8 buccal and 8 

lingual degree II FI, the use of EMD was eval-

uated (Donos et  al. 2003a). The follow‐up 

periods were 6, 12, and 36 months. At the 

buccal furcation defects, the horizontal prob-

ing attachment level measurements were 

reduced from 4.0 mm at baseline to 2.6 mm 

at 6 months, demonstrating a mean horizon-

tal probing attachment level change of 

1.4 mm. However, at 12 and 36 months the 

change was reduced to 0.8 mm and 0.6 mm, 

respectively, and, as such, the horizontal 

probing attachment level changes were not 

adequate to transform the degree II FI to 

degree I. At the lingual sites, the horizontal 

probing attachment level changes were mini-

mal. In all cases, following the 12‐month 

healing period the furcation defects remained 

as degree II. This study was performed in a 

small number of mandibular molars, and it 

did not have a control group in which either 

OFD or another established regenerative 

procedure, such as GTR, was performed.

When investigating the adjunctive use of 

EMD with OFD in 10 patients with 20 degree 

II furcation defects on contralateral molars 

by re‐entry after 6 months, a significantly 

enhanced horizontal bone gain (2 mm in the 

EMD vs 0.8 mm in the OFD group) of the 

bony defects was found in EMD‐treated 

 furcations (Chitsazi et  al. 2007). Complete 

furcation closure was reported in 1 of the 

10 defects treated with EMD. However, a re‐

entry at 6 months post‐operatively may be 

too early to evaluate bone fill of a furcation 

lesion.

A multi‐centre randomized controlled 

clinical trial compared EMD with GTR in 

the treatment of degree II buccal furcation 

defects in mandibular molars (Jepsen et al. 

2004). In this study, the investigators treated 

45 patients with a total of 90 similar degree 

II furcation defects on contralateral molars, 

either with EMD or with a bioresorbable 

membrane. The clinical measurements 

 

performed at baseline, 8 months, and 

14  months following surgery included 


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c07.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:20:50 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 145

  Table 7.5   

 Comparison of clinical results after guided tissue regeneration using a barrier membrane alone and in combination with osseous grafts in degree  II  

furcation defects of mandibular molars (all randomized controlled trials). 

Authors

Defect type

Parameter

 Guided tissue 
 regeneration 
 barrier material 
 alone 
 (baseline) 
 (mm) 

 Gain 
 (mm)   n 

 Guided tissue 
regeneration barrier 
material + osseous 
graft 
 baseline 
 (mm) 

 Gain 
 (mm)   n 

 Osseous graft 
 material 

Observation 
period    

Wallace et al. 

1994

 Mandibular 

 molars 

Horizontal 

probing bone 

level

Expanded 

polytetrafluoroethylene

7

10

Decalcified 

freeze‐dried bone 

allograft   

b

   

12 months  

 Buccal 

6.0

2.3

6.5

2.4

  

 Luepke et al.   1997     Mandibular 

 molars 

Horizontal 

probing bone 

level

 Guidor®   

c

    

 6.03 

1.80 14 5.90

2.1

14   

a

    Decalcified 

freeze‐dried bone 

allograft   

b

   

6 months  

 Simonpietri‐C 

et al.   2000   

 Mandibular 

 molars 

Horizontal 

probing bone 

level

 Gengiflex®   

d

    

 5.0 

2.47 15 5.53

3.27  *   15   

a

    Bon‐Apatite®   

e

   

6 months  

 Maragos et al. 

  2002   

 Mandibular 

 molars 

Horizontal 

probing bone 

level

 CaSO 

4

  

 3.8 

0.9

11  3.5 

 3.7 

 1.2 

 2.2 

 11 

 14 

 CaSO 

4

 / 

 doxycycline 

 CaSO 

4

 / 

 decalcified 

freeze‐dried bone 

allograft   

b

    

12 months

   * Statistically significant difference between guided tissue regeneration and guided tissue regeneration + osseous grafts; 

  

a

 split‐mouth design; 

  

b

 decalcified freeze‐dried bone allograft; 

  

c

 synthetic biodegradable polymer; 

  

d

 cellulose; 

  

e

 anorganic bovine bone.  


background image

Chapter 7 

146

 

gingival margin levels, pocket probing 

depth, bleeding on probing, vertical attach-

ment levels, vertical bone sounding from a 

stent at five buccal sites per tooth, and hori-

zontal bone sounding at the furcation area. 

Similar defect measurements were per-

formed during a re‐entry procedure on all 

defects at 14 months post surgery. Change 

of horizontal furcation depth (comparing 

intrasurgical baseline and re‐entry meas-

urements) served as the primary outcome 

variable. The results indicated that both 

regenerative procedures produced clinical 

improvement. More specifically, EMD dem-

onstrated a mean reduction of horizontal 

probing bone level of 2.6 mm, whereas the 

GTR‐treated sites showed a horizontal 

probing bone level reduction of 1.9 mm 

(Table 7.6). Complete furcation closure was 

achieved in 8 of the 45 furcation defects 

treated with EMD and in 3 of the 45 defects 

treated with GTR. Partial closure (resulting 

in a change from degree II to degree I) was 

the same (27 of 45) in both groups. No 

change in furcation status was observed in 9 

of 45 and in 11 of 45 defects, respectively, 

and deterioration was observed in one of 45 

EMD‐treated sites and in four of 45 GTR‐

treated sites. Furthermore, less post‐opera-

tive pain and swelling was reported 

following the use of EMD, which could be 

explained by the antibacterial (Sculean et al. 

2001) or anti‐inflammatory potential that 

EMD might possess (Myhre et  al. 2006; 

Nokhbehsaim et  al. 2012). The study con-

cluded that the use of EMD not only has a 

similar effect to GTR in transforming degree 

II buccal furcation defects to degree I in a 

predictable manner, but it may also achieve 

complete closure of the furcation defects to 

a greater extent than GTR. Furthermore, for 

furcation defects at mid‐buccal sites, the 

EMD‐treated sites presented less gingival 

recession than the GTR‐treated sites (Meyle 

et al. 2004). This could be attributed to the 

fact that no measurable bone resorption 

occurred in the EMD‐treated sites, whereas 

slight bone resorption occurred in the GTR‐

treated sites.

From the same sample of patients, it was 

also observed that the best clinical outcome 

in buccal degree II furcation defects follow-

ing treatment with EMD was in male patients 

over 54 years of age who were non‐smokers 

(Hoffmann et  al. 2006), which is in agree-

ment with observations in previous studies 

with GTR (Machtei et  al. 1994). However, 

these results need to be interpreted with cau-

tion, because the number of patients in each 

subgroup (age, gender, smoking habit, etc.) 

was relatively low. Furthermore, in this study 

patient selection was of paramount clinical 

importance, because all selected teeth pre-

sented with proximal levels at or above the 

fornix of the furcation and there was always a 

zone of keratinized tissue of at least 2 mm 

present, for covering the furcation following 

the application of EMD. Similar results, with 

regard to the treatment with EMD in man-

dibular degree II FI, were reported in another 

randomized controlled trial with re‐entry 

after 12 months (Barros et  al. 2005). In 

10 patients with 20 paired furcation defects, 

GTR therapy using an expanded PTFE mem-

brane led to a mean horizontal defect fill of 

3.3 mm, whereas EMD application resulted 

in a mean horizontal defect fill of 2.2 mm, 

with no significant difference between the 

modalities (Table 7.6).

Maxillary Molars

A randomized controlled trial with a split‐

mouth design in 15 patients with one pair of 

contralateral degree II proximal FI compared 

the use of EMD with OFD in conjunction 

with conditioning of the root surfaces with 

ethylenediaminetetraacetic acid (EDTA) gel 

(Casarin et  al. 2008). At 6 months, a mean 

horizontal bone gain was 1.0 mm for the con-

trol group and 1.1 mm for the test group. 

However, there was a statistically significant 

difference in the number of remaining degree 

II FI, in favour of EMD. Of 15 proximal 

degree II furcations, 2 were completely 

closed and 9 were converted into degree I, 6 

months  following EMD application. In con-

trast, following OFD, only 5 furcations were 

converted into degree I, with the other 


background image

Regenerative Therapy in Human Clinical Studies 147

10  defects remaining degree II. Of the 

15 patients, 12 were followed up for 24 months 

(Casarin et  al. 2010) and at this time point 

the test group presented with 5 remaining 

degree II furcations versus 10 degree II furca-

tions in the control group (p < 0.05). Overall, 

the treatment response of proximal furca-

tions in maxillary molars to EMD application 

was not as favourable as that of mandibular 

furcations. The authors attributed this to 

more difficult access and higher plaque 

retention during follow up.

7.3.1.5  Combination Therapy (EMD 
and Bone Grafts)

Only a few clinical studies have evaluated the 

combination of EMD with bone grafts or 

bone substitutes in furcation defects (Miron 

et al. 2014).

Mandibular Molars

In a case series of 11 patients, each contribut-

ing one buccal mandibular degree II furcation 

defect, a combination therapy of EMD and 

autologous bone grafts was evaluated (Aimetti 

et al. 2007). After two years, complete clinical 

closure was achieved in four sites and all resid-

ual defects were reduced to degree I.

A comparative study tested the effective-

ness of EMD in combination with DFDBA 

and a resorbable membrane (GTR; Jaiswal 

and Deo 2013). Using a parallel design, 

30  buccal or lingual mandibular degree II 

furcations in 30 patients received either 

EMD + DFDBA + GTR,  DFDBA + GTR,  or 

OFD. After 12 months, mean reductions in 

horizontal probing depths were 2.1 mm for 

the EMD + DFDBA + GTR group and 1.5 mm 

for the DFDBA + GTR group (p > 0.05). The 

number of degree II furcations that were 

closed or converted to class I was greater for 

EMD + DFDBA + GTR.

A recently published parallel group rand-

omized controlled trial with 40 patients 

compared EMD, beta‐tricalcium phosphate 

coated hydroxyapatite (ß‐TCP/HA), and 

EMD + ß‐TCP/HA in buccal mandibular 

degree II furcation defects (Queiroz et  al. 

2016). After 12 months, the mean horizontal 

clinical attachment level gain was 2.7 mm for 

EMD, 2.6 mm for β‐TCP/HA, and 2.9 mm 

for  EMD + β‐TCP/HA, with no significant 

differences among the groups. After 

12 months, 13 of 13 furcations in the EMD 

group, 10 of 14 furcations in the β‐TCP/HA 

group, and 12 of 14 furcations in the β‐TCP/

HA + EMD group improved their diagnoses 

to degree I. However, complete furcation 

closure was not detectable during the 

study period.

Table 7.6 

Comparison of clinical results after guided tissue regeneration or enamel matrix derivative 

(Emdogain) application in degree II furcation defects of mandibular molars.

Authors

Study 
type Parameter

Guided tissue 
regeneration
baseline
(mm)

Gain
(mm) n

EMD
baseline
(mm)

Gain
(mm) n

Barrier
material/
filler

Observation 
period

Jepsen et al. 

2004

RCT Horizontal 

probing 

bone level

Buccal

No data

1.9

45 No data 2.6* 45

a

Resolut®

b

14 months

Barros et al. 

2005

RCT Horizontal 

probing 

bone level

No data

3.3

15 No data 2.2

15

a

Expanded 

polytetrafluoro-

ethylene

6 months

*Statistically significant difference between guided tissue regeneration and enamel matrix derivative;

a

split‐mouth design;

b

synthetic biodegradable polymer;

RCT = randomized controlled trial.


background image

Chapter 7 

148

Maxillary Molars

A randomized controlled trial evaluated the 

combination of EMD + ß‐TCP/HA com-

pared with ß‐TCP/HA alone in 30 patients 

with 30 proximal class II furcation defects in 

maxillary molars (Peres et  al. 2013). Mean 

horizontal bone level gains after 6 months 

were 1.7 mm for both treatment modalities. 

The EMD + ß‐TCP/HA group showed 7 

closed furcations and 7 converted to degree 

I, versus 4 closed furcations and 10 con-

verted to degree I in the ß‐TCP/HA group 

(p > 0.05).

At present, no long‐term data (>3 years) are 

available for the effects of EMD application in 

the regenerative therapy of furcation defects.

7.3.1.6  Platelet Concentrates

Growth and differentiation factor technolo-

gies have been evaluated for their potential 

to enhance periodontal wound healing/

regeneration (Stavropoulos and Wikesjö 

2012). Autologous platelet concentrates, 

such as platelet‐rich plasma (PRP) and plate-

let‐rich fibrin (PRF), are a source for growth 

factors that can be applied to the periodontal 

wound (Dohan Ehrenfest et  al. 2009; Del 

Fabbro et al. 2011). Very recently, systematic 

reviews with meta‐analyses have evaluated 

the regenerative potential of these approaches 

for furcation defects (Troiano et  al. 2016; 

Castro et al. 2017). While three original stud-

ies were included in one systematic review 

(Troiano et al. 2016), the other included only 

two of them (Castro et al. 2017). These stud-

ies are presented in more detail in what 

follows.

Mandibular Molars

In a randomized clinical trial of six months’ 

duration using a split‐mouth design (Pradeep 

et  al. 2009), the effectiveness of autologous 

PRP was compared with OFD in the treat-

ment of 20 patients with a total of 40 man-

dibular degree II furcation defects. Although 

there was significantly more horizontal clini-

cal attachment level gain (2.5 mm vs 0.8 mm) 

and radiographic bone fill following the 

application of PRP, all furcation defects 

retained their degree II status.

Another randomized controlled trial of 

nine months’ duration evaluated in a split‐

mouth design the use of autologous PRF in 

the treatment of mandibular degree II furca-

tion defects in comparison with OFD, in 18 

patients with 36 furcations (Sharma and 

Pradeep 2011). Complete clinical closure was 

achieved in 12 of 18 test defects, whereas 

another 5 were reduced to degree I. Change 

in horizontal clinical attachment level 

amounted to 2.7 mm following PRF versus 

1.9 mm following OFD (p < 0.05).

A randomized controlled trial compared 

PRP, PRF, and OFD in the treatment of 72 

mandibular degree II furcations in 42 patients 

after nine months (Bajaj et al. 2013). In this 

study, both forms of autologous platelet con-

centrates led to significantly better outcomes 

in all clinical and radiographic parameters 

compared with the OFD control, with no dif-

ferences between PRP and PRF. Horizontal 

clinical attachment gain amounted to 

2.75 mm (PRF) and 2.5 mm (PRP).

It should be noted that all these studies are 

from the same centre. More recently the 

authors have published modified PRF proto-

cols using the addition of synthetic statins 

and hydroxyapatite (HA) bone grafts (Pradeep 

et al. 2016), or the addition of alendronate gel 

(Kanoriya et  al. 2017), thereby further 

enhancing the outcomes of PRF therapy. 

Finally, another group of authors (Siddiqui 

et al. 2016) evaluated in a six‐month study the 

efficacy of PRF compared to ß‐TCP and to 

OFD alone in the treatment of degree II man-

dibular furcation defects. Horizontal probing 

bone level changes amounted to 2.1 mm, 

2.2 mm, and 1.0 mm, respectively.

7.3.2  Degree III Furcation Defects

7.3.2.1  Barrier Membranes (GTR)

Only two randomized controlled clinical 

 trials have compared OFD and GTR in 

molars with degree III FI (Pontoriero et  al. 

1989; Pontoriero and Lindhe 1995b).


background image

Regenerative Therapy in Human Clinical Studies 149

Mandibular Molars

The earlier study reported therapy in man-

dibular molars (Pontoriero et al. 1989). After 

assessing FI clinically, only 1 of 42 furcations 

was scored as ‘through‐and‐through’ (degree 

III). After flap elevation, but before debride-

ment, all 42 furcations were scored as degree 

III. Six months after treatment, furcation 

involvement was assessed clinically (i.e. with-

out elevation of a flap). In the GTR group, 3 

molars remained as degree III, whereas in the 

OFD group, 11 remained as degree III, indi-

cating better results with GTR. 

Maxillary Molars

OFD and GTR were also compared in the 

treatment of maxillary interproximal degree 

III furcation defects (Pontoriero and Lindhe 

1995b). Baseline and six‐month examinations 

were performed by re‐entry after flap eleva-

tion. Neither OFD nor GTR led to even  partial 

closure of the 22 degree III furcations.

These results are supported by other clini-

cal trials, which also demonstrated very low 

frequency and predictability of closure in 

degree III furcation defects after GTR ther-

apy: no complete and 3 partial closures of 10 

degree III furcations, 12 and 24 months 

 following GTR (Eickholz et al. 1998); and 6 

partial closures of 10 degree III furcations, 24 

months after GTR (Eickholz and Hausmann). 

Complete closure of degree III furcations 

(as  evaluated during re‐entry) was never 

reported (Jepsen et al. 2002).

7.3.2.2  Enamel Matrix Derivative

One case series study evaluated the treat-

ment of degree III mandibular furcation 

defects by the use of EMD alone or in combi-

nation with a bioresorbable membrane 

(Donos et  al. 2004). Nine patients with a 

total of 14 degree III mandibular furcation 

defects were assigned to one of three groups: 

EMD in four defects; GTR in three defects; 

and EMD + GTR in seven defects. None of 

the treatments resulted predictably in com-

plete healing of the defects, and there was 

no   obvious difference between the various 

treatment modalities. At 6 and 12 months, 

partial closure of the degree III involvements 

had occurred in 6 of the 14 treated furca-

tions. The remaining teeth still presented 

through‐and‐through furcation defects. 

Within the limits of this case series, and tak-

ing into account the small number of patients 

and furcations included in each treatment 

group, it was concluded that the use of EMD 

alone or in combination with GTR did not 

result in  predictable regeneration of degree 

III mandibular defects.

7.4   Furcation  Regeneration: 

Step‐by‐step Procedure

The suggested treatment sequence is as 

follows:

1) 

Patient selection. Systemic factors that 

limit the success of periodontal surgery, 

such as uncontrolled diabetes and immu-

nocompromised status, must be consid-

ered. Poor patient compliance, inadequate 

oral hygiene, and smoking are the most 

frequent patient factors limiting the selec-

tion of this procedure. Treatment options 

and alternatives must be presented to the 

patient and the potential problems and 

the additional costs should be discussed. 

Regenerative furcation surgery should be 

part of a comprehensive treatment plan 

aiming at complete periodontal and func-

tional rehabilitation.

2) 

Tooth selection. Adequate access to the 

surgical site and also for future mainte-

nance is extremely important. Molars 

with degree II furcations (mandibular and 

buccal maxillary FI) are the best candi-

dates to be considered for a regenerative 

procedure. Based on the available evi-

dence, interproximal maxillary degree II 

furcation defects are significantly less 

suited, most likely due to limited access. 

Degree III mandibular and maxillary 

 furcations have shown various treatment 

responses and in general there are no 


background image

Chapter 7 

150

 significant differences in treatment out-

comes comparing regenerative therapy 

with conventional surgery. Defect and site 

characteristics have been identified that 

have impacts on the outcomes of regen-

erative furcation surgery (Reddy et  al. 

2015). For example, a thicker biotype and 

the absence of soft‐tissue recession can 

positively influence healing following 

GTR procedures. More favourable out-

comes can be expected in sites in which 

the remaining interproximal bone height 

is coronal to the entrance of the furcation 

defect, compared to those in which the 

bone is at or apical to the furcation 

entrance (Figure  7.1). Interdental root 

proximity may impair proper defect 

debridement. Presence of a root canal fill-

ing is not a contraindication to furcation 

regeneration per se, provided there are no 

signs of apical pathology.

3) 

Regenerative periodontal surgery. The goal 

is to obtain sufficient access to the defect 

for meticulous debridement and applica-

tion of the regenerative device. In the case 

of isolated defects, vertical releasing 

 

incisions may be used (Figure  7.2). 

Alternatively, the flap can be extended lat-

erally (Figure  7.1). Keratinized tissues 

should be preserved by intrasulcular inci-

sion and the elevation of a full‐thickness 

mucoperiostal flap. Granulation tissue 

will be removed and the exposed root 

 surfaces carefully cleaned by hand instru-

ments, power‐driven scalers (optionally 

with diamond‐coated tips), or rotary 

instruments. Root anomalies such as 

enamel projections/pearls should be 

removed. If EMD is part of the regenera-

tive strategy, it is usually applied following 

two minutes of root conditioning with 

EDTA and rinsing with sterile saline. 

Subsequently a bone graft/substitute can 

be used to fill the furcation defect. 

Alternatively, a GTR barrier membrane 

can be applied, with or without an addi-

tional defect filler (Figures  7.1 and 7.2). 

The barrier membrane is secured by a 

resorbable sling suture to cover the furcation 

entrance and to promote wound and clot 

stabilization. In order to facilitate com-

plete coverage of the barrier, the perios-

teum can be cut to allow for a coronal 

advancement of the flap. The flap is 

secured in a coronal position by a sling 

suture and interrupted sutures over the 

vertical releasing incisions (Figure 7.2), or 

interdental sutures in the case of a laterally 

extended flap (Figure 7.1). The patient is 

instructed to abstain from mechanical 

plaque removal in the surgical area for a 

period of up to four weeks. During this 

time, chlorhexidine rinses or topical gel 

application are used. The patient returns 

for monitoring of healing after one and 

two weeks, when sutures are removed. 

Interdental hygiene and mechanical 

plaque removal are started again after four 

weeks, and the personalized maintenance 

recall programme will be determined.

7.5   Furcation  Regeneration: 

How to Take the Next Step?

It emerges clearly from this chapter that the 

main challenge for regenerating furcation 

defects is presented by improving the pre-

dictability in degree II FI (in particular maxil-

lary interproximal furcations) and even more 

by achieving regeneration in degree III furca-

tion defects (maxillary or mandibular). 

However, the previous chapter produced 

clinical and histological evidence for regen-

eration of degree III furcations in animal 

models, including complete closure with the 

formation of periodontal ligament and 

regrowth of the bone with GTR (Lindhe et al. 

1995; Araújo et al. 1998) or GTR associated 

with EMD (Donos et  al. 2003a, 2003b; 

Gkranias et  al. 2012) in animal models. So 

how can we take the decisive step towards 

predictable furcation regeneration based on 

pre‐clinical studies?

Complete flap coverage of the membrane 

during healing seems to be crucial, probably 

more than defect morphology (Lindhe et al. 

1995; Araújo et  al. 1997, 1998; Araújo and 


background image

Regenerative Therapy in Human Clinical Studies 151

Lindhe, 1998). Unfortunately, the different 

anatomy and dimensions of teeth and alveo-

lar processes in the experimental animal 

models reduce their external validity to 

human cases. Furthermore, experimentally 

induced furcation defects in animal models 

may not reproduce the chronic lesions 

encountered in humans. Therefore, more 

progress in techniques and materials is 

needed in order to predictably achieve in 

humans the same results observed in animal 

models, before implementing regenerative 

surgery as the treatment of choice for every 

deep furcation defect.

(a)

(f)

(j)

(l)

(m)

(n)

(o)

(p)

(q)

(k)

(g)

(h)

(i)

(c)

(d)

(e)

(b)

Figure 7.1 

(a) Periodontal measurements at baseline, tooth no. 36 (LL6). Probing depth mesial and distal: 

2 mm, furcation degree II buccally, horizontal probing: 4 mm, recession 3 mm. (b) Radiograph of tooth no.36 

with visible furcation defect, adjacent bone level at forcation fornix. (c) Flap elevation: intrasulcular incision/

horizonal release, mucoperiostal flap, papillae de‐epithelialized, periosteal split in the vestibule. Root surface 

debridement. (d) Horizontal probing bone level: 4 mm. (e, f) Placement of a bioresorbable matrix barrier 

(Guidor™ MSL‐configuration, Sunstar Americas, Inc., Schaumburg, IL, USA) to facilitate guided tissue 

regeneration. Fixation of the barrier with integrated sling sutures. (g, h) Coronally advanced flap secured with 

sling and interrupted sutures. (i) One day after periodontal regenerative surgery. (j) Clinical view 3 weeks after 

surgery with matrix exposure. (k, l) Exposed matrix partially removed. (m, n) 5 weeks after surgery. (o, p) 

12 months after surgery. Horizontal and vertical probing depths: 2 mm, recession 3 mm. (q) Radiograph taken 

12 months after surgery. Almost complete radiographic bone fill in furcation area.


background image

Chapter 7 

152

(a)

(e)

(i)

(l)

(m)

(n)

(j)

(k)

(f)

(g)

(h)

(c)

(d)

(b)

Figure 7.2 

(a, b) Periodontal measurements at baseline, tooth no. 46 (LR6). Probing depth mesial and distal: 3 mm, 

furcation degree II. Situation 2 months after an acute abscess and mobility grade 2 treated with debridement of 

the accessible root surfaces and local antimicrobials. (c) Radiograph of tooth no. 46 with visible furcation defect, 

proximal bone loss to the level of the furcation, and a very short distal root. (d) Horizontal probing bone level: 

7 mm, crown margin reduced and polished. (e, f) Debrided root surfaces. Flap design: intrasulcular incision/

vertical release mesial, mucoperiostal flap, papilla mesial de‐epithelialized, periosteal split in the vestibule. The 

distal papilla was left intact, but mobilized and slightly elevated by a tunnelling procedure. (g) Placement of a 

bioresorbable matrix barrier (Guidor™ MSL‐configuration, Sunstar Americas, Inc., Schaumburg, IL, USA) after 

application of a xenogeneic bone mineral into the furcation defect (Bio‐oss collagen™, Geistlich Biomaterials, 

Wollhusen, Switzerland) to facilitate guided tissue regeneration. (h) Coronally advanced minimally rotated flap 

secured with sling and interrupted sutures. (i) Clinical view one day after periodontal regenerative surgery. (j, k) 

Clinical view 2 weeks after surgery. (l) Clinical view 3 months after surgery. (m) 9 months, vertical and horizontal 

probing depths: 2 mm. (n) 9 months, radiographic fill of the furcation defect.

 Summary  of Evidence

 

Various regenerative approaches have 

shown to be effective in the treatment of 

degree II furcation involvement (FI) com-

pared with access flap surgery.

 

Complete furcation closure in degree II FI 

is not a predictable outcome

 

Degree III FI cannot be improved predict-

ably by regenerative therapy.


background image

Regenerative Therapy in Human Clinical Studies 153

 References

Aimetti, M., Romano, F., Pigella, E., and 

Piemontese, M. (2007). Clinical evaluation 

of the effectiveness of enamel matrix 

proteins and autologous bone graft in the 

treatment of mandibular class II furcation 

defects: A series of 11 patients. International 

Journal of Periodontics and Restorative 

Dentistry 27, 441–447.

Araújo, M.G., Berglundh, T., and Lindhe, J. 

(1997). On the dynamics of periodontal 

tissue formation in degree III furcation 

defects: An experimental study in dogs. 

Journal of Clinical Periodontology 24, 

738–746.

Araújo, M.G., Berglundh, T., and Lindhe, J. 

(1998). GTR treatment of degree III 

furcation defects with 2 different resorbable 

barriers: An experimental study in dogs. 

Journal of Clinical Periodontology 25, 

253–259.

Araújo, M.G., and Lindhe, J. (1998). GTR 

treatment of degree III furcation defects 

following application of enamel matrix 

proteins: An experimental study in dogs. 

Journal of Clinical Periodontology 25, 

524–530.

Avera, J.B., Camargo, P.M., Klokkevold, P.R. 

et al. (1998). Guided tissue regeneration in 

class II furcation involved maxillary molars: 

A controlled study of 8 split‐mouth cases. 

Journal of Periodontology 69, 1020–1026.

Avila‐Ortiz, G., De Buitrago, J.G., and Reddy, 

M.S. (2015). Periodontal 

regeneration – furcation defects: A 

systematic review from the AAP 

regeneration workshop. Journal of 

Periodontology 86 (Suppl.), S108–S130.

Bajaj, P., Pradeep, A.R., Agarwal, E. et al. 

(2013). Comparative evaluation of 

autologous platelet‐rich fibrin and platelet‐

rich plasma in the treatment of mandibular 

degree II furcation defects: A randomized 

controlled clinical trial. Journal of 

Periodontal Research 48, 573–581.

Barros, R.R.M., Oliveira, R.R., Novaes, A.B., Jr 

et al. (2005). Treatment of class II furcation 

defects with guided tissue regeneration or 

enamel matrix derivative proteins: A 12‐

month comparative clinical study. Perio 2, 

275–284.

Becker, W., Becker, B.E., Berg, L. et al. (1988). 

New attachment after treatment with root 

isolation procedures: Report for treated 

class III and class II furcations and vertical 

osseous defects. International Journal of 

Periodontics and Restorative Dentistry 3, 

2–16.

Blumenthal, N.M. (1993). A clinical 

comparison of collagen membranes with 

ePTFE membranes in the treatment of 

human mandibular buccal Class II furcation 

defects. Journal of Periodontology 64, 

454–459.

Bouchard, P., Ouhayoun, J.‐P., and Nilvéus, 

R.E. (1993). Expanded 

polytetrafluoroethylene membranes and 

connective tissue grafts support bone 

regeneration for closing mandibular class II 

furcations. Journal of Periodontology 64, 

1193–1198.

Bowers, G.M., Schallhorn, R.G., McClain, P.K. 

et al. (2003). Factors influencing the 

outcome of regenerative therapy in 

mandibular class II furcations: Part I. 

Journal of Periodontology 74, 1255–1268.

Bremm, L.L., Sallum, A.W., Casati, M.Z. et al. 

(2004). Guided tissue regeneration in class II 

furcation defects using a resorbable 

polylactic acid barrier. American Journal of 

Dentistry 17, 443–446.

Caffesse, R.G., Mota, L., Quinones, C., and 

Morrison, E. (1997). Clinical comparison of 

resorbable and non‐resorbable barriers for 

guided tissue regeneration. Journal of 

Clinical Periodontology 24, 747–752.

Camelo, M., Nevins, M.L., Schenk, R.K. et al. 

(2003). Periodontal regeneration in human 

class II furcations using purified 

recombinant human platelet‐derived growth 

factor‐BB (rhPDGF‐BB) with bone allograft. 

International Journal of Periodontics and 

Restorative Dentistry 23, 213–225.

Casarin, R.C., Del Peloso, R.E., Nociti, F.H., Jr 

et al. (2008). A double‐blind randomized 


background image

Chapter 7 

154

clinical evaluation of enamel matrix 

derivative proteins for the treatment of 

proximal class‐II furcation involvements. 

Journal of Clinical Periodontology 35, 

429–437.

Casarin, R.C., Ribeiro Edel, P., Nociti, F.H. Jr 

et al. (2010). Enamel matrix derivative 

proteins for the treatment of proximal class 

II furcation involvements: A prospective 

24‐month randomized clinical trial. Journal 

of Clinical Periodontology 37, 1100–1109.

Castro, A.B., Meschi, N., Temmerman, A. et al. 

(2017). Regenerative potential of leucocyte‐ 

and platelet‐rich fibrin. Part A: Intra‐bony 

defects, furcation defects and periodontal 

plastic surgery: A systematic review and 

meta‐analysis. Journal of Clinical 

Periodontology 44, 6782.

Caton, J., Greenstein, G., and Zappa, U. (1994). 

Synthetic bioabsorbable barrier for 

regeneration in human periodontal defects. 

Journal of Periodontology 65, 1037–1045.

Chen, T.H., Tu, Y.K., Yen, C.C., and Lu, H.K. 

(2013). A systematic review and meta‐

analysis of guided tissue regeneration/

osseous grafting for the treatment of class II 

furcation defects. Journal of Dental Science 

8, 209–224.

Chitsazi, M.T., Farahani, R.M.Z., Pourabbas, 

M., and Bahaeddin, N. (2007). Efficacy of 

open flap debridement with and without 

enamel matrix derivatives in the treatment 

of mandibular degree II furcation 

involvement. Clinical Oral Investigations 11, 

385–389.

Christgau, M., Schmalz, G., Reich, E., and 

Wenzel, A. (1995). Clinical and 

radiographical split‐mouth‐study on 

resorbable versus non‐resorbable GTR‐

membranes. Journal of Clinical 

Periodontology 22, 306–315.

Cury, P.R., Sallum, E.A., Nociti, F.H. et al. 

(2003). Long‐term results of guided tissue 

regeneration therapy in the treatment of 

class II furcation defects: A randomised 

clinical trial. Journal of Periodontology 74, 

3–9.

Del Fabbro, M., Bortolin, M., Taschieri, S., and 

Weinstein, R. (2011). Is platelet concentrate 

advantageous for the surgical treatment of 

periodontal diseases? A systematic review 

and meta‐analysis. Journal of Periodontology 

82, 1100–1111.

Dohan Ehrenfest, D.M., Rasmusson, L., and 

Albrektsson, T. (2009). Classification of 

platelet concentrates: From pure platelet‐

rich plasma (P‐PRP) to leucocyte‐ and 

platelet‐rich fibrin (L‐PRF). Trends in 

Biotechnology 27, 158–167.

Donos, N., Glavind, L., Karring, T., and 

Sculean, A. (2003a). Clinical evaluation of 

an enamel matrix derivative in the treatment 

of mandibular degree II furcation 

involvement: A 36‐month case series. 

International Journal of Periodontics and 

Restorative Dentistry 23, 507–512.

Donos, N., Sculean, A., Glavind, L., Reich, E., 

and Karring, T. (2003b). Wound healing of 

degree III furcation involvements following 

guided tissue regeneration and/or 

Emdogain. A histologic study. Journal of 

Clinical Periodontology 30, 1061–1068.

Donos, N., Glavind, L., Karring, T., and 

Sculean, A. (2004). Clinical evaluation of an 

enamel matrix derivative and a 

bioresorbable membrane in the treatment of 

degree III mandibular furcation 

involvement: A series of nine patients. 

International Journal of Periodontics and 

Restorative Dentistry 24, 362–369.

Donos, N., Heijl, L., and Jepsen, S. (2010). 

Application of enamel matrix proteins in 

furcation defects. In: Periodontal 

Regenerative Therapy (ed. A. Sculean), 

103–117. Berlin: Quintessence.

Dos Anjos, B., Novaes, A.B., Jr, Meffert, R., and 

Porto Barboza, E. (1998). Clinical 

comparison of cellulose and expanded 

polytetrafluoroethylene membranes in the 

treatment of class II furcations in 

mandibular molars with 6‐month re‐entry. 

Journal of Periodontology 69, 454–459.

Eickholz, P., and Hausmann, E. (1999). 

Evidence for healing of class II and III 

furcations 24 months after GTR therapy: 

Digital subtraction and clinical 

measurements. Journal of Periodontology 70, 

1490–1500.


background image

Regenerative Therapy in Human Clinical Studies 155

Eickholz, P., Kim, T.‐S., and Holle R. (1997). 

Guided tissue regeneration with non‐

resorbable and biodegradable barriers: 6 

months results. Journal of Clinical 

Periodontology 24, 92–101.

Eickholz, P., Kim, T.‐S., and Holle R. (1998). 

Regenerative periodontal surgery with non‐

resorbable and biodegradable barriers: 

Results after 24 months. Journal of Clinical 

Periodontology 25, 666–676.

Eickholz, P., Kim, T.S., Holle, R., and 

Hausmann, E. (2001). Long‐term results of 

guided tissue regeneration therapy with 

non‐resorbable and bioabsorbable barriers. 

I. Class II furcations. Journal of 

Periodontology 72, 35–42.

Eickholz, P., Kim, T.‐S., Steinbrenner, H. et al. 

(2000). Guided tissue regeneration with 

bioabsorbable barriers: Intrabony defects 

and class II furcations. Journal of 

Periodontology 71, 999–1008.

Eickholz, P., Pretzl, B., Holle, R., and Kim, T.‐S. 

(2006). Long‐term results of guided tissue 

regeneration therapy with non‐resorbable 

and bioabsorbable barriers. III. Class II 

furcations after 10 years. Journal of 

Periodontology 77, 88–94.

Figueira, E.A., de Assis, A.O., Montenegro, 

S.C. et al. (2014). Long‐term periodontal 

tissue outcome in regenerated infrabony and 

furcation defects: A systematic review. 

Clinical Oral Investigations 18,  

1881‐–1892.

Flanary, D.B., Twohey, S.M., Gray, J.L. et al. 

(1991). The use of synthetic skin substitute 

as a physical barrier to enhance healing in 

human periodontal furcation defects: A 

follow up report. Journal of Periodontology 

62, 684–689.

Garrett, S., Polson, A.M., Stoller, N.H. et al. 

(1997). Comparison of a bioabsorbable GTR 

barrier to a non‐absorbable barrier in 

treating human class II furcation defects: A 

multi‐center parallel design randomized 

single‐blind trial. Journal of Periodontology 

68, 667–675.

Gkranias, N.D., Graziani, F., Sculean, A., and 

Donos, N. (2012). Wound healing following 

regenerative procedures in furcation degree 

III defects: Histomorphometric 

outcomes. Clinical Oral Investigation 16, 

239–249.

Gottlow, J., Nyman, S., Lindhe, J. et al. (1986). 

New attachment formation in the human 

periodontium by guided tissue regeneration: 

Case reports. Journal of Clinical 

Periodontology 13, 604–616.

Harris, R.J. (2002). Treatment of furcation 

defects with an allograft‐alloplast‐

tetracycline composite bone graft combined 

with GTR: Human histologic evaluation of a 

case report. International Journal of 

Periodontology and Restorative Dentistry 22, 

381–387.

Hoffmann, T., Richter, S., Meyle, J. et al. 

(2006). A randomized clinical multicentre 

trial comparing enamel matrix derivative 

and membrane treatment of buccal class II 

furcation involvement in mandibular 

molars. Part III: Patient factors and 

treatment outcome. Journal of Clinical 

Periodontology 33, 575–583.

Horwitz, J., Machtei, E.E., Reitmeir, P. et al. 

(2004). Radiographic parameters as 

prognostic indicators for healing of class II 

furcation defects. Journal of Clinical 

Periodontology 31, 105–111.

Houser, B.E., Mellonig, J.T., Brunsvold, M.A. 

et al. (2001). Clinical evaluation of anorganic 

bovine bone xenograft with a bioabsorbable 

collagen barrier in the treatment of molar 

furcation defects. International Journal of 

Periodontics and Restorative Dentistry 21, 

161–169.

Hugoson, A., Ravald, N., Fornell, J. et al. 

(1995). Treatment of class II furcation 

involvements in humans with bioresorbable 

and nonresorbable guided tissue 

regeneration barriers: A randomized 

multi‐center study. Journal of Periodontology 

66, 624–634.

Jaiswal, R., and Deo, V. (2013). Evaluation of 

the effectiveness of enamel matrix 

derivative, bone grafts, and membrane in 

the treatment of mandibular class II 

furcation defects. International Journal of 

Periodontics and Restorative Dentistry 33, 

e58–e64.


background image

Chapter 7 

156

Jepsen, S., Eberhard, J., Herrera, D., and 

Needleman, I. (2002). A systematic review of 

guided tissue regeneration for periodontal 

furcation defects: What is the effect of 

guided tissue regeneration compared with 

surgical debridement in the treatment of 

furcation defects? Journal of Clinical 

Periodontology 29 (Suppl. 3), 103–116.

Jepsen, S., Heinz, B., Jepsen, K. et al. (2004). A 

randomized clinical trial comparing enamel 

matrix derivative and membrane treatment 

of buccal Class II furcation involvement in 

mandibular molars. Part I: Study design and 

results for primary outcomes. Journal of 

Periodontology 75, 1150–1160.

Kanoriya, D., Pradeep, A.R., Garg, V., and 

Singhal S. (2017). Mandibular degree II 

furcation defects treatment with platelet‐

rich fibrin and 1% alendronate gel 

combination: A randomized controlled 

clinical trial. Journal of Periodontology 88, 

250–258.

Kinaia, B.M., Steiger, J., Neely, A.L. et al. 

(2011). Treatment of class II molar furcation 

involvement: Meta‐analyses of re‐entry 

results. Journal of Periodontology 82, 

413–428.

Koop, R., Merheb, J., and Quirynen, M. (2012). 

Periodontal regeneration with enamel 

matrix derivative in reconstructive 

periodontal therapy: A systematic review. 

Journal of Periodontology 83, 707–720.

Lekovic, V., Kenney, E.B., Carranza, F.A., and 

Martignoni, M. (1991). The use of 

autogenous periosteal grafts as barriers for 

the treatment of class II furcation 

involvements in lower molars. Journal of 

Periodontology 62, 775–780.

Lekovic, V., Kenney, E.B., Kovacevic, K., and 

Carranza, F.A. (1989). Evaluation of guided 

tissue regeneration in class II furcation 

defects: A clinical re‐entry study. Journal of 

Periodontology 60, 694–698.

Lindhe, J., Pontoriero, R., Berglundh, T., and 

Araujo, M. (1995). The effect of flap 

management and bioresorbable occlusive 

devices in GTR treatment of degree III 

furcation defects: An experimental study in 

dogs. Journal of Clinical Periodontology 22, 

276–283.

Luepke, P.G., Mellonig, J.T., and Brunsvold, 

M.A. (1997). A clinical evaluation of a 

bioabsorbable barrier with and without 

decalcified freeze‐dried bone allograft in the 

treatment of molar furcations. Journal of 

Clinical Periodontology 24, 440–446.

Machtei, E.E. (1997). Outcome variables in the 

study of periodontal regeneration. Annals of 

Periodontology 2, 229–239.

Machtei, E.E., Cho, M.I., Dunford, R. et al. 

(1994). Clinical, microbiological, and 

histological factors which influence the 

success of regenerative periodontal therapy. 

Journal of Periodontology 65, 154–161.

Machtei, E.E., Grossi, S.G., Dunford, R. et al. 

(1996). Long‐term stability of class II 

furcation defects treated with barrier 

membranes. Journal of Periodontology 67, 

523–527.

Maragos, P., Bissada, N.F., Wang, R., and Cole, 

B.P. (2002). Comparison of three methods 

using calcium sulfate as a graft/barrier 

material for the treatment of class II 

mandibular molar furcation defects. 

International Journal of Periodontics and 

Restorative Dentistry 22, 493–501.

McGuire, M.K., and Nunn, M.E. (1996). 

Prognosis versus actual outcome. III. The 

effectiveness of clinical parameters in 

accurately predicting tooth survival. Journal 

of Periodontology 67, 666–674.

Mellonig, J.T., Seamons, B.C., Gray, J.L., and 

Towle, H.J. (1994). Clinical evaluation of 

guided tissue regeneration in the treatment 

of grade II molar furcation invasions. 

International Journal of Periodontics and 

Restorative Dentistry 14, 255–271.

Mellonig, J.T., Valderrama Mdel, P., and 

Cochran, D.L. (2009). Histological and 

clinical evaluation of recombinant human 

platelet‐derived growth factor combined 

with beta tricalcium phosphate for the 

treatment of human class III furcation 

defects. International Journal of 

Periodontics and Restorative Dentistry 29, 

169–177.


background image

Regenerative Therapy in Human Clinical Studies 157

Metzler, D.G., Seamons, B.C., Mellonig, J.T. 

et al. (1991). Clinical evaluation of guided 

tissue regeneration in the treatment of 

maxillary class II molar furcation invasions. 

Journal of Periodontology 62, 353–360.

Meyle, J., Gonzales, J.R., Bodeker, R.H. et al. 

(2004). A randomized clinical trial 

comparing enamel matrix derivative and 

membrane treatment of buccal class II 

furcation involvement in mandibular 

molars. Part II: Secondary outcomes. Journal 

of Periodontology 75, 1188–1195.

Miron, R.J., Guillemette, V., Zhang, Y. et al. 

(2014). Enamel matrix derivative in 

combination with bone grafts: A review of 

the literature. Quintessence International 45, 

475–487.

Miron, R.J., Sculean, A., Cochran, D.L. et al. 

(2016). Twenty years of enamel matrix 

derivative: The past, the present and the 

future. Journal of Clinical Periodontology 43, 

668–683.

Mombelli, A., Zappa, U., Brägger, U., and 

Lang, N.P. (1996). Systemic antimicrobial 

treatment and guided tissue regeneration: 

Clinical and microbiological effects in 

furcation defects. Journal of Clinical 

Periodontology 23, 386–396.

Murphy, K.G., and Gunsolley, J.C. (2003). 

Guided tissue regeneration for the treatment 

of periodontal intrabony and furcation 

defects: A systematic review. Annals of 

Periodontology 8, 266–302.

Myhre, A.E., Lyngstadaas, S.P., Dahle, M.K. 

et al. (2006). Anti‐inflammatory properties 

of enamel matrix derivative in human blood. 

Journal of Periodontal Research 41, 208–213.

Nevins, M., Camelo, M., Nevins, M.L. et al. 

(2003). Periodontal regeneration in humans 

using recombinant human platelet‐derived 

growth factor‐BB (rhPDGF‐BB) and 

allogenic bone. Journal of Periodontology 74, 

1282–1292.

Nibali, L., Zavattini, A., Nagata, K. et al. 

(2016). Tooth loss in molars with and 

without furcation involvement: A systematic 

review and meta‐analysis. Journal of Clinical 

Periodontology 43, 156–166.

Nokhbehsaim, M., Deschner, B., Winter, J. 

et al. (2012). Anti‐inflammatory effects of 

EMD in the presence of biomechanical 

loading and interleukin‐1β in vitro. Clinical 

Oral Investigations 16, 275–283.

Paul, B.F., Mellonig, J.T., Towle, H.J., III, and 

Gray, J.L. (1992). Use of a collagen barrier to 

enhance healing in human periodontal 

furcation defects. International Journal of 

Periodontics and Restorative Dentistry 12, 

123–131.

Peres, M.F.S., Ribeiro, E.D.P., Casarin, R.C.V. 

et al. (2013). Hydroxyapatite/β‐tricalcium 

phosphate and enamel matrix derivative for 

treatment of proximal class II furcation 

defects: A randomized clinical trial. Journal 

of Clinical Periodontology 40, 252–259.

Pontoriero, R., and Lindhe, J. (1995a). Guided 

tissue regeneration in the treatment of 

degree II furcations in maxillary molars. 

Journal of Clinical Periodontology 22, 

756–763.

Pontoriero, R., and Lindhe, J. (1995b). Guided 

tissue regeneration in the treatment of 

degree III furcation defects in maxillary 

molars. Journal of Clinical Periodontology 

22, 810–812.

Pontoriero, R., Lindhe, J., Karring, T. et al. 

(1988). Guided tissue regeneration in degree 

II furcation‐involved mandibular molars. 

Journal of Clinical Periodontology 15, 247–254.

Pontoriero, R., Lindhe, J., Nyman, S. et al. (1989). 

Guided tissue regeneration in the treatment 

of defects in mandibular molars: A clinical 

study of degree III involvements. Journal of 

Clinical Periodontology 16, 170–174.

Pradeep, A.R., Karvekar, S., Nagpal, K. et al. 

(2016). Rosuvastatin 1.2 mg in situ gel 

combined with 1:1 mixture of autologous 

platelet‐rich fibrin and porous 

hydroxyapatite bone graft in surgical 

treatment of mandibular class II furcation 

defects: A randomized clinical control trial. 

Journal of Periodontology 87, 5–13.

Pradeep, A.R., Pai, S., Garg, G. et al. (2009). A 

randomized clinical trial of autologous 

platelet‐rich plasma in the treatment of 

mandibular degree II furcation defects. 


background image

Chapter 7 

158

Journal of Clinical Periodontology 36, 

581–588.

Prathibha, P.K., Faizuddin, M., and Pradeep, 

A.R. (2002). Clinical evaluation of guided 

tissue regeneration procedure in the 

treatment of grade II mandibular molar 

furcations. Indian Journal of Dental 

Research 13, 37–47.

Pruthi, V.K., Gelskey, S.C., and Mirbod, S.M. 

(2002). Furcation therapy with 

bioabsorbable collagen membrane: A 

clinical trial. Journal of the Canadian Dental 

Association 68, 610–615.

Queiroz, L.A., Santamaria, M.P., Casati, M.Z. 

et al. (2016). Enamel matrix derivative and/

or synthetic bone substitute for the 

treatment of manibular class II buccal 

furcation defects: A 12‐months randomized 

clinical trial. Clinical Oral Investigations 20, 

1597–1606.

Reddy, M.S., Aichelmann‐Reddy, M.E., 

Avila‐Ortiz, G. et al. (2015). A consensus 

report from the AAP regeneration 

workshop. Journal of Periodontology 86 

(Suppl.), S131–S133.

Reynolds, M.A., Aichelmann‐Reidy, M.E., 

Branch‐Mays, G.L., and Gunsolley, J.C. 

(2003). The efficacy of bone replacement 

grafts in the treatment of periodontal 

osseous defects: A systematic review. Annals 

of Periodontology 8, 227–265.

Sanz, M., Jepsen, K., Eickholz, P., and Jepsen, 

S. (2015). Clinical concepts for regenerative 

therapy in furcations. Periodontology 2000 

68, 308–332.

Scott, T.A., Towle, H.J., Assad, D.A., and 

Nicoll, B.K. (1997). Comparison of 

bioabsorbable laminar bone membrane and 

non‐resorbable ePTFE membrane in 

mandibular furcations. Journal of 

Periodontology 68, 679–686.

Sculean, A., Ausschill, T.M., Donos, N. et al. 

(2001). Effects of an enamel matrix protein 

derivative (Emdogain) on ex vivo dental 

plaque vitality. Journal of Clinical 

Periodontology 28, 1074–1078.

Sharma, A., and Pradeep, A.R. (2011). 

Autologous platelet‐rich fibrin in the 

treatment of mandibular degree II furcation 

defects: A randomized clinical trial. Journal 

of Periodontology 82, 1396–1403.

Siddiqui, Z.R., Jhingram, R., Bains, V.K. et al. 

(2016). Comparative evaluation of platelet‐

rich fibrin versus beta‐tri‐calcium 

phosphate in the treatment of Grade II 

mandibular furcation defects using cone‐

beam computed tomography. European 

Journal of Dentistry 10, 496–506.

Simonpietri‐C, J.J., Novaes, E.L., Jr, Batista, 

E.L., Jr, and Filho, E.J. (2000). Guided tissue 

regeneration associated with bovine‐derived 

anorganic bone in mandibular class II 

furcation defects: 6 month results at re‐

entry. Journal of Periodontology 71, 

904–911.

Stavropoulos, A., and Wikesjö, U.M. (2012). 

Growth and differentiation factors for 

periodontal regeneration: A review on 

factors with clinical testing. Journal of 

Periodontal Research 47, 545–553.

Stoller, N.H., Johnson, L.R., and Garrett, S. 

(2001). Periodontal regeneration of a class II 

furcation defect utilizing a bioabsorbable 

barrier in a human: A case study with 

histology. Journal of Periodontology 72, 

238–242.

Suh, Y.I., Lundgren, T., Sigurdsson, T. et al. 

(2002). Probing bone level measurements 

for determination of the depths of Class II 

furcation defects. Journal of Periodontology 

73, 637–642.

Troiano, G., Laino, L., Dioguardi, M. et al. 

(2016). Mandibular class II furcation defect 

treatment: Effects of the addition of platelet 

concentrates to open flap: A systematic 

review and meta‐analysis of randomized 

cinical trials. Journal of Periodontology 87, 

1030–1038.

Tsao, Y.‐.P, Neiva, R., Al‐Shammari, K. et al. 

(2006). Effects of a mineralized human 

cancellous bone allograft in regeneration of 

mandibular class II furcation defects. 

Journal of Periodontology 77, 416–425.

Twohey, S.M., Mellonig, J.T., Towle, H.J., and 

Gray, J.L. (1992). Use of a synthetic skin 

substitute as a physical barrier to enhance 


background image

Regenerative Therapy in Human Clinical Studies 159

healing in human periodontal furcation 

defects. International Journal of Periodontics 

and Restorative Dentistry 12, 383–393.

Vernino, A.R., Wang, H.L., Rapley, J. et al. 

(1999). The use of biodegradable polylactic 

acid barrier materials in the treatment of 

grade II periodontal furcation defects in 

humans. Part II: A multicenter investigative 

surgical study. International Journal of 

Periodontics and Restorative Dentistry 19, 

56–65.

Wallace, S.C., Gellin, R.G., Miller, M.C., and 

Mishkin, D.J. (1994). Guided tissue 

regeneration with and without decalcified 

freeze‐dried bone in mandibular class II 

furcation invasions. Journal of 

Periodontology 65, 244–254.

Wang, H.L., O’Neal, R.B., Thomas, C.L. et al. 

(1994). Evaluation of an absorbable collagen 

membrane in treating class II furcation defects. 

Journal of Periodontology 65, 1029–1036.

Yukna, C.N., and Yukna, R.A. (1996). Multi‐

center evaluation of bioabsorbable collagen 

membrane for guided tissue regeneration in 

human class II furcations. Journal of 

Periodontology 67, 650–657.


background image

Diagnosis and Treatment of Furcation-Involved Teeth, First Edition. Edited by Luigi Nibali. 

© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd. 

Companion website: www.wiley.com/go/nibali/diagnosis

Chapter No.: 1  Title Name: <TITLENAME> 

c08.indd

Comp. by: RKarthikeyan  Date: 14 May 2018  Time: 04:21:05 PM  Stage: Proof  WorkFlow:

<WORKFLOW>

 

Page Number: 161

161

8.1   Anatomical  Considerations 

for Treatment Planning

Furcation defects present the greatest chal-

lenges to the success of periodontal therapy, 

as a reduced efficacy of periodontal therapy 

and higher risk of tooth loss have been con-

sistently observed in multi‐rooted teeth with 

furcation involvement, regardless of the 

treatment modality employed. Regenerative 

therapy might be considered the ideal treat-

ment for furcations. However, indications for 

regenerative periodontal therapy (discussed 

in Chapter 7) are still very limited. Maxillary 

molars with degree II interproximal furca-

tions, as well as all degree III furcation‐

involved molars, are generally not suitable 

for regenerative therapy. Therefore,  different 

treatment strategies (such as resective) have 

to be employed to eliminate or manage fur-

cation defects.

The survival of molars with furcation 

involvement in longitudinal studies following 

different treatment procedures was discussed 

in Chapter 5. It is interesting to notice how a 

systematic review observed that the most fre-

quent complications occurring  during the 

follow‐up period were caries in the furcation 

area after tunnelling procedures, and root 

fractures after root‐resective procedures 

(Huynh‐Ba G et al. 2009). From an anatomi-

cal point of view, the poorer  prognosis of 

 furcation‐involved teeth may be due to the 

fact that the persistence of a defect within the 

inter‐radicular space creates an anatomical 

environment that interferes with professional 

and domiciliary oral hygiene. Numerous 

morphological factors may explain the aetiol-

ogy, the more severe disease progression, and 

the less favourable response to periodontal 

treatment of furcation‐involved molars (De 

Sanctis and Murphey 2000). These factors 

(extensively covered in Chapter 1) are:

 

Furcation access diameter.

 

Root irregularities and roughness.

 

Anatomical complexity of the root complex.

 

Cervical enamel projections.

 

Enamel pearls.

 

Accessory pulp canals.

8.2   Pre‐surgical  Diagnosis

8.2.1  Pre‐surgical Clinical Diagnosis

An accurate and precise pre‐surgical diagno-

sis is essential in order to approach correctly 

patients affected by periodontal disease 

complicated by the invasion of molar furca-

tion areas. Before planning the definitive 

Chapter 8

Furcation Therapy: Resective Approach and Restorative Options

Roberto Rotundo

1

 and Alberto Fonzar 

2

1

 Periodontology Unit, UCL Eastman Dental Institute, London, UK

2

 Private practice, Udine, Italy


background image

Chapter 8  

162

treatment plan, clinicians should carefully 

evaluate the following:

 

Patient’s periodontal and caries risk profile.

 

Horizontal (Hamp et al. 1975) and vertical 

(Tarnow and Fletcher 1984) amount of per-

iodontal tissue loss in the inter‐radicular 

areas.

 

Anatomy and morphology of the root 

complex: the length of the root trunk, the 

degree of separation, and the divergence 

between the roots, as well as their shape 

and length.

 

Amount of residual attachment and prob-

ing pocket depth (PPD) of each single root.

 

Access for oral hygiene procedures.

 

Endodontic prognosis of each single root 

(endodontically treated teeth).

 

Need for endodontic treatment (endodon-

tically untreated teeth).

 

Need for restorative treatment and restor-

ative deficiencies (i.e. insufficient residual 

healthy tooth structure).

 

Single tooth or multiple molars with furca-

tion involvement.

This information should be obtained by 

 carefully combining the data acquired from 

both clinical and radiological analysis.

8.2.2  Pre‐surgical Radiological 

Diagnosis

It has been observed that clinical examination 

alone detected furcation involvement in only 

3% of maxillary and 9% of mandibular molars. 

The combination of radiographic and clinical 

examinations improved detection to 65% in 

maxillary molars, but only 23% in mandibular 

molars (Ross and Thompson 1978). Parallel 

periapical and/or vertical bite‐wing radio-

graphs should always be taken after the clinical 

examination in order to confirm the informa-

tion obtained through the periodontal probing 

(Horwitz et al. 2004). It is important to know 

that the bone density (especially in mandibular 

molars) and the superimposition of the palatal 

root (maxillary molars) could partially hide 

the root complex, and so make it difficult or 

impossible to confirm the defect previously 

detected by probing. Therefore, it appears 

fundamental to combine the clinical and radi-

ological data in order to perform an accurate 

diagnosis of multi‐rooted affected teeth.

As discussed in Chapter  2, cone‐beam 

computed tomography (CBCT) may improve 

diagnostic accuracy and optimize treatment 

planning in periodontal defects, particularly 

in maxillary molars with furcation involve-

ment. However, the higher irradiation doses 

and cost–benefit ratio should be carefully 

analysed before using CBCT for periodontal 

lesions (including tooth furcation; Walter 

et al. 2016). The radiographic analysis should 

allow the clinician to evaluate the following:

 

Horizontal and vertical amount of hard 

 tissue loss in inter‐radicular areas.

 

Length of root trunk.

 

Length, divergence, and shape of roots.

 

Presence/absence of fusion between roots.

 

Amount of residual support.

 

Endodontic diagnosis and prognosis.

 

Presence of post and core build‐up restoration.

 

Presence of caries in furcation‐involved 

molars.

We should also remember that radiolucency 

in the inter‐radicular area does not always 

indicate the presence of a furcation involve-

ment. Trauma from occlusion (occlusal 

interferences, bruxism, clenching) with the 

consequent increased tooth mobility may 

produce vascular changes along the whole 

periodontal space, involving also the inter‐

radicular area, which leads to periodontal 

ligament space remodelling and bone demin-

eralization (Svanberg and Lindhe 1973; 

Polson et  al. 1976a, b). In such a case the 

radiolucency is not confirmed by the clinical 

examination (probing fails to detect an 

involvement of the furcation) and the defect 

usually disappears some weeks following the 

elimination of the occlusal overload.

8.3   Treatment of Furcation 

Defects

The objectives of periodontal therapy in 

multi‐rooted teeth with furcation involve-

ment are no different from the objective of 


background image

Resective Approach and Restorative Options 163

single‐rooted teeth therapy: arresting disease 

progression and maintaining the teeth in 

health and function with proper aesthetics. 

These goals can be met first by eliminating 

the microbial plaque from the surfaces of the 

root complex, and then by establishing an 

anatomy that facilitates proper self‐performed 

plaque removal.

Treatment options for molars with furca-

tion involvement could be divided into three 

different modalities:

 

Conservative procedures: subgingival 

debridement, access‐flap surgeries, tunnel 

preparation. The main aim of these proce-

dures is to remove the residual bacterial 

infection and improve self‐performed 

plaque control.

 

Regenerative procedures (already discussed 

in Chapters 6 and 7): guided tissue regen-

eration, induced periodontal regeneration, 

bone grafting. The goal of these proce-

dures is not only the removal of the resid-

ual infection, but also the elimination of 

the furcation defect through reconstruc-

tion of the lost inter‐radicular periodontal 

tissues.

 

Resective procedures: root separation, root 

resection, root amputation. The objective 

of these procedures is to eliminate the 

inter‐radicular lesion by completely remov-

ing both the dental and osseous structures 

that make up the defect. The tooth and 

root complex morphology is deeply 

changed by this therapeutic modality, in 

order to open the furcation completely and 

create an area conducive to performing 

easier and better plaque removal.

The choice of the appropriate treatment 

modality for a given clinical situation 

depends on a wide variety of factors that 

should be carefully evaluated before initiat-

ing treatment:

 

Degree of furcation involvement.

 

Patient expectations.

 

Patient compliance.

 

Patient susceptibility to periodontal disease.

 

Patient susceptibility to caries.

 

Amount of residual attachment.

 

Strategic value of the tooth.

 

Root complex anatomy and morphology.

 

Periodontal condition of adjacent teeth.

 

Need for prosthetic rehabilitation.

 

Need for endodontic treatment.

 

Bone volume/quality.

 

Financial considerations for the patient.

8.4   Resective Procedures and 

Restorative Approaches

8.4.1 Indications

Resective techniques have been developed 

especially for deep class II and class III furca-

tion‐involved molars to overcome these ana-

tomical limitations by physically removing 

both the dental (the roof of the involved fur-

cation) and osseous (pocket elimination) 

structures that make up the defect.

Several definitions for resective proce-

dures have been proposed by different 

authors and therefore there is no uniformity 

in the terms used in the literature. According 

to Carnevale et  al. (1995), the terms are 

defined as follows:

8.4.1.1  Root Separation

This indicates the sectioning of the multi‐

rooted tooth with the maintenance of all the 

roots (Figure  8.1). This procedure can be 

used for treating the following clinical 

situations:

 

Deep class II and class III furcated molars.

 

Root‐trunk fracture or decay.

 

Perforation of the middle of the furcation 

trunk.

Root separation is usually indicated in the 

following clinical situations:

 

Mandibular molars for separating the mesial 

from the distal root (premolariza tion).

 

Maxillary molars for separating the mesial 

root from the undivided distal and palatal 

roots.

 

Maxillary molars for dividing the palatal 

root from the undivided mesial and distal 

roots. The separation of the three roots of a 


background image

Chapter 8  

164

maxillary molar should be considered quite 

exceptional, because the presence of all the 

roots would make the passage of plaque 

removal devices too difficult or impossible.

8.4.1.2  Root Resection

This indicates the sectioning of the multi‐

rooted tooth and the removal of one or two 

roots and the associated portion of the crown. 

Even if in the literature this term is often used 

regardless of how the crown is treated, it is 

opportune to distinguish it from the term 

‘root amputation’, which refers to the removal 

of one root without removal of the overhang-

ing portion of the crown. Root amputation 

can usually be indicated in the maxillary 

molars for removing the distal root, thus 

avoiding the need to restore the tooth with a 

crown in a conservative treatment plan.

The root resection procedure can be used 

for treating the following clinical situations:

 

Deep class II and class III furcated molars 

with severe root proximity or a long root 

trunk.

 

Severe bone loss affecting one or more 

roots of molars with and without furcation 

involvement.

 

Root or root trunk fracture or perforation.

 

Untreatable apical endodontic lesion 

affecting one root.

 

Severe root decay or resorption.

 

Severe recession or dehiscence affecting 

one root.

When considering root resection for treating 

molars with furcation involvement, the clini-

cian has to choose between different 

alternatives.

Mandibular Molars

These have only one furcation and therefore 

there are just two possibilities (Figure 8.2):

 

Resection of the mesial root.

 

Resection of the distal root.

Assuming that the two roots do not  present 

significant differences in terms of periodontal, 

endodontic, and restorative prognosis, the fol-

lowing morphological characteristics should 

be considered before deciding which root has 

to be extracted (Majzooub and Kon 1992):

 

The mesial root usually presents a greater 

root surface, but also quite often a deep 

concavity, making it difficult first to prop-

erly prepare and restore it, and for the 

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8.1 

Root separation (rizotomy: sectioning of the multi‐rooted tooth with the maintenance of all the 

roots) of a mandibular first molar affected by degree III furcation involvement (a–d), followed by an apical 

positioned flap (e) and final restoration (f), allowing self‐performed oral hygiene.


background image

Resective Approach and Restorative Options 165

patient to keep clean with standard plaque‐

control procedures. It is important to 

stress the risk of producing a fenestration 

in the distal surface of the root, during 

both the tooth preparation and the endo-

dontic treatment/retreatment of the two 

narrow and superficial root canals.

 

The distal is a comparatively large root, 

with usually one wide root canal and an 

oval convex cross‐section with a greater 

bulk of dentine. These characteristics make 

the distal root less prone to root fracture; 

easier to treat endodontically, to prepare, 

and to restore; and finally for the patient to 

keep clean through self‐performed plaque 

removal.

Maxillary Molars

These have three furcations and therefore 

several root resection possibilities (Figure 8.3):

 

Resection of the mesio‐buccal root with-

out separating the other two roots. This 

Figure 8.2 

Root resection (rizectomy) of the mesio‐buccal root of an upper maxillary molar, without 

separation of the other two roots, performed due to the severe loss of bone support caused by an endodontic‐

periodontal lesion. Degree III furcation involvement on the mesial and buccal furcations was present, with no 

distal furcation involvement. This procedure was carried out after appropriate endodontic therapy. Three 

months after the root resection, an apically positioned flap was performed and a provisional prosthetic crown 

was positioned. Three months later, a final metal‐ceramic crown was cemented, with a good long‐term (five 

years) clinical result (last image).


background image

Chapter 8  

166

procedure can be performed in case of 

involvement of the buccal and/or mesial 

furcation (in such a case root separation is 

also possible), and when the mesio‐buccal 

root is affected by a deep infrabony defect 

or an untreatable endodontic or restorative 

problem. After the mesio‐buccal root 

removal, the residual root trunk shows a 

flat or convex mesial surface that facilitates 

both prosthetic procedures and self‐ 

performed plaque control.

 

Resection of the disto‐buccal root without 

separating the other two roots. This proce-

dure can be performed in case of involve-

ment of the buccal and/or distal furcation, 

and when the disto‐buccal root is affected 

by a deep infrabony defect or by an untreat-

able endodontic or restorative problem. 

Following the extraction of the disto‐buccal 

root, the residual root trunk often exhibits 

a deep distal concavity, which should be 

flattened during tooth preparation in order 

to improve the quality of the prosthetic 

 restoration and the patient’s self‐performed 

plaque removal.

 

Resection of the palatal root without sepa-

rating the other two roots. This procedure 

can be performed in case of involvement of 

the mesial and/or distal furcation (in such 

a case root separation is also possible), or 

when the palatal root is affected by a deep 

infrabony defect or an endodontic or 

restorative untreatable problem.

When all three furcations of a maxillary 

molar are involved, following root separation 

one or two roots can be extracted. In such 

clinical situations, if two roots are maintain-

able (a careful evaluation of periodontal, 

endodontic, and prosthetic prognosis is an 

essential prerequisite), the following options 

are possible (Figure 8.4):

 

Root separation of all three roots and 

extraction of the disto‐buccal one. The 

disto‐buccal root is statistically the most 

frequently extracted (Rosenberg 1978; 

Ross and Thompson 1978), because it is 

usually the shortest with a long root trunk 

and therefore has a smaller amount of bone 

support. The anatomy and morphology of 

the root trunk usually make access between 

the divided mesial and palatal roots easy 

for the patient’s self‐performed oral 

hygiene.

 

Root separation of all three furcations and 

extraction of the mesio‐buccal root. This 

option is less frequent than the previous 

one, because often the disto‐buccal root is 

too thin, and also because proper self‐

performed plaque removal in the distal 

Figure 8.3 

Root separation of all three roots of a maxillary upper second molar and extraction (rizectomy) of 

the disto‐buccal root.


background image

Resective Approach and Restorative Options 167

furcation is nearly impossible if distally 

the neighbouring molar is present.

 

Root separation of all three furcations and 

extraction of the palatal root. This option 

is less frequent too because of the anatomy 

of the palatal root (large root surfaces and 

an oval convex cross‐section with thick 

dentine), but also because the thickness of 

the palatal bone makes this root particu-

larly stable and firm. When the clinician 

has to choose between the mesial and the 

palatal root, they should consider that the 

mesial root has a root surface area that is 

equal to or even larger than the palatal one, 

but it presents two or even three narrow 

root canals instead of the sole and wide 

canal of the palatal root.

8.4.2  Scientific Evidence

Ten studies (only one prospective) reporting 

the results of root resection with at least five‐

year follow‐up were found in the literature 

(see Table 8.1). The survival rates reported in 

these studies range from about 60 to 100% 

after a mean observation period of 5–10 years.

Bergenholtz (1972) retrospectively 

reported the results of 45 teeth treated with 

root resection up to 11 years before. Out of 

the 20 teeth with a 5–10‐year follow‐up, 17 

teeth were still present, 2 teeth were lost 

because of periodontal complications, and 1 

because of root perforation, meaning a 

 survival rate of 85%. Hamp et  al. (1975) 

reported a survival rate of 100% after 5 years 

in 87 molars treated by means of root resec-

tion and/or separation. The authors attrib-

uted their success to the elimination of 

plaque‐retentive areas in the furcations, 

meticulous patient oral hygiene, and regular 

maintenance care.

Langer et al. (1981) reported a survival rate 

of 62% in a 10‐year retrospective evaluation 

of 100 molars (50 maxillary and 50 mandibu-

lar) treated with resection. The main causes 

of tooth loss were root fracture in 18 teeth 

(47.4%), periodontal complications in 10 

teeth (26.3%), endodontic failures in 7 teeth 

(18.4%), and cement washouts leading to car-

ies in 3 teeth (7.9%). It is interesting to point 

out that the ratio of maxillary to mandibular 

failures was approximately 2:1 and only 

15.8% of the tooth loss occurred within the 

first five years after surgery, whereas 

the  vast  majority  –  that is, 55.3% of the 

losses – occurred between the fifth and sev-

enth years of function. The remaining losses 

took place between the eighth and tenth 

years of observation. Buhler (1988) presented 

a 10‐year follow‐up of 28 root‐resected 

Figure 8.4 

Root separation in a mandibular first molar affected by degree III furcation involvement associated 

with periodontal‐endodontic pathology on the distal root. Distal root resection (rizectomy) was carried out, 

maintaining the mesial root in situ. A prosthetic metal‐ceramic crown was carried out after the three‐month 

healing period.


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c08.indd

Comp. by: RKarthikeyan  Date: 14 May 2018  Time: 04:21:05 PM  Stage: Proof  WorkFlow:

<WORKFLOW>

 

Page Number: 168

Table 8.1

 

Clinical studies on the tr

ea

tmen

t of fur

ca

tion‐in

volv

ed molars with r

oot separ

ation/r

esec

tion.

A

uthor

Year

Study desig

n

Number 

of t

eeth

Follo

w‐up (mean)

Complica

tions

Sur

viv

al

Ber

genholtz

1972

Re

tr

osp

ec

tive

45

5–10 ye

ars

66.6% p

er

io

don

tal 33.3% r

oot p

er

fora

tion

85%

H

am

p e

t al.

1975

Re

tr

osp

ec

tive

87

5 ye

ars

100%

Langer e

t al.

1981

Re

tr

osp

ec

tive

100

10 ye

ars

47.4% r

oot f

rac

tur

e 26.3% p

er

io

don

tal 

18.4% endo

don

tic 7.9% w

as

h‐out/c

ar

ie

s

62%

Buhler

1988

Re

tr

osp

ec

tive

28

10 ye

ars

33.3% endo

don

tic 22.2% p

er

io‐endo 22.2% 

per

io

don

tal 11.1% r

oot f

rac

tur

e 111% 

w

as

h‐out/c

ane

s

67.9%

C

ar

ne

vale e

t al.

1991

Re

tr

osp

ec

tive

488

Gr

oup I 303 t

ee

th: 3–6 ye

ars 

Gr

oup I

I 185 t

ee

th:7–11 ye

ars

33.3% c

ar

ie

s 33.3% r

oot f

rac

tur

e 33.3% PPD 

> 5mm (

gr

oup I

I)

Gr

oup I

I 98.4%

Blomlof e

t al.

1997

Re

tr

osp

ec

tive

78

5–10 ye

ars

81.3% p

er

io

don

tal 25% p

er

io‐endo 28.1 

endo

don

tic

5 ye

ars

: 83% 10 

ye

ars

: 68%

C

ar

ne

vale e

t al.

1998

Pr

osp

ec

tive

175

10ye

ars

33.3% endo

don

tic 25% r

oot c

ar

ie

s 25% 

per

io

don

tal 16.7 r

oot f

rac

tur

e

5 ye

ars

: 98.9% 

10 ye

ars

: 93.1%

H

ou e

t al.

1999

Re

tr

osp

ec

tive

52

6.7 (5–13 ye

ars)

100%

Sv

ar

dstr

om &. 

W

ennstr

om

2000

Re

tr

osp

ec

tive

47

9.5 (8–12 ye

ars)

80% r

oot f

rac

tur

e

89.4%

D

anne

w

itz e

t al.

2006

Re

tr

osp

ec

tive

19

~9 (~5–12 ye

ars)

Not r

ep

or

te

d

92.9%

  Table 8.1   

 Clinical studies on the treatment of furcation‐involved molars with root separation/resection. 

Author

Year

Study design

Number 
of teeth

Follow‐up (mean)

Complications

Survival    

Bergenholtz

   1972   

Retrospective

45

5–10 years

66.6% periodontal 33.3% root perforation

85%  

Hamp et al.

   1975   

Retrospective

87

5 years

100%  

Langer et al.

   1981   

Retrospective

100

10 years

47.4% root fracture 26.3% periodontal 

18.4% endodontic 7.9% wash‐out/caries

62%  

Buhler

   1988   

Retrospective

28

10 years

33.3% endodontic 22.2% perio‐endo 22.2% 

periodontal 11.1% root fracture 111% 

wash‐out/canes

67.9%  

Carnevale et al.

   1991   

Retrospective

488

Group I 303 teeth: 3–6 years 

Group II 185 teeth:7–11 years

33.3% caries 33.3% root fracture 33.3% PPD 

> 5mm (group II)

Group II 98.4%  

Blomlof et al.

   1997   

Retrospective

78

5–10 years

81.3% periodontal 25% perio‐endo 28.1 

endodontic

5 years: 83% 10 

years: 68%  

Carnevale et al.

   1998   

Prospective

175

10years

33.3% endodontic 25% root caries 25% 

periodontal 16.7 root fracture

5 years: 98.9% 

10 years: 93.1%  

Hou et al.

   1999   

Retrospective

52

6.7 (5–13 years)

100%  

Svardstrom &. 

Wennstrom

   2000   

Retrospective

47

9.5 (8–12 years)

80% root fracture

89.4%  

Dannewitz et al.

   2006   

Retrospective

19

~9 (~5–12 years)

Not reported

92.9%

  PPD = probing pocket depth.  


background image

Resective Approach and Restorative Options 169

molars, mainly used as bridge abutments. 

The calculated survival rate was 67.9% and 

the reasons for tooth loss were as follows: 

endodontic failures 33.3%, combined perio-

dontal and endodontic lesions 22.2%, perio-

dontal reasons 22.2%, root fracture 11.1%, 

and loss of retention leading to secondary 

caries 11.1%. Curiously similar to the find-

ings of Langer and co‐workers, no tooth loss 

could be observed during the first four years 

following therapy.

Carnevale et  al. (1991) published a retro-

spective analysis of 488 molars after tooth 

resection and/or separation and prosthetic 

reconstruction. The follow‐up period was 

3–6 years for 303 teeth (62%) and 7–11 years 

for 175 teeth (38%). Considering only the 

group with the longer follow‐up, 3 teeth were 

lost (1 for caries, 1 for root fracture, and 1 for 

PPD > 5 mm), yielding a survival rate of 98.4%. 

In contrast to Langer et al. (1981) and Bühler 

(1998), most failures occurred early (3–6‐year 

group) rather than later (7–11‐year group). 

The authors attributed the high success rate 

to an optimal hygiene regimen and frequent 

maintenance recall. A more recent 10‐year 

follow‐up prospective investigation by 

Carnevale et al. (1998) reported the success 

rate of root‐resective therapy in 175 molars 

used as abutments for single‐unit crowns or 

fixed dental prostheses to be 98.9% after 

5 years and 93% at the end of the study. Only 

12 of 175 teeth (7%) were extracted, 4 for 

endodontic reasons, 3 for root caries, 3 for 

periodontal reasons, and 2 for root fracture.

Hou et al. (1999) reported a survival rate of 

100% of 52 root‐separated molars in a case 

series including 25 patients followed up for a 

mean observation period of 6.7 years (range 

5–13 years). Svardström and Wennström 

(2000) reported a survival rate of 89.4% of 47 

molars 8–12 years following root‐resective 

procedures (mean observation period 

9.5 years). Five teeth (10.6%) had to be 

extracted during the follow‐up period and 

root fracture was the main reason for extrac-

tion (80.0%). Dannewitz et  al. (2006) per-

formed 19 root resections while treating 305 

furcation‐involved molars. Following a mean 

observation period of about 9 years, 8 resected 

teeth were lost, yielding a survival rate of 

57.9%. The complications – that is, the reason 

for the tooth loss – were not reported.

It is fitting to consider that a true com-

parison among these studies is almost 

impossible: different pre‐therapeutic condi-

tions of the involved molars, no uniformity 

in the  terminology used, different reasons 

for  performing these procedures (periodon-

tal? endodontic? root fracture? caries?), 

 different techniques used in each step of 

both root separation and resections (endo-

dontic treatment, tooth build‐up, prepara-

tion, provisional and definitive crown 

morphology), different recall intervals, and 

smoking  habits (Mullally and Linden 1996) 

make drawing indisputable conclusions 

about the efficacy of this therapeutic modal-

ity an impossible task. In spite of that, it 

must be pointed out that with the exception 

of three studies, the average survival rate of 

the molars treated with root separation/

resection was very high (close to 90%) and 

comparable to that of implants inserted in 

the posterior areas of the mouth, and that 

the reasons for tooth extraction were mainly 

related to endodontic complications and 

root fractures, and not to periodontal 

 disease  recurrence.

8.4.3 Contraindications

Root‐separation/resection procedures  present 

some important anatomical and technical 

contraindications:

 

Poor compliance with oral hygiene.

 

Patients with high caries susceptibility.

 

Patients with severe parafunctional habits.

 

Inadequate residual attachment on the 

remaining roots.

 

Serious discrepancies in adjacent inter-

proximal bone level.

 

Unfavourable anatomical factors (long root 

trunk, short divergence between roots, 

fused roots, presence of inter‐radicular 

septa).

 

Retained roots endodontically untreatable.

  Table 8.1   

 Clinical studies on the treatment of furcation‐involved molars with root separation/resection. 

Author

Year

Study design

Number 
of teeth

Follow‐up (mean)

Complications

Survival    

Bergenholtz

   1972   

Retrospective

45

5–10 years

66.6% periodontal 33.3% root perforation

85%  

Hamp et al.

   1975   

Retrospective

87

5 years

100%  

Langer et al.

   1981   

Retrospective

100

10 years

47.4% root fracture 26.3% periodontal 

18.4% endodontic 7.9% wash‐out/caries

62%  

Buhler

   1988   

Retrospective

28

10 years

33.3% endodontic 22.2% perio‐endo 22.2% 

periodontal 11.1% root fracture 111% 

wash‐out/canes

67.9%  

Carnevale et al.

   1991   

Retrospective

488

Group I 303 teeth: 3–6 years 

Group II 185 teeth:7–11 years

33.3% caries 33.3% root fracture 33.3% PPD 

> 5mm (group II)

Group II 98.4%  

Blomlof et al.

   1997   

Retrospective

78

5–10 years

81.3% periodontal 25% perio‐endo 28.1 

endodontic

5 years: 83% 10 

years: 68%  

Carnevale et al.

   1998   

Prospective

175

10years

33.3% endodontic 25% root caries 25% 

periodontal 16.7 root fracture

5 years: 98.9% 

10 years: 93.1%  

Hou et al.

   1999   

Retrospective

52

6.7 (5–13 years)

100%  

Svardstrom &. 

Wennstrom

   2000   

Retrospective

47

9.5 (8–12 years)

80% root fracture

89.4%  

Dannewitz et al.

   2006   

Retrospective

19

~9 (~5–12 years)

Not reported

92.9%

  PPD = probing pocket depth.  


background image

Chapter 8  

170

 

Excessive endodontic instrumentation of 

retained roots.

 

Severe root decay/resorption.

We should also bear in mind that these are 

sensitive techniques that require a careful 

interdisciplinary approach, a widespread 

knowledge of prosthodontics, endodontics, 

and periodontology, and an accurate evalua-

tion of the cost–benefit ratio with respect to 

the treatment alternatives. The need for 

endodontic treatment, prosthetic rehabilita-

tion, and periodontal surgery actually makes 

this therapeutic modality a demanding treat-

ment, in terms of both economic cost and 

biological tissue loss.

8.4.4  Step‐by‐step Procedure

Considering that root separation/resection is 

an interdisciplinary procedure and that most 

of the failures reported in the literature are 

basically generated by reasons other than 

new periodontal breakdown, first careful 

patient selection and then precise sequenc-

ing and correct execution of each phase of 

the therapeutic protocol are crucial to the 

long‐term success of the procedure. The sug-

gested therapeutic sequence is as follows.

8.4.4.1  Patient Selection

This is the first, fundamental step of the 

sequence, because not all patients are equally 

suitable for root separation/resection. Poor 

patient compliance, high caries susceptibil-

ity, and limited financial resources are the 

most frequent factors limiting the use of this 

procedure. Treatment options must be 

 presented to the patient and the potential 

problems should be discussed. Root separa-

tion/resection should be considered as part 

of an overall treatment plan aiming at 

 

complete periodontal, functional, and 

 aesthetic  rehabilitation.

8.4.4.2  Tooth Selection

As already mentioned, long root trunk, short 

divergences between the roots, fused roots, 

and presence of inter‐radicular septa represent 

contraindications for a root‐ separation/resec-

tion procedure. Particular caution should be 

used when the multi‐rooted teeth are intact, 

because this is an invasive procedure involving 

a considerable biological cost that must always 

be carefully evaluated.

8.4.4.3  Endodontic Treatment

Since root and/or build‐up fractures have 

often been reported as one of the most 

 frequent reasons for the failure of a root‐ 

separation/resection procedure, correct 

endodontic treatments must preserve as 

much tooth structure as possible at both cor-

onal (access opening should be kept as small 

as possible) and radicular levels (conserva-

tive instrumentation). Excessive instrumen-

tation of radicular canals and/or immoderate 

pressure during gutta‐percha condensation 

should be avoided.

Although a vital root resection is possible 

without any initial post‐surgical discomfort 

for the patient (Smukler and Tagger 1976), 

when the tooth to be treated is vital or the 

root filling is suboptimal, endodontic treat-

ment/retreatment should be always the first 

procedure performed. The reasons for a 

 preliminary root canal treatment are:

 

Easier rubber dam isolation and easier 

access for the endodontist.

 

Evaluation of tooth/root endodontic 

 

prognosis before separation/resection 

procedure.

 

Crown build‐up before separation/resec-

tion procedure.

If from a clinical and radiological point of 

view it is not possible to identify the root(s) 

to be resected with certainty, each root has to 

be endodontically treated/retreated. In order 

to avoid useless treatments and costs, when 

the clinical periodontal evaluation of the 

tooth is deeply doubtful, endodontic treat-

ment can be exceptionally postponed until 

after the root separation/resection. In these 

cases, root canal treatment should be per-

formed within two weeks (Smukler and 

Tagger 1976).


background image

Resective Approach and Restorative Options 171

8.4.4.4  Crown Build‐up

After completion of the endodontic therapy, 

the crown of the molar, the pulp chamber, 

and almost 2–3 mm of the canals apical to 

the furcation entrance are prepared, etched, 

and filled with light or chemically cured 

composite by using a dentine adhesive to 

improve the retention of the material. This 

step is of the outmost importance, because 

the replacement of the missing coronal and 

radicular tooth structure should provide to 

the abutments a complete marginal seal and 

proper retention and resistance for the sub-

sequent full‐coverage restoration.

8.4.4.5  Root separation/resection During 
Preliminary Prosthetic Preparation

Root separation/resection may be per-

formed as part of the initial tooth prepara-

tion for the prosthetic rehabilitation 

(‘prosthetic preparation’), when a prefabri-

cated shell provisional restoration is relined 

and temporarily cemented. Performing root 

separation/resection prior to and not dur-

ing periodontal surgery (Carnevale et  al. 

1981, 1997) presents several important 

 clinical  advantages:

 

Accurate evaluation of the periodontal 

condition of the molar and thus the possi-

bility to change the treatment plan at an 

early stage. In molars with furcation 

involvement, it is often impossible to pre-

cisely assess the inter‐radicular attachment 

loss before root separation, and therefore 

no conclusive clinical decision about the 

prognosis of the tooth can be made prior 

to this procedure.

 

Earlier elimination/reduction of the inter‐

radicular periodontal infection and earlier 

extraction of hopeless roots. This can 

enhance the healing of the infrabony 

lesions that might be present in the inter‐

radicular area at the extraction site, and 

therefore generate an osseous morphology 

more favourable for being corrected at the 

time of resective bone surgery.

 

Creating access for plaque removal in an 

otherwise inaccessible area.

 

Possibility of reducing tooth mobility 

before surgery by splinting the roots with 

the provisional restoration.

 

If the root trunk is short and infrabony 

defects are not present, periodontal sur-

gery can often be avoided.

Root separation or resection can otherwise 

be performed following the same technique 

during the periodontal surgical phase, if 

there is a diagnostic problem or difficult 

access (Carnevale et al. 1990).

Before starting with tooth preparation/

resection, it is of the utmost importance to 

carefully probe each root and especially the 

furcation area in order to identify three‐

dimensionally the position of furcation 

entrances, the anatomy of the root trunk, and 

the potential presence of infrabony defects 

affecting one or more roots (Zappa et  al. 

1993). Considering the reduced diameter 

and thickness of the roots, the preparation 

must be as conservative as possible. For this 

reason, tooth structure saving a knife‐edge 

finishing line should be preferred. Usually 

local anaesthesia is not necessary during the 

root‐separation phase and therefore should 

not be used, because the patient’s feeling of 

pain can help the clinician to avoid moving 

the bur too deeply in the tissue and therefore 

reducing the risk of damaging the preserved 

inter‐radicular attachment.

In order to get access to the subgingival 

root surfaces with the precise root axis and 

to limit soft‐tissue damage, a small‐diameter 

flame‐shape diamond bur can be used, and 

the buccal and lingual enamel prominence 

should be eliminated first. The access to each 

involved furcation (buccal and lingual in 

mandibular molars; buccal, mesial, and distal 

in the maxillary) should be initially ‘marked’ 

with vertical grooves that can be used as ref-

erence points during the root‐separation/

resection procedure. In every passage the 

flame‐shape diamond bur has to be moved 

first forwards into the furcation and then 

backwards, working in both interproximal 

line angles of each root in order to widen the 

space previously created between the roots. 


background image

Chapter 8  

172

Once the furcation has been separated, the 

whole roof of the involved furcation must be 

eliminated and an adequate space for plaque‐

removal devices should be created between 

the roots.

It is important to remember that the distal 

aspect of the molar mesial root (especially 

the mandibular one) often presents a deep 

concavity. In order to avoid weakening the 

mesial root or creating a root fenestration, 

the desired distance within the distal root 

should be created by preparing the mesial 

aspect of the distal root rather than the distal 

of the mesial one. The mesial and distal sur-

faces of mesial and distal mandibular roots 

and the buccal and palatal surface of respec-

tively mesio‐buccal and palatal roots must be 

parallel to each other (if both the roots are 

maintained) and to the neighbouring abut-

ments to ensure a proper insertion axis of the 

prosthetic rehabilitation, while the inter-

proximal surfaces can be divergent in order 

to widen the space between the roots.

In order to be sure that the whole roof of the 

involved furcation has been eliminated, a 

curved periodontal probe (Nabers probe) 

should be moved in the apico‐coronal direction 

to detect the potential presence of furcation 

lips or ledges. With the aim of facilitating provi-

sional relining and domiciliary plaque removal 

in the exposed root surfaces, at the end of tooth 

preparation/resection, the root surfaces should 

be made smooth and even by using fine and 

extra‐fine diamond burs, and the line angles of 

the abutment should be rounded.

8.4.4.6  Provisional Restoration

At the end of tooth separation/resection, a 

prefabricated shell provisional restoration is 

relined and temporarily cemented. In order 

not to disturb both soft and hard interproxi-

mal tissue healing, it is important to shorten 

at about the gingival level and to precisely 

refine the margins of the relined provisional 

restoration. The excess of temporary cement 

must be carefully removed and the 

patient  should be taught to clean the new 

interproximal spaces properly with appro-

priate plaque‐removal devices. The provi-

sional restoration can be strengthened with 

 specific commercially available reinforcing 

fibres or, in the case of long‐span bridges or 

in patients with parafunctional habits, 

replaced after an impression with a custom‐

made metal‐ reinforced temporary restoration.

8.4.4.7  Periodontal Surgery

The objectives of this phase of the root‐sepa-

ration/resection procedure are the following:

 

To eliminate possible angular bone defects 

around the maintained roots and recreate 

a positive bone architecture in order to 

obtain an environment favourable to good 

hygiene and easy dental care. Bone resec-

tion may also be performed to reduce the 

bucco‐lingual dimension of the alveolar 

process in the extraction sites. Soft‐ and 

hard‐tissue management and post‐surgical 

care are the same as used for pocket elimi-

nation with resective osseous surgery.

 

To facilitate both soft adaptation and dom-

iciliary plaque removal by modifying the 

root contour through intrasurgical prepa-

ration of prosthetic abutments.

Following flap elevation, the maintained 

roots and the other non‐vital abutments are 

newly prepared with the purpose of remov-

ing the residual plaque and calculus, improving 

the space between the roots, eliminating any 

residual undercuts, and reducing the natural 

anatomical concavities present on the root 

surfaces. As proposed by Di Febo (1985), 

concavities can be reduced by preparing a 

chamfer on only the portions of the roots 

that are convex, without touching the con-

cave portions, which thereby present a knife‐

edge finishing line (‘combined preparation’).

The intra‐operative preparation does not 

always extend to the alveolar crest. On the 

contrary, the operator should prepare the 

tooth to the level of connective tissue attach-

ment and avoid, wherever possible, injuring 

intact fibres and removing healthy cemen-

tum. Following intra‐surgical abutment 

preparation and before suturing, the tempo-

rary restoration must be relined with a 

 self‐curing acrylic resin and the margins 

trimmed 3 mm short of the alveolar crest so 

as not to disturb the healing process.


background image

Resective Approach and Restorative Options 173

Throughout the tissue maturation period, 

patients are maintained on a plaque‐control 

programme that includes professional tooth 

cleaning and oral hygiene instruction once a 

month. In order to reduce the risk of cement 

washout during these recall appointments, 

the provisional restoration should be 

removed and re‐cemented and, where neces-

sary, new interdental plaque‐removal devices 

are recommended (Walter et al. 2011).

8.4.4.8  Final Prosthesis

Once the healing period is complete and 

before the impression for the definitive 

 prosthesis, the endodontic, periodontal, and 

provisional prosthetic treatments have to be 

clinically and radiographically re‐evaluated. 

If the treatments could achieve successful 

outcomes, the abutments can be refined and 

polished and the final impression can be 

taken, with or without extra‐thin retraction 

cords. The design and construction of the 

metal framework in combination with a good 

crown fitting and sitting play a fundamental 

role in the long‐term success of fixed bridges 

using root‐separated or root‐resected abut-

ments (Carnevale et al. 1991; Newell 1991). 

The strength and stability of the metal frame-

work should compensate for the structural 

weakness of the abutments, and for the high 

tooth mobility often present in severely 

involved periodontal cases (Wang et  al. 

1994). For the same mechanical reasons, 

occlusion should be designed and set to min-

imize occlusal lateral forces. Interproximal 

spaces should be created in order to facilitate 

oral hygiene as much as possible, and the 

patient should be taught to use self‐per-

formed plaque‐removal devices correctly. At 

the completion of therapy, patients are then 

enrolled in a personalized maintenance recall 

programme that generally includes three‐

monthly appointments.

8.5   Conclusions

The long‐term prognosis of teeth with 

 furcation involvement treated with conven-

tional therapy demonstrates a higher fre-

quency of tooth loss than non‐furcated 

molars. The reduced success rate may be due 

to the fact that the persistence of a defect 

within the inter‐radicular space creates an 

anatomical environment that interferes with 

oral hygiene efforts. In fact, partial gain of 

clinical attachment levels within the defect, 

although statistically or clinically significant, 

may not effectively improve the outcome dur-

ing the maintenance phase of therapy. It  is 

important to point out that comparative stud-

ies between the different procedures are lack-

ing, and therefore in treatment decisions for 

furcation‐involved molars there is no scien-

tific evidence that a given treatment modality 

is superior to the others. Patient‐related fac-

tors such age and health conditions, compli-

ance, susceptibility to caries, strategic value of 

the tooth in relation to the overall treatment 

plan, functional and aesthetic demands, and, 

last but not least, financial resources should 

guide clinicians in their choice of treatment.

 Summary of Evidence

An accurate and precise diagnosis is essen-

tial in order to correctly approach affected 

molar furcation areas. In particular, clini-

cians must initially evaluate all the patient‐ 

and tooth/site‐related factors that are able 

to determine indications and contraindica-

tions for the treatment of the defects. 

Afterwards, this step‐by‐step approach 

should be followed:

 

Endodontic treatment and tooth 

restoration.

 

Root separation/resection.

 

Provisional restoration.

 

Periodontal surgery.

 

Final prosthesis.


background image

Chapter 8  

174

 References

Bergenholtz, A. (1972). Radectomy of multi‐

rooted teeth. Journal of the American Dental 

Association 85, 870–875.

Blomlof, L., Jansson, L., Appelgren, R. et al. 

(1997). Prognosis and mortality of root 

resected molars. International Journal of 

Periodontics and Restorative Dentistry 17, 

191–201.

Buhler, H. (1988). Evaluation of root‐resected 

teeth: Results after 10 years. Journal of 

Periodontology 59, 805–810.

Carnevale, G., Di Febo, G., and Fuzzi, M. 

(1990). A retrospective analysis of the 

perio‐prosthetic aspect of teeth re‐prepared 

during periodontal surgery. Journal of 

Clinical Periodontology 17, 313–316.

Carnevale, G., Di Febo, G., Tonelli, M.P. et al. 

(1991). A retrospective analysis of the 

periodontal‐prosthetic treatment of molars 

with interradicular lesions. International 

Journal of Periodontics and Restorative 

Dentistry 11, 189–205.

Carnevale, G., Di Febo, G., and Trebbi, L. (1981). 

A patient presentation: Planning a difficult 

case. International Journal of Periodontics and 

Restorative Dentistry 1, 50–63.

Carnevale, G., Pontoriero, R., and di Febo, G. 

(1998). Long‐term effects of root‐resective 

therapy in furcation‐involved molars: A 

10‐ year longitudinal study. Journal of 

Clinical Periodontology 25, 209–214.

Carnevale, G., Pontoriero, R., and Hurzeler, M. 

(1995). Management of furcation 

involvement. Periodontology 2000 9, 69–89.

Carnevale, G., Pontoriero, R., and Lindhe, J. 

(1997). Treatment of furcation‐involved 

teeth. In: Clinical Periodontology and 

Implant Dentistry, 3rd edn (ed. J. Lindhe, T. 

Karring, and N.P. Lang), 682–710. 

Copenhagen: Munksgaard.

Dannewitz, B., Krieger, J.K., Husing, J., and 

Eickholz, P. (2006). Loss of molars in 

periodontally treated patients: A 

retrospective analysis five years or more 

after active periodontal treatment. Journal 

of Clinical Periodontology 33, 53–61.

De Sanctis, M., and Murphey K.G. (2000). The 

role of resective periodontal surgery in the 

treatment of furcation defects. 

Periodontology 2000 22, 154–168.

Di Febo, G., Carnevale, G., and Sterrantino, 

S.F. (1985). Treatment of case of advanced 

peridontitis: Clinical procedures utilizing 

the ‘combined preparation’ technique. 

International Journal of Periodontics and 

Restorative Dentistry 1, 52–63.

Hamp, S.E., Nyman, S., and Lindhe, J. (1975). 

Periodontal treatment of multirooted teeth: 

Results after 5 years. Journal of Clinical 

Periodontology 2, 126–135.

Horwitz, J., Machtei, E.E., Reitmeir, P. et al. 

(2004). Radiographic parameters as 

prognostic indicators for healing of class II 

furcation defects. Journal of Clinical 

Periodontology 31, 105–111.

Hou, G.L., Tsai, C.C., and Weisgold, A.S. 

(1999). Treatment of molar furcation 

involvement using root separation and a 

crown and sleeve‐coping telescopic denture: 

A longitudinal study. Journal of 

Periodontology 70, 1098–1109.

Huynh‐Ba, G., Kuonen, P., Hofer, D. et al. 

(2009). The effect of periodontal therapy on 

the survival rate and incidence of 

complications of multirooted teeth with 

furcation involvement after an observation 

period of at least 5 years: A systematic 

review. Journal of Clinical Periodontology 

36, 164–176.

Langer, B., Stein, S.D., and Wagenberg, B. 

(1981). An evaluation of root resections: A 

ten‐year study. Journal of Periodontology 52, 

719–722.

Majzooub, Z., and Kon, S. (1992). Tooth 

morphology following root resection 

procedures in maxillary molars. Journal of 

Periodontology 63, 290–296.

Mullally, B.H., and Linden, G.J. (1996). Molar 

furcation involvement associated with 

cigarette smoking in periodontal referrals. 

Journal of Clinical Periodontology 23, 

658–661.


background image

Resective Approach and Restorative Options 175

Newell, D.H. (1991). The role of the 

prosthodontist in restoring root‐resected 

molars: A study of 70 molar root 

resections. Journal of Prosthetic Dentistry 

65, 7–15.

Polson, A.M., Meitner, S.W., and Zander, H.A. 

(1976a). Trauma and progression of 

marginal periodontitis in squirrel monkeys. 

IV Reversibility of bone loss due to trauma 

alone and trauma superimposed upon 

periodontitis. Journal of Periodontal 

Research 11, 290–298.

Polson, A.M., Meitner, S.W., and Zander, H.A. 

(1976b). Trauma and progression of 

marginal periodontitis in squirrel monkeys. 

III Adaption of interproximal alveolar bone 

to repetitive injury. Journal of Periodontal 

Research 11, 279–289.

Rosenberg, M.M. (1978). Management of 

osseous defects. In: Clinical Dentistry, vol. 3 

(ed. J.W. Clark), 103. Philadelphia, PA: 

Harper & Row.

Ross, I.F., and Thompson, R.H., Jr (1978). A 

long term study of root retention in the 

treatment of maxillary molars with furcation 

involvement. Journal of Periodontology 49, 

238–244.

Smukler, H., and Tagger, M. (1976). Vital root 

amputation: A clinical and histologic study. 

Journal of Periodontology 47, 324–330.

Svanberg, G., and Lindhe, J. (1973). 

Experimental tooth hypermobility in the 

dog: A methodological study. Odontologisk 

Revy 24, 269–282.

Svardstrom, G., and Wennstrom, J.L. (2000). 

Periodontal treatment decisions for molars: 

An analysis of influencing factors and 

long‐term outcome. Journal of 

Periodontology 71, 579–585.

Tarnow, D., and Fletcher, P. (1984). 

Classification of the vertical component of 

furcation involvement. Journal of 

Periodontology 55, 283–284.

Walter. C., Schmidt, J.C., Dula, K., and 

Sculean, A. (2016). Cone beam computed 

tomography (CBCT) for diagnosis and 

treatment planning in periodontology: 

A systematic review. Quintessence 

International 47, 25–37.

Walter, C., Weiger, R., and Zitzmann, N.U. 

(2011). Periodontal surgery in furcation‐

involved maxillary molars revisited: An 

introduction of guidelines for 

comprehensive treatment. Clinical Oral 

Investigations 15, 9–20.

Wang, H.L., Burgett, F.G., Shyr, Y., and 

Ramfjord, S. (1994). The influence of molar 

furcation involvement and mobility on 

future clinical periodontal attachment loss. 

Journal of Periodontology 65, 25–29.

Zappa, U., Grosso, L., Simona, C. et al. (1993). 

Clinical furcation diagnosis and 

interradicular bone defects. Journal of 

Periodontology 64, 219–227.


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c09.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:21:25 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 177

177

Diagnosis and Treatment of Furcation-Involved Teeth, First Edition. Edited by Luigi Nibali. 

© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd. 

Companion website: www.wiley.com/go/nibali/diagnosis

9.1   Introduction

Furcation involvement has been shown to be 

associated with tooth loss during supportive 

periodontal therapy (Graetz et  al. 2015; 

Dannewitz et  al. 2016; see also Chapter  5). 

Characterized by ridges and concavities 

(Svärdström and Wennström 1988), the furca-

tion area is – for patients and dental profes-

sionals alike  –  particularly difficult to clean. 

High plaque and consequently high bleeding 

scores are generally associated with break-

down of periodontal tissues during mainte-

nance (Lang et al. 1990; Eickholz et al. 2008). 

Creating an inter‐radicular space accessible 

for brushing between the roots at deeply 

involved furcation sites – a procedure referred 

to as ‘furcation tunnelling’ – will allow for reg-

ular plaque removal from the furcation area 

(Figure 9.1), thus reducing the bacterial chal-

lenge to the periodontal tissues and possibly 

the risk of disease recurrence at these sites. In 

this chapter, case selection, treatment proce-

dure, and the scientific background of the 

long‐term prognosis of molars undergoing 

tunnel preparation will be discussed.

9.2   Indication

The furcation tunnelling procedure should 

be considered at stable (no more than mobil-

ity grade I) furcation‐involved molars with 

advanced inter‐radicular bone loss (furcation 

involvement of at least deep grade II or grade 

III ‘through and through’; Hamp et al. 1975) 

when accessibility to the furcation area for 

plaque removal is difficult. This is particu-

larly the case if a deep lingual (at lower 

molars) or mesio‐palatal (at upper molars) 

furcation involvement is present. If there is 

no bone loss at the lingual furcation (at lower 

molars) or the mesio‐buccal furcation 

entrance (at upper molars), and at the same 

time a buccal furcation involvement grade II 

not exceeding half the buccal‐lingual width 

of the molar, there might be a possibility of 

the patient accessing the furcation entrance 

with an interdental brush and thus create 

healthy conditions. The converse condition – 

that is, no bone loss at the buccal furcation 

entrance and a lingual involvement grade 

II – would speak in favour of a tunnel proce-

dure to ensure lingual healing, as cleaning of 

a lingual furcation entrance is difficult to 

manage for the patient.

A prerequisite for the tunnelling procedure 

is sufficient residual bone support at all roots. 

As a rule of thumb, the alveolar bone support 

should be of equal amounts at all roots, and 

at least cover one‐third of the root length. 

Bone loss should mainly be horizontal. 

Otherwise, root resection may be considered 

instead (see Chapter 8).

The accessibility of the buccal furcation 

entrance should already at an early stage be 

Chapter 9

Furcation Tunnelling

Stefan G. Rüdiger

Department of Periodontology, Public Dental Service/Malmö University, Malmö, Sweden


background image

Chapter 9

178

judged clinically and radiographically. The 

length of the root trunk and the diameter of 

the furcation entrance are variables to con-

sider. Reasonably, the length of the root 

trunk should not exceed 4 mm and the diam-

eter of the furcation entrance should be at 

least 0.5 mm. Otherwise, it will be difficult 

for the patient to find the furcation entrance 

and insert the interdental brush into the fur-

cation. Considering anatomical measure-

ments, first mandibular molars would be the 

most suitable candidates for the tunnelling 

procedure, considering root trunk dimen-

sions and the divergence angle of the roots 

(Chiu et  al. 1991; Hou and Tsai 1997; 

Paolantonio et al. 1998; Kerns et al. 1999). In 

addition, the angle of the furcation area itself 

should be looked at. A narrow furcation roof 

would impede brushing.

Assessing the upper molars is more 

 difficult, as the palatal root is often superim-

posed on the furcation area on radiographs. 

An  eccentrically taken (especially distal 

eccentric) radiograph might help to project 

the furcation area in a mesio‐buccal direc-

tion. In comparison to lower molars, upper 

molars more often have a longer root trunk 

and a narrower divergence angle between 

the two buccal roots. A further anatomical 

complication in the upper jaw is the fact that 

three roots create three furcation entrances. 

If an interdental brush is inserted into the 

buccal furcation entrance, the tooth anat-

omy would usually guide the brush to the 

mesio‐palatal furcation entrance (Figure 9.2). 

Thus the distal furcation entrance, which is 

 usually located in the middle of the distal 

 approximal surface, would not be cleaned 

(a)

(b)

(c)

Figure 9.1 

Example of a well‐functioning tunnel at a maintenance visit. The tunnel has been in function for 

seven years. Healthy periodontal tissues are noted around the two roots from the buccal (a) and lingual (b) 

aspects. On the intraoral radiograph (c), the inter‐radicular alveolar bone is dense, which can be taken as a sign 

of stable conditions.


background image

Furcation Tunnelling 179

(see Section 9.6). Provided that proper case 

selection is carried out, the decision on tun-

nelling procedure can be taken intraopera-

tively. This bears the advantage of a more 

accurate furcation measurement, as calculus 

and in particular granulation tissue can 

obstruct the path for the furcation probe, 

thus underestimating the degree of furcation 

involvement.

Another factor to consider when planning 

for a tunnelling procedure is if prosthetic 

treatment will be necessary in the area. A 

tunnelling procedure might help avoid pros-

thetic treatment and thereby preserve an 

intact dental arch. If prosthetic treatment is 

inevitable, the prognosis of a furcation‐tun-

nelled molar should be weighed thoroughly 

against the prognosis of the entire prosthetic 

construction, considering a possible loss of 

the furcation‐tunnelled tooth. It can be 

noted that in one study 33 out of 156 tun-

nelled teeth were given a prognosis suffi-

cient to serve as an abutment for fixed 

bridges (Helldén et al. 1989). Given the fact 

that specific anatomical prerequisites and 

the patient’s full cooperation are required 

for a successful tunnelling procedure, this 

type of treatment is performed only occa-

sionally. In follow‐up studies of periodontal 

patients in specialist surroundings, 1–5% of 

molars (Hamp et al. 1975; Kuhrau et al. 1990; 

Graetz et  al. 2015; Dannewitz et  al. 2016) 

in  periodontitis patients underwent this 

treatment. Though deep grade II furcation 

involvements are often given as an indica-

tion for the tunnelling procedure in text-

books, in an actual retrospective cohort of 

maintenance patients in a specialist unit, the 

tunnelling procedure was considered only 

for molars with initial furcation involvement 

grade III (Dannewitz et al. 2016).

9.3   Patient  Selection

Before introducing the tunnelling procedure 

as a possible treatment option, the patient’s 

ability and attitude to brushing between 

roots should be assessed. If a surgical tunnel 

preparation has been performed and the 

patient is not able or willing to brush it, the 

purpose of the treatment will be defied and 

compliance could be further affected. Further 

on, it is advisable not to introduce inter‐

radicular cleaning as the first oral hygiene 

instruction procedure, but instead to con-

centrate on getting to know the patient by 

their ability at ordinary interdental brushing. 

As soon as the standard of oral hygiene is 

acceptable, brushing of a furcation entrance 

can be introduced as a preparatory step to a 

furcation preparation.

9.4   The  Tunnelling  Procedure: 

Surgical Steps

If an interdental brush can be inserted easily 

into the buccal furcation entrance and with 

only minor resistance pass through the entire 

furcation area, it may be worth trying to create 

the furcation non‐surgically. This can be an 

advisable strategy if otherwise there is no indi-

cation for periodontal surgery. If the gingiva 

over the lingual furcation entrance obstructs 

the interdental brush from passing through an 

otherwise entirely accessible through‐and‐

through furcation, lingual gingivectomy may 

be performed (Figure 9.3).

Figure 9.2 

Root anatomy guides the interdental 

brush from the buccal to the mesio‐palatal furcation 

entrance. When an interdental brush is inserted into 

the buccal furcation entrance, root anatomy will 

usually lead the brush to the mesial furcation 

entrance.


background image

Chapter 9

180

In most cases, periodontal flap surgery 

should be performed to ensure good post‐

operative access through the whole furca-

tion area. After local anaesthesia and 

elevation of a full‐thickness flap, granulation 

tissue is removed to judge the bone level in 

the furcation involvement. Before flap 

design, careful attention should be paid to 

the amount of buccal ketarinized gingiva 

present. In cases of large amounts of kerati-

nized gingiva, a scalloped incision can be 

performed by the furcation entrance, fol-

lowed by the removal of the secondary flap 

after intrasulcular incisions, to expose the 

furcation area. Otherwise, in cases with a 

limited amount of keratinized gingiva, intra-

sulcular incisions with no paramarginal 

incisions are preferred, in order to preserve 

the keratinized tissues and facilitate tissue 

handling. In this case, a full split‐thickness 

flap can be executed, if possible associated 

with lateral buccal relieving incisions, to 

then apically reposition the flap by peri-

osteal suturing (Friedman 1962) to expose 

the furcation area. These two different 

options are illustrated in Figure 9.4.

A straight periodontal probe, or alterna-

tively a sterile interdental brush (e.g. size yel-

low 0.7; TePe, Malmö, Sweden) can be used 

to test accessibility. If bone must be removed 

to ensure accessibility for the interdental 

brush, a round bur or Waerhaug diamond 

can be used. The bur should preferably first 

be inserted from the furcation entrance that 

is more involved. As soon as the operator has 

an idea of the direction, further osteoplasty is 

performed stepwise from both furcation 

entrances. The furcation entrances should be 

free of any bone ridges, which have to be 

removed, thus ensuring full accessibility to 

the furcation (Figure 9.5).

The ideal distance from the fornix to the 

bone crest to allow for interfurcation clean-

ing should be around 5–6 mm, which is the 

diameter of a size 7 interdental brush (3 mm) 

plus 2–3 mm needed for the dento‐gingival 

junction, and to allow for possible rebound of 

gingival tissues inside the furcation. However, 

no specific studies have investigated this 

aspect. The advantage of the Waerhaug dia-

mond is that its torpedo‐like form allows the 

bur to find its way through the furcation, 

whereas such tactility is not achieved with a 

round bur. Oscillating techniques (e.g. piezo-

electric instruments) can also be applied for 

gentle ostectomy/osteoplasty, particularly 

in  the inner furcation area. After scaling 

and  root planing, the flaps are reposi-

tioned  by  sutures, ensuring bone coverage. 

Interproximal single interrupted or vertical 

mattress sutures may be used. Sutures 

anchoring the flap to the periosteum need to 

be performed in case of an apically reposi-

tioned flap. At lower molars, a suture can be 

placed through the furcation. In the upper 

jaw, root anatomy makes the furcation more 

difficult to access for interdental cleaning, 

and exposure of the furcation entrances by 

trimming the periodontal flap can be advisa-

ble (Figure 9.6). Periodontal dressing can be 

applied to avoid granulation tissue growing 

in the furcation area. Thus, the furcation tun-

nel will be void of granulation tissue and 

already accessible to an interdental brush at 

suture removal. It is important to remember 

that the periodontal dressing should only be 

placed into the furcation entrance and not 

through the whole furcation area, as it can be 

painful for the patient when the dressing is 

Figure 9.3 

Tunnel preparation by gingivectomy. 

If the interdental brush – coming from the buccal 

furcation entrance – cannot pass a through‐and‐

through furcation involvement at the lingual aspect 

due to soft‐tissue obstruction, gingivectomy at the 

lingual aspect will create accessibility through the 

whole furcation.


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c09.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:21:25 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 181

(a)

(c)

(b)

(d)

Figure 9.4 

Different approaches for tunnelling surgery needed according to the amount of keratinized gingiva 

(KG). In a case of an adequate amount of KG (a), scalloped incisions can be performed to expose the furcation 

area for self‐performed cleaning (b). In a case of a reduced amount of KG (c), an apically repositioned flap is 

performed in order to preserve the KG while still exposing the furcation area for self‐performed cleaning (d).

(a)

(b)

(c)

(d)

Figure 9.5 

Osteoplasty during tunnel operation and suturing through the furcation. A furcation entrance 

can be obstructed by soft tissue (a) and bone ridges (b). A positive bone architecture has to be created by 

intrasurgical osteoplasty (see arrows) to secure easy insertion of the interdental brush through the furcation. 

Good soft‐tissue adaptation can be achieved in the furcation entrances by placing a suture through the 

furcation (c), ensuring good healing (d).


background image

Chapter 9

182

removed from the inner part of the furcation. 

In such cases, brushing in the furcation might 

even not be possible at suture removal due to 

tenderness in the inner part of the furcation.

To a greater extent than ordinary flap sur-

gery, periodontal surgery for tunnel prepara-

tion involves a certain ambivalence between 

leaving the surgical area to heal by secondary 

intention and the general intention of perio-

dontists to achieve primary healing (which 

means that areas, such as the furcation 

entrance, that it is crucial to clean at an early 

stage should be covered by tissue). Post‐opera-

tive follow‐up of the latter needs to concentrate 

on training the patient to find the furcation 

entrance, whereas in the case of secondary 

healing the patient has to be encouraged to 

dare to brush the furcation area despite post‐

operative tenderness. This dilemma can only 

be solved for each patient individually. As 

already pointed out, the patient’s attitude 

towards oral hygiene has to be known to the 

therapist before the treatment decision for a 

tunnelling procedure should be taken.

9.5   Postoperative Follow‐Up and 

Oral Hygiene in the Furcation

At suture removal 7–10 days after the surgery, 

the tissues in the furcation area are often still 

too tender to allow for through‐and‐through 

brushing. At this time point in healing, there 

may not be epithelial coverage of the intraop-

eratively exposed bone, which will be the 

cause of tenderness on touching. The focus 

for the first post‐operative oral hygiene 

instruction should be on the correct horizon-

tal insertion of the interdental brush into the 

furcation entrance. The direct instruction to 

the patient should be to ‘insert the brush as 

far as possible’. Ideally, the patient should be 

seen for post‐operative follow‐up four and 

eight weeks after surgery. At four weeks, it 

should be tested whether the brush can be 

inserted over the middle of the furcation area, 

possibly to the lingual furcation entrance. An 

interdental brush should preferably be used in 

its original straight shape, but if necessary it 

can be bent to prevent the brush getting stuck 

in the lingual gingival tissues, which tend to 

grow in a coronal direction during the healing 

process. The patient should be instructed to 

feel the tip of the brush on the inside to ensure 

that it has been inserted the whole way 

through (Figure 9.7). If tissue regrowth is too 

extensive, an additional gingivectomy can be 

advisable. Good oral hygiene can be revealed 

anatomically by good adaptation of the gin-

giva in the furcation entrances (Figure 9.8).

From a psychological point of view, it is 

important that all personnel involved should 

truly believe in the concept of the tunnelling 

procedure. Otherwise, the patient will not 

learn to brush the furcation tunnel. Especially 

for a referral clinic, this aspect is important, as 

(a)

(b)

Figure 9.6 

At upper molars, root anatomy does often not form a straight pathway from the buccal to the 

mesial furcation entrance (in contrast to the furcation at lower molars). In such a case, it is more advisable to 

open the furcation by trimming the flaps, to leave the furcation entrances to heal openly (a), and not to place 

sutures, which after healing ensures good accessibility for the patient (b).


background image

Furcation Tunnelling 183

keeping patients with a furcation tunnel for a 

prolonged maintenance phase can be consid-

ered to ensure a good long‐time prognosis.

In some cases it may be necessary to 

instruct the patient to brush the furcation 

from the palatal or lingual aspect to get the 

best brushing result. This technique requires 

extensive training exercises with the patient.

In one study, patients were asked about 

their experience and brushing habits as far as 

the furcation tunnel was concerned (Helldén 

et al. 1989). The majority (92%) did not expe-

rience discomfort in relation to the furcation 

tunnel; 70% of patients said it was easy to 

brush the furcation tunnel, 80% used an 

interdental brush, and 27% an interspace 

brush in addition to a common toothbrush 

(see also Chapter 13).

9.6   Types  of Teeth

For lower molars, the brushing procedure is 

straightforward. There is one way in and one 

way out, and usually the interdental brush can 

easily be inserted through the whole furcation. 

The trifurcation of upper molars makes mat-

ters more complicated. In most cases, the root 

anatomy guides an interdental brush from the 

buccal furcation entrance to the mesial furca-

tion entrance, which is in most cases located 

in the mesio‐palatal line angle. Often the path-

way through the furcation does not allow a 

straight brush to be inserted. Thus, the patient 

must be instructed to bend the brush to get it 

through the whole furcation. Alternatively, the 

patient can be instructed to insert the brush 

from the lingual aspect.

The distal furcation entrance of upper 

molars is located in the middle of the approx-

imal space. The distal furcation entrance is 

not accessible for brushing as long as the 

neighbouring distal tooth is in place. It can 

be argued that ordinary interdental brushing 

would result in some cleaning of the furca-

tion entrance, since the bristles would open 

as the interdental brush is moved through 

the interdental space. This might be an expla-

nation for why upper molars with a function-

ing tunnel from the buccal to the mesial 

furcation entrance can be kept over a pro-

longed period of time, despite the fact that 

the distal furcation entrance might not 

always be accessible for direct brushing. 

When the neighbouring posterior tooth is 

missing and the patient’s dexterity is well 

developed, a functioning double tunnel may 

be created (Figure  9.9). Double tunnels are 

not often mentioned in the literature. Helldén 

et  al. (1989) reported double tunnels per-

formed on 33 maxillary molars; however, 

they did not specify the treatment outcome 

for this type of tunnelling. Two contralateral 

double tunnels had in a case report been 

Figure 9.7 

Meticulous oral hygiene instruction. It is 

necessary to thoroughly explain to the patient the 

technique of brushing a furcation tunnel. One 

crucial piece of information is to point out that the 

interdental brush has to be inserted through the 

whole furcation tunnel. The patient should feel the 

tip of the brush with the tongue.

Figure 9.8 

Gingival topography reveals the patient’s 

capability to brush the tunnel. Excellent oral hygiene 

after furcation tunnelling is often revealed by the 

inter‐radicular gingiva showing the path of the 

interdental brush through the tunnel furcation. Good 

adaption of the gingiva to the root surface is seen.


background image

Chapter 9

184

proven to remain in stable condition over a 

period of two years of maintenance therapy 

(Rüdiger 2001).

Furcation tunnels in second molars are 

more difficult to reach for the patient in both 

the upper and lower jaws. Firstly, traction of 

the corner of the mouth in combination with 

the more posterior positioning of second 

molars impedes correct positioning of the 

interdental brush into the furcation entrance. 

Secondly, the diverging angle of the roots 

(buccal roots for the upper jaw) of second is 

smaller than that of first molars, and the root 

trunk is usually longer of second than of third 

molars (Kerns et al. 1999).

In the literature, one case of a furcation 

tunnel of a first upper premolar is men-

tioned. However, no details were given on 

how this furcation tunnelling worked in 

terms of oral hygiene, and if this tunnelled 

premolar was among the tunnelled teeth 

that had to be extracted (Hamp et al. 1975). 

As both furcation entrances of first upper 

premolars are situated in the approximal 

spaces, the furcation entrances are difficult 

to reach if the tooth is not rotated and no 

neighbouring teeth are missing. Further 

on, the majority of maxillary first premo-

lars (63%) have fused roots, and of those 

having furcated roots only 10% had 

the bifurcation in the cervical third of the 

root  lengths; that is, possibly accessible 

for  brushing (Joseph et  al. 1996; see 

also Chapter 1). Thus, the position of the 

 maxillary first premolar in the dental arch 

and its root anatomy do not favour the pos-

sibility of using furcation tunnel proce-

dures in first upper premolars. During 

15 years of clinical work at a referral clinic 

for periodontology, the author has only 

once come across the opportunity to intro-

duce the brushing procedure in a through‐

and‐through furcation involvement in an 

upper first premolar. The second premolar 

was missing and the first premolar was 

rotated to such a degree that the insertion 

of an interdental brush through the furca-

tion was possible. The bone loss had 

reached the apical third of the roots 

(Figure 9.10). Initially an improvement was 

noted, but when the patient came back for 

a three‐month follow‐up, the bone loss to 

the  apices was noted and the tooth had to 

be extracted.

9.7   Pulp  Reaction

The tunnelling procedure exposes consider-

able root surface areas. A pulp reaction 

might be expected, as accessory root canals 

are frequently found in the furcation area of 

multi‐rooted teeth (Lowman et  al. 1973; 

Vertucci and Williams 1974; Niemann et al. 

(a)

(b)

Figure 9.9 

In rare cases, double tunnels can be created. In this case, the distal furcation entrance was reached 

through the buccal entrance (a). The patient had learned to access both the mesial and the distal entrance 

through the buccal entrance (b).


background image

Furcation Tunnelling 185

1993; Zuza et  al. 2006). However, only a 

minority (10%) of the accessory canals in 

the furcation are real communications 

 connecting the pulpal chamber with the 

periodontium; the majority are blind canals 

with an opening to either side and ending in 

the dentine (Zuza et al. 2006). Further on, 

pulpal necrosis only occurs when the main 

apical foramina are involved, even if a pul-

pal inflammation can be seen at accessory 

canals (Langeland et  al. 1974). These ana-

tomical and histological findings corrobo-

rate clinical observation that endodontic 

complications were not reported as a major 

complication after furcation tunnelling 

(see Table 9.1).

9.8   Caries after Furcation 

Tunnelling

Molars subjected to furcation tunnelling 

were reported to be at risk for root caries in 

the furcation area. The prevalence of root 

caries in the furcation ranges from 4.4 to 

57.1% (see Table 9.1). Considering that root 

caries after periodontal treatment in  general 

has been reported to occur with a preva-

lence of 82–90% after 10 years of mainte-

nance therapy (Ravald and Hamp 1981; 

Reiker et al. 1999), caries at furcation‐tun-

nelled teeth is not to be seen as an unusual 

finding. Caries in the furcation tunnel is 

often difficult to detect clinically and – when 

clinically manifest  –  is beyond restorative 

dentistry’s therapeutic range, thus extrac-

tion may become inevitable (Figures  9.11 

and 9.12).

9.9   Maintenance  Phase

A crucial point during the maintenance 

phase is the time when the patient is dis-

charged from the periodontal practice. The 

introduction and instruction of the refer-

ring clinic are indicative of continuous good 

prognosis of the furcation‐tunnelled tooth. 

A general recommendation is periodontal 

supportive therapy every third month. 

Reminding the patient of the furcation tun-

nel is an important psychological aspect for 

this type of patient. It has been shown that 

tunnelled molars can be kept over several 

years of supportive periodontal therapy (see 

Table 9.1). Caries was given as a main rea-

son for tooth loss during maintenance. 

There are indications of a prognostic 

 breaking point at 10 years of maintenance, 

when the percentage of tooth loss notably 

increases (Dannewitz et al. 2006, 2016). In 

several studies (see Table  9.1), fluoride 

prophylaxis is recommended to prevent the 

development of caries lesions in the furca-

tion tunnel. In two studies (Topoll and 

Lange 1987; Eickholz et  al. 1991), patients 

not complying with this recommendation 

were  over‐represented among patients los-

ing the tunnelled tooth. Large studies 

are  needed to draw conclusions and pro-

vide  guidelines on long‐term survival of 

 tunnelled  molars.

Figure 9.10 

Upper left first premolar with mesial 

bone loss reaching the apical third of the root was 

chosen for furcation tunnelling. Clinically, at the 

mesial aspect over the furcation entrance, there was 

a pronounced swelling corresponding to the radio‐

juxtaradicular translucency. Though good 

compliance with interdental brushing was achieved, 

the progression of periodontitis could not be 

arrested. The tooth lost stability only a few months 

later and had to be extracted.


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c09.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:21:25 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 186

Table 9.1

 

Summar

y of f

ollo

w‐up studies of multi‐r

oot

ed t

eeth subjec

ted t

o fur

ca

tion tunnel pr

epar

ation.

A

uthor/Y

ear

Sample 

n

Follo

w‐up 

years (mean 

± SD/r

ange)

Type of study

No

. of t

eeth

Types of tunnelled 

teeth

Suppor

tiv

e periodon

tal 

ther

ap

y (SPT

); flouride 

applica

tion

Ex

tr

ac

ted tunnelled 

teeth/all r

e‐e

xamined 

tunnelled t

eeth (%)

Reason f

or 

ex

tr

ac

tion

H

am

p e

t al. 

1975

100

5

Pr

osp

ec

tive f

ollow‐up of 

m

ulti‐r

oot

ed t

ee

th

310 m

ulti‐r

oot

ed 

te

et

h, 7 (2.3%) of 

whic

h t

unne

lle

d

6 lower f

irst 

mol

ars

, 1 upp

er 

first pr

emol

ar

3–6 mon

ths

3/7 = 42.9%

C

ar

ie

s

Top

oll and 

Lange 1987

28

1–8; me

an 

3.4

Re

tr

osp

ec

tive f

ollow‐up 

of t

unne

lle

d mol

ars

34 t

unne

lle

d mol

ars

32 lower mol

ars

2 upp

er mol

ars 

af

ter r

es

ec

tion of 

the p

al

at

al r

oot

3–4 mon

ths

; 14 p

atien

ts 

com

plie

d w

ith 

re

commend

ation 

of 

fluor

ide 

pr

oph

yl

axi

s (

ge

applic

ation)

No e

xtrac

tions 

re

po

rte

d

H

elldén 

et al. 1989

107

0.8–8.9;  me

an 3.1

Re

tr

osp

ec

tive f

ollow‐up 

of t

unne

lle

d mol

ars

102/107 of p

atien

ts 

and 149/156 of  tunne

lle

d mol

ars wer

re

examine

d

156 t

unne

lle

mol

ars

52 lower mol

ars

91 upp

er mol

ars

33 of whic

h had 

‘double’ t

unne

ls

3–6 mon

ths

; all p

atien

ts 

wer

e adv

ise

d t

o u

se f

luor

ide 

den

tr

ifr

ic

e, al

so dir

ec

tly in 

the t

unne

l, and t

o r

ins

e w

ith 

0.025% f

luor

ide s

olution

10/149 = 6.7%

6/10 t

ee

th b

ec

au

se 

of c

ar

ie

s; ot

her 

re

as

ons not 

sp

ec

ifie

d

  Table 9.1   

 Summary of follow‐up studies of multi‐rooted teeth subjected to furcation tunnel preparation. 

Author/Year

Sample 
 n
 

Follow‐up 
years (mean 
± SD/range)

Type of study

No. of teeth

Types of tunnelled 
teeth

Supportive periodontal 
therapy (SPT); flouride 
application

Extracted tunnelled 
teeth/all re‐examined 
tunnelled teeth (%)

Reason for 
extraction    

 Hamp et al. 

  1975   

100

5

Prospective follow‐up of 

multi‐rooted teeth

310 multi‐rooted 

teeth, 7 (2.3%) of 

which tunnelled

6 lower first 

molars, 1 upper 

first premolar

3–6 months

3/7 = 42.9%

Caries  

 Topoll and 

Lange   1987   

28

1–8; mean 

3.4

Retrospective follow‐up 

of tunnelled molars

34 tunnelled molars 32 lower molars, 

2 upper molars 

after resection of 

the palatal root

3–4 months; 14 patients 

complied with 

recommendation of fluoride 

prophylaxis (gel 

application)

No extractions 

reported

–  

 Helldén 

et al.   1989   

107

0.8–8.9; 

mean 3.1

Retrospective follow‐up 

of tunnelled molars; 

102/107 of patients 

and 149/156 of 

tunnelled molars were 

reexamined

156 tunnelled 

molars

52 lower molars, 

91 upper molars, 

33 of which had 

‘double’ tunnels

3–6 months; all patients 

were advised to use fluoride 

dentrifrice, also directly in 

the tunnel, and to rinse with 

0.025% fluoride solution

10/149 = 6.7%

6/10 teeth because 

of caries; other 

reasons not 

specified  

 Kuhrau 

et al.   1990   

59

4–8; mean 

5.8

Retrospective follow‐

up of molars 

under SPT

275 molars, 14 

(5.1%) of which 

tunnelled

14 lower molars

Regular SPT; intervals not 

specified

2/14 = 14.3%

Caries  

 Eickholz 

et al.   1991   

56

1–5; mean 

2.0

Retrospective follow‐up 

of tunnelled lower 

molars under SPT; 

49/56 of patients and 

68/76 of tunnelled 

molars were reexamined

76 tunnelled lower 

molars

76 lower molars

3 months; 39 patients 

complied with 

recommendation to brush a 

concentrated fluoride gel 

into the tunnel

5/68 = 7.4%

Not specified  

 Little et al. 

  1995   

18

5.8 ± 0.83

Prospective follow‐up of 

tunnelled molars

18 tunnelled molars 13 lower, 5 upper 

molars

3 months;

2/18 = 11.1%

Caries  


background image

C

ha

pt

er No.: 1 

Tit

le N
ame: <TITL

ENA
ME> 

c09.indd

Com

p. by
: <US

ER> 
D

ate: 14 Ma

y 2018 

Time: 04:55:08 P


Stage: <S

TA

GE> 

W

or

kFlow

:

<W
ORK

FL

OW>

 

Page N

umb
er

: 187

Feres et al. 

2006

18

2–10

Retrospective follow‐up 

of tunnelled molars 

under SPT

30 tunnelled molars Not specified

3–6‐month interval 

professional prophylaxis, 

fluoride gel application 

inside the tunnels, and oral 

hygiene instructions

No extractions 

reported

Kaltschmitt 

et al. 2006

41

1–13

Retrospective follow‐up 

of tunnelled molars 

under SPT

56 tunnelled molars 6 upper, 50 lower 

molars

SPT to varying degrees

8/56 = 14.3%; 7 

lower molars, 1 

upper molar

Not specified

Dannewitz 

et al. 2006

71

8.9; 

5.2–12.2

Retrospective follow‐up 

of molars under SPT

505 molars, 14 

(2.3%) of which 

tunnelled

1 upper, 13 lower 

molars

3‐, 6‐, 12‐month intervals 

according to individual risk; 

on average 1.9 ± 0.6 visits/

year

1/14 = 7.1%

Not specified

Dannewitz 

et al. 2016

136*

13.2 ± 2.8

Retrospective follow‐up 

of molars under SPT

1015 molars, 14 

(1.4%) of which 

tunnelled

1 upper, 13 lower 

molars

3‐, 6‐, 12‐month intervals 

according to individual risk; 

on average 1.8 ± 0.5 visits/

year

5/14 = 35.7%

Not specified

SD = standard deviation.

*37 of which already were reported on by Dannewitz et al. 2006.


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c09.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:21:25 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 188

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

Figures 9.11 and 9.12 

Development of caries in furcation tunnels. In these two cases, caries developed within 

the furcation area – before caries developed (a) and (c); with the established lesions (b) and (d). Caries 

development was associated with inadequate oral hygiene during supportive periodontal therapy. The lesions 

may be easily missed by mere clinical examination. Radiographs should therefore be taken during supportive 

periodontal therapy to detect caries development at an early stage.


background image

Furcation Tunnelling 189

 References

Chiu, B.M., Zee, K.Y., Corbet, E.F., and 

Holmgren, C.J. (1991). Periodontal 

implications of furcation entrance 

dimensions in Chinese first permanent 

molars. Journal of Periodontology 62, 

308–311.

Dannewitz, B., Krieger, J.K., Hüsing, J., and 

Eickholz, P. (2006). Loss of molars in 

periodontally treated patients: A 

retrospective analysis five years or more 

after active periodontal treatment. Journal 

of Clinical Periodontolology 33, 53–61.

Dannewitz, B., Zeidler, A., Hüsing, J. et al. 

(2016). Loss of molars in periodontally 

treated patients: Results 10 years and more 

after active periodontal therapy. Journal of 

Clinical Periodontolology 43, 53–62.

Eickholz, P., Kaltschmitt, J., Berbig, J. et al. 

(2008). Tooth loss after active periodontal 

therapy. 1: Patient‐related factors for risk, 

prognosis, and quality of outcome. Journal 

of Clinical Periodontolology 43, 165–174.

Eickholz, P., Topoll, H.H., Hucke, H.P., and 

Lange, D.E. (1991). Postoperative Befunde 

nach Tunnelierung furkationsbeteiligter 

Unterkiefermolaren (Grad III) [Postsurgical 

findings after tunnel preparation in 

mandibular molars with class III furcation 

involvement]. Deutsche Zahnärztliche 

Zeitschrift 45, 356–357.

Feres, M., Araujo, M.W., Figueiredo, L.C., and 

Oppermann, R.V. (2006). Clinical evaluation 

of tunnelled molars: A retrospective study. 

Journal of the International Academy of 

Periodontology 8, 96–103.

Friedman, N. (1962). Mucogingival surgery: 

The apically repositioned flap. Journal of 

Periodontolology 33, 328–340.

Graetz, C., Schützhold, S., Plaumann, A. et al. 

(2015). Prognostic factors for the loss of molars: 

An 18‐years retrospective cohort study. 

Journal of Clinical Periodontolology 42, 

943–950.

Hamp, S.‐E., Nyman, S., and Lindhe, J. (1975). 

Periodontal treatment of multirooted teeth: 

Results after 5 years. Journal of Clinical 

Periodontology 2, 126–135.

Helldén, L.B., Elliot, A., Steffensen, B., and 

Steffensen, J.E.M. (1989). Prognosis of 

tunnel preparations in treatment of class III 

furcations: A follow‐up study. Journal of 

Periodontology 60, 182–187.

Hou, G.L., and Tsai, C.C. (1997). Types and 

dimensions of root trunk correlating with 

diagnosis of molar furcation involvements. 

Journal of Clinical Periodontology 24, 

129–135.

Joseph, I., Varma, B.R., and Bhat, K.M. (1996). 

Clinical significance of furcation anatomy of 

the maxillary first premolar: A biometric 

study on extracted teeth. Journal of 

Periodontology 67, 386–389.

Kaltschmitt, J., Radek, M., Dannewitz, B., and 

Eickholz, P. (2006). Success of tunnel 

preparations in molars with class III 

furcation involvement. Journal of Clinical 

Periodontology 33 (7), 116.

Kerns, D.G., Greenwell, H., Wittwer, J.W. et al. 

(1999). Root trunk dimensions of 5 different 

tooth types. International Journal of 

 Summary  of Evidence

 

The tunnelling procedure is a treatment 

method applicable in approximately 

1–5% of all molar teeth in patients 

referred for the treatment of periodontal 

disease.

 

The best candidates for the tunnelling 

procedure are lower first molars.

 

After periodontal treatment, the majority 

of tunnelled molars can successfully be 

kept in maintenance care over many years. 

The prognosis declines after a decade.

 

Caries is the most frequent complication 

leading to loss of tunnelled molars during 

maintenance.


background image

Chapter 9

190

Periodontics and Restorative Dentistry 19, 

83–91.

Kuhrau, N., Kocher, T., and Plagmann, H.C. 

(1990). Parodontalbehandlung 

furkationsbefallener Zähne: Mit oder ohne 

Radektomie? [Periodontal treatment of 

furcally involved teeth: With or without root 

resection?]. Deutsche Zahnärztliche 

Zeitschrift 45, 455–457.

Lang, N.P., Adler, R., Joss, A., and Nyman, S. 

(1990). Absence of bleeding on probing: An 

indicator of periodontal stability. Journal of 

Clinical Periodontology 17, 714–721.

Langeland, K., Rodrigues, H., and Dowden, W. 

(1974). Periodontal disease, bacteria, and 

pulpal histopathology. Oral Surgery, Oral 

Medicine, Oral Pathology 37, 257–270.

Little, L.A., Beck, F.M., Bagci, B., and Horton, 

J.E. (1995). Lack of furcal bone loss 

following the tunnelling procedure. Journal 

of Clinical Periodontology 22, 637–641.

Lowman, J.V., Burke R.S., and Pelleu G.B. 

(1973). Patent accessory canals: Incidence in 

molar furcation region. Oral Surgery, Oral 

Medicine, Oral Pathology 36, 580–584.

Niemann, R.W., Dickinson, G.L., Jackson, C.R. 

et al. (1993). Dye ingress in molars: 

Furcation to chamber floor. Journal of 

Endodontics 19, 293–296.

Paolantonio, M., di Placido, G., Scarano, A., 

and Piattelli, A. (1998). Molar root furcation: 

Morphometric and morphologic analysis. 

International Journal of Periodontics and 

Restorative Dentistry 18, 489–501.

Ravald, N., and Hamp, S.‐E. (1981). Prediction 

of root surface caries in patients treated for 

advanced periodontal disease. Journal of 

Clinical Periodontology 8, 400–414.

Reiker, J., van der Velden, U., Barendregt, D.S., 

and Loos, B.G. (1999). A cross‐sectional 

study into the prevalence of root caries 

in periodontal maintenance patients. 

Journal of Clinical Periodontology 26,  

26–32.

Rüdiger, S.G. (2001). Mandibular and 

maxillary furcation tunnel preparations: 

Literature review and a case report. Journal 

of Clinical Periodontology 28, 1–8.

Svärdström, G., and Wennström, J.L. (1988). 

Furcation topography of the maxillary and 

the mandibular first molars. Journal of 

Clinical Periodontology 15, 271–275.

Topoll, H.H., and Lange, D.E. (1987). Die 

Tunnelierung mehrwurzliger Zähne: 

Ergebnisse 8 Jahre post operationem. 

[Tunnel preparation of multirooted 

teeth: Results 8 years after surgery]. 

Deutsche Zahnärztliche Zeitschrift 42, 

445–449.

Vertucci, F.J., and Williams, R.G. (1974). 

Furcation canals in the human mandibular 

first molar. Oral Surgery, Oral Medicine, 

Oral Pathology 38, 308–314.

Zuza, E.P., Toledo, B.E., Hetem, S. et al. (2006). 

Prevalence of different types of accessory 

canals in the furcation area of third molars. 

Journal of Clinical Periodontology 77, 

1755–1761.


background image

Diagnosis and Treatment of Furcation-Involved Teeth, First Edition. Edited by Luigi Nibali. 

© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd. 

Companion website: www.wiley.com/go/nibali/diagnosis

Chapter No.: 1  Title Name: <TITLENAME> 

c10.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:21:49 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 191

191

10.1   Introduction

This book’s journey has taken the reader 

through the anatomy of molars with furcation 

involvement (FI) and the challenges facing the 

clinician engaging in periodontal treatment of 

such molars. Recent technological advances 

have led to the birth of several techniques and 

devices which can help in the treatment of 

molars with FI. The aim of this chapter is to 

review what has changed in the treatment of 

furcation‐involved teeth in recent years, to 

present the evidence for the efficacy of these 

new therapeutic modalities, and to predict 

possible future treatment avenues. A major 

improvement in periodontal non‐surgical 

treatment, including the treatment of furcation 

defects, has been achieved with the introduc-

tion of mini‐curettes and slim‐line ultrasonic 

inserts, which have been covered in Chapter 3. 

Other treatments, which we could consider 

‘alternative’ to the ‘traditional’ treatments 

described so far, are described in what follows.

10.2   Periodontal  Endoscope

In an attempt to overcome the limitations of 

traditional closed‐root instrumentation and 

to give the clinician the possibility of visu-

ally  debriding root surfaces, periodontal 

 endoscopy was proposed nearly 20 years ago 

(Ozawa et  al. 1999). The periodontal endo-

scope has been specifically designed to explore 

and visualize periodontal pockets in patients 

with periodontitis. The advantage of this 

instrument is the subgingival visualization of 

the root surface at high magnification (24× to 

48×; Kwan 2005). When combined with the 

use of micro ultrasonic instruments, endo-

scopic debridement can be accomplished in a 

more accurate, conservative, and minimally 

invasive way (Geisinger et  al. 2007), thus 

potentially reducing the need for surgical 

intervention. Molars with FI, due to their dif-

ficult access for debridement, may represent 

optimal candidates for this technology. 

However, when comparing 35 pairs of multi‐

rooted teeth that received either endoscopy‐

aided scaling and root planing (SRP) or 

traditional SRP, Michaud and co‐workers 

(2007) did not find a significant difference in 

calculus deposit removal between the two 

groups, as assessed on digital images taken 

with a stereomicroscope. The same conclu-

sions were reported by a more recent rand-

omized split‐mouth study, where one quadrant 

underwent traditional SRP and another quad-

rant underwent SRP with the help of the peri-

odontal endoscope (Blue et  al. 2013). 

Nevertheless, a significant decrease in perio-

dontal outcomes of inflammation (namely 

Chapter 10

Innovative and Adjunctive Furcation Therapy: Evidence 
of Success and Future Perspective

Luigi Nibali and Elena Calciolari

Centre for Immunobiology and Regenerative Medicine, Centre for Oral Clinical Research, Institute of Dentistry, Barts and the London 
School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK


background image

Chapter 10 

192

bleeding on probing, BOP, and  gingival index, 

GI) was observed in the endoscopy‐aided SRP 

group compared to the SRP group.

Although endoscopy may be an attractive 

option, especially for sites that have not 

responded to traditional non‐surgical treat-

ment and for patients where surgery is con-

traindicated, the use of the periodontal 

endoscope may be difficult in narrow furca-

tions, or in curved roots, root proximity, and 

in the presence of overhanging restorations, 

as that may hinder the access for the endo-

scope and the instruments (Kwan 2005). 

Furthermore, we should not forget that, apart 

from the high cost, the use of endoscopic 

instrumentation can be difficult to master, it 

requires dedicated training, and it is associ-

ated with a steep learning curve.

10.3   Laser  Therapy

In the past two decades, the use of lasers in 

the treatment of periodontal disease has 

attracted increasing interest. The word ‘laser’ 

is an acronym for ‘light amplification by 

stimulated emission of radiation’ and it 

broadly refers to any device that emits light, 

is spatially coherent, and is collimated. Lasers 

can be classified according to their active 

medium (gas lasers and solid lasers), tissue 

applicability (hard‐tissue and soft‐tissue 

lasers), range of wavelength, and risk associ-

ated with their application (Verma et  al. 

2012). Dental laser wavelengths are typically 

located within the near, mid, and far infrared 

portions of the electromagnetic spectrum 

(EMS; Lomke, 2009).

In periodontal therapy, different lasers 

have been proposed for removal of pocket 

epithelium (Borrajo et al. 2004; Saglam et al. 

2014; Ustun et al. 2014), removal of subgingi-

val calculus deposits (Eberhard et  al. 2003; 

Schwarz et  al., 2003; Lopes et  al. 2010), 

reduction of bacterial load (Moritz et  al. 

1998; Yaneva et al. 2014), root surface decon-

tamination (Barone et al. 2002), and enhance-

ment of periodontal regeneration (Dogan 

et al. 2016; Taniguchi et al. 2016).

The current evidence supporting the 

adjunctive use of dental lasers (mainly the 

diode or the Nd:YAG) is of poor quality and 

insufficient to warrant their use in the treat-

ment of chronic or aggressive periodontitis 

or in periodontal maintenance therapy (Cobb 

2016). In fact, since the 2011 statement from 

the American Academy of Periodontology 

that the use of dental lasers as monotherapy 

or in addition to non‐surgical periodontal 

instrumentation did not provide any tangible 

advantage in terms of subgingival debride-

ment, reduction of subgingival bacterial 

 

levels, and root debridement (American 

Academy of Periodontology 2011), very little 

has changed. Recent meta‐analyses have 

claimed short‐term (six months) benefits of 

the use of the Nd:YAG or diode lasers in con-

junction with non‐surgical periodontal ther-

apy in terms of probing pocket depth (PPD) 

and BOP reductions compared with mechan-

ical debridement alone (Roncati and Gariffo 

2014; Sgolastra et  al. 2014). However, they 

also highlighted the poor quality of the 

 available studies and the need for long‐term, 

well‐designed, parallel, independent rand-

omized controlled trials (RCTs) with suffi-

cient statistical power and appropriate laser 

settings in order to be able to draw more 

robust conclusions.

Besides the limited scientific evidence, 

current limitations on the use of lasers to 

treat molars with FI include the often high 

cost of the devices (which makes it difficult 

to justify their use to the patient), the need 

for additional education/training of the prac-

titioner (this includes education on the dif-

ferent properties associated with the different 

wavelengths, as well as some fundamentals 

of physics), and the need to implement safety 

measures. In addition, and probably most 

importantly, there is a lack of evidence on the 

best setting to use for each different laser in 

terms of wavelength, energy density, power 

output, frequency/duration of irradiation, 

distance between the cells, and the laser 

spot/probe.

To the best of our knowledge, there is only 

a limited number of studies that have 


background image

Innovative and Adjunctive Furcation Therapy 193

 specifically considered laser treatment in 

molars with FI, and the results are in line 

with those reported for other periodontally 

involved teeth. In a double‐blind RCT, de 

Andrade et al. (2008) compared clinical and 

microbiological parameters of 17 patients 

with class II furcation lesions treated either 

with SRP, or with SRP followed by pulsed 

Nd:YAG laser treatment. The results showed 

that the adjunctive laser promoted a signifi-

cant higher reduction in the total bacteria 

colony‐forming units (CFU) immediately 

after the treatment, but after six weeks no 

significant differences were detected between 

the two groups. Furthermore, no significant 

differences in terms of periodontal clinical 

parameters between baseline and six weeks 

after treatment were found between the two 

groups. In a more recent split‐mouth study, 

an erbium, chromium: yttrium‐scandium‐

gallium‐garnet (Er,Cr:YSGG) laser was used 

in association with SRP in molars with degree 

II or III furcation involvement (Ge et  al. 

2017). A significantly higher reduction of 

PPD and BOP was observed at six and twelve 

weeks in the laser‐treated group compared 

to the control group (SRP only). The visual 

analogue scale (VAS) pain score was also sig-

nificantly lower when the laser was applied.

An attractive additional laser‐based treat-

ment modality is the so‐called phototherapy, 

photomodulation, or low‐level laser therapy 

(LLLT), which employs lasers at a low dose 

with the aims of alleviating pain or inflam-

mation, inducing immunomodulation, and 

promoting wound healing and tissue regen-

eration (Anders et al. 2015). Recent evidence 

suggests that LLLT is able to enhance osteo-

blastic proliferation and differentiation 

(Amid et al. 2014), increase gene expression 

of collagen and vascular endothelial growth 

factor in fibroblastic cells (Martignago et al. 

2015), promote the production of nucleic 

acid (Saperia et al. 1986), and increase mito-

chondrial respiratory chain and adenosine 

triphosphate (ATP) synthesis (Agrawal et al. 

2014). Future studies are needed to explore 

the potential benefits of adding LLLT to, for 

instance, periodontal regenerative treatment, 

also in furcation‐involved molars. Another 

application of phototherapy in periodontol-

ogy is antimicrobial photodynamic therapy, 

which combines LLLT and a photosensitizer 

with the aim of destroying pathogens in the 

pocket with reactive oxygen species, and this 

will be discussed in more detail in the next 

section.

10.4   Photodynamic  Therapy

The rationale behind photodynamic therapy 

(PDT) comes from the need to obtain anti-

microbial effects without the risk of causing 

the onset of microbial resistance. With PDT, 

bacteria are sensitized using a dye (photo-

sensitizer) coming into contact with their 

membrane, and are then destroyed following 

irradiation with light of the correct energy 

and wavelength. More specifically, a laser 

light is used to activate the dye molecules to 

reach a high energy triplet state, which reacts 

with oxygen to create singlet oxygen, which 

in turn destroys the bacterial membrane. 

Toluidine blue (TBO) and methylene blue 

(MB) are used as dyes, due to their ideal 

properties of low toxicity, cationic charge for 

attachment to Gram‐ membranes, red light 

absorption, rapid transition from ‘singlet’ to 

‘triplet’ state, long maintenance of ‘triplet’ 

state, and high production of photoproduct 

(Atieh 2010; Soukos and Goodson 2011; 

Gursoy et al. 2013).

Although the original concept of PDT is 

already over 100 years old, only in recent 

years has it reached clinical applications in 

various fields of medicine, including oncol-

ogy, dermatology, and dentistry (Konopka 

and Goslinski 2007). Its characteristics make 

PDT potentially suitable for the treatment of 

periodontitis, either in the non‐surgical or 

surgical phase, with the aim of boosting the 

antimicrobial effects of mechanical plaque 

removal without the risk of causing micro-

bial resistance (Andrade et al. 2013; Sgolastra 

et  al. 2013a, b; Souza et  al. 2016). Studies 

have shown that photo‐inactivation of path-

ogenic bacteria harvested from periodontal 


background image

Chapter 10 

194

pockets is possible in vitro by using TBO and 

a 635 nm laser activation (Qin et  al. 2008). 

Despite some promising animal models and 

clinical studies, a systematic review and 

meta‐analysis of seven RCTs using PDT as an 

adjunct or alternative to subgingival debride-

ment showed no significant clinical benefits, 

with reduction in some bacteria in some 

studies (Porphyromonas gingivalis) but not 

in others, and no consistent adverse events 

reported (Sgolastra et  al. 2013a). The same 

group performed a new systematic review 

that included both RCTs and parallel‐design 

studies (Sgolastra et al. 2013b). After remov-

ing outlier studies, the meta‐analysis indi-

cated a significant positive effect in terms of 

PPD reduction (0.19, 95% confidence inter-

val [CI] 0.007–0.31, p = 0.002) and CAL gain 

(0.37, 95% CI 0.26–0.47, p < 0.0001) at three 

months. However, the clinical significance of 

these data is limited and no differences were 

observed at six months. Remarkably, sub-

group analysis revealed that studies adopting 

a time of application of 60 seconds showed a 

higher and significant PPD reduction and 

CAL gain.

Owing to the difficult access for mechan-

ical debridement, furcation defects repre-

sent an ideal scenario where PDT could be 

helpful during initial therapy, surgical ther-

apy, or maintenance in order to reduce 

 bacterial load and promote healing. An 

advantage of PDT includes the possibility 

to apply it topically into a periodontal 

pocket, thus avoiding overdose and reduc-

ing the probability of side effects and 

microflora disturbance in other sites of the 

oral cavity (which are instead associated 

with systemic antimicrobials; Wainwright 

1998; Hamblin and Hasan 2004). Figure 10.1 

shows a case of furcation involvement 

treated with PDT.

De Almeida and co‐workers (2008) histo-

metrically assessed the influence of PDT on 

bone loss in furcation areas of rats with experi-

mentally induced periodontitis. The PDT 

group demonstrated less bone loss compared 

to the control group, the group treated only 

with topical MB, and the group treated only 

with LLLT at 7 days (1.986 ± 0.417 mm

2

). At 15 

days,  the  PDT  (1.641 ± 0.115 mm

2

) and  MB 

groups  (1.991 ± 0.294 mm

2

)   demonstrated 

(a)

(b)

Figure 10.1 

Upper left first molar (UL6) of patient with chronic periodontitis, affected by degree II FI and 

treated with photodynamic therapy, following non‐surgical furcation debridement with ultrasonic devices. 

(a) Application of dye (methylene blue) inside the furcation area; (b) activation of the dye by photodynamic 

therapy light.


background image

Innovative and Adjunctive Furcation Therapy 195

less  bone loss compared to the control 

(4.062 ± 0.416 mm

2

) and LLLT (2.641 ± 0.849 mm

2

groups.

To the best of our knowledge, only a few 

RCTs have evaluated PDT specifically in 

molars with FI. A double‐blind RCT evalu-

ated PDT for the treatment of class II furca-

tions in patients with chronic periodontitis 

(Luchesi et al. 2013); 21 patients who under-

went SRP with the adjunct of the photosen-

sitizer only (control) and 16 patients who 

underwent SRP followed by PDT (test) 

completed the six‐month follow‐up. While 

PDT was able to reduce gingival crevicular 

fluid (GCF) levels of inflammatory media-

tors and the concentration of P. gingivalis 

and Tannerella forsythia at six months, no 

significant differences in terms of CAL and 

PPD were detected between the two groups 

at either three or six months. Nevertheless, 

when interpreting these results we need to 

consider that the study lacked a true nega-

tive control group, as the presence of the 

photosensitizer dye may have optimized the 

results of the control group. Moreover, this 

study used a single PDT application as an 

adjunct to SRP, while it is plausible that 

repeated PDT applications would have 

resulted in more positive outcomes (Lulic 

et al. 2009). In a split‐mouth RCT, Andrade 

et  al. (2013) collected data on 14 patients 

with bilateral lower molars with class III 

furcation lesions scheduled for extraction. 

In the control side traditional SRP was per-

formed, while in the test side SRP was fol-

lowed by a session of PDT. At 45 days post 

initial therapy, the class III furcation lesions 

were surgically accessed, and flap surgery 

with SRP and flap surgery with SRP + PDT 

was performed in the control and test group, 

respectively. At 21 days post surgery, the 

newly formed granulation tissue was col-

lected, and real‐time polymerase chain 

reaction (PCR) showed a significant up‐ 

regulation of the TIMP‐, 2/MMP‐2, and 

OPG/RANKL mRNA ratios in the test 

group, thus suggesting a role for PDT in 

positively modulating extracellular matrix 

and bone remodelling.

10.5   Air‐polishing  Devices

Since in periodontally compromised teeth 

root surfaces are subjected to continuous 

abrasive instrumentation during lifelong per-

iodontal maintenance therapy, debridement 

techniques that are at the same time effective 

and minimally invasive should be aimed at. 

Keeping this in mind, air‐polishing devices 

might represent a valid alternative to 

mechanical instrumentation. Air‐abrasive 

technology has been applied in the dental 

field for more than 60 years (reviewed by 

Petersilka 2011). The idea is to use an abra-

sive powder that is introduced into a stream 

of compressed air to clean and polish the 

tooth surface by removing the deposits 

attached to it or by smoothing their texture. 

This abrasive  process depends on the prop-

erties of the  particles applied (shape, geo-

metrical form, hardness) and on the pressure 

of the air and water used (Petersilka 2011).

Sodium bicarbonate–based air polishing 

has been successfully applied for supragingi-

val plaque and stain removal since the 1980s 

(Berkstein et  al. 1987; Barnes et  al. 1990). 

However, the use of sodium bicarbonate on 

cement and dentine is not advisable, as sig-

nificant tissue removal may occur (Atkinson 

et  al. 1984; Horning et  al. 1987; Petersilka 

et  al. 2003a). Furthermore, this type of air‐

polishing device may cause reversible soft‐

tissue irritation and damage, such as 

epithelial erosions with exposure of the 

underlying connective tissue (Hunter et  al. 

1989; Kontturi‐Narhi et al. 1989; Kozlovsky 

et  al. 2005). To overcome these limitations 

and minimize the hard‐ and soft‐tissue 

trauma, glycine powder air‐polishing devices 

have been introduced. Several clinical trials 

have evaluated the efficacy of this air‐polish-

ing system for subgingival biofilm removal 

with positive results, but no study distin-

guished between single‐ and multi‐rooted 

teeth. In a randomized split‐mouth con-

trolled study in patients receiving supportive 

periodontal therapy, the use of glycine 

 powder was more effective in reducing the 

number of CFU in comparison to hand 


background image

Chapter 10 

196

instrumentation with curettes in pockets of 

3–5 mm (Petersilka et al. 2003b, c). Another 

split‐mouth controlled study did not find 

 significant differences at a microbiological 

level between SRP and subgingival air polish-

ing; however, the use of glycine‐based air 

polishing was perceived as less painful/

uncomfortable by the patients and less time 

consuming by the operator (Moene et  al. 

2010). While only shallow pockets (up to 

5 mm) were included in these studies, a more 

recent study from Flemmig and co‐workers 

(2012) considered pockets from 4 to 9 mm. 

Their results showed that glycine air polish is 

more effective in removing the subgingival 

biofilm, and may induce a beneficial shift of 

the oral microbiota (lower total viable bacte-

rial count) compared to traditional SRP.

In conclusion, air‐polishing devices might 

represent a valid alternative to mechanical 

instrumentation, for both periodontal treat-

ment and periodontal maintenance therapy. 

The use of glycine powder air polishing 

seems well tolerated by the patient and no 

severe adverse events have been reported. 

However, a few cases of air emphysema (all 

successfully healed) have been reported 

(Finlayson and Stevens 1988; Fruhauf et  al. 

2005) and the patient needs to be informed 

about this rare complication. New air‐polishing 

powders, such as erythritol‐based powders 

(Hagi et al. 2013, 2015), are now under inves-

tigations and future randomized trials will 

have to confirm their efficacy. Further  studies 

on molars with FI are advisable to test the 

efficacy of this technique specifically for 

multi‐rooted teeth.

10.6   Local  Antimicrobials

Given the microbial aetiology of periodonti-

tis, antimicrobial adjuncts to mechanical 

debridement could be considered a valid 

treatment option for periodontal treatment. 

Bearing in mind that mechanical subgingival 

biofilm disruption with ultrasonic inserts 

and curettes is essential for the healing of 

periodontal pockets (Badersten et al. 1984), 

the additional use of antimicrobial agents 

directly in the site could lead to a further 

reduction in microbial load and a better heal-

ing of the lesion. Local antimicrobials could 

be used as topical applications, for sustained 

release (drug delivered in effective concen-

trations for less than 24 hours) or controlled 

delivery (drug delivered in effective concen-

trations for more than 24 hours), within 

 different delivery systems (Herrera et  al. 

2012; Jepsen and Jepsen 2016). The use of 

antiseptics (including chlorhexidine, sodium 

hypochlorite, and povidone‐iodine) and anti-

biotics (including tetracyclines and metroni-

dazole) has been reported in the periodontal 

literature and several agents are available on 

the market. Systematic reviews show that 

when local antibiotics are used as adjuncts 

to  subgingival debridement, short‐term 

improvement in clinical parameters meas-

ured as PPD reductions and CAL gain can be 

achieved (Hanes and Purvis 2003; Bonito 

et al. 2005; Matesanz‐Perez et al. 2013). No 

studies with long‐term data on periodontal 

stability or tooth loss are available.

As repeatedly observed before, difficulty in 

accessing the furcation area for debridement 

and the potentially high microbial load inside 

the furcation lesions make FI potentially 

amenable to the adjunctive use of local anti-

microbials. However, what is the evidence for 

the role of local antimicrobials specifically 

for the healing and maintenance of FI molars? 

Tonetti and co‐workers (1998) included 127 

patients with class II mandibular furcation 

with BOP in SPT in a randomized multi‐ 

centre controlled trial. All subjects received 

SRP and oral hygiene instructions, while 

tests also had tetracycline fibres applied 

inside the furcation defects. Subjects were 

followed up to six months, when periodontal 

clinical measurements were taken for the last 

time before the end of the study. The authors 

observed that, despite increased reductions 

in BOP and PPD in the test group at three 

months (compared to controls), no differ-

ences between groups were observed at six 

months. Consistent results were observed in 

a separate study on 32 patients with chronic 

periodontitis, who received initial pocket/

root debridement by ultrasonic instrumentation, 


background image

Innovative and Adjunctive Furcation Therapy 197

followed by random assignment to further 

treatment by ultrasonic instrumentation 

with or without adjunctive local application 

of an 8.8% doxycycline gel in residual defects 

(Tomasi and Wennstrom 2011). Clinical 

examinations were repeated three and nine 

months after retreatment. The retreatment 

including the local antibiotic resulted in 

 ‘closure’ of 50% of degree I furcation sites, 

compared to 29% for sites treated with 

mechanical debridement only (p > 0.05), and 

in a reduction in depth of degree II furcation 

sites of 17% in the test and 11% in the control 

group (p > 0.05). No differences for the out-

come variable ‘furcation improvement’ were 

detected between the two groups, suggesting 

that improvement in molar FI after non‐sur-

gical periodontal therapy was not enhanced 

by adjunctive locally applied doxycycline 

(Tomasi and Wennstrom 2011).

The use of povidone‐iodine as an adjunct to 

SRP in the treatment of class II furcations has 

been investigated in two RCTs, but only lim-

ited (Ribeiro Edel et al. 2010) or no additional 

clinical benefits (Del Peloso Ribeiro et  al. 

2006) resulted from the use of this  antiseptic. 

In a randomized parallel‐arm controlled 

study, the clinical efficacy of subgingival 

ultrasonic instrumentation irrigated with 

essential oils (EOs) was compared with chlo-

rhexidine (CHX) or distilled water (control) 

in 45 patients with class II FI (Yilmaz and 

Bayindir 2012). When comparing the test 

groups (EOs and CHX) to the control group, 

no significant differences in the improvement 

of periodontal clinical parameters were 

reported at one and three months after treat-

ment, with the exception of BOP, which was 

significantly reduced in the EOs group com-

pared to the CHX and control groups at both 

one and three months. Figure  10.2 shows a 

case of a maxillary molar  furcation lesion 

treated with local antibiotics.

10.7   Systemic  Antimicrobials

Systemic antibiotics have been proposed since 

the 1970s as adjuncts for the treatment of 

 periodontitis, initially mainly for early‐onset 

forms, thanks to their effect on the subgingi-

val microbiota. Baer and Socransky (1979) 

 

followed up patients with ‘periodontosis’ 

(what we would now classify as aggressive 

periodontitis, AgP), treated with oral hygiene 

instructions, non‐surgical, and surgical 

approaches associated with adjunctive sys-

temic antibiotics, and concluded that antibiot-

ics such as  tetracyclines and penicillin could 

be a helpful adjunct to patient management, 

including full‐thickness flaps and curettage. 

Later, metronidazole was introduced in peri-

odontal therapy for its effect on Aggregatibacter 

 actinomyecetemcomitans (then known as 

Actinobacillus actinomycetemcomitans; Saxen 

and Asikainen 1993). Interest in the use of 

adjunctive systemic antibiotics increased with 

the evidence from laboratory studies, showing 

that the rate of metronidazole uptake by 

A.  actinomyecetemcomitans bacterial cells 

simultaneously incubated with amoxicillin 

was higher than the uptake in cells incubated 

with metronidazole alone (Pavicic et al. 1995). 

Hence, several papers were published suggest-

ing improved clinical outcomes (PPD 

 reductions and CAL gains) when the amoxi-

cillin–metronidazole ‘cocktail’ was used as an 

adjunct to SRP (van Winkelhoff et  al. 1992; 

Winkel et al. 2001). While several randomized 

placebo‐controlled trials on the adjunctive use 

of amoxicillin and metronidazole flourished, 

several other antibiotics or combinations of 

them were introduced as adjuncts to perio-

dontal therapy, for both chronic and aggres-

sive periodontitis.

Most original papers and systematic 

reviews only report short‐term data (e.g. six 

months or twelve months), making it  difficult 

to understand possible long‐term benefits. 

Systematic reviews tend to agree that sys-

temic antibiotics used as adjuncts to SRP 

provide clinical improvements (PPD reduc-

tions, CAL gain) compared with SRP alone 

or SRP and placebo. These clinical improve-

ments range from 0.3 to 0.5 additional PPD 

reductions and 0.2 to 0.4 mm additional CAL 

gain (as full‐mouth average), and seem to be 

more pronounced in AgP cases (Herrera 

et  al. 2002, 2012; Sgolastra et  al. 2012a, b; 

Buset et  al. 2015). Studies venturing into 


background image

Chapter 10 

198

longer‐term follow‐ups show conflicting 

 evidence. A study on 506 patients with mod-

erate to severe periodontitis observed reduc-

tions in attachment loss favouring the test 

group (adjunctive amoxicillin and metroni-

dazole) for up to 27 months of follow‐up 

(Harks et al. 2015). A prospective study with 

13‐year follow‐up using 250 mg tetracycline 

hydrochloride (HCl) four times a day for 

three weeks adjunctive to SRP found that 

short‐term benefits seemed to disappear 

with time (Ramberg et  al. 2001). A recent 

systematic review highlighted that the clini-

cal benefits of adjunctive systemic antibiotics 

seem to diminish over time, from the three‐

month follow‐up to the one‐year follow‐up 

(a)

(e)

(b)

(c)

(d)

Figure 10.2 

Application of local antibiotic after non‐surgical debridement in degree II mesial furcation lesion 

of a maxillary second molar, associated with mesial intrabony defect (10 mm probing pocket depth) and 

extensive presence of subgingival deposits. (a) Periapical radiograph; (b) clinical photograph; (c) antibiotic 

application from the mesio‐buccal aspect of the pocket associated with the furcation defect; (d) antibiotic 

overflowing from the pocket; (e) radiographic re‐evaluation six months after treatment, showing bone fill with 

reduction in the intrabony defect depth (now 6 mm probing pocket depth and degree I furcation 

involvement).


background image

Innovative and Adjunctive Furcation Therapy 199

(Keestra et  al. 2015). Hence, doubts persist 

about the long‐term effect of antibiotics used 

as adjunctive therapy.

Furthermore, adverse events and risk of 

developing antibiotic resistance should be an 

important concern when deciding whether 

to use adjunctive antibiotic therapy. 

Generally, deep pockets seem to benefit 

more from an adjunctive antibiotic regime, 

as the antibiotic could be of more help in 

sites where the effectiveness of mechanical 

debridement is more limited (Guerrero et al. 

2005). For the same reasons, it can be sup-

posed that teeth affected by FI could benefit 

from adjunctive systemic antibiotics. 

However, no study seems to have specifically 

tested this hypothesis. To the best of our 

knowledge, only a subanalysis of data from a 

large clinical trial has tried to answer the 

question of whether systemic amoxicillin and 

metronidazole adjunctively to mechanical 

debridement might significantly improve 

periodontal clinical parameters at molar and 

premolar furcation sites (Eickholz et  al. 

2016). Although PPD reduction and CAL 

gain at furcation sites were noticeably 

improved after antibiotic therapy compared 

with placebo, no difference in the change of 

furcation degrees between the treatments 

could be detected.

10.8   Probiotics

When considering the pathogenesis of peri-

odontitis, it is well accepted that this disease 

requires the presence of a susceptible host 

together with the presence of pathogenic 

bacteria (Socransky and Haffajee 1992). 

Periodontitis is thought to be the result of a 

dysbiotic process, characterized by a shift in 

the composition of the normal subgingival 

biofilm towards a more pathogenic one 

(Hajishengallis and Lamont 2012). Therefore, 

there has been growing interest in the possi-

bility of using probiotics with the aim of 

shifting the oral microbiota equilibrium back 

to a condition of oral health.

Probiotics are defined as ‘living microor-

ganisms which, when administered in ade-

quate amounts, confer a health benefit for 

the host’ (FAO/WHO 2001). The most com-

mon probiotics belong to two main genera, 

Lactobacillus and Bifidobacterium. The 

 suggested mechanisms of action of probiot-

ics in the oral cavity include a modulation of 

the host immune‐inflammatory response, a 

direct inhibition of periodontopathogenic 

bacteria via the production of antimicrobial 

substances (such as lactic acid, hydrogen per-

oxide, and bacteriocin‐like substances), and 

an indirect effect originating from competi-

tive exclusion systems, so that by competing 

for the same niches and nutrients, ‘good’ bac-

teria can reduce the chances of pathogens 

replicating and adhering to tooth surfaces 

(Laleman and Teughels 2015). However, 

three systematic reviews have been recently 

published to evaluate the overall efficacy of 

probiotic therapy in the treatment of perio-

dontally compromised teeth. Matsubara and 

co‐workers (2016) included 12 RCTs 

(both split mouth and parallel designed) and 

concluded that the use of oral probiotics 

alone or associated with SRP is well tolerated 

(no adverse effects reported) and is associ-

ated with an overall tendency for improved 

 clinical parameters and reduced levels of 

periodontal pathogens. Martin‐Cabezas and 

co‐workers (2016) included only RCTs com-

paring SRP alone (or associated with pla-

cebo) to SRP associated with assumption of 

Lactobacillus reuteri in the quality assess-

ment. Meta‐analysis showed a statistically 

significant CAL gain (‐0.42 mm, p = 0.002) 

and BOP reduction (‐14.66, p = 0.003) for 

SRP associated with the probiotic treatment 

versus SRP alone in the short term. 

Furthermore, when stratifying for pocket 

depth, the use of probiotics was significantly 

beneficial in moderate (‐0.18, p = 0.001) and 

deep (‐0.67, p 

0.001) pockets. Finally, 

Gruner and co‐workers (2016) included 

RCTs broadly evaluating the efficacy of 

any  form of probiotic therapy for the 

 

management of caries and periodontitis. 


background image

Chapter 10 

200

The  meta‐analysis reported that probiotics 

significantly reduced BOP (standardized 

mean difference, SMD: ‐1.15; 95% CI 

‐1.68/‐0.62), PPD (SMD: ‐0.86, 95% CI 

‐1.55/‐0.17), and gingival index (SMD: ‐0.86; 

95% CI ‐1.52/‐0.20), but did not affect plaque 

index or CAL. Unfortunately, specific studies 

investigating this treatment modality in fur-

cation lesions are missing.

Although clinical data look promising, the 

heterogeneity of the available studies in 

terms of population included (experimental 

gingivitis patients, healthy patients, patients 

with chronic periodontitis, patients with 

aggressive periodontitis), parameters evalu-

ated (microbiological parameters in plaque 

or saliva, plaque index, PPD, CAL, etc.), pro-

tocol adopted (probiotics as monotherapy 

vs  probiotics after SRP), and probiotics 

employed do not allow robust conclusions to 

be drawn. Further research is needed to dem-

onstrate the efficacy of certain probiotic 

strains in oral health, as well as their desired 

concentration and vehicle.

10.9   Surgical  Innovations

Periodontal surgical techniques have gradu-

ally striven to become less and less invasive, 

in order to reduce morbidity and patient 

 discomfort. The development of minimally 

invasive surgical periodontal techniques 

includes the use of microsurgical instru-

ments and magnification, and it is based on 

the principle of preserving as much of the 

soft tissue as possible (Harrel 1999). Incisions, 

flap elevation, and suturing techniques have 

been modified by a series of papilla‐preser-

vation techniques (Takei et al. 1985; Cortellini 

et al. 1995, 1999) and, more recently, by mini-

mally invasive surgical therapy (Cortellini 

and Tonetti 2007, 2009; Trombelli et  al. 

2009), moving from double flaps to single 

flaps. These techniques are aimed mainly at 

the treatment of intrabony defects, and have 

been shown to yield favourable clinical 

results with reduced tissue trauma compared 

with traditional surgical techniques. 

Remarkably, recent RCTs show that, when a 

good stabilization of the blood clot in the 

surgical area is achieved, the use of grafting 

materials may not add any additional bene-

fits in intrabony defects (Trombelli et  al. 

2010; Cortellini and Tonetti 2011; Ribeiro 

et  al. 2011; Mishra et  al. 2013). The same 

principles of reduction of surgical flap, 

 minimizing trauma, and stimulating the for-

mation of a stable blood clot could be imple-

mented for surgical approaches to furcations. 

However, these techniques are explicitly not 

indicated for furcation lesions (Cortellini and 

Tonetti 2007), and there seems to be a lack of 

specific innovative surgical techniques for 

the treatment of furcation‐involved molars.

10.10   Furcation  ‘Filling’

Some researchers have attempted closure of 

the furcation lesion with the use of restora-

tive materials (e.g. ionomeric cement or cal-

cium hydroxiapatite cement). This defies the 

principles of periodontal regeneration and of 

maintenance of reduced microbial load in 

the furcation region discussed in this book. 

Not surprisingly, such therapy has encoun-

tered failure, with worsening in periodontal 

clinical measurements and high risk of tooth 

loss (Anderegg and Metzler 2000; Fowler and 

Breault 2001; Rupprecht et  al. 2001). This 

stresses once more the importance of allow-

ing plaque removal, either self‐performed or 

professional or both, inside the furcation 

lesion when regeneration of the furcation 

lesion is not feasible.

 Conclusion

Researchers and clinicians are striving to 

identify more efficient ways for the  successful 

treatment of periodontitis, and specifically 

of molars with furcation involvement. 

Keeping in mind the uncontested impor-

tance of oral hygiene instructions and 


background image

Innovative and Adjunctive Furcation Therapy 201

 subgingival debridement, new technologies 

could soon provide a helping hand for the 

treatment of complex cases. Tools to improve 

the efficacy of intrafurcation biofilm removal, 

to reduce the treatment time, and to improve 

the patient’s perceived comfort, such as peri-

odontal endoscope, lasers and air‐powder 

devices, or antimicrobial agents (local or 

 systemic antibiotics, photodynamic therapy) 

and probiotics have been tested as adjuncts 

for the treatment and long‐term mainte-

nance of furcation lesions. Sadly, the evi-

dence for their efficacy in the clinical 

outcomes of furcation treatment is still lack-

ing, despite some initial promising results. 

Future well‐designed studies are warranted 

to shed light on the additional benefits asso-

ciated with these new treatment modalities.

 References

Agrawal, T., Gupta, G.K., Rai, V. et al. (2014). 

Pre‐conditioning with low‐level laser (light) 

therapy: Light before the storm. Dose 

Response 12, 619–649. doi:10.2203/dose‐

response.14‐032.Agrawal.

American Academy of Periodontology (2011). 

American Academy of Periodontology 

statement on the efficacy of lasers in the 

non‐surgical treatment of inflammatory 

periodontal disease. Journal of 

Periodontology 82, 513–514. doi:10.1902/

jop.2011.114001.

Amid, R., Kadkhodazadeh, M., Ahsaie, M.G., 

and Hakakzadeh, A. (2014). Effect of low 

level laser therapy on proliferation and 

differentiation of the cells contributing in 

bone regeneration. Journal of Lasers in 

Medical Science 5, 163–170.

Anderegg, C.R., and Metzler, D.G. (2000). 

Retention of multi‐rooted teeth with class 

III furcation lesions utilizing resins: Report 

of 17 cases. Journal of Periodontology 71, 

1043–1047. doi:10.1902/jop.2000.71.6.1043.

Anders, J.J., Lanzafame, R.J., and Arany, P.R. 

(2015). Low‐level light/laser therapy versus 

photobiomodulation therapy. Photomedicine 

and Laser Surgery 33, 183–184. doi:10.1089/

pho.2015.9848.

Andrade, P.F., Garlet, G.P., Silva, J.S. et al. 

(2013). Adjunct effect of the antimicrobial 

photodynamic therapy to an association of 

non‐surgical and surgical periodontal 

treatment in modulation of gene expression: 

A human study. Journal of Photochemistry 

and Photobiology B 126, 119–125. 

doi:10.1016/j.jphotobiol.2013.06.012.

Atieh, M.A. (2010). Photodynamic therapy as 

an adjunctive treatment for chronic 

periodontitis: A meta‐analysis. Lasers in 

Medical Science 25, 605–613. doi:10.1007/

s10103‐009‐0744‐6.

Atkinson, D.R., Cobb, C.M., and Killoy, W.J. 

(1984). The effect of an air‐powder abrasive 

system on in vitro root surfaces. Journal of 

Periodontology 55, 13–18. doi:10.1902/

jop.1984.55.1.13.

 Summary of Evidence

 

The treatment of molars with furcation 

involvement desperately needs new meth-

ods to improve clinical efficacy, patient 

comfort, and long‐term outcomes.

 

Antimicrobial adjuncts (local antibiotics, 

photodynamic therapy) and probiotics 

and technology for improved biofilm 

removal (periodontal endoscope, lasers, 

and air‐powder devices) are being tested, 

with the potential of being used for the 

treatment of specific furcation cases.

 

Clinical efficacy, costs, and learning 

curves for these potential adjuncts still 

need to be systematically assessed before 

they can potentially be routinely imple-

mented in the treatment of molars with 

furcation involvement.


background image

Chapter 10 

202

Badersten, A., Nilveus, R., and Egelberg, J. 

(1984) Effect of nonsurgical periodontal 

therapy. II. Severely advanced periodontitis. 

Journal of Clinical Periodontology 11, 63°76.

Baer, P.N., and Socransky, S.S. (1979). 

Periodontosis: Case report with long‐

term follow‐up. Periodontal Case Reports 1, 

1–6.

Barnes, C.M., Russell, C.M., Gerbo, L.R. et al. 

(1990). Effects of an air‐powder polishing 

system on orthodontically bracketed and 

banded teeth. American Journal of 

Orthodontics and Dentofacial Orthopedics 

97, 74–81. doi:10.1016/

S0889‐5406(05)81712‐3.

Barone, A., Covani, U., Crespi, R., and 

Romanos, G.E. (2002). Root surface 

morphological changes after focused versus 

defocused CO2 laser irradiation: A scanning 

electron microscopy analysis. Journal of 

Periodontology 73, 370–373. doi:10.1902/

jop.2002.73.4.370.

Berkstein, S., Reiff, R.L., McKinney, J.F., and 

Killoy, W.J. (1987). Supragingival root 

surface removal during maintenance 

procedures utilizing an air‐powder abrasive 

system or hand scaling: An in vitro study. 

Journal of Periodontology 58, 327–330. 

doi:10.1902/jop.1987.58.5.327.

Blue, C.M., Lenton, P., Lunos, S. et al. (2013). 

A pilot study comparing the outcome of 

scaling/root planing with and without 

Perioscope technology. Journal of Dental 

Hygiene 87, 152–157.

Bonito, A.J., Lux, L., and Lohr, K.N. (2005). 

Impact of local adjuncts to scaling and root 

planing in periodontal disease therapy: A 

systematic review. Journal of Periodontology 

76, 1227–1236. doi:10.1902/

jop.2005.76.8.1227.

Borrajo, J.L., Varela, L.G., Castro, G.L. et al. 

(2004). Diode laser (980 nm) as adjunct to 

scaling and root planing. Photomedicine and 

Laser Surgery 22, 509–512. doi:10.1089/

pho.2004.22.509.

Buset, S.L., Zitzmann, N.U., Weiger, R., and 

Walter, C. (2015). Non‐surgical periodontal 

therapy supplemented with systemically 

administered azithromycin: A systematic 

review of RCTs. Clinical Oral Investigations 19, 

1763–1775. doi:10.1007/s00784‐015‐1499‐z.

Cobb, C.M. (2016). Is there clinical benefit 

from using a diode or Nd:YAG laser in the 

treatment of periodontitis? Journal of 

Periodontology 87, 1117–1131. doi:10.1902/

jop.2016.160134.

Cortellini, P., Prato, G.P., and Tonetti, M.S. 

(1995). The modified papilla preservation 

technique: A new surgical approach for 

interproximal regenerative procedures. 

Journal of Periodontology 66, 261–266. 

doi:10.1902/jop.1995.66.4.261.

Cortellini, P., Prato, G.P., and Tonetti, M.S. 

(1999). The simplified papilla preservation 

flap: A novel surgical approach for the 

management of soft tissues in regenerative 

procedures. International Journal of 

Periodontics and Restorative Dentistry 19, 

589–599.

Cortellini, P., and Tonetti, M.S. (2007). A 

minimally invasive surgical technique with 

an enamel matrix derivative in the 

regenerative treatment of intra‐bony 

defects: A novel approach to limit morbidity. 

Journal of Clinical Periodontology 34, 87–93. 

doi:10.1111/j.1600‐051X.2006.01020.x.

Cortellini, P., and Tonetti, M.S. (2009). 

Improved wound stability with a modified 

minimally invasive surgical technique in the 

regenerative treatment of isolated 

interdental intrabony defects. Journal of 

Clinical Periodontology 36, 157–163. 

doi:10.1111/j.1600‐051X.2008.01352.x.

Cortellini, P., and Tonetti, M.S. (2011). Clinical 

and radiographic outcomes of the modified 

minimally invasive surgical technique with 

and without regenerative materials: A 

randomized‐controlled trial in intra‐bony 

defects. Journal of Clinical Periodontology 

38, 365–373. 

doi:10.1111/j.1600‐051X.2011.01705.x.

de Almeida, J.M., Theodoro, L.H., Bosco, A.F. 

et al. (2008). In vivo effect of photodynamic 

therapy on periodontal bone loss in dental 

furcations. Journal of Periodontology 79, 

1081–1088. doi:10.1902/jop.2008.070456.

de Andrade, A.K., Feist, I.S., Pannuti, C.M. 

et al. (2008). Nd:YAG laser clinical assisted 


background image

Innovative and Adjunctive Furcation Therapy 203

in class II furcation treatment. Lasers in 

Medical Science 23, 341–347. doi:10.1007/

s10103‐007‐0482‐6.

Del Peloso Ribeiro, E., Bittencourt, S., 

Ambrosano, G.M. et al. (2006). Povidone‐

iodine used as an adjunct to non‐surgical 

treatment of furcation involvements. Journal 

of Periodontology 77, 211–217. doi:10.1902/

jop.2006.050095.

Dogan, G.E., Aksoy, H., Demir, T. et al. (2016). 

Clinical and biochemical comparison of 

guided tissue regeneration versus guided 

tissue regeneration plus low‐level laser 

therapy in the treatment of class II furcation 

defects: A clinical study. Journal of Cosmetic 

Laser Therapy 18, 98–104. doi:10.3109/1476

4172.2015.1114637.

Eberhard, J., Ehlers, H., Falk, W. et al. 

(2003). Efficacy of subgingival calculus 

removal with Er:YAG laser compared to 

mechanical debridement: An in situ study. 

Journal of Clinical Periodontology 30, 

511–518.

Eickholz, P., Nickles, K., Koch, R. et al. (2016). 

Is furcation involvement affected by 

adjunctive systemic amoxicillin plus 

metronidazole? A clinical trials exploratory 

subanalysis. Journal of Clinical 

Periodontology 43, 839–848. doi:10.1111/

jcpe.12594.

FAO/WHO (2001). Report of joint FAO/WHO 

expert consultation on evaluation of health 

and nutritional properties of probiotics in 

food including powder milk with live lactic 

acid bacteria. Cordoba: Food and 

Agriculture Organization/World Health 

Organization.

Finlayson, R.S., and Stevens, F.D. (1988). 

Subcutaneous facial emphysema secondary 

to use of the Cavi‐Jet. Journal of 

Periodontology 59, 315–317. doi:10.1902/

jop.1988.59.5.315.

Flemmig, T.F., Arushanov, D., Daubert, D. et al. 

(2012). Randomized controlled trial 

assessing efficacy and safety of glycine 

powder air polishing in moderate‐to‐deep 

periodontal pockets. Journal of 

Periodontology 83, 444–452. doi:10.1902/

jop.2011.110367.

Fowler, E.B., and Breault, L.G. (2001). Failure 

of resin ionomers in the retention of 

multi‐rooted teeth with Class III furcation 

involvement: A rebuttal case report. Journal 

of Periodontology 72, 1084–1091. 

doi:10.1902/jop.2001.72.8.1084.

Fruhauf, J., Weinke, R., Pilger, U. et al. (2005). 

Soft tissue cervicofacial emphysema after 

dental treatment: Report of 2 cases with 

emphasis on the differential diagnosis of 

angioedema. Archives of Dermatology 141, 

1437–1440. doi:10.1001/

archderm.141.11.1437.

Ge, L., Zhang, Y., and Shu, R. (2017). 

Er,Cr:YSGG laser application for the 

treatment of periodontal furcation 

involvements. Photomedicine and Laser 

Surgery 35, 92–97. doi:10.1089/

pho.2016.4145.

Geisinger, M.L., Mealey, B.L., Schoolfield, J., 

and Mellonig, J.T. (2007). The effectiveness 

of subgingival scaling and root planing: An 

evaluation of therapy with and without the 

use of the periodontal endoscope. Journal of 

Periodontology 78, 22–28. doi:10.1902/

jop.2007.060186.

Gruner, D., Paris, S., and Schwendicke, F. 

(2016). Probiotics for managing caries and 

periodontitis: Systematic review and 

meta‐analysis. Journal of Dentistry 48, 

16–25. doi:10.1016/j.jdent.2016.03.002.

Guerrero, A., Griffiths, G.S., Nibali, L. et al. 

(2005). Adjunctive benefits of systemic 

amoxicillin and metronidazole in non‐

surgical treatment of generalized aggressive 

periodontitis: A randomized placebo‐

controlled clinical trial. Journal of Clinical 

Periodontology 32, 1096–1107. 

doi:10.1111/j.1600‐051X.2005.00814.x.

Gursoy, H., Ozcakir‐Tomruk, C., Tanalp, J., 

and Yilmaz, S. (2013). Photodynamic 

therapy in dentistry: A literature review. 

Clinical Oral Investigations 17, 1113–1125. 

doi:10.1007/s00784‐012‐0845‐7.

Hagi, T.T., Hofmanner, P., Eick, S. et al. (2015). 

The effects of erythritol air‐polishing powder 

on microbiologic and clinical outcomes 

during supportive periodontal therapy: Six‐

month results of a randomized controlled 


background image

Chapter 10 

204

clinical trial. Quintessence International 46, 

31–41. doi:10.3290/j.qi.a32817.

Hagi, T.T., Hofmanner, P., Salvi, G.E. et al. 

(2013). Clinical outcomes following 

subgingival application of a novel erythritol 

powder by means of air polishing in 

supportive periodontal therapy: A 

randomized, controlled clinical study. 

Quintessence International 44, 753°761. 

doi:10.3290/j.qi.a30606.

Hajishengallis, G., and Lamont, R.J. (2012). 

Beyond the red complex and into more 

complexity: The polymicrobial synergy and 

dysbiosis (PSD) model of periodontal 

disease etiology. Molecular Oral 

Microbiology 27, 409–419. 

doi:10.1111/j.2041‐1014.2012.00663.x.

Hamblin, M.R., and Hasan, T. (2004). 

Photodynamic therapy: A new antimicrobial 

approach to infectious disease? 

Photochemical and Photobiological Sciences 

3, 436–450. doi:10.1039/b311900a.

Hanes, P.J., and Purvis, J.P. (2003). Local  

anti‐infective therapy: Pharmacological 

agents. A systematic review. Annals of 

Periodontology 8, 79–98. doi:10.1902/ 

annals.2003.8.1.79.

Harks, I., Koch, R., Eickholz, P. et al. (2015). Is 

progression of periodontitis relevantly 

influenced by systemic antibiotics? A 

clinical randomized trial. Journal of Clinical 

Periodontology 42, 832–842. doi:10.1111/

jcpe.12441.

Harrel, S.K. (1999). A minimally invasive 

surgical approach for periodontal 

regeneration: Surgical technique and 

observations. Journal of Periodontology 70, 

1547–1557. doi:10.1902/

jop.1999.70.12.1547.

Herrera, D., Matesanz, P., Bascones‐Martinez, 

A., and Sanz, M. (2012). Local and systemic 

antimicrobial therapy in periodontics. 

Journal of Evidence Based Dental Practice 

12, 50–60. doi:10.1016/

S1532‐3382(12)70013‐1.

Herrera, D., Sanz, M., Jepsen, S. et al. (2002). A 

systematic review on the effect of systemic 

antimicrobials as an adjunct to scaling and 

root planing in periodontitis patients. 

Journal of Clinical Periodontology 29 (Suppl. 

3), 136–159; discussion 160–162.

Horning, G.M., Cobb, C.M., and Killoy, W.J. 

(1987). Effect of an air‐powder abrasive 

system on root surfaces in periodontal 

surgery. Journal of Clinical Periodontology 

14, 213–220.

Hunter, K.M., Holborow, D.W., Kardos, T.B. 

et al. (1989). Bacteraemia and tissue damage 

resulting from air polishing. British Dental 

Journal 167, 275–278.

Jepsen, K., and Jepsen, S. (2016). Antibiotics/

antimicrobials: Systemic and local 

administration in the therapy of mild to 

moderately advanced periodontitis. 

Periodontology 2000 71, 82–112. 

doi:10.1111/prd.12121.

Keestra, J.A., Grosjean, I., Coucke, W. et al. 

(2015). Non‐surgical periodontal therapy 

with systemic antibiotics in patients with 

untreated chronic periodontitis: 

A systematic review and meta‐analysis. 

Journal of Periodontal Research 50,  

294–314. doi:10.1111/jre.12221.

Konopka, K., and Goslinski, T. (2007). 

Photodynamic therapy in dentistry. Journal 

of Dental Research 86, 694–707.

Kontturi‐Narhi, V., Markkanen, S., and 

Markkanen, H. (1989). The gingival effects 

of dental airpolishing as evaluated by 

scanning electron microscopy. Journal of 

Periodontology 60, 19–22. doi:10.1902/

jop.1989.60.1.19.

Kozlovsky, A., Artzi, Z., Nemcovsky, C.E., and 

Hirshberg, A. (2005). Effect of air‐polishing 

devices on the gingiva: Histologic study in 

the canine. Journal of Clinical 

Periodontology 32, 329–334. 

doi:10.1111/j.1600‐051X.2005.00678.x.

Kwan, J.Y. (2005). Enhanced periodontal 

debridement with the use of micro ultrasonic, 

periodontal endoscopy. Journal of the 

California Dental Association 33, 241–248.

Laleman, I., and Teughels, W. (2015). 

Probiotics in the dental practice: A review. 

Quintessence International 46, 255–264. 

doi:10.3290/j.qi.a33182.

Lomke, M.A. (2009). Clinical applications of 

dental lasers. General Dentistry 57, 47–59.


background image

Innovative and Adjunctive Furcation Therapy 205

Lopes, B.M., Theodoro, L.H., Melo, R.F. et al. 

(2010). Clinical and microbiologic follow‐up 

evaluations after non‐surgical periodontal 

treatment with erbium:YAG laser and 

scaling and root planing. Journal of 

Periodontology 81, 682–691. doi:10.1902/

jop.2010.090300.

Luchesi, V.H., Pimentel, S.P., Kolbe, M.F. et al. 

(2013). Photodynamic therapy in the 

treatment of class II furcation: A 

randomized controlled clinical trial. Journal 

of Clinical Periodontology 40, 781–788. 

doi:10.1111/jcpe.12121.

Lulic, M., Leiggener Gorog, I., Salvi, G.E. et al. 

(2009). One‐year outcomes of repeated 

adjunctive photodynamic therapy during 

periodontal maintenance: A proof‐of‐

principle randomized‐controlled clinical 

trial. Journal of Clinical Periodontology 36, 

661–666. 

doi:10.1111/j.1600‐051X.2009.01432.x.

Martignago, C.C., Oliveira, R.F., Pires‐Oliveira, 

D.A. et al. (2015). Effect of low‐level laser 

therapy on the gene expression of collagen 

and vascular endothelial growth factor in a 

culture of fibroblast cells in mice. Lasers in 

Medical Science 30, 203–208. doi:10.1007/

s10103‐014‐1644‐y.

Martin‐Cabezas, R., Davideau, J.L., 

Tenenbaum, H., and Huck, O. (2016). 

Clinical efficacy of probiotics as an 

adjunctive therapy to non‐surgical 

periodontal treatment of chronic 

periodontitis: A systematic review and 

meta‐analysis. Journal of Clinical 

Periodontology 43, 520–530. doi:10.1111/

jcpe.12545.

Matesanz‐Perez, P., Garcia‐Gargallo, M., 

Figuero, E. et al. (2013). A systematic review 

on the effects of local antimicrobials as 

adjuncts to subgingival debridement, compared 

with subgingival debridement alone, in the 

treatment of chronic periodontitis. Journal 

of Clinical Periodontology 40, 227–241. 

doi:10.1111/jcpe.12026.

Matsubara, V.H., Bandara, H.M., Ishikawa, 

K.H. et al. (2016). The role of probiotic 

bacteria in managing periodontal disease: 

A systematic review. Expert Revies of Anti 

Infection Therapy 14, 643–655. doi:10.1080/

14787210.2016.1194198.

Michaud, R.M., Schoolfield, J., Mellonig, J.T., 

and Mealey, B.L. (2007). The efficacy of 

subgingival calculus removal with 

endoscopy‐aided scaling and root planing: A 

study on multirooted teeth. Journal of 

Periodontology 78, 2238–2245. doi:10.1902/

jop.2007.070251.

Mishra, A., Avula, H., Pathakota, K.R., and 

Avula, J. (2013). Efficacy of modified 

minimally invasive surgical technique in the 

treatment of human intrabony defects with 

or without use of rhPDGF‐BB gel: A 

randomized controlled trial. Journal of 

Clinical Periodontology 40, 172–179. 

doi:10.1111/jcpe.12030.

Moene, R., Decaillet, F., Andersen, E., and 

Mombelli, A. (2010). Subgingival plaque 

removal using a new air‐polishing device. 

Journal of Periodontology 81, 79–88. 

doi:10.1902/jop.2009.090394.

Moritz, A., Schoop, U., Goharkhay, K. et al. 

(1998). Treatment of periodontal pockets 

with a diode laser. Lasers in Surgical 

Medicine 22, 302–311.

Ozawa, T., Tsuchida, M., Yamazaki, Y. et al. 

(1999). Clinical application of a fiberscope 

for periodontal lesions: Case reports. 

Quintessence International 30, 615–622.

Pavicic, M.J., van Winkelhoff, A.J.,  

Pavivic‐Temming, Y.A., and de Graaff, J. 

(1995). Metronidazole susceptibility factors 

in Actinobacillus actinomycetemcomitans. 

Journal of Antimicrobial Chemotherapy 

35, 263–269.

Petersilka, G.J. (2011). Subgingival air‐

polishing in the treatment of periodontal 

biofilm infections. Periodontology 2000 55, 

124–142. 

doi:10.1111/j.1600‐0757.2010.00342.x.

Petersilka, G.J., Bell, M., Mehl, A. et al. (2003a). 

Root defects following air polishing. Journal 

of Clinical Periodontology 30, 165–170.

Petersilka, G.J., Steinmann, D., Haberlein, I. 

et al. (2003b). Subgingival plaque removal in 

buccal and lingual sites using a novel low 

abrasive air‐polishing powder. Journal of 

Clinical Periodontology 30, 328–333.


background image

Chapter 10 

206

Qin, Y., Luan, X., Bi, L. et al. (2008). Toluidine 

blue‐mediated photoinactivation of 

periodontal pathogens from supragingival 

plaques. Lasers in Medical Science 23, 

49–54. doi:10.1007/s10103‐007‐0454‐x.

Ramberg, P., Rosling, B., Serino, G. et al. 

(2001). The long‐term effect of systemic 

tetracycline used as an adjunct to non‐

surgical treatment of advanced 

periodontitis. Journal of Clinical 

Periodontology 28, 446–452.

Ribeiro, F.V., Casarin, R.C., Junior, F.H. et al. 

(2011). The role of enamel matrix derivative 

protein in minimally invasive surgery in 

treating intrabony defects in single‐rooted 

teeth: A randomized clinical trial. Journal of 

Periodontology 82, 522–532. doi:10.1902/

jop.2010.100454.

Ribeiro Edel, P., Bittencourt, S., Sallum, E.A. 

et al. (2010). Non‐surgical instrumentation 

associated with povidone‐iodine in the 

treatment of interproximal furcation 

involvements. Journal of Applied Oral 

Science 18, 599–606.

Roncati, M., and Gariffo, A. (2014). Systematic 

review of the adjunctive use of diode and 

Nd:YAG lasers for nonsurgical periodontal 

instrumentation. Photomedicine and Laser 

Surgery 32, 186–197. doi:10.1089/

pho.2013.3695.

Rupprecht, R.D., Horning, G.M., and Towle, 

H.J., III (2001). A clinical evaluation of 

hydroxyapatite cement in the treatment of 

Class III furcation defects. Journal of 

Periodontology 72, 1443–1450. doi:10.1902/

jop.2001.72.10.1443.

Saglam, M., Kantarci, A., Dundar, N., and 

Hakki, S.S. (2014). Clinical and biochemical 

effects of diode laser as an adjunct to 

nonsurgical treatment of chronic 

periodontitis: A randomized, controlled 

clinical trial. Lasers in Medical Science 29, 

37–46. doi:10.1007/s10103‐012‐1230‐0.

Saperia, D., Glassberg, E., Lyons, R.F. et al. 

(1986). Demonstration of elevated type I 

and type III procollagen mRNA levels in 

cutaneous wounds treated with helium‐

neon laser: Proposed mechanism for 

enhanced wound healing. Biochemistry and 

Biophysics Reserch Communications 138, 

1123–1128.

Saxen, L., and Asikainen, S. (1993). 

Metronidazole in the treatment of localized 

juvenile periodontitis. Journal of Clinical 

Periodontology 20, 166–171.

Schwarz, F., Sculean, A., Berakdar, M. et al. 

(2003). In vivo and in vitro effects of an 

Er:YAG laser, a GaAlAs diode laser, and 

scaling and root planing on periodontally 

diseased root surfaces: A comparative 

histologic study. Lasers in Surgery and 

Medicine 32, 359–366. doi:10.1002/

lsm.10179.

Sgolastra, F., Gatto, R., Petrucci, A., and 

Monaco, A. (2012a). Effectiveness of 

systemic amoxicillin/metronidazole as 

adjunctive therapy to scaling and root 

planing in the treatment of chronic 

periodontitis: A systematic review and 

meta‐analysis. Journal of Periodontology 83, 

1257–1269. doi:10.1902/jop.2012.110625.

Sgolastra, F., Petrucci, A., Gatto, R., and 

Monaco, A. (2012b). Effectiveness of 

systemic amoxicillin/metronidazole as an 

adjunctive therapy to full‐mouth scaling and 

root planing in the treatment of aggressive 

periodontitis: A systematic review and 

meta‐analysis. Journal of Periodontology 83, 

731–743. doi:10.1902/jop.2011.110432.

Sgolastra, F., Petrucci, A., Gatto, R. et al. 

(2013a). Photodynamic therapy in the 

treatment of chronic periodontitis: A 

systematic review and meta‐analysis. Lasers 

in Medical Science 28, 669–682. doi:10.1007/

s10103‐011‐1002‐2.

Sgolastra, F., Petrucci, A., Severino, M. et al. 

(2013b). Adjunctive photodynamic therapy 

to non‐surgical treatment of chronic 

periodontitis: A systematic review and 

meta‐analysis. Journal of Clinical 

Periodontology 40, 514–526. doi:10.1111/

jcpe.12094.

Sgolastra, F., Severino, M., Petrucci, A. et al. 

(2014). Nd:YAG laser as an adjunctive 

treatment to nonsurgical periodontal 

therapy: A meta‐analysis. Lasers in Medical 

Science 29, 887–895. doi:10.1007/

s10103‐013‐1293‐6.


background image

Innovative and Adjunctive Furcation Therapy 207

Socransky, S.S., and Haffajee, A.D. (1992). The 

bacterial etiology of destructive periodontal 

disease: Current concepts. Journal of 

Periodontology 63, 322–331. doi:10.1902/

jop.1992.63.4s.322.

Soukos, N.S., and Goodson, J.M. (2011). 

Photodynamic therapy in the control of oral 

biofilms. Periodontology 2000 55, 143–166. 

doi:10.1111/j.1600‐0757.2010.00346.x.

Souza, E., Medeiros, A.C., Gurgel, B.C., and 

Sarmento, C. (2016). Antimicrobial 

photodynamic therapy in the treatment of 

aggressive periodontitis: A systematic 

review and meta‐analysis. Lasers in Medical 

Science 31, 187–196. doi:10.1007/

s10103‐015‐1836‐0.

Takei, H.H., Han, T.J., Carranza, F.A., Jr et al. 

(1985). Flap technique for periodontal bone 

implants: Papilla preservation technique. 

Journal of Periodontology 56, 204–210. 

doi:10.1902/jop.1985.56.4.204.

Taniguchi, Y., Aoki, A., Sakai, K. et al. (2016). 

A novel surgical procedure for Er:YAG 

laser‐assisted periodontal regenerative 

therapy: Case series. International Journal of 

Periodontics and Restorative Dentistry 36, 

507–515. doi:10.11607/prd.2515.

Tomasi, C., and Wennstrom, J.L. (2011). 

Locally delivered doxycycline as an adjunct 

to mechanical debridement at retreatment 

of periodontal pockets: Outcome at 

furcation sites. Journal of Periodontology 82, 

210–218. doi:10.1902/jop.2010.100308.

Tonetti, M.S., Cortellini, P., Carnevale, G. et al. 

(1998). A controlled multicenter study of 

adjunctive use of tetracycline periodontal 

fibers in mandibular class II furcations with 

persistent bleeding. Journal of Clinical 

Periodontology 25, 728–736.

Trombelli, L., Farina, R., Franceschetti, G., 

and Calura, G. (2009). Single‐flap approach 

with buccal access in periodontal 

reconstructive procedures. Journal of 

Periodontology 80, 353–360. doi:10.1902/ 

jop.2009.080420.

Trombelli, L., Simonelli, A., Pramstraller, M. 

et al. (2010). Single flap approach with and 

without guided tissue regeneration and a 

hydroxyapatite biomaterial in the 

management of intraosseous periodontal 

defects. Journal of Periodontology 81, 

1256–1263. doi:10.1902/jop.2010.100113.

Ustun, K., Erciyas, K., Sezer, U. et al. (2014). 

Clinical and biochemical effects of 810 nm 

diode laser as an adjunct to periodontal 

therapy: A randomized split‐mouth clinical 

trial. Photomedicine and Laser Surgery 32, 

61–66. doi:10.1089/pho.2013.3506.

van Winkelhoff, A.J., Tijhof, C.J., and de 

Graaff, J. (1992). Microbiological and 

clinical results of metronidazole plus 

amoxicillin therapy in Actinobacillus 

actinomycetemcomitans‐associated 

periodontitis. Journal of Periodontology 63, 

52–57. doi:10.1902/jop.1992.63.1.52.

Verma, S.K., Maheshwari, S., Singh, R.K., and 

Chaudhari, P.K. (2012). Laser in dentistry: 

An innovative tool in modern dental 

practice. National Journal of Maxillofacial 

Surgery 3, 124–132. 

doi:10.4103/0975‐5950.111342.

Wainwright, M. (1998). Photodynamic 

antimicrobial chemotherapy (PACT). 

Journal of Antimicrobial Chemotherapy 42, 

13–28.

Winkel, E.G., Van Winkelhoff, A.J., 

Timmerman, M.F. et al. (2001). Amoxicillin 

plus metronidazole in the treatment of adult 

periodontitis patients: A double‐blind 

placebo‐controlled study. Journal of Clinical 

Periodontology 28, 296–305.

Yaneva, B., Firkova, E., Karaslavova, E., and 

Romanos, G.E. (2014). Bactericidal effects of 

using a fiber‐less Er:YAG laser system for 

treatment of moderate chronic 

periodontitis: Preliminary results. 

Quintessence International 45, 489–497. 

doi:10.3290/j.qi.a31803.

Yilmaz, H.G., and Bayindir, H. (2012). 

Clinical evaluation of chlorhexidine and 

essential oils for adjunctive effects in 

ultrasonic instrumentation of furcation 

involvements: A randomized controlled 

clinical trial. International Journal of 

Dental Hygiene 10, 113–117. 

doi:10.1111/j.1601‐5037.2011.00538.x.


background image

Diagnosis and Treatment of Furcation-Involved Teeth, First Edition. Edited by Luigi Nibali. 

© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd. 

Companion website: www.wiley.com/go/nibali/diagnosis

Chapter No.: 1  Title Name: <TITLENAME> 

c11.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:21:58 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 209

209

11.1   Implants vs Periodontal 

Multi‐rooted Teeth: What is 

the Clinical Problem?

Previous chapters have unequivocally shown 

that in periodontal patients, the posterior 

maxilla and mandible are often those areas 

that are the worst affected in terms of severity 

of periodontal disease and ultimately tooth 

loss (Hirschfeld and Wasserman 1978; McFall, 

1982; McGuire and Nunn 1996), and that fur-

cation defects are a well‐established local risk 

factor for both attachment and tooth loss. 

The predictability of either regenerative 

(Avila‐Ortiz 2015) or resective (Langer et al. 

1981; Carnevale et  al. 1991; Blomlöf et  al. 

1997) surgical management of teeth with fur-

cation involvement (FI) is variable, and is 

dependent on a number of local (related to 

furcation anatomy) and systemic factors. 

Besides the therapeutic advances in the man-

agement of furcation defects, periodontal 

treatment success rates are higher in single‐

rooted teeth (Wang et  al. 1994),  making it 

easier to predict their prognosis in compari-

son to multi‐rooted teeth (McGuire 1991).

Therefore, patient‐related factors, treat-

ment cost, and the dentist’s clinical experi-

ence and training often influence the decision 

on whether to treat or extract a multi‐rooted 

tooth with a furcation defect (Zitzmann et al. 

2011; Donos et al. 2012).

The difficulty in assessing the prognosis of 

teeth with bone loss beyond the root furca-

tion following periodontal treatment and the 

increased popularity of dental implants have 

shifted the decision from treating these teeth 

towards replacing them with implants. In 

other words, why bother with treating diffi-

cult‐to‐treat molars with FI, when we could 

extract them and replace them with implants? 

The concept of extracting teeth with FI with 

questionable prognosis and substituting 

them with dental implants is mainly based on 

the following clinical assumptions:

 

The lower predictability of furcation treat-

ment in relation to the high morbidity, 

time, and cost of such treatments, which 

usually involve complex periodontal sur-

gery, endodontic and restorative compo-

nents, and the need for lengthy supportive 

periodontal therapy.

 

The higher long‐term survival rates of 

implant‐supported restorations (Moraschini 

et al. 2015), which, besides their higher cost, 

can make them a better restorative solution 

in terms of cost versus benefit (Brägger et al. 

2005; Bouchard et al. 2009).

 

The potentially superior functional and 

aesthetic outcomes of implant‐supported 

Chapter 11

Furcation: Why Bother? Treat the Tooth or Extract 
and Place an Implant?

Nikos Mardas

1

 and Stephen Barter 

2

1

 Centre for Immunobiology and Regenerative Medicine, Centre for Oral Clinical Research, Institute of Dentistry, Barts and the London 

School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK

2

 Private practice, Eastbourne, UK


background image

Chapter 11 

210

restorations over the surgical management 

of teeth with FI, which may result in 

increased tooth mobility, root hypersensi-

tivity, and gingival recession.

 

An early, ‘strategic’ extraction will prevent 

further bone loss and thereby facilitate 

implant treatment that may otherwise be 

difficult considering the anatomical limita-

tions that are usually present in the poste-

rior maxilla and mandible (Kao 2008).

All these assumptions could be strongly 

debated in the light of clinical evidence. 

Although reported implant survival rates are 

high, they may not surpass the longevity of 

periodontally compromised teeth (Donos 

et al. 2012), especially in the posterior max-

illa, where a variety of local factors (quality 

and quantity of bone, proximity to anatomi-

cal structures, and need for grafting) may 

result in reduced implant survival rates 

(Drago 1992; Becker et  al. 1999; Graziani 

et  al. 2004, Pjetursson et  al. 2008). When 

implants are placed in patients with a history 

of periodontal disease, they are associated 

with a higher incidence of biological compli-

cations (peri‐implantitis), characterized by a 

similar pathogenesis and systemic risk 

 factors (e.g. smoking, diabetes) to periodon-

tal disease.

Consequently, implants in ‘periodontal 

patients’ present lower success and probably 

lower survival rates than implants placed in 

periodontally healthy patients (Donos et al 

2012; Sousa et  al. 2016a). Severe forms of 

periodontal disease, which commonly result 

in posterior teeth with advanced furcation 

defects, are associated with higher rates of 

implant loss (Sousa et  al. 2016a) and 

increased peri‐implant bone loss around 

implants placed to substitute teeth with FI 

(Hardt et al. 2002). In the only comparative 

study available to date, Fugazzotto (2001) 

reported similar success rates of implants 

(97%) and root‐resected molars (96.8%) after 

0–13 years of function. Furthermore, more 

recent cost‐effectiveness studies have shown 

that the cost of periodontal therapy is rela-

tively lower than the cost and maintenance of 

implants or bridgework (Pretzl et  al. 2009; 

Fardal et al. 2013). This is of course related to 

the additional consideration of the higher 

rate of technical complications associated 

with implant‐borne prostheses (Brägger 

et al., 2005; Albrektsson et al. 2012). This will 

be discussed in more detail in Chapter  12. 

Finally, we cannot base our decision on 

patient preferences or aesthetic outcomes, 

since studies comparing aesthetic or patient‐

based outcomes following periodontal treat-

ment for retention of teeth with FI or dental 

implants do not exist (Lang et al. 2012).

Based on this evidence, we could claim that 

dental implants are not a substitute for furca-

tion‐involved teeth, but rather a solution for 

restoring a lost molar when the treatment to 

maintain teeth has failed or is not indicated. 

Therefore, different considerations should be 

involved in the decision‐making process for 

each clinical approach, and it cannot simply 

be about ‘keeping bone for an implant’ by 

removing the tooth early. These considera-

tions include the following:

 

The strategic role of the furcation‐involved 

tooth in the overall restorative treatment 

plan.

 

The predictability of the periodontal furca-

tion treatment following an estimation of:

 

– Local factors such as the extent of FI, 

the residual attachment levels, presence 

of caries, endodontic complications, 

and restorative problems.

 

– Systemic factors such as smoking, dia-

betes, or specific medication that may 

influence the longevity of periodontal 

teeth (but potentially also of implants).

 

– The patient’s compliance in maintaining 

a high level of oral hygiene and in follow-

ing an intensive supportive periodontal 

therapy programme.

 

The predictability of an implant‐supported 

restoration following an estimation of:

 

– Residual bone quantity in relation to 

anatomical limitations and the com-

plexity of any bone augmentation pro-

cedures necessary to overcome these 

limitations.


background image

Furcation: Why Bother?  211

 

– Systemic factors that may influence the 

longevity of implants or compromise 

the results of bone augmentation.

 

– Patient compliance and their ability to 

undergo the necessary surgical and 

restorative procedures.

 

Patient’s expectations in terms of aesthetics, 

function, duration, and type of treatment.

 

A detailed cost–benefit analysis that 

should be presented to the patient and 

include initial and maintenance therapies, 

as well as the cost for the management of 

complications for each clinical approach.

When the decision to extract a tooth with FI 

is taken, the clinical issues with placing an 

implant are largely centred on whether suf-

ficient residual alveolar bone remains for 

the placement of an implant of adequate 

length without the need for bone augmenta-

tion. There are different anatomical consid-

erations in each arch and conditions may 

have significant variance, even between dif-

ferent sites in the same patient. These are 

described later in the chapter, as are the 

subquestions regarding what constitutes 

‘sufficient’ alveolar bone height and implant 

length.

11.2   Anatomical  Considerations 

for implant Placement in the 

Posterior Maxilla and Mandible

11.2.1  Bone ‘Quality’

Leckholm and Zarb (1985) classified the 

 concept of bone ‘quality’ into four subtypes 

depending on the ratio of cortical to cancel-

lous bone, and since then other classifica-

tions of bone quality have been proposed. 

However, bone quality is not only deter-

mined by the density of the cortical and 

 cancellous components. It is characterized 

by a combination of factors, such as the 

degree of vascularity and cellular vitality, the 

quality of the collagen content and mineral 

crystal size, plus accumulated microscopic 

damage and rate of bone turnover.

It is often assumed that the posterior max-

illa has ‘poor’ bone quality, based on thinner 

cortical plates and a less dense trabecular 

structure, with increasing adipose content 

towards the maxillary tuberosity region 

 giving a lower bone ‘density’. Some authors 

suggest that implant placement in type 4 

bone is associated with an increased failure 

rate (Goiato et  al. 2014). However, higher 

rates of implant failure have also been 

reported in dense mandibular bone (van 

Steenberghe et al. 2003).

Bone density in the posterior mandible can 

also be variable. When alveolar ridge width 

reduces following tooth loss, the cortical 

plates may become closer together, leaving a 

smaller trabecular space between them. 

Conversely, a medullary compartment with 

sparse trabeculation may be found, even in the 

presence of thick cortical plates, and achiev-

ing primary implant stability may be difficult.

The lower vascularity of bone with a 

smaller trabecular compartment may result 

in decreased oxygen tension in the bone and 

a reduction in vital osteocytes, with a conse-

quent effect on bone healing and osseo‐inte-

gration (van Steenberghe et  al. 2003). 

However, there are publications that show 

little variation in implant survival rates in 

‘poor’‐ or ‘good’‐quality bone, particularly if 

the implants have a micro‐roughened surface 

(Stanford 2010).

It is possible that a significant confounding 

factor is the operator, in that it may be more 

difficult to achieve adequate primary implant 

stability in soft bone. On the contrary, oste-

otomy preparation may be more challenging 

in dense bone, and without careful tech-

nique, sharp drills, and adequate cooling, the 

bone may be overheated, causing local necro-

sis and rapid loss of initial mechanical 

implant stability, before the biological stabil-

ity achieved by new bone formation 

has  reached a sufficient state (Bashutski 

et al. 2009).

Excessive insertion torque of an implant 

placed in dense bone may also cause ‘com-

pression necrosis’ (Chrcanovic and Custódio 

2009), with damage to the microvascular 


background image

Chapter 11 

212

 system and trabecular structure beyond the 

physiological capacity of bone repair. Similar 

mechanisms have been described in ortho-

paedic surgery (Winwood et al. 2006).

Similar criticism has been applied to the 

use of osteotomes in the posterior maxilla to 

‘improve’ bone density by condensation 

rather than drilling in soft bone (Blanco et al. 

2008). Compressing bone in this way does 

not increase bone density, but may lead to a 

need for increased bone remodelling due to 

trabecular damage that cannot be fully real-

ized due to microvascular damage.

In conclusion, besides bone quality there 

are considerable site‐ and patient‐specific 

variables that, together with operator experi-

ence and skill, can have a significant impact 

on the outcome of implant placement.

11.2.2  Bone Loss and Implant 

Positioning

It is an accepted fact that resorption and 

remodelling of the alveolar process takes 

place following the extraction of a tooth. The 

relative volumes of alveolar and basal bone 

loss will be subject to variation between 

 

different individuals and even between 

 different sites in the same individual, and will 

affect the possibility of implant placement 

with or without bone augmentation. When a 

molar tooth with periodontal disease‐related 

bone loss to or beyond the root furcations is 

extracted, a greater degree of pre‐extraction 

alveolar bone loss will have occurred, result-

ing in an even bigger osseous defect 

(Figure 11.1).

Alveolar ridge preservation is a treatment 

concept that could potentially reduce the 

post‐extraction ridge dimensional changes 

(MacBeth et  al. 2017), decrease the clinical 

need for additional ridge augmentation dur-

ing implant placement, and consequently 

facilitate implant placement (Mardas et  al. 

2015). These potential advantages, however, 

may not directly apply to the molar regions, 

and the clinician should base their decision 

on the accurate diagnosis of all local and 

patient‐related factors (i.e. tooth location, 

reason for extraction, treatment duration, 

healing time, cost–benefit, and patient 

expectations and preferences).

Post‐extraction alveolar resorption occurs 

in an apico‐lingual direction, moving the 

crest of the ridge medially and reducing the 

available vertical height of bone (Cawood 

(a)

(b)

Figure 11.1 

(a) Left maxillary first molar affected by endodontic‐periodontal pathology. (b) Computed 

tomography (CT) scan taken after extraction, showing reduction of vertical height, as well as root residuals.


background image

Furcation: Why Bother?  213

and Howell 1988). The former may lead to a 

tendency to place the implant too medially in 

the bony ridge; the latter may create a 

 tendency to place the implant at a deeper 

vertical position than adjacent teeth in 

bounded saddles, or complicate implant 

placement due to the proximity of important 

anatomical structures.

It is no longer acceptable merely to place 

the implant into the available bone volume 

and attempt to restore this ‘as well as possi-

ble’ once the implant is integrated. According 

to the principle of ‘restoration‐driven implant 

placement’, the implant should be installed in 

the correct position for the intended restora-

tion. Therefore, whatever the intended 

restorative outcome is, the optimal implant 

position should be planned at the outset. 

Furthermore, the ongoing maintenance of 

peri‐implant tissue health should be an 

essential part of the pre‐operative planning, 

especially in patients who are clearly suscep-

tible to periodontal disease and therefore at a 

greater risk of biological complications. The 

pre‐operative implant restorative plan should 

be based on the following factors:

 

The restoration being in the appropriate 

position for a balanced occlusion.

 

The possibility of placing the implant such 

that it emerges through attached mucosa.

 

The avoidance of lateral overhangs of the 

restoration such as ridge‐lap, either of the 

implant‐supported crown or caused by 

pink‐coloured gingivae imitating exten-

sions of veneering material. These create 

stagnation areas, and may impede effective 

oral hygiene by the patient and access for 

peri‐implant probing for the clinician.

 

The avoidance of a significant vertical dif-

ference between the bone crest of an adja-

cent tooth and the implant/abutment 

interface, which may otherwise result in a 

deep soft‐tissue pseudo‐pocket around the 

implant, again creating a stagnation area.

 

Even in the posterior region, aesthetics may 

still be an issue. Maxillary molar‐to‐molar 

smiles are common, particularly in females, 

and orthodontic treatment with premolar 

extractions may result in mesial movement 

of molar teeth, making the region more vis-

ible. While it may not be possible to avoid a 

longer implant crown than adjacent teeth, 

‘filling’ the buccal corridor with the correct 

crown contour may be of aesthetic and 

functional importance.

Bone loss renders certain anatomical struc-

tures more superficial and this may create 

problems for implant placement. In the max-

illary molar regions, the main issue is the 

degree of pneumatization of the maxillary 

antra; in the mandible, the position of the 

inferior alveolar nerve and submandibular 

fossa are the relevant considerations. In clini-

cal practice these anatomical limitations are 

usually managed with bone‐augmentation 

procedures or reduced‐length implants.

11.3   Implant Placement in the 

Mandibular Molar Region

Loss of vertical height of bone in the poste-

rior mandible may occur following extrac-

tion of mandibular multi‐rooted teeth. As 

this process occurs, the residual crest of bone 

becomes closer to the mandibular canal. 

Depending on individual site anatomy, this 

can commonly render the inferior alveolar 

nerve so superficial that implant placement 

can be difficult, or inadvisable.

Damage to the inferior alveolar nerve in 

the mandibular canal may occur by compres-

sion, penetration, or transection of the canal, 

with either surgical drills or the implant 

itself. As the nerve exits the canal, there is 

also a risk of iatrogenic damage during flap 

preparation, elevation, or retraction.

Careful pre‐surgical investigation is essen-

tial, taking into consideration that there is a 

considerable degree of variation in the course 

of the inferior alveolar nerve, including bifid 

canals, multiple canals, and multiple mental 

foramina (Carter and Keen 1971; Naitoh 

et al. 2009).


background image

Chapter 11 

214

Damage to the inferior alveolar nerve can 

take many forms, with all but the most minor 

carrying a significant risk of irreversible neu-

ropathy (Seddon 1942). Consequent altered 

sensation, often accompanied by neuropathic 

pain, can cause a lifelong reduction in quality 

of life and significant psychological difficul-

ties (Lam et al. 2003).

It is important to realize that nerve dam-

age can occur even without actual penetra-

tion of the canal, via a compression injury 

(neurapraxia) being compounded by 

inflammatory oedema within the canal, or 

bleeding that, as a consequence of the neu-

rotoxicity of haemoglobin, causes further 

neural damage (Regan and Rogers 2003). 

Prompt and appropriate action must be 

taken in the event of actual or suspected 

damage; early intervention can reduce 

the  risk of lifetime impact (Renton and 

Yilmaz 2012).

In cases of multiple tooth loss and extended 

edentulous spaces, more advanced vertical 

bone loss will also render the submandibular 

space more superficial. Within this space are 

branches of blood vessels, which, if damaged 

by inadvertent perforation of the lingual 

mandibular cortex, can cause significant 

haemorrhage. In rare cases the airway may 

be compromised to a life‐threatening degree 

(Niamtu 2001; Dubois et al. 2010).

Accurate pre‐surgical clinical and radio-

logical investigation is therefore para-

mount, and an adequate safety margin must 

be maintained between the osteotomy 

preparation and important anatomical 

features.

11.3.1  Bone Augmentation 

for Implant Placement in the 

Mandibular Molar Region

When there is inadequate vertical height of 

bone over the inferior dental canal for the 

safe placement of dental implants, short‐arch 

or non‐implant‐supported restoration is 

undoubtedly the most predictable option, 

and should always be considered rather than 

risking iatrogenic nerve damage.

The options available to the clinician for 

implant placement in resorbed mandibular 

molar sites are:

 

Horizontal augmentation (where vertical 

height is not an issue).

 

Vertical augmentation.

 

Use of shorter implants.

The technique of inferior alveolar nerve lat-

eralization will not be discussed, as this is 

neither a technique that is commonly used 

due to a significant complication rate, nor for 

which there is a large body of clinical and 

 scientific  documentation.

Vertical bone‐augmentation techniques 

have been described for many years, includ-

ing onlay grafting and distraction osteogen-

esis. However, the ability of these techniques 

to predictably regenerate the desired vertical 

bone volume is limited, both by anatomical 

and biological demands as well as the due to 

practical difficulties often encountered by 

the operator (Rocchietta et al. 2008).

It is difficult to determine the efficacy of 

different techniques due to the usual factors: 

few studies, wide variation in techniques and 

materials, and a lack of appropriate measure-

ments, even in such basic matters as pre‐ and 

post‐augmentation bone levels (Keestra et al. 

2016).

A similar criticism can be applied to lateral 

bone augmentation (Esposito et  al. 2009). 

Consequently, it is valid considering the 

alternative of short or reduced‐diameter 

implants.

11.4   Bone  Augmentation 

for Implant Placement in the 

Maxillary Molar Region

The options available to the clinician for 

implant placement in resorbed maxillary 

molar sites are:

 

Horizontal augmentation (where vertical 

height is not an issue).

 

Subantral augmentation via a lateral 

antrostomy (classic ‘sinus lift’).


background image

Furcation: Why Bother?  215

 

Subantral augmentation via implant oste-

otomy (variously called ‘osteotome tech-

nique’, ‘sinus tap’, and other monikers).

 

Use of shorter implants.

11.4.1  Horizontal Bone Augmentation

The concept of horizontal (lateral) bone aug-

mentation is well documented (Donos et al. 

2008; Chappuis et al. 2017), with predictable 

outcomes provided that the basic tenets of 

guided bone regeneration are observed:

 

Space maintenance and form shaping.

 

Blood clot stabilization.

 

Effective compartmentalization of the 

graft (prevention of soft‐tissue invasion).

 

Adequate vascular and cell supply.

For the first and second requirements to be 

satisfied, the graft material and the mem-

brane have to possess sufficient rigidity to 

preserve the form of the graft and eliminate 

micro‐motion. This could be achieved in 

three‐walled defects that can adequately 

contain a particulate graft, or when a block of 

augmentation material or a semirigid and 

reinforced membrane is used in cases of 

 non‐space‐containing  defects.

It is widely recognized that barrier mem-

brane function is an essential component in 

the achievement of a predictable outcome, 

particularly when using particulate grafts.

Any free graft has to have an adequate cell 

and vascular supply to be viable. This is 

largely derived from adequate adjacent 

healthy bone. One therefore has to exercise 

caution when considering the simultaneous 

placement of an implant, which has the 

potential to form a barrier between the host 

bone and the graft material, depending on 

defect morphology.

11.4.2  Sinus Lift

The sinus lift technique was first described 

using a lateral antrostomy in 1980 by Boyne 

and James, and has since proved to be a safe 

and predictable procedure, with no lasting 

effect on maxillary sinus health and function 

(Timmenga et al. 2003). The general princi-

ple is that access to the antrum is created via 

an osseous window and the Schneiderian 

membrane is elevated intact, creating a 

 subantral space into which a biocompatible 

scaffold can be inserted to conduct new bone 

growth, providing an adequate bed for 

implant placement. As with any surgical pro-

cedure there is the potential for complica-

tions; consequently, any surgeon performing 

the procedure should be properly trained 

and experienced, and able to deal with intra‐ 

and post‐operative complications.

The main complication leading to chronic 

rhino‐sinus symptoms is the perforation of 

the Schneiderian membrane, with the poten-

tial escape of graft materials into the sinus. 

Loss of graft compartmentalization may 

result in an inflammatory reaction, the loss 

of patency of the ostium (van den Bergh et al. 

2000; Wiltfang et al. 2000; Doud Galli et al. 

2001), a compromised mucociliary transport 

system, and ultimately a potential need for 

graft removal with endoscopic sinus surgery. 

The reported incidence of membrane perfo-

ration is from 10% to over 50% of cases 

(Timmenga et  al. 1997; Block et  al. 1998; 

Schwartz‐Arad et  al. 2004; Pikos 2008; 

Pjetursson et  al. 2008). There are many 

authors who suggest that, up to a certain size, 

repair of the ruptured sinus lining with a col-

lagen membrane is possible (Becker et  al. 

2008); others question the efficacy of this 

technique (Aimetti et al. 2001).

Even without membrane perforation, there 

is a certain incidence of post‐operative 

chronic sinusitis in patients predisposed to 

rhino‐sinus disease (Timmenga et al. 1997). 

An accurate medical history with relevant 

questions is therefore important in patient 

assessment.

There is evidence that certain osteocon-

ductive bone grafts, like deproteinized 

bovine bone mineral, can provide a bone‐ 

formation outcome as reliable as autogenous 

bone, which removes the need for a donor 

site and simplifies the overall procedure con-

siderably (Handschel et  al. 2009; Kim et  al. 

2009). It seems that covering the antrostomy 


background image

Chapter 11 

216

with a barrier membrane after graft place-

ment tends to result in a better implant prog-

nosis (Jensen and Terheyden 2009), perhaps 

because to achieve the optimal restorative 

position, the implant tends to be placed as 

buccally as possible and the use of mem-

branes appears to have a significant impact 

on the amount of soft‐tissue invasion into the 

lateral aspect of the graft (Choi et al. 2009).

However, subantral augmentation does not 

replace the alveolar bone; it provides a differ-

ent volume of bone to facilitate implant 

placement. Depending on the degree of 

 lateral bone loss, implants placed into this 

bone bed may not be closely related to the 

positions of the missing teeth. Some clini-

cians suggest that for implant placement to 

be appropriate for a fixed reconstruction, 

 lateral augmentation will also be required 

(Chiapasco and Zaniboni 2009). Lateral bone 

grafting in such a situation will not always be 

practical, particularly if there are adjacent 

teeth with bone loss: reconstruction of any 

vertical component of bone loss will be tech-

nically difficult and unpredictable.

Implant survival rates are variously quoted 

as being equal to (61.7–100%, average 91.8%; 

Wallace and Froum 2003) or slightly more var-

iable (73–100% for non‐ augmented sinuses, 

36–100% for augmented sinuses on a patient 

basis; 75–100% for both non‐ augmented and 

augmented sites on an implant basis; Graziani 

et al. 2004) than those reported in the unaug-

mented posterior maxilla, suggesting that 

 variables such as implant type and operator 

experience are important factors.

11.4.3 Osteotome‐mediated 

Sinus Floor Elevation

This technique was first described by 

Summers (1998) and has since seen several 

iterations of modifications, in a desire to 

 simplify the process of subantral augmenta-

tion. The basic theory is that the floor of 

the  antrum is elevated blindly, via the 

implant  osteotomy, without perforating the 

Schneiderian membrane. Most of the reports 

detailing this technique were performed in 

situations of significant residual alveolar 

ridge height (rAH). When a perforation of 

the Schneiderian membrane was suspected, 

the implant was placed without any bone 

grafts to reduce the risk of sinusitis presented 

by graft particles escaping into the sinus; 

something that did not influence the implant‐

related outcomes.

A significant determinant of implant suc-

cess using the osteotome technique is the 

height of the rAH (Toffler 2004). As rAH 

decreases, the need for greater graft height 

increases. This means a greater degree of 

membrane elevation, which may result in an 

increased rate of Schneiderian membrane 

perforation (Nkenke et  al. 2002; Velloso 

2006). However, with this ‘blind’ approach it 

is not possible to reliably detect membrane 

perforations (Ferrigno et al. 2006; Ardekian 

et al. 2006). Other risks associated with the 

osteotome technique include benign parox-

ysmal positional vertigo (Iida et  al. 2000; 

Kaplan et al. 2003; Di Girolamo et al. 2005; 

Chiarella et al. 2008; Kim et al. 2010) and loss 

of the implant into the sinus where simulta-

neous implant placement is attempted 

(Galindo et al. 2005; Chiapasco et al. 2009), 

or even several years after implant placement 

(Udea and Kaneda 1992; Iida et al. 2000).

Even if a reasonable degree of augmentation 

material can be inserted via the implant oste-

otomy without membrane perforation, bone 

growth is known to be incremental from the 

bony walls, since the vascular and osteoblastic 

cell supply derives primarily from there (Jensen 

et al. 1998). It has been shown that there is sig-

nificant remodelling of grafts placed using the 

osteotome technique, and that actual bone 

gain is limited to small amounts of additional 

bone on the walls of the implant, with little 

bone at the apex after 12 months (Brägger et al. 

2004; Leblebicioglu et al. 2005). Furthermore, 

occlusal load in the posterior maxilla is pri-

marily borne by the cortical plates and dissi-

pated to the palatal bone and zygomatic 

process (Gross and Nissan 2001; Gross et al. 

2001; Yacoub et al. 2002). The degree of bone 

contact on the implant is of course determined 

by available rAH, and also by the amount of 


background image

Furcation: Why Bother?  217

graft;  however, if that graft is not in contact 

with the walls of the sinus, contribution to 

load‐bearing capacity is insignificant (Tepper 

et al. 2002). The quality of regenerated bone is 

also important in reducing the stress in the 

native bone, which could otherwise lead to 

crestal bone resorption (Fanascu et al. 2003).

This has raised questions of whether there is 

a critical height of bone at which there is an 

advantage of the osteotome technique over the 

lateral window approach in terms of implant 

survival. In a meta‐regression analysis of the 

two approaches, it was noted that there was a 

correlation between bone height and implant 

survival, with an rAH of 4 mm, in the lateral 

window approach. There was no correlation 

with the osteotome approach, but the rAH and 

implant survival rate were highly variable in 

the included studies, with many different tech-

niques being used (Chao et al. 2010).

Besides the technique’s extensive use, the 

‘evidence’ supporting the osteotome‐mediated 

sinus floor elevation has a significant degree 

of heterogeneity and drawing meaningful 

conclusions is difficult (Tan et  al. 2008). 

Similar outcomes in terms of implant sur-

vival can be achieved with short implants, 

and some authors have suggested that there 

may not be any harm in placing an implant 

that penetrates the antral floor (Brånemark 

et al. 1984; Pierreisnard et al. 2003).

Given the increased morbidity and overall 

treatment time scale associated with the lat-

eral window approach to sinus floor augmen-

tation, and the doubt surrounding the value 

of the osteotome technique, it is highly rele-

vant to question the need for such additional 

surgery if it can be avoided. An example of 

osteotome‐mediated sinus elevation and 

implant placement is provided in Figure 11.2.

(a)

(b)

(c)

Figure 11.2 

(a) Left maxillary first molar affected by root fracture. (b) Implant placement was carried out three 

months after extraction, with the use of osteotome‐mediated sinus elevation associated with bone grafts. 

(c) An implant‐supported crown was placed three months later.


background image

Chapter 11 

218

11.5   Short  Implants

Dental implants with an infrabony length 

of 

≤ 

mm have been defined as short 

(Renouard and Nisand 2006), although 

‘ultra‐short’ implants are considered to be 

those with lengths ≤ 6 mm (Deporter 2013). 

Short implants have been suggested as an 

alternative to bone augmentation procedures 

in the maxillary and mandibular posterior 

segments, where the residual post‐extraction 

bone volume is limited by anatomical struc-

tures (maxillary sinus, mandibular canal), 

but there is sufficient alveolar ridge width to 

allow the use of standard implant diameters 

of ≥ 3.75 mm. Short implants offer a less inva-

sive treatment approach for patients who are 

not able to undergo more complex bone‐ 

augmentation procedures, thereby minimiz-

ing complication rates, morbidity, cost, and 

duration of treatment (Nisand and Renouard 

2014; Thoma et al. 2015). On the other hand, 

short implants will usually present a higher 

crown‐to‐implant ratio, especially in cases 

with increased interarch distance that may 

lead to unfavourable loading conditions and 

more technical complications (Quaranta 

et al. 2014). It remains uncertain whether a 

high crown‐to‐implant ratio may lead to 

excessive crestal bone loss and implant fail-

ure (Garaicoa‐Pazmino et al. 2014). Various 

modifications in implant design, surface 

technology, and different implant insertion 

methods have been suggested to address 

these issues (Deporter 2013). Finally, the 

clinical implications of peri‐implantitis on 

implant prognosis may be more pronounced 

in the case of shorter implants compared to 

longer implants.

Systematic reviews present comparable 

mid‐term survival rates between short and 

longer implants with moderate rough sur-

faces (Annibali et al. 2012; Atieh et al. 2012). 

Most of the reported failures were predomi-

nantly early, with superior survival rates in 

the mandible. However, short implants with 

a reduced diameter (<3.75 mm) may have 

higher failure rates (up to 10%) after 3–5 

years in function (das Neves et al. 2006). For 

ultra‐short implants the available data are 

limited. One study showed that 6 mm long 

implants had an average survival rate of 

93.7% following an observation period of at 

least one year after placement (Srinivasan 

et al. 2014).

Short implants could be considered as a 

valid treatment alternative to sinus floor aug-

mentation for the restoration of maxillary 

molars, provided that the residual height of 

the alveolar ridge is ≥ 5 mm. The 16–18‐month 

survival rate for short implants was similar to 

that of long implants placed in augmented 

sinuses (99% vs 99.5%; Thoma et al. 2015). The 

complication rate was significantly higher in 

patients receiving sinus  

augmentation. 

Membrane perforation (Figure  11.3) was 

the  most common complication, although 

this  did not seem to compromise implant 

survival.

Short implants may also be considered as 

an alternative to simultaneous or staged ver-

tical bone augmentation in the posterior 

mandible when the residual height of the 

alveolar ridge is ≥ 5 mm. Felice et  al. (2014) 

reported similar survival rates but fewer 

complications and peri‐implant crestal bone 

loss with 6.6 mm short implants placed in 

posterior maxilla in comparison to vertical 

augmentation after five years of loading. A 

recent systematic review based on only four 

randomized controlled trials, mainly by the 

same group, concluded that similar survival 

rates (95.1% vs 96.2%) and maintenance of 

crestal bone level should be expected after 

both procedures in the short term (Nisand 

et al. 2015). The complication rate was again 

higher with vertical augmentation, where 

temporary nerve paraesthesia was observed 

in 56% of cases, in contrast to only 17% when 

short implants were used. Graft fracture, 

 inability to place long implants, and soft‐ 

tissue dehiscence were other observed 

complications.

Besides the encouraging short‐term results 

in terms of survival rates, long‐term data on 

short implants as an alternative to sinus or 

vertical bone augmentation are still lacking, 

and it remains unclear to what extent the 


background image

Furcation: Why Bother?  219

type of prosthetic restoration (single or 

splinted crowns, cantilevers) may influence 

bone levels or implant survival. For this rea-

son, it has been recommended that short 

implants should be used only if bone quality 

is favourable, and that immediate loading 

and non‐working side occlusal interferences 

are avoided.

11.6   Implant  Biological 

Complications

Several longitudinal studies report implant 

survival rates ranging from 92.8 to 97.1% 

over a period up to 10 years (Albrektsson and 

Donos 2012; Srinivasan et al. 2014), support-

ing the use of dental implants as a valid treat-

ment option for the replacement of missing 

teeth. However, implant failures remain a 

possibility. Failures can be divided into bio-

logical (early or primary, and late or second-

ary), mechanical, technical, iatrogenic, and 

those related to inadequate patient adapta-

tion (Heitz‐Mayfield et al. 2014).

The biological complications (and specifi-

cally peri‐implantitis) are usually the most 

difficult to manage. Peri‐implantitis is a site‐ 

and patient‐specific, chronic infection that is 

initiated by polymicrobial dysbiotic biofilms 

(Edmiston et  al. 2015; Hajishengallis 2015). 

The disease affects both soft and hard tissues 

around osseo‐integrated implants, leading to 

bone loss and the formation of a peri‐implant 

pocket (Zitzmann and Berglundh 2008). The 

prevalence of peri‐implantitis was reported 

to be of the order of 10% of implants and 20% 

of patients (circa 5–10‐year follow‐up after 

implant placement; Mombelli et  al. 2012), 

and from 1 to 47% (estimated weighted mean 

[EWM] 22%, 95% confidence interval [CI] 

14–30%; Derks and Tomasi 2015). However, 

the prevalence of peri‐implantitis was 39.3% 

at a patient level in patients with a history of 

periodontitis (Marrone et  al. 2013), and 

lower survival and success rates were 

observed in these patients when compared to 

periodontally healthy individuals (Sousa 

et al. 2016). In addition, the severity and type 

of periodontal disease appear to exert a nega-

tive effect on the rate of biological complica-

tions with dental implants (Mengel et  al. 

2007; Gatti et al. 2008; De Boever et al. 2009; 

Levin et al. 2011; Roccuzzo et al. 2014).

Other risk indicators strongly associated 

with peri‐implantitis are smoking, excess 

cement, poor oral hygiene, and lack of sup-

portive periodontal therapy (Renvert and 

Quirynen 2015), whereas there is limited 

 evidence regarding the association between 

diabetes, alcohol consumption, and peri‐

implant diseases, with conflicting and limited 

Figure 11.3 

Sinus membrane perforation occurred during lateral window sinus elevation approach and 

repaired with the use of a resorbable membrane.


background image

Chapter 11 

220

 

evidence for the association with peri‐

implant diseases and absence of keratinized 

mucosa, genetic traits, implant surface char-

acteristics, time of loading, and the position 

of the implant within the arch (Heitz‐

Mayfield 2008; Dereka et  al. 2012; Renvert 

and Polyzois 2015).

The therapy of peri‐implantitis is mainly 

directed at the disruption and removal of the 

biofilm, the resolution of inflammation, and 

ultimately the arrest of disease progression 

(Heitz‐Mayfield and Mombelli 2014). 

Suggested therapies are based on well‐estab-

lished clinical protocols used for the treat-

ment of periodontitis, including various 

combinations of mechanical and non‐

mechanical debridement methods with or 

without surgical access, and the use of adjunc-

tive therapies such as antibiotics, antiseptics, 

and laser treatments (Lindhe and Meyle 2008). 

While the elimination of the bacterial patho-

gens and their remnants is vital for clinically 

stable outcomes, implant surface topography, 

the initial severity of disease, and defect mor-

phology may influence the outcome of non‐

surgical and surgical therapies (Schwarz et al. 

2006, 2010; Sousa et al. 2016). Although there 

is evidence that some non‐surgical methods 

for implant surface decontamination may be 

effective at reducing the bacterial load, non‐

surgical treatment is insufficient to treat peri‐

implantitis and does not lead to satisfactory 

clinical outcomes (Renvert et al. 2008, 2009). 

A meta‐analysis of treatment outcomes has 

identified the main surgical procedures that 

are predominantly performed: access‐flap 

debridement; surgical resection; regeneration 

with bone grafts; and guided tissue regenera-

tion (Chan et al. 2014). In the latter case, the 

outcomes of regenerative therapy are reported 

to vary the most. For this reason, several 

 clinicians often suggest implant explantation 

as the only predictable approach for managing 

advanced peri‐implantitis, and advocate that 

prevention is the most effective way to man-

age biological complications around implants.

 References

Aimetti, M., Romagnoli, R., Ricci, G., and Massei G. 

(2001). Maxillary sinus elevation: The effect of 

macrolacerations and microlacerations of the 

sinus membrane as determined by endoscopy. 

International Journal of Periodontics and 

Restorative Dentistry 21, 581–589.

 Summary  of Evidence

 

Dental implants are not an alternative to 

periodontal treatment of furcation‐

involved teeth, but rather a restorative 

solution when any other treatment to 

maintain them in the dentition has failed 

or is not indicated.

 

Loss or extraction of furcation‐involved 

teeth usually results in extensive bone loss 

that may complicate implant placement: 

in the maxilla due to sinus pneumatiza-

tion and in the mandible due to the posi-

tion of the inferior alveolar nerve and 

submandibular fossa. In clinical practice 

these anatomical limitations are usually 

managed with extensive bone augmenta-

tion procedures that increase the com-

plexity, cost, and sometimes the treatment 

time and risk of complications.

 

Short implants could be an alternative to 

extensive vertical bone‐augmentation pro-

cedures; however, their use has not been 

adequately evaluated in the long term.

 

Biological complications and especially 

peri‐implantitis are quite common in 

patients with a history of periodontal 

 disease. This risk should be extensively 

presented and discussed with the patient 

before the extraction of teeth with furca-

tion involvement and their replacement 

with dental implants, acknowledging at 

the same time the limitations of current 

 peri‐implantitis treatment modalities.


background image

Furcation: Why Bother?  221

Albrektsson, T., Donos, N., and Working 

Group 1 (2012). Implant survival and 

complications: The third EAO consensus 

conference 2012. Clinical Oral Implants 

Research 23 (Suppl. 6), 63–65.

Annibali, S., Cristalli, M.P., Dell’Aquila, D. et al. 

(2012). Short dental implants: A systematic 

review. Journal of Dental Research 91, 

25–32.

Ardekian, L., Oved‐Peleg, E., Mactei, E.E., and 

Peled, M. (2006). The clinical significance of 

sinus membrane perforation during 

augmentation of the maxillary sinus. Journal 

of Oral and Maxillofacial Surgery 64, 

277–282.

Atieh, M.A., Zadeh, H., Stanford, C.M., and 

Cooper, L.F. (2012). Survival of short dental 

implants for treatment of posterior partial 

edentulism: A systematic review. 

International Journal of Oral and 

Maxillofacial Implants 27, 1323–1331.

Avila‐Ortiz, G., De Buitrago, J.G., and Reddy, 

M.S. (2015). Periodontal 

regeneration – furcation defects: 

A systematic review from the AAP 

Regeneration Workshop. Journal of 

Periodontology 86 (Suppl. 2), S108–S130. 

doi: 10.1902/jop.2015.130677.

Bashutski, J.D., D’Silva, N.J., Wang, H.L. 

(2009). Implant compression necrosis: 

Current understanding and case report. 

Journal of Periodontology 80, 700–704. 

doi:10.1902/jop.2009.080581.

Becker, S.T., Terheyden, H., Steinriede, A. et al. 

(2008). Prospective observation of 41 

peforations of the Schneiderian membrane 

during sinus floor elevation. Clinical Oral 

Implants Research 19, 1285–1289.

Becker, W., Becker, B.E., Alsuwyed, A., and 

Al‐Mubarak, S. (1999). Long‐term 

evaluation of 282 implants in maxillary and 

mandibular molar positions: A prospective 

study. Journal of Periodontology 70, 

896–901.

Blanco, J., Suárez, J., Novio, S. et al. (2008). 

Histomorphometric assessment in human 

cadavers of the peri‐implant bone density in 

maxillary tuberosity following implant 

placement using osteotome and 

conventional techniques. Clinical Oral 

Implants Research 19, 505–510.

Block, M., Kent, J., Kallukaran, F. et al. (1998). 

Bone maintenance 5 to 10 years after sinus 

grafting. Journal of Oral and Maxillofacial 

Surgery 56, 706–714.

Blomlöf, L., Jansson, L., Appelgren, R. et al. 

(1997). Prognosis and mortality of root‐

resected molars. International Journal of 

Periodontics and Restorative Dentistry 17, 

190–201.

Bouchard, P., Renouard, F., Bourgeois, D. et al. 

(2009). Cost‐effectiveness modeling of 

dental implant vs. bridge. Clinical Oral 

Implants Research 20, 583–587.

Boyne, P.J., and James, R.A. (1980). Grafting of 

the maxillary sinus floor with autogenous 

marrow and bone. Journal of Oral Surgery 

38, 613–616.

Brägger, U., Gerber, C., Joss, A. et al. (2004). 

Patterns of tissue remodelling after 

placement of ITI dental implants using an 

osteotome technique: A longitudinal 

radiographic case cohort study. Clinical 

Oral Implants Research 15, 158–166.

Brägger, U., Krenander, P., and Lang, N.P. 

(2005). Economic aspects of single‐tooth 

replacement. Clinical Oral Implants 

Research 16, 335–341.

Brånemark, P.‐I., Adell, R., Albrektsson, T. 

et al. (1984). An experimental and clinical 

study of osseointegrated implants 

penetrating the nasal cavity and maxillary 

sinus. Journal of Oral and Maxillofacial 

Surgery 42, 497–505.

Carnevale, G., Di Febo, G., Tonelli, M.P. et al. 

(1991). A retrospective analysis of the 

periodontal‐prosthetic treatment of molars 

with interradicular lesions. International 

Journal of Periodontics and Restorative 

Dentistry 11, 189–205.

Carter, R.B., and Keen, E.N. (1971). The 

intramandibular course of the inferior 

alveolar nerve. Journal of Anatomy 108, 

433–440.

Cawood, J.I., and Howell, R.A. (1988). 

A classification of the edentulous jaws. 

International Journal of Oral and 

Maxillofacial Surgery 17, 232–236.


background image

Chapter 11 

222

Chan, H.‐L., Lin, G.‐H., Suarez, F. et al. (2014). 

Surgical management of peri‐implantitis: 

A systematic review and meta‐analysis of 

treatment outcomes. Journal of 

Periodontology 85, 1027–1041.

Chao, Y.L., Chen, H.H., Mei, C.C. et al. (2010). 

Meta‐regression analysis of the initial bone 

height for predicting implant survival rates 

of two sinus elevation procedures. Journal of 

Clinical Periodontology 37, 456–465.

Chappuis, V., Cavusoglu, Y., Buser, D., and von 

Arx, T. (2017). Lateral ridge augmentation 

using autogenous block grafts and guided 

bone regeneration: A 10‐year prospective 

case series study. Clinical Implant Dentistry 

and Related Research 19, 85–96.

Chiapasco, M., Felisati, G., Maccari, A. et al. 

(2009). The management of complications 

following displacement of oral implants in 

the paranasal sinuses: A multicenter clinical 

report and proposed treatment protocols. 

International Journal of Oral and 

Maxillofacial Surgery 38, 1273–1278.

Chiapasco, M., and Zaniboni, M. (2009). 

Methods to treat the edentulous posterior 

maxilla: Implants with sinus grafting. 

Journal of Oral and Maxillofacial Surgery

67, 867–871.

Chiarella, G., Leopardi, G., De Fazio, L. et al. 

(2008). Benign paroxysmal positional 

vertigo after dental surgery. European 

Archives of Oto‐Rhino‐Laryngology 265, 

119–122.

Choi, K., Kan, J.Y.K., Boyne, P.J. et al. (2009). 

The effects of resorbable membrane on 

human maxillary sinus graft: A pilot study. 

International Journal of Oral and 

Maxillofacial Implants 24, 73–80.

Chrcanovic, B.R., and Custódio, A.L. (2009). 

Mandibular fractures associated with 

endosteal implants. Oral and Maxillofacial 

Surgery 13, 231–238. doi:10.1007/

s10006‐009‐0171‐7.

das Neves, F.D., Fones, D., Bernardes, S.R. 

et al. (2006). Short implants: An analysis of 

longitudinal studies. International Journal of 

Oral and Maxillofacial Implants 21, 86–93.

De Boever, A.L., Quirynen, M., Coucke, W. 

et al. (2009). Clinical and radiographic study 

of implant treatment outcome in 

periodontally susceptible and non‐

susceptible patients: A prospective long‐

term study. Clinical Oral Implants Research 

20, 1341–1350.

Deporter D. (2013). Short dental implants: 

What works and what doesn’t? A literature 

interpretation. International Journal of 

Periodontics and Restorative Dentistry 33, 

457–464.

Dereka, X., Mardas, N., Chin, S. et al. (2012). A 

systematic review on the association 

between genetic predisposition and dental 

implant biological complications. Clinical 

Oral Implants Research 23, 775–788.

Derks, J., and Tomasi, C. (2015). Peri‐implant 

health and disease: A systematic review of 

current epidemiology. Journal of Clinical 

Periodontology 42 (Suppl. 16), S158–S171.

Di Girolamo, M., Napolitano, B., Arullani, C.A. 

et al. (2005). Paroxysmal positional vertigo 

as a complication of osteotome sinus floor 

elevation. European Archives of Oto‐Rhino‐

Laryngology 262, 631–633.

Donos, N., Laurell, L., and Mardas, N. (2012). 

Hierarchical decisions on teeth vs. implants 

in the periodontitis‐susceptible patient: The 

modern dilemma. Periodontology 2000 59, 

89–110.

Donos, N., Mardas, N., and Chadha, V. (2008). 

Clinical outcomes of implants following lateral 

bone augmentation: Systematic assessment of 

available options (barrier membranes, bone 

grafts, split osteotomy). Journal of Clinical 

Periodontology 35, 173–120.

Doud Galli, S.K., Lebowitz, R.A., Giacchi, R.J. 

et al. (2001). Chronic sinusitis complicating 

sinus lift surgery. American Journal of 

Rhinology 15, 181–186.

Drago, C.J. (1992). Rates of osseointegration of 

dental implants with regard to anatomical 

location. Journal of Prosthodontics 1,  

29–31.

Dubois, L., de Lange, J., Baas, E., and Van 

Ingen, J. (2010). Excessive bleeding in the 

floor of the mouth after endosseous implant 

placement: A report of two cases. 

International Journal of Oral and 

Maxillofacial Surgery 39, 412–415.


background image

Furcation: Why Bother?  223

Edmiston, C.E., McBain, A.J., Roberts, C., and 

Leaper, D. (2015). Clinical and 

microbiological aspects of biofilm‐

associated surgical site infections. Advances 

in Experimental Medicine and Biology 830, 

47–67.

Esposito, M., Grusovin, M.G., Felice, P. et al. 

(2009). The efficacy of horizontal and 

vertical bone augmentation procedures for 

dental implants: A Cochrane systematic 

review. European Journal of Oral 

Implantology 2, 167–184.

Fanuscu, M.I., Iida, K., Caputo, A.A., and 

Nishimura, R.D. (2003). Load transfer by an 

implant in a sinus‐grafted maxillary model. 

International Journal of Oral and 

Maxillofacial Implants 18, 667–674.

Fardal, Ø., and Grytten, J. (2013). A 

comparison of teeth and implants during 

maintenance therapy in terms of the number 

of disease‐free years and costs: An in vivo 

internal control study. Journal of Clinical 

Periodontology 40, 645–651.

Felice, P., Cannizzaro, G., Barausse, C. et al. 

(2014). Short implants versus longer 

implants in vertically augmented posterior 

mandibles: A randomised controlled trial 

with 5‐year after loading follow‐up. 

European Journal of Oral Implantology 7, 

359–369.

Fugazzotto, P.A. (2001). A comparison of the 

success of root resected molars and molar 

position implants in function in a private 

practice: Results of up to 15‐plus years. 

Journal of Periodontology 72, 1113–1123.

Galindo, P., Sánchez‐Fernández, E., Avila, G. 

et al. (2005). Migration of implants into the 

maxillary sinus: Two clinical cases. 

International Journal of Oral and 

Maxillofacial Implants 20, 291–285.

Garaicoa‐Pazmino, C., Suarez‐Lopez del Amo, 

F., Monje, A. et al. (2014). Influenceof 

crown/implant ratio on marginal bone loss: 

A systematic review. Journal of 

Periodontology 85, 1214–1221.

Gatti, C., Gatti, F., Chiapasco, M., and 

Esposito, M. (2008). Outcome of dental 

implants in partially edentulous patients 

with and without a history of periodontitis: 

A 5‐year interim analysis of a cohort study. 

European Journal of Oral Implantation 1, 

45–51.

Goiato, M.C., dos Santos, D.M., Santiago, J.F. Jr 

et al. (2014). Longevity of dental implants in 

type IV bone: A systematic review. 

International Journal of Oral and 

Maxillofacial Surgery 43, 1108–1116. 

doi:10.1016/j.ijom.2014.02.016.

Graziani, F., Donos, N., Needleman, I. et al. 

(2004). Comparison of implant survival 

following sinus floor augmentation 

procedures with implants placed in pristine 

posterior maxillary bone: A systematic 

review. Clinical and Oral Implants 15, 

677–682.

Gross, M.D., and Nissan, J. (2001). Stress 

distribution around maxillary implants in 

anatomic photoelastic models of varying 

geometry. Part II. Journal of Prosthetic 

Dentistry 85, 450–454.

Gross, M.D., Nissan, J., and Samuel, R. (2001). 

Stress distribution around maxillary 

implants in anatomic photoelastic models of 

varying geometry. Part I. Journal of 

Prosthetic Dentistry 85, 442–449.

Hajishengallis, G. (2015). Periodontitis: From 

microbial immune subversion to systemic 

inflammation. Nature Reviews: Immunology 

15, 30–44.

Handschel, J., Simonowska, M., Naujoks, C. et al. 

(2009). A histomorphometric meta‐analysis of 

sinus elevation with various grafting materials. 

Head & Face Medicine 5, 12.

Hardt, C.R.E., Gröndahl, K., Lekholm, U., and 

Wennström, J.L. (2002). Outcome of 

implant therapy in relation to experienced 

loss of periodontal bone support. Clinical 

Oral Implants Research 13, 488–494.

Heitz‐Mayfield, L.J. (2008). Peri‐implant 

diseases: Diagnosis and risk indicators. 

Journal of Clinical Periodontology 35 (Suppl. 

8), 292–304.

Heitz‐Mayfield, L.J.A., and Mombelli, A. (2014). 

The therapy of peri‐implantitis: A systematic 

review. International Journal of Oral and 

Maxillofacial Implants 29, 325–345.

Heitz‐Mayfield, L.J., Needleman, I., Salvi, G.E., 

and Pjetursson, B.E. (2014). Consensus 


background image

Chapter 11 

224

statements and clinical recommendations 

for prevention and management of biologic 

and technical implant complications. 

International Journal of Oral and 

Maxillofacial Implants 29 (Suppl.), 

346–350.

Hirschfeld, A., and Wasserman, B. (1978). 

A long‐term survey of tooth loss in 600 

treated periodontal patients. Journal of 

Periodontology 49, 225–237.

Iida, S., Tanaka, N., Kogo, M., and Matsuya, T. 

(2000). Migration of a dental implant into 

the maxillary sinus: A case report. 

International Journal of Oral and 

Maxillofacial Surgery 29, 358–359.

Jensen, O.T., Shulman, L.B., Block, M.S., and 

Iacono, V.J. (1998). Report of the Sinus 

Consensus Conference of 1996. 

International Journal of Oral and 

Maxillofacial Implants 13 (Suppl.), 11–45.

Jensen, S.S., and Terheyden, H. (2009). Bone 

augmentation procedures in localized 

defects in the alveolar ridge: Clinical results 

with different bone grafts and bone‐

substitute materials. International Journal of 

Oral and Maxillofacial Implants 24, 

218–236.

Kao, R.T. (2008). Strategic extraction: 

A paradigm shift that is changing our 

profession. Journal of Periodontology 79, 

971–977.

Kaplan, D.M., Attal, U., and Kraus, M. (2003). 

Bilateral benign paroxysmal positional 

vertigo following a tooth implantation. 

Journal of Laryngology and Otology 117, 

312–313.

Keestra, J.A.J., Barry, O., de Jong, L., and Wahl, 

G. (2016). Long‐term effects of vertical bone 

augmentation: A systematic review. Journal 

of Applied Oral Science 24, 3–17.

Kim, M.S., Lee, J.K., Chang, B.S., and Um, H.S. 

(2010). Benign paroxysmal positional 

vertigo as a complication of sinus floor 

elevation. Journal of Periodontology and 

Implant Science 40, 86–89.

Kim, Y.K., Yun, P.Y., Kim, S.G., and Lim, S.C. 

(2009). Analysis of the healing process in 

sinus bone grafting using various grafting 

materials. Oral Surgery, Oral Medicine, Oral 

Pathology, Oral Radiology, Endodontology 

107, 204–211.

Lam, N.P., Donoff, R.B., Kaban, L.B., and 

Dodson, T.B. (2003). Patient satisfaction 

after trigeminal nerve repair. Oral Surgery, 

Oral Medicine, Oral Pathology, Oral 

Radiology, Endodontology 95, 538–543.

Lang, N.P., Zitzmann, N.U.; Working Group 3 

of the VIII European Workshop on 

Periodontology (2012). Clinical research in 

implant dentistry: Evaluation of implant‐

supported restorations, aesthetic and 

patient‐reported outcomes. Journal of 

Clinical Periodontology 39, 133–138.

Langer, B., Stein, S.D., and Wagenberg, B. 

(1981). An evaluation of root resections: 

A ten‐year study. Journal of Periodontology 

52, 719–722.

Leblebicioglu, B., Ersanli, S., Karabuda, C. et al. 

(2005). Radiographic evaluation of dental 

implants placed using an osteotome 

technique. Journal of Periodontology 76, 

385–390.

Lekholm, U., and Zarb, G.A. (1985). Patient 

selection and preparation. In: Tissue 

Integrated Prostheses: Osseointegration in 

Clinical Dentistry (ed. P.I. Branemark, G.A. 

Zarb, and T. Albrektsson), 199–209. 

Chicago, IL: Quintessence.

Levin, L., Ofec, R., Grossmann, Y., and Anner, 

R. (2011). Periodontal disease as a risk for 

dental implant failure over time: A long‐

term historical cohort study. Journal of 

Clinical Periodontology 38, 732–737.

Lindhe, J., and Meyle, J.; Group D of European 

Workshop on Periodontology (2008). 

Peri‐implant diseases: Consensus Report of 

the Sixth European Workshop on 

Periodontology. Journal of Clinical 

Periodontology 35 (Suppl. 8), 282–285. 

doi:10.1111/j.1600‐051X.2008.01283.x.

MacBeth, N., Trullenque‐Eriksson, A., Donos, 

N., and Mardas, N. (2017). Hard and soft 

tissue changes following alveolar ridge 

preservation: A systematic review. Clinical 

Oral Implants Research 28, 982–1004.

Mardas, N., Trullenque‐Eriksson, A., MacBeth, 

N. et al. (2015). Does ridge preservation 

following tooth extraction improve implant 


background image

Furcation: Why Bother?  225

treatment outcomes: A systematic review. 

Group 4: Therapeutic concepts & methods. 

Clinical Oral Implants Research 26 (Suppl. 

11), 180–201.

Marrone, A., Lasserre, J., Bercy, P., and Brecx, 

M.C. (2013). Prevalence and risk factors for 

peri‐implant disease in Belgian adults. 

Clinical Oral Implants Research 24, 

934–940.

McFall, W.T., Jr (1982). Tooth loss in 100 

treated patients with periodontal disease: 

A long‐term study. Journal of Periodontology 

53: 539–549.

McGuire, M.K. (1991). Prognosis versus 

actual outcome: A long‐term survey of 100 

treated periodontal patients under 

maintenance care. Journal of Periodontology 

62, 51–58.

McGuire, M.K., and Nunn, M.E. (1996). 

Prognosis versus actual outcome. III. The 

effectiveness of clinical parameters in 

accurately predicting tooth survival. Journal 

of Periodontology 67, 66–74.

Mengel, R., Behle, M., and Flores‐de‐Jacoby, L. 

(2007). Osseointegrated implants in subjects 

treated for generalized aggressive 

periodontitis: 10‐year results of a 

prospective, long‐term cohort study. Journal 

of Periodontology 78, 2229–2237.

Mombelli, A., Müller, N., and Cionca, N. 

(2012). The epidemiology of peri‐

implantitis. Clinical Oral Implants Research 

23 (Suppl. 6), 67–76.

Moraschini, V., Poubel, L.A., Ferreira, V.F., and 

Barboza Edos, S. (2015). Evaluation of 

survival and success rates of dental implants 

reported in longitudinal studies with a 

follow‐up period of at least 10 years: A 

systematic review. International Journal of 

Oral and Maxillofacial Surgery 44, 377–388.

Naitoh, M., Hiraiwa, Y., Aimiya, H. et al. 

(2009). Accessory mental foramen 

assessment using cone‐beam computed 

tomography. Oral Surgery, Oral Medicine, 

Oral Pathology, Oral Radiology, 

Endodontology 107, 289–294.

Niamtu, J., III (2001). Near‐fatal airway 

obstruction after routine implant 

placement. Oral Surgery, Oral Medicine, 

Oral Pathology, Oral Radiology, 

Endodontology 92, 597–600.

Nisand, D., Picard, N., and Rocchietta, I. 

(2015). Short implants compared to 

implants in vertically augmented bone: 

A systematic review. Clinical Oral Implants 

Research 26 (Suppl. 11), 170–179. 

doi:10.1111/clr.12632.

Nisand, D., and Renouard, F. (2014). Short 

implant in limited bone volume. 

Periodontology 2000 66, 72–96.

Nkenke, E., Schlegel, A., Schultze‐Mosgau, S. 

et al. (2002). The endoscopically controlled 

osteotome sinus floor elevation: A preliminary 

prospective study. International Journal of 

Oral and Maxillofacial Implants 17, 557–566.

Pierrisnard, L., Renouard, F., Renault, P., and 

Barquins, M. (2003). Influence of implant 

length and bicortical anchorage on implant 

stress distribution. Clinical Implant 

Dentistry and Related Research 5, 254–262.

Pikos, M.A. (2008). Maxillary sinus membrane 

repair: Update on technique for large and 

complete perforations. Implant Dentistry 

17, 24–31.

Pjetursson, B.E., Tan, W.C., Zwahlen, M., and 

Lang, N.P. (2008). A systematic review of the 

success of sinus floor elevation and survival 

of implants inserted in combination with 

sinus floor elevation. Journal of Clinical 

Periodontology 35, 216–240.

Pretzl, B., Wiedemann, D., Cosgarea, R. et al. 

(2009). Effort and costs of tooth 

preservation in supportive periodontal 

treatment in a German population. 

Journal of Clinical Periodontology 36, 

669–676.

Quaranta, A., Piemontese, M., Rappelli, G. 

et al. (2014). Technical and biological 

complications related to crown to implant 

ratio: A systematic review. Implant Dentistry 

23, 180–187.

Regan, R., and Rogers, B. (2003). Delayed 

treatment of haemoglobin neurotoxicity. 

Journal of Neurotrauma 20, 111–120.

Renouard, F., and Nisand, D. (2006). Impact of 

implant length and diameter on survival 

rates. Clinical Oral Implants Research 17 

(Suppl. 2), 35–51.


background image

Chapter 11 

226

Renton, T., and Yilmaz, Z. (2012). Managing 

iatrogenic trigeminal nerve injury: A case 

series and review of the literature. 

International Journal of Oral and 

Maxillofacial Surgery 41, 629–637.

Renvert, S., and Polyzois, I. (2015). Risk 

indicators for peri‐implant mucositis: 

A systematic literature review. Journal of 

Clinical Periodontology 42, S172–S186.

Renvert, S., and Quirynen, M. (2015). Risk 

indicators for peri‐implantitis: A narrative 

review. Clinical Oral Implants Research 26, 

15–44.

Renvert, S., Roos‐Jansåker, A.M., and Claffey, 

N. (2008). Non‐surgical treatment of peri‐

implant mucositis and peri‐implantitis: 

A literature review. Journal of Clinical 

Periodontology 35 (Suppl. 8), 305–315. 

doi:10.1111/j.1600‐051X.2008.01276.x.

Renvert, S., Samuelsson, E., Lindahl, C., and 

Persson, G.R. (2009). Mechanical non‐

surgical treatment of peri‐implantitis: 

A double‐blind randomized longitudinal 

clinical study. I: Clinical results. Journal of 

Clinical Periodontology 36, 604–609. 

doi:10.1111/j.1600‐051X.2009.01421.x.

Rocchietta, I., Fontana, F., and Simion, M. 

(2008). Clinical outcomes of vertical bone 

augmentation to enable dental implant 

placement: A systematic review. Journal of 

Clinical Periodontology 35, 203–215.

Roccuzzo, M., Bonino, L., Dalmasso, P., and 

Aglietta, M. (2014). Long‐term results of a 

three arms prospective cohort study on 

implants in periodontally compromised 

patients: 10‐year data around sandblasted 

and acid‐etched (SLA) surface. Clinical Oral 

Implants Research 25, 1105–1112.

Schwartz‐Arad, D., Herzberg, R., and Dolev, E. 

(2004). The prevalence of surgical 

complications of the sinus graft procedure 

and their impact on implant survival. 

Journal of Periodontology 75, 511–516.

Schwarz, F., Papanicolau, P., Rothamel, D. et al. 

(2006). Influence of plaque biofilm removal 

on reestablishment of the biocompatibility 

of contaminated titanium surfaces. Journal 

of Biomedical Material Research 77, 

437–444.

Schwarz, F., Sahm, N., Schwarz, K., and 

Becker, J. (2010). Impact of defect 

configuration on the clinical outcome 

following surgical regenerative therapy of 

peri‐implantitis. Journal of Clinical 

Periodontology 37, 449–455.

Seddon, H.J. (1942). A classification of nerve 

injuriesBritish Medical Journal 2, 

237–239.

Sousa, V., Mardas, N., Farias, B. et al. (2016a). 

A systematic review of implant outcomes in 

treated periodontitis patients. Clinical Oral 

Implants Research 27: 787–844.

Sousa, V., Mardas, N., Spratt, D. et al. (2016b). 

Experimental models for contamination of 

titanium surfaces and disinfection protocols. 

Clinical Oral Implants Research 27, 

1233–1242.

Srinivasan, M., Vazquez, L., Rieder, P. et al. 

Survival rates of short (6 mm) micro‐rough 

surface implants: A review of literature and 

meta‐analysis. Clinical Oral Implants 

Research 25, 539–545.

Stanford, C.M. (2010). Surface modification of 

biomedical and dental implants and the 

processes of inflammation, wound healing 

and bone formation. International Journal of 

Molecular Sciences 11, 354–369. 

doi:10.3390/ijms11010354.

Summers, R. (1998). Sinus floor elevation with 

osteotomes. Journal of Esthetic Dentistry 10, 

164–171.

Tan, W.C., Lang, N.P., Zwahlen, M., and 

Pjetursson, B.E. (2008). A systematic review 

of the success of sinus floor elevation and 

survival of implants inserted in combination 

with sinus floor elevation. Part II: 

Transalveolar technique. Journal of Clinical 

Periodontology 35(Suppl. 8), 241–254.

Tepper, G., Haas, R., Zechner, W. et al. (2002) 

Three‐dimensional finite element analysis of 

implant stability in the atrophic posterior 

maxilla: A mathematical study of the sinus 

floor augmentation. Clinical Oral Implants 

Research 13, 657–665.

Thoma, D.S., Zeltner, M., Hüsler, J. et al.; EAO 

Supplement Working Group 4 (2015). Short 

implants versus sinus lifting with longer 

implants to restore the posterior maxilla: 


background image

Furcation: Why Bother?  227

A systematic review. Clinical Oral Implants 

Research 26 (Suppl. 11), 154–169.

Timmenga, N.M., Raghoebar, G.M., Boering, 

G., and van Weissenbruch, R. (1997). 

Maxillary sinus function after sinus lifts for 

the insertion of dental implants. Journal of 

Oral and Maxillofacial Surgery 55, 936–939.

Timmenga, N.M., Raghoebar, G.M., Boering, 

G. et al. (2003). Maxillary sinus floor 

elevation surgery: A clinical, radiographic 

and endoscopic evaluation. Clinical Oral 

Implants Research 14, 322–328.

Toffler, M. (2004). Osteotome‐mediated sinus 

floor elevation: A clinical report. 

International Journal of Oral and 

Maxillofacial Implants 19, 266–273.

Ueda, M., and Kaneda, T. (1992). Maxillary 

sinusitis caused by dental implants: Report 

of two cases. Journal of Oral and 

Maxillofacial Surgery 50, 285–287.

van den Bergh, J.P., Bruggenkate ten, C.M., 

Disch, F.J., and Tuinzing, D.B. (2000). 

Anatomical aspects of sinus floor elevations. 

Clinical Oral Implants Research 11, 

256–265.

van Steenberghe, D., Quirynen, M., Molly, L., 

and Jacobs, R. (2003). Impact of systemic 

diseases and medication on 

osseointegration. Periodontology 2000 33, 

163–171.

Velloso, G.R., Vidigal, G.M., de Freitas, M.M. 

et al. (2006). Tridimensional analysis of 

maxillary sinus anatomy related to sinus 

lift procedure. Implant Dentistry 15, 

192–196.

Wallace, S.S., and Froum, S.J. (2003). Effect of 

maxillary sinus augmentation on the 

survival of endosseous dental implants: A 

systematic review. Annals of Periodontology 

8, 328–343.

Wang, H.‐L., Burgett, F.G., Shyr, Y., and 

Ramfjord, S. (1994). The influence of molar 

furcation involvement and mobility on 

future clinical periodontal attachment loss. 

Journal of Periodontology 65, 25–29.

Wiltfang, J., Schultze‐Mosgau, S., Merten, 

H.A. et al. (2000). Endoscopic and 

ultrasonographic evaluation of the 

maxillary sinus after combined sinus floor 

augmentation and implant insertion. Oral 

Surgery, Oral Medicine, Oral Pathology, 

Oral Radiology, Endodontology 89, 

288–291.

Winwood, K., Zioupos, P., Currey, J.D. et al. 

(2006). The importance of the elastic and 

plastic components of strain in tensile and 

compressive fatigue of human cortical bone 

in relation to orthopaedic biomechanics. 

Journal of Musculoskeletal and Neuronal 

Interactions 6, 134–141.

Yacoub, N., Ismail, Y.H., and Mao, J.J. (2002). 

Transmission of bone strain in the 

craniofacial bones of edentulous human 

skulls upon dental implant loading. Journal 

of Prosthetic Dentistry 88, 192–199.

Zitzmann, N.U., and Berglundh, T. (2008). 

Definition and prevalence of peri‐implant 

diseases. Journal of Clinical Periodontology 

35, 286–291.

Zitzmann, N.U., Scherrer, S.S., Weiger, R. et al. 

(2011). Preferences of dental care providers 

in maintaining compromised teeth in 

relation to their professional status: 

Implants instead of periodontally involved 

maxillary molars? Clinical Oral Implants 

Research 22, 143–150.


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c12.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:22:08 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 229

229

Diagnosis and Treatment of Furcation-Involved Teeth, First Edition. Edited by Luigi Nibali. 

© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd. 

Companion website: www.wiley.com/go/nibali/diagnosis

12.1   Health  Economic 

Relevance of Furcation 

Involvement

A growing number of patients keep the 

majority of their teeth throughout their life, 

with even multi‐rooted teeth being retained. 

In Germany, for example, around one‐third 

of adults aged 65 years or older retain all 

their first or second molars (Jordan and 

Micheelis 2016). This high number of 

retained teeth generates periodontal treat-

ment needs (Jordan and Micheelis 2016; 

Holtfreter et al. 2010; Kassebaum et al. 2014). 

On the other hand, those who loose teeth are 

more likely to have them replaced nowadays 

than in the past, mainly because the demand 

for replacements is growing while replace-

ment via implant‐supported crowns is widely 

available (Micheelis and Schiffer 2006; 

Roos‐Jansaker et al. 2006).

Both tooth retention and replacement 

 generate costs, which are relevant not only 

for patients (when they bear them on their 

own) but also for public or private insurers 

(who need to weigh incurring costs against 

the resulting health benefit and the demand 

from patients for such costly procedures; 

that is, their justifiability in both the public 

and private domain). Treatment costs are 

also relevant from an equity perspective, 

since they might determine the utilization 

of  services, with those who cannot afford 

treatment avoiding it, increasing existing 

health disparities (Zhong 2010).

In general, systematic periodontal treat-

ment seems to allow long‐term retention of 

most periodontally compromised teeth 

(Hatch et al. 2001; Loesche et al. 2002; Fardal 

et  al. 2004; Chambrone and Chambrone 

2006; Eickholz et  al. 2008; Graetz et  al. 

2017a,b, 2011, 2013, 2015; Johansson et  al. 

2013; Salvi et al. 2014). In many cases, such 

retention of teeth in subjects with periodon-

titis seems affordable, with costs for support-

ive periodontal therapy (SPT) being limited 

(Pretzl et al. 2009; Fardal and Grytten 2013; 

Schwendicke et al. 2016b).

In contrast, for multi‐rooted teeth with 

furcation involvement (FI) – that is, mainly 

compromised molars – long‐term retention 

might be more difficult to achieve, with 

 survival times being possibly correlated with 

the degree of FI (Checchi et al. 2002; König 

et al. 2002; Dannewitz et al. 2006a; Johansson 

et al. 2013; Graetz et al. 2015), as discussed in 

Chapter  5. As a result, more complex and 

expensive treatments and more frequent SPT 

visits are often needed for retaining such 

teeth, which might have an impact on the 

costs of tooth retention (Pretzl et  al., 2009; 

Lee et al. 2012; Schwendicke et al. 2014).

Chapter 12

Is it Worth it? Health Economics of Furcation Involvement

Falk Schwendicke

1

 and Christian Graetz 

2

1

 Department of Operative and Preventive Dentistry, Charité‐Universitätsmedizin Berlin, Berlin, Germany

2

 Clinic for Conservative Dentistry and Periodontology, Christian‐Albrechts‐University, Kiel, Germany


background image

Chapter 12

230

Given the growing demand for retaining or 

replacing molars and the wide availability of 

both options in most developed dental set-

tings, costs come into focus. In rationalized 

healthcare settings, where funding is limited 

and competition for it between sectors is 

high, it is important to quantify both the 

costs of a disease and the cost‐effectiveness 

of different treatment options. For molars 

with FI, this means estimating the annual 

retention costs, and comparing them with 

the alternative costs for tooth replacement 

via implant‐supported crowns, or fixed or 

removal dental prostheses. Such cost estima-

tion should best account not only for perio-

dontal but also endodontic, restorative, and 

prosthetic treatments. Moreover, the func-

tionality (or other kind of utility) of retained 

versus replaced or even missing furcation‐

involved molars needs to be known to weigh 

it against the expected costs. Last, the evalu-

ation of costs and utilities (or any other 

kind of health benefit) should be performed 

in time horizons relevant to payers and con-

sumers; that is, long term.

12.2   Health  Economic 

Analyses

Health economic analyses are typically 

defined according to the evaluated outcome 

(Vernazza et al. 2012):

 

Cost‐of‐disease studies investigate the 

required treatment efforts for managing or 

resolving a disease or its symptoms. Such 

costs are usually termed direct costs. Cost‐

of‐disease studies further measure indirect 

costs (e.g. those for getting to the  doctor or 

dentist) and opportunity costs (e.g. those for 

not being able to work during this time).

 

Cost‐effectiveness studies measure costs 

against the effectiveness of a treatment. 

Effectiveness usually means a clinical out-

come (survival time of a tooth, retention 

time of a restoration), as determined in a 

real‐life setting or in rather artificial 

randomized controlled) settings. Note 

that while the latter is termed ‘efficacy’, no 

such strict separation is done for health 

economic studies.

 

Cost‐utility analyses measure costs against 

the resulting utility, like quality‐ or disabil-

ity‐adjusted life years. They involve the 

subjective value placed by someone (usu-

ally patients) on a certain health state. One 

needs to elicit these utilities, which is not 

always easy and has not been widely done 

so far with regard to tooth values. (What is 

the utility of a filled tooth against a sound 

one? What that of a periodontally impaired 

but asymptomatic molar against a non‐

compromised molar?)

 

Cost–benefit analyses transform effective-

ness or utility  –  that is, the health out-

come  –  into a monetary value. They 

theoretically allow comparison of effort 

and outcome on the same scale, but their 

methodology is not fully accepted and has 

only very sparsely been applied in dentistry 

so far.

All these types of analyses can be performed 

in one of two ways. The first involves the 

(re‐)use of primary data, for example from 

cohort or controlled studies. For example, 

cohort studies allow estimation of the exact 

costs incurred for staff (via recording staff 

hours and factorizing them with the costs 

per hour for different staff) or materials (fac-

torizing unit price and used units). This 

micro‐costing allows very detailed and real-

istic cost estimation. In addition, these stud-

ies can estimate the effectiveness of the 

performed treatments (how long a tooth was 

retained etc.). Randomized controlled trials 

also often collect cost data, allowing com-

parison of different treatment strategies (like 

scaling and root planing versus open‐flap 

debridement).

The second way also involves re‐use of 

data, although not in the original framework 

of a clinical study, but rather in a mathemati-

cal model. Modelling studies construct a 

hypothetical path of a tooth or patients (‘the 

model’) reflecting the clinical (natural) path-

way. Teeth or patients can translate from one 

to another health status (e.g. molar with FI 

without furcation caries → molar with FI 


background image

Health Economics of Furcation Involvement 231

with furcation caries), with the chance of 

such translation depending on transition 

probabilities. For each translation, a treat-

ment is assumed (e.g. application of fluoride 

varnish to arrest a lesion, or restoration), 

generating costs. Many of these models are 

analysed via Monte Carlo micro‐simulations, 

which allow parameter uncertainty to be 

introduced. This is done via simulating a 

number of patients (e.g. 1000), with transi-

tion probabilities (or other uncertain param-

eters) being randomly sampled from a certain 

range of the parameter. The sampling of this 

population is then simulated again for a 

series of times (e.g. 1000), allowing estima-

tion of both the per‐patient and per‐popula-

tion variance. In general, such models allow 

investigation of several groups over a longer 

time than most clinical trials (randomized 

trials rarely follow up patients for decades), 

with high validity given that most data are 

from reviews and meta‐analyses. They have, 

however, limited applicability to other set-

tings than the one analysed, and are only as 

valid as the assumptions made. They need 

validation via sensitivity analyses, assessing 

the impact the uncertainties have on the 

finding of a study.

The available health economic studies on 

molars with FI are mainly cost‐of‐disease 

studies, with data collection in prospectively 

or retrospectively assessed cohorts, or cost‐

effectiveness studies, using models to dem-

onstrate the costs and cost‐effectiveness of 

different strategies of retaining or replacing 

furcation‐involved molars.

12.3   The Costs of 

Furcation Involvement

Several clinical studies have attempted to 

measure the costs of retaining furcation‐

involved molars. Most of these have followed 

molars after successful active periodontal 

treatment (APT), which were regularly 

retreated as part of the SPT.

For example, a German study retrospec-

tively assessed molars in patients who all had 

received initial or follow‐up periodontal 

treatments, including subgingival debride-

ment (Graetz et  al. 2015). The therapeutic 

strategy for these molars was aimed at 

improving access to furcations, allowing 

 

regular individual and professional oral 

hygiene in these areas (Figure 12.1).

Conservative scaling and root planing 

(SRP) had been performed for molars with 

probing pocket depths (PPDs) < 5 mm with-

out bleeding on probing, and open‐flap 

 surgery including furcation debridement if 

PPD ≥ 5 mm  plus  bleeding  or  PPD ≥ 6 mm 

regardless of bleeding was present (Kocher 

and Plagmann 1999). Root‐resection therapy 

or tunnelling was mainly provided in molars 

with advanced bone loss which had received 

endodontic treatment, as well as for molars 

with furcation caries (Figure 12.2).

Tunnelling was only performed for lower 

molars with both lingual and buccal FI degree 

II, or FI degree III with limited access for oral 

hygiene, often combined with persistent 

inflammation, if resection was not possible. 

Different retrospective studies demonstrated 

long‐term stability for molars with such a 

treatment strategy during regular SPT 

(Graetz et al. 2017b, 2013, 2015; Figure 12.3).

Costs were assessed in the context of 

German healthcare. As such, any costs 

occurring to payers (regardless if this was the 

statutory insurance, the patient, or their pri-

vate insurer) were estimated using fee items 

of German item catalogues. The authors 

quantified the resources provided based on 

the number of periodontal, restorative, 

 endodontic, or prosthetic treatments, which 

had been ascertained via case records. 

Resources and fee item–based costs were 

calculated per tooth. Services provided to 

more than one tooth (e.g. examination, anti-

biotics) were distributed among the teeth 

present. Items charged per tooth (like SRP) 

were not distributed.

The study (Schwendicke et al. 2016a) 

assessed 2306 molars in 379 patients (mean 

initial age 45.7, standard deviation [SD] 

10.0 years). The majority of molars (72.8%) 

had no PPD > 4 mm after APT. Molars were 

followed up for 16.5 (SD 6.8) years. Over this 

period of SPT, a mean of 0.07 (SD 0.12) SRP 


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c12.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:22:08 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 232

(a)

(b)

(c)

(d)

Figure 12.2 

Woman, aged 36 years and non‐smoker, diagnosed with aggressive periodontitis and horizontal 

bone loss in both jaws and furcation involvement degree III (Hamp et al. 1975) of all upper molars and tooth 

14 (UR4), as well as degree II (Hamp et al. 1975) of all lower molars (a: initial status). Initial periodontal therapy 

with scaling and root planing was followed by open‐flap debridement of all premolars and molars. After re‐

evaluation, supportive periodontal therapy was commenced and after 1.5 years the buccal roots of all upper 

molars were resected and fixed dental prostheses provided (b). Two (c) and 17 years later (d), no further 

attachment loss was noted. Tooth 46 (LR6) had to be extracted due to a fracture.

(a)

(b)

(c)

(d)

Figure 12.1 

Man, aged 42 years and non‐smoker, diagnosed with chronic periodontitis and horizontal bone 

loss in both jaws with furcation involvement degree II up to III (Hamp et al. 1975) on all first and second molars 

(a: initial status). He received scaling and root planing and open‐flap debridement of all posterior teeth. After 

22 years of regular supportive periodontal therapy (b), endodontic treatment was required, with trisection of 

the upper right molars and prosthetic reconstruction being performed. Afterwards, furcation cleaning with 

interdental brushes (c) was possible. The situation remained stable for a further seven years (d, last observation).


background image

Health Economics of Furcation Involvement 233

had been  provided per year (Table  12.1). 

Similarly, a mean of 0.04 (SD 0.11) flap 

debridements (FD) had been provided per 

year. This number was increased in older 

subjects, molars with PPD ≥ 5 mm, mobile 

molars, and those with prosthetic treatment 

initially present. Resections had been mainly 

performed in upper molars, molars with 

mobility grade 3, FI degree III, bone loss, and 

those with  endodontic treatment, periapical 

lesions, or previous prosthetic treatment. 

Few molars received endodontic, restorative, 

or prosthetic treatments, with prosthetically 

restored molars being more likely to receive 

endodontic therapy or prosthetic retreat-

ment. The last component assessed was SPT, 

with a mean of 2.49 (SD 0.12) SPT visits per 

year and per patient.

Based on these estimates for the resources 

used, annual costs per molar were €18.28 (SD 

16.91) for all treatments and €13.04 (SD 9.58) 

for periodontal treatments only (Table 12.2). 

The robustness of these estimates was dem-

onstrated by calculating costs for patients 

with different health insurances (which 

allows for different charges being claimed by 

dentists). Total treatment costs increased 

significantly for molars with FI, PPD ≥ 5 mm, 

bone loss, endodontic or prosthetic treat-

ment, and periapical lesions. If analysed on a 

patient level, mean costs per year were 

€137.86 (SD 370.03). There was a significant 

association between these costs and smoking 

status (costs being higher in current smokers 

than non‐smokers).

Another study assessed the tooth‐ retention 

efforts in periodontally compromised but 

successfully treated subjects over 10 years of 

SPT, again within German healthcare (Pretzl 

et al. 2009). This study found that 0.34 SRP 

had been provided over the 10 years (includ-

ing the first SRP). What can be seen from 

both studies is the low number of treatments 

needed to retain compromised molars. Total 

periodontal treatment costs for tooth reten-

tion ranged between €6 and €13, which is low 

given the costs of alternative options (like 

implants or fixed dental prostheses). What 

was further shown was that periodontal 

treatment costs made up around two‐thirds 

of the total long‐term costs; that is, most 

molars did not generate significant costs for 

endodontic or restorative treatment (furca-

tion caries, for example, was found in only 

2% of teeth over the whole observation 

period). In both studies, the periodontal 

treatment efforts were higher in teeth with 

bone loss, severe FI, prosthetic abutment sta-

tus, and maxillary molars, but not patients 

with aggressive versus chronic periodontitis. 

Practitioners should be aware of these 

 predictors, as they determine not only the 

(a)

(b)

Figure 12.3 

Man, aged 47 years and smoker; chronic periodontitis and horizontal bone loss in both jaws 

with furcation involvement degree II (Hamp et al. 1975) on all upper molars and right lower molars, as well as 

degree III (Hamp et al. 1975) on all left lower molars (a: initial status). Open‐flap debridement of all molars, 

including tunnelling of the left lower molars, was provided. The patient stopped smoking after the 8th year 

during SPT. After 28 years of regular supportive periodontal therapy (b), the periodontal situation remained 

stable.


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c12.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:22:08 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 234

  Table 12.1   

 Mean ( SD ) number of treatments provided per year of retention. Differences of number of treatments between groups are indicated in bold 

(p < 0.05,  ANOVA ). For more than two groups, different superscript letters indicate a significantly different number of treatments according to the Bonferroni 

post‐hoc test (p < 0.05). 

Parameter

N

Deep scaling/ 
root planing

Surgical flap 
debridement

Root resection

Supportive 
therapy

Endodontic 
treatment

Restorative 
treatment

Prosthetic 
treatment    

Patients’ age at T0

  

<50

738

 0.09 (0.17) 

 0.04 (0.09) 

0.01 (0.04)

 2.48 (0.12) 

0.01 (0.04)

0.00 (0.01)

0.01 (0.03)  

≥50

1568

 0.06 (0.08) 

 0.05 (0.12) 

0.01 (0.04)

 2.51 (0.12) 

0.01 (0.04)

0.00 (0.01)

0.01 (0.03)  

Gender

  

Male

950

0.07 (0.10)

0.04 (0.12)

0.01 (0.05)

2.48 (0.12)

0.01 (0.05)

0.00 (0.01)

0.01 (0.03)  

Female

1356

0.07 (0.10)

0.04 (0.11)

0.01 (0.03)

2.49 (0.13)

0.01 (0.03)

0.00 (0.01)

0.01 (0.03)  

Diagnosis

  

Aggressive periodontitis

453

0.07 (0.13)

0.04 (0.12)

0.01 (0.03)

2.49 (0.10)

0.01 (0.04)

0.00 (0.01)

0.01 (0.03)  

Chronic periodontitis

1853

0.06 (0.09)

0.05 (0.09)

0.01 (0.04)

2.49 (0.10)

0.01 (0.04)

0.00 (0.01)

0.01 (0.03)  

Number of teeth at T0

  

≥24

1760

0.06 (0.12)

0.04 (0.10)

0.01 (0.03)

2.49 (0.10)

0.01 (0.04)

0.00 (0.01)

0.01 (0.03)  

<24

546

0.08 (0.12)

0.05 (0.11)

0.01 (0.06)

2.50 (0.10)

0.01 (0.04)

0.00 (0.01)

0.01 (0.03)  

Smoking status

  

Non‐smoker

1458

0.07 (0.09)

0.04 (0.10)

0.00 (0.04)

2.48 (0.11)

0.01 (0.04)

0.00 (0.01)

0.01 (0.03)  

Former smoker

547

0.07 (0.13)

0.05 (0.15)

0.00 (0.06)

2.49 (0.15)

0.01 (0.04

0.00 (0.01)

0.01 (0.03)  

Smoker

301

0.07 (0.10)

0.05 (0.11)

0.00 (0.02)

2.50 (0.11)

0.01 (0.02

0.00 (0.01)

0.01 (0.03)  

Jaw

  

Maxilla

1108

0.07 (0.14)

0.05 (0.11)

 0.01 (0.06) 

2.49 (0.13)

0.01 (0.05)

0.00 (0.01)

0.01 (0.03)  

Mandible

1198

0.07 (0.09)

0.03 (0.11)

 0.00 (0.02) 

2.48 (0.12)

0.01 (0.03)

0.00 (0.01)

0.01 (0.03)  

Maximum PPD at T1

  

<5 mm

1678

 0.06 (0.08) 

 0.03 (0.108) 

0.01 (0.03)

 2.47 (0.09) 

0.01 (0.03)

0.00 (0.01)

0.01 (0.03)  

≥5 mm

628

 0.09 (0.19) 

 0.08 (0.16) 

0.01 (0.06)

 2.52 (0.17) 

0.01 (0.05)

0.00 (0.01)

0.01 (0.03)  


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c12.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:22:08 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 235

  Table 12.1   

 Mean ( SD ) number of treatments provided per year of retention. Differences of number of treatments between groups are indicated in bold 

(p < 0.05,  ANOVA ). For more than two groups, different superscript letters indicate a significantly different number of treatments according to the Bonferroni 

post‐hoc test (p < 0.05). 

Parameter

N

Deep scaling/ 
root planing

Surgical flap 
debridement

Root resection

Supportive 
therapy

Endodontic 
treatment

Restorative 
treatment

Prosthetic 
treatment    

Patients’ age at T0

  

<50

738

 0.09 (0.17) 

 0.04 (0.09) 

0.01 (0.04)

 2.48 (0.12) 

0.01 (0.04)

0.00 (0.01)

0.01 (0.03)  

≥50

1568

 0.06 (0.08) 

 0.05 (0.12) 

0.01 (0.04)

 2.51 (0.12) 

0.01 (0.04)

0.00 (0.01)

0.01 (0.03)  

Gender

  

Male

950

0.07 (0.10)

0.04 (0.12)

0.01 (0.05)

2.48 (0.12)

0.01 (0.05)

0.00 (0.01)

0.01 (0.03)  

Female

1356

0.07 (0.10)

0.04 (0.11)

0.01 (0.03)

2.49 (0.13)

0.01 (0.03)

0.00 (0.01)

0.01 (0.03)  

Diagnosis

  

Aggressive periodontitis

453

0.07 (0.13)

0.04 (0.12)

0.01 (0.03)

2.49 (0.10)

0.01 (0.04)

0.00 (0.01)

0.01 (0.03)  

Chronic periodontitis

1853

0.06 (0.09)

0.05 (0.09)

0.01 (0.04)

2.49 (0.10)

0.01 (0.04)

0.00 (0.01)

0.01 (0.03)  

Number of teeth at T0

  

≥24

1760

0.06 (0.12)

0.04 (0.10)

0.01 (0.03)

2.49 (0.10)

0.01 (0.04)

0.00 (0.01)

0.01 (0.03)  

<24

546

0.08 (0.12)

0.05 (0.11)

0.01 (0.06)

2.50 (0.10)

0.01 (0.04)

0.00 (0.01)

0.01 (0.03)  

Smoking status

  

Non‐smoker

1458

0.07 (0.09)

0.04 (0.10)

0.00 (0.04)

2.48 (0.11)

0.01 (0.04)

0.00 (0.01)

0.01 (0.03)  

Former smoker

547

0.07 (0.13)

0.05 (0.15)

0.00 (0.06)

2.49 (0.15)

0.01 (0.04

0.00 (0.01)

0.01 (0.03)  

Smoker

301

0.07 (0.10)

0.05 (0.11)

0.00 (0.02)

2.50 (0.11)

0.01 (0.02

0.00 (0.01)

0.01 (0.03)  

Jaw

  

Maxilla

1108

0.07 (0.14)

0.05 (0.11)

 0.01 (0.06) 

2.49 (0.13)

0.01 (0.05)

0.00 (0.01)

0.01 (0.03)  

Mandible

1198

0.07 (0.09)

0.03 (0.11)

 0.00 (0.02) 

2.48 (0.12)

0.01 (0.03)

0.00 (0.01)

0.01 (0.03)  

Maximum PPD at T1

  

<5 mm

1678

 0.06 (0.08) 

 0.03 (0.108) 

0.01 (0.03)

 2.47 (0.09) 

0.01 (0.03)

0.00 (0.01)

0.01 (0.03)  

≥5 mm

628

 0.09 (0.19) 

 0.08 (0.16) 

0.01 (0.06)

 2.52 (0.17) 

0.01 (0.05)

0.00 (0.01)

0.01 (0.03)  

Mobility at T0

  

0

1833

0.07 (0.13)

 0.03 (0.07)  

a

 

 0.00 (0.02)  

a

 

 2.48 (0.09) 

a

  

0.01 (0.04)

0.00 (0.01)

0.01 (0.03)  

1

332

0.06 (0.09)

 0.07 (0.16)  

b

 

 0.01 (0.05)  

b

 

 2.50 (0.15) 

b

  

0.01 (0.05)

0.00 (0.01)

0.02 (0.03)  

2

77

0.05 (0.07)

 0.11 (0.27) 

c

  

 0.01 (0.03)  

b

 

 2.52 (0.26) 

b

  

0.01 (0.04)

0.00 (0.00)

0.01 (0.03)  

3

64

0.08 (0.12)

 0.15 (0.27) 

c

  

 0.04 (0.19)  

c

 

 2.61 (0.27) 

c

  

0.01 (0.04)

0.00 (0.02)

0.01 (0.03)  

FI at T1

  

0

1105

0.07 (0.13)

 0.03 (0.09) 

a

  

 0.00 (0.04)  

a

 

 2.47 (0.11) 

a

  

 0.01 (0.03) 

a

  

 0.00 (0.01) 

a

  

 0.01 (0.02)  

a

   

1

652

0.07 (0.10)

 0.04 (0.06) 

a

  

 0.01 (0.03)  

a

 

 2.48 (0.07) 

a

  

 0.01 (0.04) 

a

  

 0.00 (0.01) 

a

  

 0.01 (0.03)  

a

   

2

356

0.07 (0.11)

 0.07 (0.13) 

b

  

 0.01 (0.03)  

a

 

 2.51 (0.14) 

b

  

 0.01 (0.03) 

a

  

 0.00 (0.01) 

a

  

 0.01 (0.03)  

a

   

3

193

0.06 (0.12)

 0.11 (0.23) 

b

  

 0.03 (0.11)  

b

 

 2.54 (0.22) 

b

  

 0.03 (0.08) 

b

  

 0.01 (0.02) 

b

  

 0.02 (0.05)  

b

   

Bone loss at T0

  

>50%

980

0.07 (0.15)

0.06 (0.14)

 0.01 (0.06)  

a

 

 2.50 (0.15) 

a

  

 0.01 (0.05) 

a

  

0.00 (0.01)

0.01 (0.03)  

25‐50%

882

0.07 (0.10)

0.04 (0.10)

 0.00 (0.02)  

b

 

 2.48 (0.11) 

b

  

 0.01 (0.03) 

b

  

0.00 (0.01)

0.01 (0.03)  

<25%

444

0.07 (0.06)

0.02 (0.04)

 0.00 (0.02)  

b

 

 2.46 (0.06) 

b

  

 0.01 (0.03) 

b

  

0.00 (0.01)

0.01 (0.03)  

Endodontic treatment

  

Not present

2163

0.07 (0.12)

0.04 (0.11)

 0.01 (0.02) 

 2.48 (0.12) 

 0.01 (0.04) 

0.00 (0.01)

 0.01 (0.03)   

Present

143

0.07 (0.10)

0.04 (0.16)

 0.06 (0.14) 

 2.52 (0.16) 

 0.01 (0.02) 

0.00 (0.01)

 0.02 (0.04)   

Periapical lesion

  

Not present

2243

0.07 (0.12)

0.05 (0.11)

 0.01 (0.04) 

2.49 (0.12)

0.01 (0.04)

0.00 (0.01)

 0.01 (0.03)   

Present

63

0.05 (0.10)

0.03 (0.18)

 0.04 (0.10) 

2.53 (0.13)

0.01 (0.04)

0.00 (0.01)

 0.03 (0.07)   

Prosthetic treatment

  

Not present

1460

0.07 (0.13)

 0.04 (0.12) 

 0.00 (0.02) 

2.49 (0.13)

 0.01 (0.04) 

0.00 (0.01)

 0.00 (0.00)   

Present

846

0.07 (0.10)

 0.09 (0.09) 

 0.01 (0.06) 

2.48 (0.10)

 0.01 (0.05) 

0.00 (0.01)

 0.03 (0.04) 

  ANOVA = analysis of variance; FI = furcation involvement; N = number of molars; PPD = probing pocket depth; SD = standard deviation; T = time.  


background image

Chapter 12

236

Table 12.2 

Mean (SD) periodontal and total treatment costs per retention year. Base case (privately insured 

patient) and sensitivity (publically insured patient) analyses are shown. Differences of costs between groups 

are indicated in bold (p < 0.05, ANOVA). For more than two groups, different superscript letters indicate 

significantly different costs according to the Bonferroni post‐hoc test (p < 0.05).

Base case analysis

Sensitivity analysis

Parameter

N

Total 
treatment 
costs per year

Periodontal 
treatment costs 
per year

Total treatment 
costs per year

Periodontal 
treatment 
costs per year

Patients‘ age at T0
<50

738

19.45 (17.71)

13.74 (11.98)

21.08 (21.77)

15.99 (16.66)

≥50

1568

17.70 (16.52)

12.62 (8.22)

18.44 (17.22)

14.05 (10.23)

Gender
Male

950

17.44 (16.83)

12.61 (7.25)

18.48 (16.91)

14.18 (8.66)

Female

1356

18.82 (16.90)

13.26 (10.90)

19.83 (19.99)

15.01 (14.84)

Diagnosis
Aggressive periodontitis

453

17.11 (13.64)

18.51 (17.59)

13.25 (6.41)

18.15 (13.99)

14.81 (7.99)

Chronic periodontitis

1853

12.93 (10.25)

19.55 (19.79)

14.64 (13.52)

Number of teeth at T0
≥24

1760

17.33 (16.20)

12.61 (8.99)

18.23 (17.99)

14.10 (14.66)

<24

546

21.19 (18.74)

14.20 (11.23)

22.82 (20.91)

16.55 (14.97)

Smoking status
Non‐smoker

1458

18.33 (17.51)

12.91 (10.39)

19.32 (19.82)

14.58 (14.14)

Former smoker

547

17.64 (16.51)

13.28 (8.97)

19.10 (18.29)

15.07 (10.82)

Smoker

301

18.73 (14.49)

12.90 (5.89)

19.40 (14.02)

14.41 (6.55)

Jaw
Maxilla

1108

19.04 (18.49)

13.60 (11.12)

20.51 (21.19)

15.56 (15.00)

Mandible

1198

17.50 (15.33)

12.50 (7.86)

18.15 (16.27)

13.88 (9.91)

Maximum PPD at T1
<5 mm

1678

17.34 (15.69)

12.38 (9.26)

17.96 (17.12)

13.82 (12.49)

≥5 mm

628

20.62 (19.50)

14.71 (10.32)

22.92 (22.33)

16.96 (12.98)

Mobility at T0
0

1833

17.33 (14.27)

a

12.38 (6.49)

a

17.96 (14.60)

a

13.82 (8.60)

a

1

332

21.12 (21.17)

a

14.41 (12.23)

b

22.82 (23.39)

b

16.61 (15.78)

b

2

77

21.00 (22.45)

a

15.59 (13.01)

b

23.27 (26.46)

b

17.29 (14.03)

b

3

64

26.98 (37.77)

b

20.12 (32.67)

c

37.01 (54.486

c

27.77 (47.66)

c

FI at T1
0

1105

16.50 (13.27)

a

11.95 (6.75)

a

17.04 (14.69)

a

13.19 (8.91)

a

1

652

16.72 (11.72)

a

12.49 (5.12)

a

17.64 (11.36)

a

14.00 (6.45)

b

2

356

20.60 (16.99)

b

14.20 (9.07)

b

22.06 (18.29)

b

16.04 (11.14)

b

3

193

29.07 (35.69)

c

18.64 (23.59)

c

33.69 (42.37) 

c

23.35 (32.62)

c


background image

Health Economics of Furcation Involvement 237

chance of clinical success, but also the efforts 

needed to ensure this success, and should 

guide decision making towards retaining 

or  replacing teeth. It should be noted that 

prosthetically involved molars were generally 

found to be more expensive to retain, which 

indicates not only periodontal treatment 

needs, but also the necessity of retreating 

prosthetically (due to caries, fractures, 

 

porcelain chippings) or endodontically 

(Goodacre et al. 2003; Walton 2013; see also 

Figure 12.4).

Table 12.2 

(Continued)

Base case analysis

Sensitivity analysis

Parameter

N

Total 
treatment 
costs per year

Periodontal 
treatment costs 
per year

Total treatment 
costs per year

Periodontal 
treatment 
costs per year

Bone loss at T0
>50%

980

19.71 (19.25)

a

14.28 (13.02) 

a

21.74 (23.54)

a

16.55 (17.51)

25‐50%

882

17.68 (16.47)

b

12.51 (6.49)

b

18.15 (16.14)

b

13.81 (8.12)

<25%

444

16.15 (11.00)

b

11.16 (3.23)

b

16.25 (9.13)

b

12.34 (3.55)

Endodontic treatment
Not present

2163

17.52 (14.84)

12.50 (6.23)

18.25 (15.09)

13.83 (7.42)

Present

143

29.28 (33.97)

21.20 (28.77)

35.84 (45.82)

27.95 (40.89)

Peri‐apical lesion
Not present

2243

17.70(14.66)

12.74 (7.68)

18.67 (15.92)

14.28 (9.78)

Present

63

36.19 (49.92)

22.15 (34.36)

42.75 (60.09)

29.50 (49.65)

Prosthetic treatment
Not present

1460

13.80 (12.71)

12.99 (10.05)

15.90 (17.53)

14.58 (13.30)

Present

846

25.91 (20.25)

13.04 (8.89)

25.14 (19.43)

14.81 (11.41)

ANOVA = analysis of variance; FI = furcation involvement; N = number of molars; PPD = probing pocket depth; 

SD = standard deviation; T = time.

(a)

(b)

(c)

Figure 12.4 

First lower molar with furcation involvement degree III (Hamp et al. 1975) after treatment with 

tunnelling for cleaning at home (a). The situation remained stable for over 9 years (b), while after 13 years (c) a 

carious lesion in the furcation developed, leading to endodontic involvement and, eventually, extraction.


background image

Chapter 12

238

Such increased risks of reinterventions for 

prosthetically restored teeth was shown 

mainly if prosthetics had been placed prior to 

periodontitis treatment (Pretzl et  al. 2008; 

Graetz et al. 2013), while prosthetics inserted 

after successful initial therapy and during 

systematic SPT were not necessarily found 

to  generate more treatment efforts and 

costs (Yi et al. 1995; Lulic et al. 2007; Fardal 

and Linden 2010; Graetz et al, 2013; see also 

Figure 12.5).

Overall, the very limited available evi-

dence finds retention of FI molars to require 

more effort than non‐molar or non‐FI teeth, 

which has impacts on the costs required for 

retention. This is truer in molars with severe 

(a)

(b)

(c)

(d)

(e)

Figure 12.5 

Man, aged 59 years and non‐smoker, diagnosed with generalized chronic periodontitis and 

horizontal bone loss up to one‐quarter of the root length in both jaws and furcation involvement degree I 

(lower molars) and II (upper molars) (Hamp et al. 1975) (a and b). Initial periodontal therapy using scaling and 

root planing followed by open‐flap debridement of all pre/molars with extraction of tooth 17 (UR7) (as a result 

of a root carious lesion) was provided. After re‐evaluation, a regular supportive periodontal therapy was started 

and after one year a fixed dental prosthesis was fitted. Seven years later, tooth 11 fractured (c) and a fixed 

dental prosthesis was provided in the front (d). This situation remained stable for 29 years (e, last observation).


background image

Health Economics of Furcation Involvement 239

furcation involvement (FI degree III), 

but  not necessarily for FI degree I. More 

 important, however, is the fact that overall 

 retention costs were very limited, with only 

a few euros per year being required to retain 

such molars. Based on this finding, it is now 

relevant to compare these costs with those 

generated by other, alternative treatments.

12.4   Cost‐effectiveness  of 

Retaining Furcation‐involved 

Molars

There are only very few data comparing the 

cost‐effectiveness of different strategies to 

retain molars with FI. One recent study 

(Schwendicke et al. 2014) used a mathemati-

cal model to assess the cost‐effectiveness of 

treatment alternatives for periodontally 

affected, vital molars with furcation FI, com-

paring tooth‐retaining strategies with tooth 

removal and replacement via implant‐ 

supported crowns (ISCs). Categories of 

tooth‐retaining strategies were

 

Conservative, non‐surgical furcation ther-

apy involving SRP.

 

SRP with surgical access (i.e. FD).

 

For teeth with FI degree II or III, root 

resection (RR; i.e. hemisection, trisection, 

or amputation), as well as

 

Guided tissue regeneration (GTR, including 

insertion of bone‐substitute material and 

placement of a resorbable membrane), and

 

Tunnelling (TU, for mandibular molars 

only).

Tooth‐retaining strategies were compared 

with the removal and replacement of teeth 

via ISCs.

This study assessed cost‐effectiveness as 

lifetime treatment costs (initial plus follow‐

up treatments) per retention time of the 

tooth or implant (in years). All analyses were 

performed separately for molars with FI 

degree I, lower molars with F degree II/III, 

and upper molars with FI degree II/III, again 

in the context of German healthcare.

The study simulated an initially 50‐year‐

old male patient with an average remaining 

life expectancy of 29.7 years. The model used 

consisted of the initial and various follow‐up 

health states (Figure  12.6), simulating the 

natural history of a periodontally affected 

tooth or an ISC.

As to the costs assessed, the following 

assumptions had been made:

 

All initial therapies comprised full case 

assessment including oral hygiene assess-

ment, advice and motivation, radiographs, 

scale and polish, re‐evaluation, and the 

necessary treatment as already outlined, 

including anaesthesia, possible endodon-

tic, surgical, or prosthetic procedures, and 

short‐term post‐operative care.

 

Supportive periodontal or implant treat-

ment involved biannual re‐revaluation, 

scale and polish, subgingival retreatment, 

and antiseptic irrigation, as well as radio-

graphic reassessment every two years. For 

teeth but not implants, fluoridation of root 

surfaces was assumed to be additionally 

performed.

 

Modelling involved fatal complica-

tions – that is, those leading to loss of the 

tooth or implant (for example periodontal 

complications or untreatable root caries, 

or untreatable peri‐implantitis or implant 

fracture, respectively)  –  and non‐fatal 

complications  –  for instance treatable 

 caries at restoration margins, treatment‐

responsive peri‐implantitis, or loss of 

crowns or abutments. Mending of compli-

cations was assumed to generate costs, and 

involved repair or renewal of restorations, 

recementation or refixing of crowns or 

abutments, and peri‐implant treatment 

(Mombelli and Lang, 1998).

For molars with FI degree I, SRP was both less 

costly and more effective than ISC. Compared 

with FD, ISC was always more costly, but also 

more effective (i.e. implants were retained 

longer). Regardless of the dental arch, treat-

ing molars with FI degree II/III via tooth‐

retaining options was found to be more 


background image

Chapter 12

240

effective and less costly than tooth removal 

and replacement via ISC (Figure 12.7).

This cost‐effectiveness ranking  –  with 

implants being more costly than tooth‐

retaining strategies  –  did hold even under 

the worst‐case assumptions modelled, and 

was also stable regardless of how costs were 

estimated.

Retaining teeth was significantly less costly 

than removing and replacing them, mainly as 

ISCs are so costly initially, but also as retreat-

ments on ISCs (which are not needed very 

frequently) are relatively costly. For example, 

treating peri‐implantitis is not only challeng-

ing but costly, as is mending non‐biological 

complications (ceramic chippings, crown de‐

cementations, fractures), which usually 

involve costly materials and often generate 

further staff costs for dental technicians. 

This finding is in line with a number of 

observational studies from another health-

care setting as well (Fardal and Grytten 2013; 

Martin et al. 2014).

More specifically, it is unlikely that remov-

ing and replacing molars with FI degree I will 

be cost‐effective (the 10‐year survival rate for 

molars treated via SRP and SPT was 97% in 

this study). This is in line with FI degree 

I being found to have only limited impact on 

tooth success when compared with FI degree 

0 (Salvi et al. 2014; Graetz et al., 2015), but 

also to only limited impact on required treat-

ment efforts (as has been shown already and 

in Tables 12.1 and 12.2). FD seems less effec-

tive than ISCs, while being more costly than 

SRP. It is therefore doubtful if such a strategy 

can be more cost‐effective than SRP in molars 

with FI degree I (Heitz‐Mayfield et al. 2002). 

Molars with Fl I

SRP

Tooth loss

Implant loss

Refill/repair/

crown

Refill/repair/

crown

Recement/

-crown

Periodontal/Endodontic/Restorative

Complications

Periodontal/Endodontic/

Restorative Complications

Technical/Biological

Complications

RCT

RCT

CIST

FD

ISC

RR

GTR

TU

Molars with Fl II or Ill

Replace with ISC

Replace with ISC

Tooth loss

Replace with ISC

Figure 12.6 

State transition diagram. Molars with furcation involvement (FI) degrees I and II/III were analysed 

separately, with different treatments being compared. All periodontal treatments were compared with 

implant‐supported crowns (ISC). For all teeth, periodontal, endodontic, and restorative complications were 

modelled, with fatal (leading to tooth loss) and non‐fatal (mendable) complications being simulated 

separately. For implants, we modelled technical (loss of crowns, abutment fracture, implant fracture) and 

biological complications (peri‐implantitis), again with separate simulation of fatal and non‐fatal failures. If 

complications were mendable, teeth and implants were allocated to follow‐up treatments, which generated 

costs. In case these treatments were not final, i.e. another retreatment was possible (for example re‐restoration 

after repair), this was modelled as well. Eventually, lost teeth or implants were assumed to be replaced using 

implant‐supported crowns. Note that within base case analysis, all failed teeth or implants were assumed to be 

(re‐)replaced. To explore the effects of this assumption, sensitivity analyses were performed. CIST = cumulative 

supportive interceptive therapy; FD = flap debridement; GTR = guided tissue regeneration; RCT = root canal 

treatment; RR = root resection; SRP = scaling and root planing; TU = tunnelling.


background image

Health Economics of Furcation Involvement 241

In general, there is debate around the cost‐

effectiveness of FD versus SRP, as the effec-

tiveness gain seems limited (also in non‐FI 

degree I teeth) while the additional costs are 

substantial (Antczak‐Bouckoms and 

Weinstein 1987). There is, however, some 

indication that the need for maintenance 

 visits seems reduced after FD compared with 

SRP, which could offset initially higher treat-

ment costs (Miremadi et al. 2015).

There is greater uncertainty as to how best 

to treat molars with FI degree II or III (or 

whether to replace them). Treatment options 

have been discussed extensively in this book 

(mainly in Chapters 7, 8, and 9). RR espe-

cially was relatively costly, as costs occur not 

only for the periodontal procedure, but also 

root canal treatment (note that – as  discussed 

already  –  RR might be mainly applied to 

molars which had received endodontic 

 

therapy earlier) and crown placement 

(Carnevale et al. 1991; Huynh‐Ba et al. 2009; 

Schwendicke et al. 2013). When considering 

the range of estimated survival rates for 

RR – 91% after 10 years in Schwendicke et al. 

(2013); 93% after 3.5 

years in Helldén 

et al. (1989); 68% after 10 years in Blomlöf 

et  al. (1997); and 83% after 7 years in 

Little et al. (1995; reviewed in Chapter 8), it 

remains uncertain whether the high costs 

for RR are truly justified.

What is clear from the existing studies is 

that one cannot really attempt to compare 

most periodontal treatments with one 

another, since their indications differ (RR will 

not be applied to the same teeth as SRP etc.). 

(a)

2500

2100

1700

1300

Cost in Euro

Cost in Euro

900

2500

2100

1700

1300

900

Cost in Euro

2500

2100

1700

1300

900

ISC

ISC

ISC

ISC

ISC

RR

RR

RR

RR

GTR

GTR

GTR

TU

TU

GTR

ISC
SRP

SRP

FD

22

24

26

Effectiveness in years

Effectiveness in years

28

30

22

24

26

28

30

Effectiveness in years

22

24

26

28

30

FD

(b)

(c)

Figure 12.7 

Cost‐effectiveness of different strategies to treat molars with furcation involvement (FI). For FI 

degree I, we compared conservative scaling and root planing (SRP) and flap debridement and SRP (FD) with 

implant‐supported crowns (ISC). For molars with FI degrees II or III, root resection (RR), guided tissue 

regeneration (GTR), and tunnelling (TU, for lower molars) were compared with ISC. The presented  

cost‐effectiveness planes (a, b, c) demonstrate the discounted lifetime costs (y‐axis) per effectiveness (in years 

of tooth or implant retention). In the case of FI degree I (a), SRP was more effective and less costly than ISC, 

while FD was both less effective and less costly than ISC. For upper (b) or lower (c) molars with FI degree II or III, 

ISC was dominated by all tooth‐retaining strategies.


background image

Chapter 12

242

What should be further borne in mind is 

that different periodontal treatments 

require  different degrees of patient motiva-

tion and compliance. For example, tunnel-

ling might require highly motivated patients 

to maintain the tunnel and prevent root 

caries (Hamp et al. 1975). That said, doubts 

remain regarding the postulated high risk 

of caries within tunnels (Little et al. 1995; 

Dannewitz et al. 2006b; Feres et al. 2006), as 

was seen in the German cohort study dis-

cussed, which reported such caries in only 

2% of molars over 16.5 years (Schwendicke 

et al. 2016a). Lastly, retention and replace-

ment are not the only viable options for 

treating molars with FI; shortened dental 

arches might also yield sufficient function-

ality and subjective oral health (Wolfart 

et al. 2014), while generating limited initial 

and long‐term costs (Faggion et  al. 2011; 

Wolfart et al. 2012). Here again, the availa-

ble data are insufficient to assign monetary 

or utility values to missing, replaced, or 

retained teeth, which would allow different 

strategies to be properly compared.

12.5   Research  Gaps

Adhesive dentistry increases the number of 

options for dealing with furcation‐involved 

teeth. Splinting of different teeth or (resected) 

roots, or even using extracted teeth as 

 adhesive bridge pontic, has been performed 

not only in the anterior region, but also 

 posteriorly (Figures  12.8 and 12.9). Clinical 

experience allows the hypotheses that using 

glass fibre–enforced ribbons could allow 

similar retention periods to be achieved to 

conventional adhesive (Maryland) bridges 

used normally in the front, with similar 

 complications of debonding and fracture 

(Miettinen and Millar 2013). However, 

 reliable efficacy data and any data on cost‐ 

effectiveness or the value patients place on 

such treatments are missing at present.

(a)

(b)

(c)

(d)

Figure 12.8 

Man, aged 46 years, with generalized chronic periodontitis after extraction with immediately 

re‐fixation of tooth 31 (LL1) (a, b: before extraction) and long‐term stability of the situation during supportive 

periodontal therapy over 10 years (c, d).


background image

Health Economics of Furcation Involvement 243

In general, there are growing data on cost‐

effectiveness, largely stemming from either 

cohort or modelling studies. Recording of 

efficiency data alongside randomized trials is 

not common at present and can be recom-

mended. Cost–utility or cost–benefit analy-

ses are even less common, mainly since the 

subjective value that patients place on single 

retained, replaced, or missing teeth is not 

known at present.

12.6   Conclusions

Given both the demographic changes in 

many rich countries as well as the epidemio-

logical shift in older populations – who retain 

more teeth than ever before  –  retaining 

molars with FI is highly relevant from a pub-

lic health and health economic perspective. 

A range of study types has been employed in 

this field, mainly to describe the costs of 

retaining these molars, but also to compare 

the cost‐effectiveness of different retention 

and replacement strategies. Based on these 

studies, retaining molars with FI might 

require more effort than retaining non‐FI 

teeth. However, the resulting annual treat-

ment costs are nevertheless very limited. 

The  larger proportion of these costs is for 

periodontal, not other (restorative, endodon-

tic, prosthetic) treatments. There are a 

 number of factors which are associated with 

greater effort being needed, resulting in 

higher costs, like bone loss, severe FI, mobil-

ity, or status as prosthetic abutment. Dentists 

should consider these factors in treatment 

decisions. If comparing different strategies 

for managing molars with FI, tooth retention 

seems probably less costly than tooth 

(a)

(c)

(b)

(d)

(f)

(e)

Figure 12.9 

Woman, aged 47 years, with generalized chronic periodontitis and root resorption of the mesial 

root of tooth 46 (LR6) (a). After successful endodontic treatment and resection of the mesial root (b), a fibre‐

enforced pontic was directly placed (c), allowing splinting of teeth 46 and 45 (LR5). Long‐term stability was 

achieved during supportive periodontal therapy over 11 years (d–f).


background image

Chapter 12

244

 replacement via ISC. This is mainly because 

implant placement but also maintenance is 

relatively costly compared to costs for tooth 

retention.

In conclusion, dentists should not focus only 

on the reported success or survival rates of cer-

tain treatments (which are, for example, very 

high for implants). Instead, they should con-

sider the long‐term consequences and extent 

of possible retreatments, as well as their feasi-

bility and costs. Retaining molars with FI is 

likely to be both achievable and cost‐effective.

 References

Antczak‐Bouckoms, A.A., and Weinstein, 

M.C. (1987). Cost‐effectiveness analysis of 

periodontal disease control. Journal of 

Dental Research 66, 1630–1635.

Blomlof, L., Jansson, L., Appelgren, R. et al. 

(1997). Prognosis and mortality of root‐

resected molars. International Journal of 

Periodontics and Restorative Dentistry 

17, 190–201.

Carnevale, G., Di Febo, G., Tonelli, M.P. 

et al. (1991). A retrospective analysis of the 

periodontal‐prosthetic treatment of molars 

with interradicular lesions. International 

Journal of Periodontics and Restorative 

Dentistry 11, 189–205.

Chambrone, L.A., and Chambrone, L. (2006). 

Tooth loss in well‐maintained patients with 

chronic periodontitis during long‐term 

supportive therapy in Brazil. Journal of 

Clinical Periodontolpgy 33, 759–764. 

doi:10.1111/j.1600‐051X.2006.00972.x.

Checchi, L., Montevecchi, M., Gatto, M.R., and 

Trombelli, L. (2002). Retrospective study of 

tooth loss in 92 treated periodontal patients. 

Journal of Clinical Periodontology 

29, 651–656.

Dannewitz, B., Krieger, J.K., Husing, J., and 

Eickholz, P. (2006a) Loss of molars in 

periodontally treated patients: A 

retrospective analysis five years or more 

after active periodontal treatment. Journal 

of Clinical Periodontology 33, 53–61. 

doi:10.1111/j.1600‐051X.2005.00858.x.

Dannewitz, B., Krieger, J.K., Hüsing, J., and 

Eickholz, P. (2006b). Loss of molars in 

periodontally treated patients: 

A retrospective analysis five years or more 

after active periodontal treatment. Journal 

of Clinical Periodontology 33, 53–61. 

doi:10.1111/j.1600‐051X.2005.00858.x.

Eickholz, P., Kaltschmitt, J., Berbig, J. et al. 

(2008). Tooth loss after active periodontal 

therapy. 1: Patient‐related factors for risk, 

prognosis, and quality of outcome. Journal 

of Clinical Periodontology 35, 165–174. 

doi:10.1111/j.1600‐051X.2007.01184.x.

Faggion, C.M., Jr, Giannakopoulos, N.N., and 

Listl, S. (2011). How strong is the evidence 

for the need to restore posterior bounded 

edentulous spaces in adults? Grading the 

quality of evidence and the strength of 

recommendations. Journal of Dentistry 39, 

108–116. doi:10.1016/j.jdent.2010.11.002.

Fardal, O., and Grytten, J. (2013). A 

comparison of teeth and implants during 

maintenance therapy in terms of the number 

of disease‐free years and costs: An in vivo 

internal control study. Journal of Clinical 

Periodontology 40, 645–651. doi:10.1111/ 

jcpe.12101.

 Summary  of Evidence

 

Teeth with furcation involvement (FI) can 

be retained in the long term, but at higher 

costs than teeth without FI.

 

These costs increase with higher degrees 

of FI, bone loss, and mobility.

 

However, removing and replacing teeth 

using implant‐supported crowns does not 

seem to be less costly.

 

Dentists should consider these risk factors 

and the required treatment needs for plan-

ning the retention or removal of teeth.


background image

Health Economics of Furcation Involvement 245

Fardal, O., Johannessen, A.C., and Linden, G.J. 

(2004). Tooth loss during maintenance 

following periodontal treatment in a 

periodontal practice in Norway. Journal 

of Clinical Periodontology 31,  

550–555. 

doi:10.1111/j.1600‐051X.2004.00519.x.

Fardal, O., and Linden, G.J. (2010). Long‐term 

outcomes for cross‐arch stabilizing bridges 

in periodontal maintenance patients: 

A retrospective study. Journal of Clinical 

Periodontology 37, 299–304. 

doi:10.1111/j.1600‐051X.2009.01528.x.

Feres, M., Araujo, M.W., Figueiredo, L.C., and 

Oppermann, R.V. (2006). Clinical evaluation 

of tunneled molars: A retrospective study. 

Journal of the International Academy of 

Periodontology 8, 96–103.

Goodacre, C J., Bernal, G., Rungcharassaeng, 

K., and Kan, J.Y. (2003). Clinical 

complications in fixed prosthodontics. 

Journal of Prosthetic Dentistry 90, 31–41. 

doi:10.1016/s0022391303002142.

Graetz, C., Dörfer, C.E., Kahl, M. et al. (2011). 

Retention of questionable and hopeless 

teeth in compliant patients treated for 

aggressive periodontitis. Journal of Clinical 

Periodontology 38, 707°714. 

doi:10.1111/j.1600‐051X.2011.01743.x.

Graetz, C., Schutzhold, S., Plaumann, A. et al. 

(2015). Prognostic factors for the loss of 

molars: An 18‐years retrospective cohort 

study. Journal of Clinical Periodontology 

42, 943–950. doi:10.1111/jcpe.12460.

Graetz, C., Schwendicke, F., Kahl, M. (2013). 

Prosthetic rehabilitation of patients with 

history of moderate to severe periodontitis: 

A long‐term evaluation. Journal of Clinical 

Periodontology 40, 799–806. doi:10.1111/ 

jcpe.12124.

Graetz, C., Sälzer, S., Plaumann, A., 

Schlattmann, P., Kahl, M., Springer, C., 

Dörfer, C., and Schwendicke, F. (2017a). 

Tooth loss in generalized aggressive 

periodontitis: Prognostic factors after 17 

years of supportive periodontal treatment. 

Clin Periodontol 44, 612–619. doi:10.1111/

jcpe.12725.

Graetz, C., Plaumann, A., Schlattmann, P., 

Kahl, M., Springer, C., Sälzer, S., Gomer, K., 

Dörfer, C., and Schwendicke, F. (2017b). 

Long-term tooth retention in chronic 

periodontitis – results after 18 years of a 

conservative periodontal treatment regimen 

in a university setting. J Clin Periodontol 44, 

169–177. doi:10.1111/jcpe.12680.

Hamp, S.E., Nyman, S., and Lindhe, J. (1975). 

Periodontal treatment of multirooted teeth: 

Results after 5 years. Journal of Clinical 

Periodontology 2, 126–135.

Hatch, J.P., Shinkai, R.S., Sakai, S. et al. (2001). 

Determinants of masticatory performance 

in dentate adults. Archives of Oral Biology 

46, 641–648.

Heitz‐Mayfield, L.J., Trombelli, L., Heitz, F. 

et al. (2002). A systematic review of the 

effect of surgical debridement vs  

non‐surgical debridement for the treatment 

of chronic periodontitis. Journal of Clinical 

Periodontology 29 (Suppl. 3), 92–102; 

discussion 160–162.

Helldén, L.B., Elliot, A., Steffensen, B., and 

Steffensen, J.E. (1989). The prognosis of 

tunnel preparations in treatment of class III 

furcations: A follow‐up study. Journal of 

Periodontology 60, 182–187. doi:10.1902/ 

jop.1989.60.4.182.

Holtfreter, B., Kocher, T., Hoffmann, T. et al. 

(2010). Prevalence of periodontal disease 

and treatment demands based on a German 

dental survey (DMS IV). Journal of Clinical 

Periodontology 37, 211–219. 

doi:10.1111/j.1600‐051X.2009.01517.x.

Huynh‐Ba, G., Kuonen, P., Hofer, D. et al. 

(2009). The effect of periodontal therapy on 

the survival rate and incidence of 

complications of multirooted teeth with 

furcation involvement after an observation 

period of at least 5 years: A systematic 

review. Journal of Clinical Periodontology 

36, 164–176. 

doi:10.1111/j.1600‐051X.2008.01358.x.

Johansson, K.J., Johansson, C.S., and Ravald, N. 

(2013). The prevalence and alterations of 

furcation involvements 13 to 16 years after 

periodontal treatment. Swedish Dental 

Journal 37, 87–95.

Jordan, A.R., and Micheelis, W. (2016). Fünfte 

Deutsche Mundgesundheitsstudie (DMS V). 

Köln: Deutscher Ärzte-Verlag.


background image

Chapter 12

246

Kassebaum, N.J., Bernabe, E., Dahiya, M. et al. 

(2014). Global burden of severe 

periodontitis in 1990–2010: A systematic 

review and meta‐regression. Journal of 

Dental Research 93, 1045–1053. 

doi:10.1177/0022034514552491.

Kocher, T., and Plagmann, H.C. (1999). 

Root debridement of molars with furcation 

involvement using diamond‐coated sonic 

scaler inserts during flap surgery: A pilot 

study. Journal of Clinical Periodontology 

26, 525–530.

König, J., Plagmann, H.C., Rühling, A., and 

Kocher, T. (2002). Tooth loss and pocket 

probing depths in compliant periodontally 

treated patients: A retrospective analysis. 

Journal of Clinical Periodontology 29, 

1092–1100. doi:cpe291208 [pii].

Lee, K.L., Corbet, E.F., and Leung, W.K. 

(2012). Survival of molar teeth after 

resective periodontal therapy: A 

retrospective study. Journal of Clinical 

Periodontology 39, 850–860. 

doi:10.1111/j.1600‐051X.2012.01918.x.

Little, L.A., Beck, F.M., Bagci, B., and Horton, 

J.E. (1995). Lack of furcal bone loss 

following the tunnelling procedure. Journal 

of Clinical Periodontology 22, 637–641.

Loesche, W.J., Giordano, J.R., Soehren, S., and 

Kaciroti, N. (2002). The nonsurgical 

treatment of patients with periodontal 

disease: Results after five years. Journal of the 

American Dental Association 133, 311–320.

Lulic, M., Bragger, U., Lang, N.P. et al. (2007). 

Ante’s (1926) law revisited: A systematic 

review on survival rates and complications 

of fixed dental prostheses (FDPs) on severely 

reduced periodontal tissue support. Clinical 

Oral Implants Research 18 (Suppl. 3), 63–72. 

doi:10.1111/j.1600‐0501.2007.01438.x.

Martin, J.A., Fardal, O., Page, R.C. et al. (2014). 

Incorporating severity and risk as factors to 

the Fardal cost‐effectiveness model to create 

a cost‐benefit model for periodontal 

treatment. Journal of Periodontology 85, 

e31–e39. doi:10.1902/jop.2013.130237.

Micheelis, W., and Schiffer, U. (2006). Vierte 

Deutsche Mundgesundheitsstudie (DMS‐IV)

Köln: Deutscher Zahnärzte.

Miettinen, M., and Millar, B.J. (2013). A review 

of the success and failure characteristics of 

resin‐bonded bridges. British Dental Journal 

215, E3. doi:10.1038/sj.bdj.2013.686.

Miremadi, S.R., De Bruyn, H., Steyaert, H. 

et al. (2015). A randomized controlled trial 

comparing surgical and non‐surgical 

periodontal therapy: A 3‐year clinical and 

cost‐effectiveness analysis. Journal of 

Clinical Periodontology 42, 740–747. 

doi:10.1111/jcpe.12434.

Mombelli, A., and Lang, N.P. (1998). The 

diagnosis and treatment of peri‐implantitis. 

Periodontology 2000 17, 63–76.

Pretzl, B., Kaltschmitt, J., Kim, T.S. et al. 

(2008). Tooth loss after active periodontal 

therapy. 2: Tooth‐related factors. Journal of 

Clinical Periodontology 35, 175–182. 

doi:10.1111/j.1600‐051X.2007.01182.x.

Pretzl, B., Wiedemann, D., Cosgarea, R. et al. 

(2009). Effort and costs of tooth 

preservation in supportive periodontal 

treatment in a German population. Journal 

of Clinical Periodontology 36, 669–676. 

doi:10.1111/j.1600‐051X.2009.01409.x.

Roos‐Jansaker, A.M., Lindahl, C., Renvert, H., 

and Renvert, S. (2006). Nine‐ to fourteen‐

year follow‐up of implant treatment. Part II: 

Presence of peri‐implant lesions. Journal of 

Clinical Periodontology 33, 290–295. 

doi:10.1111/j.1600‐051X.2006.00906.x.

Salvi, G.E., Mischler, D.C., Schmidlin, K. et al. 

(2014). Risk factors associated with the 

longevity of multi‐rooted teeth: Long‐term 

outcomes after active and supportive 

periodontal therapy. Journal of Clinical 

Periodontology 41, 701–707. doi:10.1111/ 

jcpe.12266.

Schwendicke, F., Graetz, C., Stolpe, M., and 

Dorfer, C.E. (2014). Retaining or replacing 

molars with furcation involvement: A 

cost‐effectiveness comparison of different 

strategies. Journal of Clinical Periodontology 

41, 1090–1097. doi:10.1111/jcpe.12315.

Schwendicke, F., Plaumann, A., Stolpe, M. et al. 

(2016a). Retention costs of periodontally 

compromised molars in a German 

population. Journal of Clinical Periodontology 

43, 261–270. doi:10.1111/jcpe.12509.


background image

Health Economics of Furcation Involvement 247

Schwendicke, F., Stolpe, M., Meyer‐Lueckel, H. 

et al. (2013). Cost‐effectiveness of one‐ and 

two‐step incomplete and complete excavations. 

Journal of Dental Research 90, 880–887.

Schwendicke, F., Stolpe, M., Plaumann, A., and 

Graetz, C. (2016b). Cost‐effectiveness of 

regular versus irregular supportive 

periodontal therapy or tooth removal. 

Journal of Clinical Periodontology 43, 

940–947. doi:10.1111/jcpe.12595.

Vernazza, C., Heasman, P., Gaunt, F., and 

Pennington, M. (2012). How to measure the 

cost‐effectiveness of periodontal treatments. 

Periodontology 2000 60, 138–146. 

doi:10.1111/j.1600‐0757.2011.00406.x.

Walton, T.R. (2013). The up to 25‐year survival 

and clinical performance of 2,340 high 

gold‐based metal‐ceramic single crowns. 

International Journal of Prosthodontics 

26, 151–160. doi:10.11607/ijp.3136.

Wolfart, S., Marre, B., Wostmann, B. 

et al. (2012). The randomized 

shortened dental arch study: 5‐year 

maintenance. Journal of Dental Research 

91, 65 s–71 s. doi:10.1177/0022034 

512447950.

Wolfart, S., Muller, F., Gerss, J. et al. (2014). 

The randomized shortened dental 

arch study: Oral health‐related quality 

of life. Clinical Oral Investigations 18, 

525–533. doi:10.1007/s00784‐013‐0991‐6.

Yi, S.W., Ericsson, I., Carlsson, G.E., and 

Wennstrom, J.L. (1995). Long‐term follow‐

up of cross‐arch fixed partial dentures in 

patients with advanced periodontal 

destruction: Evaluation of the supporting 

tissues. Acta Odontologica Scandinavica 

53, 242–248.

Zhong, H. (2010). On decomposing the 

inequality and inequity change in health care 

utilization: Change in means, or change in 

the distributions? International Journal of 

Health Care Finance and Economics 10, 

369–386. doi:10.1007/s10754‐010‐9085‐z.


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c13.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:22:26 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 249

249

Diagnosis and Treatment of Furcation-Involved Teeth, First Edition. Edited by Luigi Nibali. 

© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd. 

Companion website: www.wiley.com/go/nibali/diagnosis

13.1   Introduction

Dentistry is moving towards a more patient‐

centred approach, with more attention paid 

to the patient’s point of view and striving 

to  improve the patient’s quality of life. 

Ultimately, as treating clinicians we should 

realize that reduction of probing pocket 

depths and bleeding on probing are just sur­

rogate measures of disease progression and 

they do not necessarily mirror the patient’s 

aims and needs. Furthermore, every patient is 

different and what works for one patient may 

not work for another. However, it is interest­

ing to note how most studies in the periodon­

tal literature have focused so much on clinical 

measurements, leaving aside aspects such as 

costs and effects on the patient’s quality of 

life. Equally, previous chapters of this book 

have focused on clinical parameters, bone 

levels, and ‘success’ as defined by the treating 

periodontist, but not based on the patient’s 

perceptions. This chapter aims to review 

studies focusing on patient quality‐of‐life 

measures relative to furcation involvement. 

Given the paucity of data on this, anecdotally 

the feedback from some patients treated for 

furcation involvement will be presented, in 

order to give the reader a perspective from 

people who are on the receiving end of the 

 treatment discussed in this book.

13.2   Patient‐reported 

Outcome Measures 

in Periodontology

Socio‐environmental measures such as func­

tion and psychological well‐being have been 

applied to dentistry in the last few decades 

(Locker 1988). These measures aim to assess 

parameters related to the impact of oral 

health which are not objectively measurable 

by the treating clinician. The World Health 

Organization (WHO) defines quality of life 

as individuals’ perception of their position in 

life in the context of the culture and value 

systems in which they live and in relation to 

their goals, expectations, standards, and con­

cerns (WHOQOL Group 1994). It is a broad‐

ranging concept affected in a complex way by 

the person’s physical health, psychological 

state, level of independence, social relation­

ships, personal beliefs, and relationship to 

salient features of their environment. The 

American Dental Association emphasized 

the importance of quality‐of‐life measures by 

stating: ‘Oral health is a functional, struc­

tural, aesthetic, physiologic and psychosocial 

state of well‐being and is essential to an 

 individual’s general health and quality of life’ 

(Glick and Meyer 2014; Glick et al. 2017).

Over the last decade, patient‐reported out­

come measures (PROMs) have increasingly 

Chapter 13

Deep Gaps between the Roots of the Molars:  
A Patient’s Point of View

Luigi Nibali

Centre for Immunobiology and Regenerative Medicine, Centre for Oral Clinical Research, Institute of Dentistry, Barts and the London 
School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK


background image

Chapter 13

250

been recognized as a research priority and 

incorporated in periodontal research studies 

(Aslund et al. 2008; Buset et al. 2016). PROMs 

are defined as standardized measures used to 

capture the subjective effect of a disease or 

treatment on a patient’s life, including daily 

activities and well‐being (US Department of 

Health and Human Services et  al. 2009). 

Health‐related quality of life (HRQoL) and 

oral health–related quality of life (OHRQoL) 

are often used as measures of PROMs in 

medicine and more specifically dentistry. 

While the related questionnaires provide 

data about health or disease status (struc­

ture/function/activity/participation), other 

questionnaires such as the Oral Impacts on 

Daily Performance (OIDP) and the Oral 

Health Impact Profile (OHIP‐14) assess 

the  impacts of oral diseases on daily life 

( disease prevention/dysfunction/failure) in a 

pre‐determined period (Adulyanon et  al. 

1996; Slade 1997). These are generic 

OHRQoL measures, so they are not specifi­

cally designed for patients with periodontitis. 

In other words, they measure the oral 

impacts of oral conditions in general, not 

attributing them to particular diseases/ 

conditions. However, they have been used 

in  studies of periodontal patients with 

the  underlying  –  but largely untested  – 

 assumption that in such a patient sample 

most of the reported oral impacts would be 

due to that specific oral condition; that is, a 

periodontal condition in this case. Among 

the generic OHRQoL measures, the OIDP 

allows also for a condition‐specific version, 

whereby patients attribute the reported oral 

impacts to specific ‘causes’, in other words 

conditions. Furthermore, while most of these 

measures assess the frequency of oral impacts 

(i.e. how often they were experienced), the 

OIDP measures both the frequency and the 

severity of oral impacts. Despite their differ­

ences, all these questionnaires tend to focus 

on covering the physical, psychological, and 

social aspects of the oral impacts on daily life.

The relevant literature goes beyond the 

oral health field and extends to generic 

HRQoL measures. The EuroQol Question­

naire (EQ‐5D‐5 L) is a measure of HRQoL 

including self‐assessments of mobility, pain/

discomfort, self‐care, anxiety/depression, 

and usual activities, recorded by patients on 

an ordinary scale with five levels (Herdman 

et al. 2011). It is unclear whether the valua­

tions would refer to periodontal disease or to 

any other condition coexisting in the same 

person (or their combination, for that mat­

ter). Using the EuroQol Questionnaire, a 

cross‐sectional study on a random sample of 

709 45‐ to 54‐year‐old Australians was able 

to differentiate the impacts of varying degrees 

of periodontal diseases (from gingivitis to 

periodontitis; Brennan et al. 2007). For exam­

ple, having a pocket depth of ≥ 6 mm was 

associated with a prevalence of pain/discom­

fort in 25.8% of cases, compared with 6.1% 

pain/discomfort for patients with gingivitis. 

In a separate study, when OHIP‐14 and OIDP 

structured interviewer‐administered ques­

tionnaires, global self‐report, and perceived 

need for dental treatment questions were 

administered to 264 patients, the majority 

(61.0%) rated their oral health status poorly 

and 203 (76.9%) perceived a need for treat­

ment, highlighting the importance of patient‐

driven treatment needs (Lawal et al. 2015).

A systematic review on the impact of 

 periodontitis on OHRQoL suggested that, 

although most studies showed a negative 

impact of periodontitis, it is difficult to draw 

definitive conclusions due to the heterogene­

ity of methods and reporting and confound­

ing by other oral conditions (Al‐Harthi 

et al. 2013). A more recent systematic review 

found a relationship between clinical perio­

dontal disease extent and severity and 

OHRQoL (Buset et  al. 2016). No specific 

studies on furcation treatment were detected 

among those included in these reviews.

Some studies have attempted to investi­

gate the effects of periodontal treatment on 

patient‐centred outcomes. In a study on per­

iodontitis patients in the UK, the OIDP 

index was administered to 45 patients at 

baseline and one month after treatment 

(Tsakos et  al. 2010); 17 of the patients 

received intensive and 28 received 


background image

A Patient’s Point of View 251

‘ conservative’ periodontal care. Both the 

generic and condition‐specific versions of 

the OIDP for periodontal conditions were 

used, and one of the aims of the study was to 

estimate the minimally important difference 

for this measure among  periodontal patients. 

The mean OIDP score after treatment was 

significantly lower than at baseline, indicat­

ing improvements in  quality of life, with no 

differences between treatment groups. In 

general, the generic and condition‐specific 

versions of the OIDP  performed similarly, 

but the differences were more distinct, with 

a higher effect size, when the condition‐spe­

cific version was used. This provided evi­

dence in favour of the condition‐specific 

version, even in a population of patients with 

severe periodontitis where no such differ­

ence would be expected, as almost all oral 

impacts would be due to the periodontal 

condition (rather than any other oral condi­

tion). A difference of five points in the OIDP 

was estimated to correspond to clinically 

meaningful differences, thereby providing 

context for changes in OHRQoL when using 

this measure (Tsakos et al. 2010).

In a randomized controlled clinical trial, 

both the OIDP and OHRQoL questionnaires 

were given to 90 patients divided into two 

groups: scaling and root planing (SRP, n = 45) 

and one‐stage ‘full‐mouth disinfection’ 

(FMD, n = 45). All patients were then reas­

sessed at two time points: 30 days and 180 

days after treatment. Patients treated by 

both  SRP and FMD showed improvement 

in  all periodontal clinical parameters and 

OHRQoL after treatment, with no significant 

differences between treatment groups 

(Santuchi et al. 2016). In a study by Makino‐

Oi and co‐workers (2016), improvements in 

OHRQoL (in the domains pain and eating/

chewing function) mirrored clinical improve­

ments after non‐surgical and then surgical 

treatment of moderate to severe chronic 

 periodontitis. A greater improvement was 

noted following surgical therapy, with no fur­

ther improvements during maintenance care. 

A randomized controlled trial evaluating 

two  educational programmes including 

87 patients with chronic periodontitis assessed 

OHRQoL with two different generic meas­

ures: the General Oral Health Assessment 

Index (GOHAI), which assesses the presence 

of symptoms, and the UK oral health‐related 

quality‐of‐life measure (OHQoL‐UK), which 

assesses the impact of oral health using 

a  conceptualization of health beyond 

the  absence of disease. Improvements in 

OHRQoL for both the GOHAI and the 

OHQoL‐UK were detected after non‐ 

surgical periodontal therapy in both study 

groups, without any significant difference 

between the two groups. This research also 

assessed the minimally important difference 

for these measures, again providing some 

context for the differences observed (Jonsson 

and Öhrn 2014). An earlier systematic review 

investigated the effect of surgical periodontal 

therapy on OHRQoL. At that time, only three 

studies qualified following full‐text screening 

and the results were conflicting. Again, no 

specific assessment of furcation intervention 

was tested (Shanbhag et al. 2012).

13.3   Patient‐reported 

Outcome Measures 

in Furcation Involvement

Helldén and co‐workers (1989) presented 

clinical and patient‐reported outcomes 

from  a retrospective study on molars with 

furcation involvement treated with tunnel 

preparations. A total of 156 teeth among 

107 patients had been treated surgically with 

tunnel preparations from 1977 to 1985. 

In 1986, all patients were asked to return for 

a re‐evaluation, and 102 attended. All teeth 

involved were affected by degree III furcation 

involvement and were treated with tunnel­

ling surgery. In particular, following eleva­

tion of full‐thickness flaps, the furcations 

were widened by round burs at the entrance 

and then by bone files to create space for 

post‐surgical inter‐radicular plaque control, 

after which the flaps were apically positioned, 

sutured, and covered with surgical dressing. 


background image

Chapter 13

252

After removal of the dressing, the patients 

were shown how to use interdental brushes 

inside the tunnelled area. The majority of the 

patients rinsed with 0.1% chlorhexidine for 

4–6 weeks and at each post‐surgical visit a 

fluoride varnish was applied to the teeth. 

Following three‐ to six‐monthly maintenance 

visits for two years, the patients returned to 

their referring dentists for continued follow‐

up. On average, patients were re‐examined 

37.5 months after surgery. Before the clinical 

re‐evaluation, the following five questions 

were asked of patients about their experience 

with the furcation‐involved teeth (Helldén 

et al. 1989):

1) 

Do you have any discomfort from the tun­

nel area?

2) 

Does the gingiva bleed in the tunnel area?

3) 

Is the tooth sensitive to cold or warm 

temperatures?

4) 

Do you easily get access to the tunnel area 

for cleaning?

5) 

What kind of oral hygiene aids do you use 

in the tunnel areas?

At the end of the follow‐up period, 10 of 102 

teeth had been extracted and 7 had been 

hemisected or root resected, while 11 had 

developed incipient root caries and 12 teeth 

showed established caries lesions. Based on 

patient feedback, most cases were not asso­

ciated with any discomfort (92%), gingival 

bleeding (72%), or sensitivity to cold or 

warm temperatures (95%). Most patients 

used a common toothbrush (98%) for the 

outer part of the tooth and an interdental 

brush for the tunnel areas (80%). Although 

plaque removal presented some difficulties, 

most such areas (70%) were found to be eas­

ily accessible for cleaning procedures by 

patients. The study by Helldén and co‐work­

ers represented a pioneering attempt to 

obtain information on subjective percep­

tions in patients affected by furcation 

involvement, although without a validated 

questionnaire. A systematic review on peri­

odontal regeneration of furcation defects by 

the American Academy of Periodontology 

recently reported that none of the reviewed 

studies had included any patient‐reported 

outcomes. The authors highlighted the need 

to introduce this aspect in furcation research 

(Avila‐Ortiz et al. 2015).

13.4   Patient  Feedback

Given the paucity of data on PROMs relative 

to furcation involvement, some patients 

treated by the author were asked to provide 

feedback on their experience with furcation 

treatment. These are provided in this section.

Patient Feedback 1 (70‐year‐old 

Female, 10 Years After Tunnelling 

Surgery)

I was made aware of the gap between the 

roots of my bottom right last tooth 

10 years ago when I had a surgical proce-

dure on it. Now I feel that, as I go through 

the process of cleaning my teeth, I auto-

matically clean inside the roots and it 

doesn’t feel any different than cleaning the 

other teeth. Occasionally I get some food 

stuck on that tooth. I come regularly to see 

the hygienist and periodontist and I am 

used to it now.’

Patient Feedback 2 (65‐year‐old 

Male, 12 Years After Tunnelling 

Surgeries)

When I first saw a periodontist my mouth 

was in a poor state. Whenever I brushed 

my teeth my gums bled, and I was afraid 

of losing my teeth but I did not know how 

to make them better. At that stage I did 

not realize that bone loss caused by gum 

 disease meant that the gaps between the 

furcations in the roots were hard or impos-

sible to clean, and were providing a gath-

ering place for bacteria causing the disease 

to continue and worsen. The periodontist 

performed a couple of operations to open 

up the gums to enable me to clean into 


background image

A Patient’s Point of View 253

these gaps, and showed me how to do the 

cleaning using little interdental brushes. 

From that time on I have been able to 

clean my teeth fully without any bleeding, 

and the disease has gone. I still lost some 

of my teeth; three of them have been 

replaced by implants, and these together 

with what remains of my natural teeth are 

sufficient for me to eat effectively. I have 

always dreaded the idea of having den-

tures, which seemed inevitable, but more 

than 12 years later I am keeping the dis-

ease and decay at bay and I remain hope-

ful of avoiding dentures for the foreseeable 

future.

Patient Feedback 3 (60‐year‐old 

Male, 10 Years After Tunnelling 

Surgery)

Having undergone surgery to my right 

upper teeth to combat gum disease some 

years ago I am very fortunate to say that 

after several years I am being able to 

maintain a reasonable level of health in 

this area. Following the surgery I took the 

view that I would work hard to maintain 

the situation and by diligence have, it 

seems, managed to do so. I have a cleans-

ing regime that I adhere to rigidly and 

includes both morning and night a pro-

cess which takes me approximately 

15  minutes each time. And includes 

cleansing with an interdental brush, floss-

ing, cleansing with ‘sensitive’ toothpaste 

and good quality electric brush and more 

work with the interdental brush to finish 

off. At times when the mouth is sensitive I 

brush with a specific gel. Although this 

takes some time and I have to exercise 

some personal discipline I  believe it is 

time well spent and will do anything to 

prevent the loss of further teeth. The 

health of my mouth in general has also 

improved greatly. I also believe that my 

general health has improved as a result of 

this improvement in my oral health. I am 

very grateful that through this regular 

care and this regime I have managed to 

extend the life of these teeth. May this 

continue!

Patient Feedback 4 (50‐year‐old 

Male, 6 Years After Tunnelling 

Surgery on One Molar and 

Extraction and Implant Placement 

on the Contralateral Molar)

Following treatment by my dentist 

whereby I had a tooth extraction on my 

right lower jaw and surgery to keep a tooth 

on my left lower jaw. With reference to my 

right jaw and tooth extraction I allowed 

the bone in that area of extraction to grow 

back before having an implant to secure 

and strengthen the teeth in that area. The 

additional surgery I had on my left jaw 

meant that my tooth was saved. My dentist 

inserted a small piece of tube between the 

two roots to enable the cleaning of the tooth 

and root area. All I do now on a daily basis 

is clean in between my teeth and roots 

using interdental brushes which is totally 

pain free and easy to do.’

Patient Feedback 5 (45‐year‐old 

Female, 10 Years After Root‐

resection Surgery)

Soon after I was referred to the periodon-

tist for treatment for my gums, a very fact‐

facing appointment, back tooth removed 

and three operations to clean the roots and 

I started to realize that there was a serious 

chance that I would lose some if not all my 

teeth, if I did not make a change. I then 

started on an ongoing treatment plan of 

seeing the periodontist every six months 

and the hygienist every alternative six 

months, but at this point I was still smok-

ing. I was eventually able to give up smok-

ing. Treatment is ongoing, I still have most 

of my teeth and I plan to keep them. I wish 

there was a once and for all cure, but am 

resigned to having ongoing  maintenance 

treatment.’


background image

Chapter 13

254

Patient Feedback 6 (63‐year‐old 

Male, 5 Years After Molar 

Extraction and Implant Placement)

Given my experience as a dental patient, 

I consider myself an expert. I’ve had caries, 

gum disease and extractions, followed by 

crowns and bridges. I work very hard at 

my  dental hygiene, but I recognize I could 

probably do better. Over the years I’ve had 

problems around my crowns and bridges on 

my back teeth, both aesthetic concerns and 

several flare‐ups with inflammation and 

discomfort. I think that this is because plaque 

gets stuck under the crown and bridgework. 

Some years ago, one of my molars was finally 

extracted and replaced with an implant. I’ve 

had to wait a few months after the extraction 

to finally have a crown on the implant, but 

I understand that is normal procedure. I feel 

the implant like a normal tooth, like it’s 

always been there and I’ve no longer had any 

discomfort or inflammation.’

13.5   Reflections  on 

Patient Feedback

While accepting that this is by no means a 

representative patient sample and that 

reporting feedback for the treating clinician 

may be seen as a biased exercise, several 

important items emerged from this feed­

back. It is clear that these patients were 

highly motivated and made a long‐term 

 commitment to the survival of their teeth. 

They effectively decided to change their 

 dental health behaviour, including giving up 

smoking (‘I eventually gave up smoking’) and 

working hard on their oral hygiene (‘I have a 

cleansing regime that I adhere to rigidly and 

includes both morning and night a process 

which takes me approximately 15 minutes 

each time’). In some cases this did not appear 

to be a burden on the patient (‘All I do now 

on a daily basis is clean in between my teeth 

and roots using interdental brushes which is 

totally pain free and easy to do’), while 

in  other cases it did (‘am resigned to 

 

having  ongoing maintenance treatment’). 

The  specific act of cleaning inside a tunnelled 

furcation area was described as a relatively 

easy task by these patients (‘I automatically 

clean inside the roots and it doesn’t feel any 

different than cleaning the other teeth’).

The patients’ perception of the treatment 

carried out is also very interesting, ranging 

from what seems like a good understanding 

of the surgical tunnelling procedure (‘the gaps 

between the furcations in the roots were hard 

or impossible to clean, and were providing a 

gathering place for bacteria causing the dis­

ease to continue and worsen. The periodon­

tist performed a couple of operations to open 

up the gums to enable me to clean into these 

gaps’) to a rather more imaginative interpre­

tation (‘My dentist inserted a small piece of 

tube between the two roots to enable the 

cleaning of the tooth and root area’). 

The experience of having a dental implant to 

replace a molar previously affected by severe 

periodontal disease was also seen as very pos­

itive (‘I’ve had problems around my crowns 

and bridges on my back teeth, both aesthetic 

concerns and several flare‐ups with inflam­

mation and discomfort. … one of my molars 

was finally extracted and replaced with an 

implant. … I feel the implant like a normal 

tooth, like it’s always been there and I’ve no 

longer had any discomfort or inflammation’).

13.6   Implementation  of 

PROMs in Furcation 

Treatment

Given the increased recognition of the impor­

tance of patient‐reported outcomes in medi­

cine, the future should see the use of OHRQoL 

measures in studies investigating furcation 

treatment. The pioneering effort by Helldén 

and co‐workers (1989, see earlier discussion) 

to investigate patient perceptions should be 

extended by using validated OHRQoL 

 measures, and potentially by developing a 

condition‐specific validated questionnaire 

which also takes into account items such as 

sensitivity, ease of cleaning inside the furca­

tion area, and the alternatives of extraction 


background image

A Patient’s Point of View 255

with or without replacement. The develop­

ment of such a condition‐specific measure 

would need to be driven by qualitative 

research highlighting the main concerns of 

patients with furcation involvement.

More importantly, it would be ideal to use 

PROMs as outcomes in long‐term randomized 

controlled trials testing different modalities of 

furcation treatment (for example conservative 

treatment vs root resection vs extraction and 

implant therapy). This could provide answers 

on the effects of these procedures on patients’ 

quality of life and, together with clinical and 

financial considerations, could help design fur­

cation treatment guidelines. In the everyday 

clinical reality, an assessment of patient per­

ceptions related to periodontal treatment 

needs to accompany purely clinical and finan­

cial considerations. This could be considered 

in the treatment planning stages as well as 

being an outcome measure to assess the effec­

tiveness of interventions.

 Acknowledgements

The invaluable help and advice of Dr George 

Tsakos, University College London, in the 

preparation and revision of this chapter is 

gratefully acknowledged.

 References

Adulyanon, S., Vourapukjaru, J., and 

Sheiham, A. (1996). Oral impacts 

affecting daily performance in a low dental 

disease Thai population. Community 

Dentistry and Oral Epidemiology 24, 

385–389.

Al‐Harthi, L.S., Cullinan, M.P., Leichter, J.W., 

and Thomson, W.M. (2013). The impact of 

periodontitis on oral health‐related quality 

of life: A review of the evidence from 

observational studies. Australian Dental 

Journal 58, 274–277.

Aslund, M., Suvan, J., Moles, D.R. et al. (2008). 

Effects of two different methods of non‐

surgical periodontal therapy on patient 

perception of pain and quality of life: A 

randomized controlled clinical trial. Journal 

of Periodontology 79,1031–1040.

Avila‐Ortiz, G., De Buitrago, J.G., and 

Reddy, M.S. (2015). Periodontal 

regeneration – furcation defects: 

A systematic review from the AAP 

Regeneration Workshop. Journal of 

Periodontology 86 (Suppl. 2), S108–S130.

Brennan, D.S., Spencer, A.J., and Roberts‐

Thomson, K.F. (2007). Quality of life and 

disability weights associated with 

periodontal disease. Journal of Dental 

Research 86, 713–717.

Buset, S.L., Walter, C., Friedmann, A. et al. 

(2016). Are periodontal diseases really 

silent? A systematic review of their effect on 

quality of life. Journal of Clinical 

Periodontology 43, 333–344.

Glick, M., and Meyer, D.M. (2014). Defining 

oral health: A prerequisite for any health 

policy. Journal of the American Dental 

Association 145, 519–520.

Glick, M., Williams, D.M., Kleinman, D.V. et al. 

(2017). Reprint of: A new definition for oral 

 Summary  of Evidence

 

The attention to patients’ preferences and 

points of view needs to take centre stage 

in treatment planning. As such, patient‐

reported outcome measures (PROMs) are 

fast becoming essential outcomes of any 

periodontal research study.

 

There is a paucity of data on PROMs in 

patients with furcation involvement.

 

Investigation of PROMs relative to furca­

tion involvement should, together with 

clinical and financial considerations, form 

the basis of furcation treatment planning.


background image

Chapter 13

256

health supported by FDI opens the door to a 

universal definition of oral health. Journal of 

Dentistry 57, 1–3.

Helldén, L.B., Elliot, A., Steffensen, B., and 

Steffensen, J.E.M. (1989). Prognosis of 

tunnel preparations in treatment of class III 

furcations: A follow‐up study. Journal of 

Periodontology 60, 182–187.

Herdman, M., Gudex, C., Lloyd, A. et al. 

(2011). Development and preliminary 

testing of the new five‐level version of 

EQ‐5D (EQ‐5D‐5L). Quality of Life Research 

20, 1727–1736.

Jönsson, B., and Öhrn, K. (2014). Evaluation of 

the effect of non‐surgical periodontal 

treatment on oral health‐related quality of 

life: Estimation of minimal important 

differences 1 year after treatment. Journal of 

Clinical Periodontology 41, 275–282.

Lawal, F.B., Taiwo, J.O., and Arowojolu, M.O. 

(2015). Comparison of two oral health‐

related quality of life measures among adult 

dental patients. Oral Health and 

Preventative Dentistry 13, 65–74.

Locker, D. (1988). Measuring oral health: 

A conceptual framework. Community 

Dental Health 5, 3–18.

Makino‐Oi, A., Ishii, Y., Hoshino, T. et al. 

(2016). Effect of periodontal surgery on oral 

health‐related quality of life in patients who 

have completed initial periodontal therapy. 

Journal of Periodontal Research 51, 

212–220.

Santuchi, C.C., Cortelli, J.R., Cortelli, S.C. 

et al. (2016). Scaling and root planing per 

quadrant versus one‐stage full‐mouth 

disinfection: Assessment of the impact of 

chronic periodontitis treatment on quality 

of life – a clinical randomized, controlled 

trial. Journal of Periodontology 87, 114–123.

Shanbhag, S., Dahiya, M., and Croucher, R. 

(2012). The impact of periodontal therapy 

on oral health‐related quality of life in 

adults: A systematic review. Journal of 

Clinical Periodontology 39, 725–735.

Slade, G.D. (1997) Derivation and validation of 

a short‐form oral health impact profile. 

Community Dentistry and Oral 

Epidemiology 25, 284–290.

Tsakos, G., Bernabé, E., D’Aiuto, F. et al. 

(2010). Assessing the minimally important 

difference in the oral impact on daily 

performances index in patients treated for 

periodontitis. Journal of Clinical 

Periodontology 37, 903–909.

U.S. Department of Health and Human 

Services, Food and Drug Administration, 

Center for Drug Evaluation and Research 

(CDER) et al. (2009). Guidance for industry: 

Patient‐reported outcome measures: Use in 

medical product development to support 

label claims. Rockville, MD: FDA.

WHOQOL Group (1994). Development of the 

WHOQOL: Rationale and current status. 

International Journal of Mental Health 

23, 24–56.


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c14.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:22:33 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 257

257

Diagnosis and Treatment of Furcation-Involved Teeth, First Edition. Edited by Luigi Nibali. 

© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd. 

Companion website: www.wiley.com/go/nibali/diagnosis

In an attempt to apply the knowledge gained 

throughout this book to the treatment of 

cases with furcation involvement, two 

 example cases are presented. They will be 

discussed in light of the evidence gained in 

each of the previous 13 chapters.

14.1   Case 1 (Maxillary)

A 50‐year‐old male patient presented with a 

complaint of bleeding on brushing and gum 

recessions. He was medically healthy, never 

smoked, and was not aware of any family 

 

history of periodontal disease. His oral 

hygiene was good, with full mouth plaque 

scores < 10%; he had generalized gingival 

recessions and localized probing pocket 

depths (PPD) > 4 mm only on upper molars. 

The case will be dissected based on the 

 evidence provided in each of the previous 

chapters before reaching a treatment plan-

ning decision.

14.1.1  Anatomy (Chapter 1)

The maxillary first and second right and left 

molars in Figure  14.1 present a relatively 

‘normal’ anatomy, with three roots each, all 

apparently distally curved to varying degrees. 

The root trunks appear reasonably small, 

in  favour of longer root cones. High root 

 divergence appears on teeth 16 (UR6) and 

26  (UL6), while the roots of 17 (UR7) and 

27 (UL7) are less divergent. Among predis-

posing factors described in Chapter  1, 

 bifurcation ridges, enamel projections, and 

enamel pearls do not seem to be present.

14.1.2  Diagnosis (Chapter 2)

Although two‐dimensional radiographic 

examination is not completely reliable for fur-

cation diagnosis, the areas of radiolucency 

between roots, coupled with interproximal 

bone levels apical to the furcation entrances, 

indicate a likely triple through‐and‐through 

furcation involvement (FI) for teeth 16, 17, and 

27. Doubts exist about possible FI on tooth 26. 

Clinical examination with a curved Nabers 

probe confirms this, with a diagnosis of triple 

(buccal, mesial, and distal) degree III FI on 

teeth 16, 17, and 27 (Hamp et al. 1975). The 

same diagnosis would be given when using the 

Glickman (1953) classification and the classi-

fication modified by Ammons and Harrington 

(2006; see Table 2.4). Degree I FI was recorded 

only distal of 26. Vertical subclassification 

(Tarnow and Fletcher 1984) is reported in 

Table  14.1. The comprehensive diagnosis 

 system in the table summarizes clinical and 

radiographic findings on example tooth 16.

Chapter 14

Assessment of Two Example Cases Based  
on a Review of the Literature

Luigi Nibali

Centre for Immunobiology and Regenerative Medicine, Centre for Oral Clinical Research, Institute of Dentistry, Barts and the London 
School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK


background image

Chapter 14

258

14.1.3  Initial Therapy (Chapter 3)

Most furcation areas, including probably 

those in this case, have narrow entrances 

(<0.75 mm).  Ultrasonic scalers, especially 

with slimline tips, have been shown to be 

 better suited than hand instruments for the 

debridement of narrow furcation areas 

(Matia et al. 1986; Sugaya et al. 2002), par-

ticularly in degree II and III FI (Leon and 

Vogel 1987). Micro Mini Five® Gracey curettes 

could also be helpful in narrow furcation 

entrances (see Chapter  3 for details). 

However, interproximal FI is likely to respond 

less favourably to mechanical debridement 

compared to buccal furcations (Del Peloso 

Ribeiro et al. 2007) and more residual calcu-

lus will be left with a closed (non‐surgical) 

approach compared to an open approach 

(Matia et  al. 1986; Fleischer et  al. 1989). 

Although this patient exhibits very good oral 

hygiene levels, it is crucial that further oral 

hygiene reinforcements are given as part of 

initial periodontal therapy. Research shows 

that in interproximal sites, bristled or rubber 

interdental brushes remove more plaque 

than flossing or brushing alone (Christou 

et al. 1998; Abouassi et al. 2014). Therefore, 

the use of interdental brushes of the correct 

size and shape in the molar region should be 

encouraged and discussed with the patient.

14.1.4  Endodontics (Chapter 4)

Although all four maxillary molars have res-

torations, they are not large enough to 

endanger the endodontic status of the teeth. 

However, accessory canals in the furcation 

region are frequent and might represent a 

communication pathway between endodon-

tic and periodontal pathologies through 

(a)

(b)

(c)

(d)

Figure 14.1 

Case 1, clinical photograph of frontal (a) and upper right palatal (b), followed by baseline 

periapical radiographs of upper molars (c and d), the only teeth with probing pocket depth > 4 mm at first visit.


background image

Assessment of Two Example Cases 259

the induction of inflammatory responses. 

Furthermore, a small radiolucency area 

seems to be present on 17 (palatal root). 

Therefore, it is always advisable to test tooth 

vitality.  Vitality testing was positive for all 

tested molars (16, 17, 26, and 27). Hence no 

endodontic treatment was required, but 

retesting during treatment and maintenance 

therapy was recommended.

14.1.5  Long‐term Prognosis 

(Chapter 5)

Molars with FI have a higher risk of tooth 

loss than molars with no FI (twice as likely to 

be lost up to 15 years of follow‐up), following 

comprehensive periodontal treatment (non‐

surgical and surgical). For degree III FI, the 

relative risk of tooth loss is approximately 

three times that of degree I FI molars and 

twice compared with degree II FI molars 

(Nibali et  al. 2016). In a follow‐up mainte-

nance programme varying from 5 to 53 years, 

30% of degree III FI molars are lost (Nibali 

et al. 2016). Meta‐analyses providing specific 

data for maxillary degree III FI molars, or 

specifically for first or second molars, are 

lacking. Based on these data, it may be con-

sidered worth trying to maintain this tooth. 

Treatment options need to be assessed in the 

following sections. A strict post‐treatment 

maintenance programme including three‐ to 

Table 14.1 

Case 1, diagnosis of furcation on 16 based on Muller and Eger (1999).

Patient PL (age 50)

Tooth 16

Mobility (0, 1, 2, 3)

0

Elongation (0, 1)

0

Sensibility testing (1: positive, 2: negative)

1

Endodontic dx (0: OK, 1: revision necessary)

0

Caries/restorations (0: caries free, 1: small caries or filling, 

2: extended caries, large filling, 3: artificial crown)

1

Rx diagnosis

Mesial root

Distal root

Palatal root

M

D

M

D

M

D

Bone loss

2

2

2

2

1

1

m/d roots m/p roots

d/p roots

Separation degree

1

1

1

Degree of divergence 1

1

1

Clinical diagnosis

mb

b

db

mp

p

dp

BOP (0,1)

1

0

1

1

0

0

Plaque (0,1)

0

0

0

0

0

1

PPD

6

6

6

6

3

7

vCAL

7

7

8

9

6

9

hCAL

6

6

6

Degree

III B

III B

III C

Bone loss: 0 (≤ ⅓ root length), 1 (⅓–⅔ root length), 2 (≥ ⅔ root length); separation degree: 

0 (< ⅓), 1 (> ⅓); degree of divergence: 0 (≤30°), 1(>30°).

B = buccal; BOP = bleeding on probing; CAL = clinical attachment loss; D = distal; 

h = horizontal; M = mesial; P = palatal; PPD = probing pocket depth; v = vertical.


background image

Chapter 14

260

four‐monthly periodontal charting, supra‐ 

and subgingival debridement, and oral 

hygiene reinforcement and motivation is 

 recommended based on the available litera-

ture (Nibali et al. 2016).

14.1.6 Regeneration 

 

(Chapters 6 and 7)

The first aim of periodontal treatment, where 

possible, should be to regenerate the lost per-

iodontal support. However, despite some 

successful reports of regeneration of degree 

III FI molars in animal models (Chapter 6), 

human studies do not support the use of 

regeneration in maxillary degree III FI molars 

(Chapter  7). In particular, one randomized 

controlled trial with split‐mouth design with 

11 patients compared guided tissue regener-

ation (GTR) and open‐flap debridement 

(OFD) in the treatment of maxillary inter-

proximal degree III furcation defects 

(Pontoriero and Lindhe 1995). Baseline and 

six‐month examinations were performed by 

re‐entry after flap elevation. Neither GTR 

nor OFD led to even partial closure of the 

22 degree III furcations. Based on these data, 

these teeth are not suitable for regenerative 

treatment of their FI.

14.1.7  Resective Therapy 

(Chapter 8)

Common sense would suggest that if you 

cannot close the furcation by regeneration, at 

least you should eliminate it surgically or 

make it cleansable. The options of root sepa-

ration, root amputation, and root resection 

could be considered in a case of advanced FI, 

as for the molars in this case. However, these 

options are more suitable when, for example, 

one root is affected to a greater extent than 

the others. Furthermore, particular caution 

should be taken when the teeth are intact, 

because this is an invasive procedure involv-

ing a considerable biological cost that must 

always be carefully evaluated. For this rea-

son, in this case, inadequate residual attach-

ment on the remaining roots and tooth vitality 

do not make root resection the preferred 

treatment option for teeth 16, 17, and 27.

14.1.8  Tunnelling (Chapter 9)

The furcation tunnelling procedure should 

be considered at stable (no more than mobil-

ity grade I) furcation‐involved molars with 

advanced inter‐radicular bone loss (prefera-

bly degree III FI) when accessibility to the 

furcation area for plaque removal is difficult. 

As a rule of thumb, the alveolar bone sup-

port should be of equal amounts at all roots 

and at least cover one‐third of the root 

length, with mainly horizontal bone loss

The length of the root trunk should not 

exceed 4 mm and the diameter of the furca-

tion entrance should be at least 0.5 mm. 

Fulfilment of these criteria for teeth 17, 16, 

and 27, this patient’s full cooperation, good 

oral hygiene dexterity and attitude, and a 

relatively low caries risk make tunnelling 

surgery an attractive treatment option in this 

case. However, we should bear in mind that 

very few reports of long‐term success of tri-

ple maxillary tunnels exist in the literature 

(Helldén et al. 1989).

14.1.9  Innovative and Adjunctive 

Therapy (Chapter 10)

In order to maximize the efficacy of non‐

surgical therapy of FI on the molars pre-

sented here, adjunctive systems such as an 

endoscope, lasers, photodynamic therapy, 

air‐polishing devices, antimicrobials, or 

probiotics could be considered. However, 

this should be carefully weighed in the light 

of costs and the so far poor evidence for their 

efficacy specific to furcations (de Andrade 

et al. 2008; Ribeiro Edel et al. 2010; Tomasi 

and Wennstrom 2011; Eickholz et al. 2016).

14.1.10  Extraction and Implant 

Placement (Chapter 11)

Given the extensive loss of periodontal sup-

port and FI and the perceived low predicta-

bility of furcation treatment, teeth 17, 16, and 


background image

Assessment of Two Example Cases 261

27 could be considered hopeless by some 

treating clinicians based on published prog-

nostic systems (Becker et  al. 1984; Machtei 

et al. 1989). If a decision was made to extract 

them, the options of a shortened dental arch, 

partial dentures, or implants could be con-

sidered. Bearing in mind the high long‐term 

survival rates of implant‐supported restora-

tions (Moraschini et  al. 2015) and the 

r elatively young age and motivation of the 

patient, implant placement was discussed as 

his main alternative option to tooth reten-

tion. However, as discussed in Chapter  11, 

reduced quantity of bone, proximity to maxil-

lary sinus, need for grafting, and previous his-

tory of periodontitis may result in reduced 

implant‐survival rates in this case (Becker 

et al. 1999; Drago 1992; Graziani et al. 2004; 

Pjetursson et al. 2008). The option of extrac-

tion, socket preservation, and short implants 

could also be considered, provided enough 

residual bone was available to allow implant 

placement (Thoma et al. 2015).

14.1.11  Health Economics 

(Chapter 12)

A handful of studies have now shown that 

treating molars with degree III FI via tooth‐

retaining options was more effective and less 

costly than tooth removal and replacement 

via implant‐supported restorations (Fardal 

and Grytten 2013; Martin et  al. 2014; 

Schwendicke et  al. 2014). Among possible 

treatment options, considering that all 

molars are still vital, it remains uncertain 

whether the high costs for root‐resective 

therapy could be truly justified (Little et al. 

1995; Blomlof et  al. 1997; see Chapter  12 

for more details).

14.1.12  Patient’s Point of View 

(Chapter 13)

In the absence of data on patient‐reported 

outcomes on treatment of degree III FI, some 

suggestions could be drawn from the paper 

on tunnelling discussed in Chapter  13 

(Helldén et  al. 1989). Most cases treated 

with tunnelling were not associated with any 

discomfort, gingival bleeding, or sensitivity. 

Although plaque removal presented some 

difficulties, most furcation areas were found 

to be easily accessible for cleaning proce-

dures by patients with interdental brushes. In 

this specific case, the patient expressed his 

wish to maintain these teeth for as long as 

possible, and he showed very good oral hygiene 

and commitment.

14.1.13  Treatment Decision

Based on all these considerations, backed 

when possible by data from the literature, 

it was decided to maintain the molars 

affected by FI and to carry out non‐surgical 

debridement and oral hygiene reinforce-

ment. Following re‐evaluation two months 

later, residual pockets and FI were detected 

on the affected molars and it was decided 

to proceed with tunnelling surgeries for 16, 

17, and 27, followed by strict supportive 

periodontal therapy (see Chapter  9 for a 

step‐by‐step guide on the furcation tunnel-

ling surgical technique). Post‐operative 

photos and radiographs are presented in 

Chapter 15 (Figure 15.8). The main reasons 

for this choice are summarised in 

Table 14.2).

Table 14.2 

Case 1, main reasons for treatment 

choice (tunnelling surgery).

Factors

TOOTH

Good root divergence

Short root trunk

Prevalently horizontal bone loss 

affecting all roots

Tooth vitality and no restorative 

concerns

Importance in masticatory function

PATIENT

Clear medical history

Non‐smoker

Motivation to keep teeth

No financial or other concerns for 

surgical treatment

Good oral hygiene dexterity


background image

Chapter 14

262

14.2   Case 2 (Mandibular)

A 47‐year‐old male patient presented with a 

complaint of occasional bleeding on brush-

ing and discomfort from the lower left gingi-

vae. He was medically healthy, he used to 

smoke (10 a day for 20 years, and gave up 10 

years before the first examination), and was 

not aware of any family history of periodon-

tal disease. His oral hygiene was fair, with full 

mouth plaque scores of 40% (generalized 

interproximal plaque), localized gingival 

recessions, and localized probing pocket 

depths > 4 mm only on the lower left first 

molar (LL6). The case will be dissected based 

on the evidence provided in each of the pre-

vious chapters before reaching a treatment 

planning decision.

14.2.1  Anatomy (Chapter 1)

The mandibular left first molar (LL6) in 

Figure  14.2 presents a relatively ‘normal’ 

anatomy, with two roots (mesial and dis-

tal). The mesial root is slightly distally 

tilted towards the apex. The root trunks 

and root cones appear to be of average 

length and root divergence seems normal. 

Among the predisposing factors described 

in Chapter  1, bifurcation ridges, enamel 

projections, and enamel pearls do not seem 

to be present.

14.2.2  Diagnosis (Chapter 2)

Although two‐dimensional radiographic 

examination is not completely reliable for 

furcation diagnosis, the area of radiolu-

cency between mesial and distal roots, 

coupled with distal interproximal bone 

levels apical to the furcation entrances, 

suggests a likely through‐and‐through fur-

cation involvement (FI). However, clinical 

examination with a curved Nabers probe 

only resulted in degree II buccal and lin-

gual FI (Hamp et al. 1975) and a possible 

degree III when using the Glickman (1953) 

classification and the classification modi-

fied by Ammons and Harrington (2006; 

see Table 2.4). Probing pocket depths are 

reported in Table 14.3.

(a)

(b)

Figure 14.2 

Case 2, clinical photograph (a) of left mandibular first molar, followed by baseline periapical 

radiograph (b).

Table 14.3 

Case 2, evaluation.

Tooth 36 (LL6)

v‐PPD

CAL

h‐PPD

Mesio‐buccal

2

2

Buccal

8

10

5

Disto‐buccal

12

15

Mesio‐lingual

3

3

Lingual

7

7

4

Disto‐lingual

10

11

CAL = clinical attachment loss; h‐PPD = horizontal 

probing pocket depth; v‐PPD = vertical probing 

pocket depth.


background image

Assessment of Two Example Cases 263

On vertical probing, degree C FI was diag-

nosed (exceeding 6 mm in both buccal and 

lingual furcations; Tarnow and Fletcher 

1984). Therefore, a degree II C diagnosis was 

given to both furcations, but with doubt on 

possible degree III through‐and‐through. It 

is important to note that the furcation defect 

is combined with a very deep distal intra-

bony defect, reaching the apex of the distal 

root, with some reduced bone support also 

on the mesial aspect of neighbouring tooth 

37 (LL7).

In this case, due to the difficulty in probing 

the furcation, it may be worth considering a 

three‐dimensional radiograph to ascertain 

the presence of residual alveolar bone by the 

furcation fornex for treatment planning 

purposes.

14.2.3  Initial Therapy (Chapter 3)

As discussed for Case 1, due to narrow furca-

tion entrances ultrasonic scalers with slim‐

line tips, possibly complemented by Micro 

Mini Five® Gracey curettes, are particularly 

suited for the debridement of FI. It is likely 

that residual calculus might be left with a 

closed (non‐surgical) approach compared to 

the open approach (Matia et  al. 1986; 

Fleischer et al. 1989), although probably not 

as much as in interproximal furcations. 

Particular attention needs to be paid to the 

difficult‐to‐reach concavity around the 

 furcation fornix. An improvement in oral 

hygiene levels is necessary for this patient, 

with the introduction of large interdental 

brushes for cleaning the interproximal area 

between LL6 and LL7.

14.2.4  Endodontics (Chapter 4)

Although the tooth is non‐restored, due to 

extensive FI and a distal intrabony defect 

reaching the apex, a neuro‐vascular bundle 

damage may have occurred (Langeland et al. 

1974). Therefore, it is advisable to test tooth 

vitality.  Vitality testing was positive for 36. 

Some authors have even advocated that since 

pulp necrosis might occur during periodontal 

healing, root canal treatment could be pre-

ventively performed to avoid any interference 

with the regeneration process in case of peri-

odontal bone loss to the apex (Cortellini and 

Tonetti 2001). However, this was not consid-

ered necessary in this case. Instead, retesting 

of vitality after treatment was planned.

14.2.5  Long‐term Prognosis 

(Chapter 5)

According to the evidence discussed in 

Chapter  5, following comprehensive perio-

dontal treatment, as a furcation‐involved 

molar this tooth has a higher risk of tooth loss 

than a molar with no FI (twice as likely to be 

lost up to 15 years of follow‐up). According to 

a recent systematic review (Nibali et al. 2016), 

18% of degree II FI molars are lost in a follow‐

up maintenance programme varying from 

5 to 53 years, and this tooth’s relative risk of 

needing extraction is 1.67 compared with 

degree I FI molars. The risk could actually be 

higher for this tooth, affected at least by dou-

ble degree II FI and possibly by degree III FI. 

Based on these data, it may be worth trying to 

maintain this tooth. Treatment options need 

to be assessed, as in the following sections. 

A  strict post‐treatment maintenance pro-

gramme including three‐ to four‐monthly 

 periodontal charting, supra‐ and subgingival 

debridement, and oral hygiene reinforcement 

and motivation are recommended based on 

the available literature (Nibali et al. 2016).

14.2.6 Regeneration 

 

(Chapters 6 and 7)

Tooth 36 seems to be affected by degree II FI, 

although a degree III FI cannot be ruled out. 

Despite some successful reports of regenera-

tion of degree III furcation‐involved molars 

in animal models, according to the literature 

reviewed in Chapter 7, human studies do not 

support the use of regeneration in maxillary 

degree III FI molars. However, in case of 

mandibular FI II, the chances are good of 


background image

Chapter 14

264

achieving at least a partial fill of the furcation 

defect, converting the degree II to a degree I 

FI. Treatment with either guided tissue 

regeneration (GTR) or enamel matrix deriva-

tive (EMD) has produced histological evi-

dence of regeneration (Stoller et  al. 2001; 

Nevins et  al. 2003) and consistently more 

favourable clinical outcomes (reduction to 

degree I or closure) compared with access 

flaps in degree II mandibular furcations 

(Jepsen et al. 2002, 2004). The high bone sup-

port on the mesial root of 36 (above the fur-

cation fornix) as well as on the mesial root of 

the adjacent 37 (next to the distal intrabony 

defect of 36) would have a beneficial impact 

on the regeneration potential, provided that 

good soft‐tissue closure of the defect could 

be achieved post‐operatively. Therefore, if 

degree II FI was confirmed intra‐surgically, 

according to the evidence reviewed in 

Chapter 7, this molar appears to be suitable 

to benefit from regenerative furcation ther-

apy, although, due to the bilateral degree II FI 

(in the best‐case scenario), the results of 

regenerative therapy might be less predicta-

ble than in a single degree II FI.

14.2.7  Resective Therapy 

(Chapter 8)

The options of root separation, root amputa-

tion, and root resection could be considered 

in cases of advanced FI, like this one. The 

options of root amputation (removing the 

distal root and leaving the crown intact) or 

root resection (removing the distal root and 

the relative section of the crownare particu-

larly suitable when one root is affected to a 

greater extent than the others, which is the 

case for the tooth in question. Although the 

distal root has a significantly smaller root 

surface area than the mesial one (Dunlap and 

Gher 1985), the mesial root has a deep con-

cavity, which makes it more difficult to endo-

dontically treat and properly prepare and 

restore. The reported long‐term survival of 

root‐resected molars is in the 60–90% range 

for studies up to 10 years (Langer et al. 1981; 

Carnevale et al. 1998; reviewed in Chapter 8). 

However, caution should be employed, as the 

tooth presented here is not restored, hence a 

root‐resection procedure would involve a 

considerable biological cost.

14.2.8  Tunnelling (Chapter 9)

As seen for Case 1, the furcation tunnelling 

procedure should be considered for furca-

tion‐involved molars with advanced inter‐

radicular bone loss (preferably FI degree III) 

when accessibility to the furcation area for 

plaque removal is difficult. Indications for 

tunnelling are mainly good oral hygiene dex-

terity and motivation, and horizontal bone 

loss covering at least one‐third of the root 

length. Therefore, this case does not seem 

suitable for tunnelling surgery.

14.2.9  Innovative and Adjunctive 

Therapy (Chapter 10)

As discussed for Case 1, adjunctive therapy 

to non‐surgical periodontal treatment could 

be considered, but should be carefully bal-

anced with costs and the so far poor evidence 

for their efficacy specific to furcations (de 

Andrade et al. 2008; Ribeiro Edel et al. 2010; 

Tomasi and Wennstrom 2011; Eickholz 

et al. 2016).

14.2.10  Extraction and Implant 

Placement (Chapter 11)

Given the extensive loss of periodontal sup-

port to the apex and FI, tooth 36 might be 

considered hopeless based on published 

prognostic systems (Becker et  al. 1984; 

Machtei et  al. 1989; Cortellini et  al. 2011). 

Reduced bone quantity on the distal aspect of 

the tooth may mean that there might be need 

for bone grafting after extraction; a previous 

history of periodontitis might result in a 

reduced implant‐survival rate in this case 

(Drago 1992; Becker et  al. 1999; Graziani 

et al. 2004; Pjetursson et al. 2008). However, it 

is not inconceivable to think that, instead of 

distal root resection, extraction of the tooth 

and replacement could be an option here.


background image

Assessment of Two Example Cases 265

14.2.11  Health Economics 

(Chapter 12)

As discussed earlier, studies have now shown 

that treating molars with degree II and III FI 

via tooth‐retaining options was more effective 

and less costly than tooth removal and replace-

ment via implant‐supported restorations 

(Fardal and Grytten 2013; Martin et al. 2014; 

Schwendicke et al. 2014). However, this may 

not apply if the more invasive and expensive 

options of root resection, endodontic therapy, 

and restoration are chosen for tooth retention 

(Little et al. 1995; Blomlof et al. 1997).

14.2.12  Patient’s Point of View 

(Chapter 13)

In the absence of data on patient‐reported 

outcomes on treatment of furcation‐involved 

molars (in particular degree II, as in this 

case), patient preferences are very important. 

In this specific case, the patient was very keen 

to maintain 36 for as long as possible.

14.2.13  Treatment Decision

Based on all these considerations, backed 

when possible by data from the literature, it 

was decided to maintain 36 and to carry out 

non‐surgical debridement and oral hygiene 

instructions. Following re‐evaluation two 

months later, residual pockets, bleeding on 

probing, and FI were detected on this tooth 

(see Table 14.4).

Given the residual FI and residual deep 

pockets, associated with a high risk of future 

tooth loss (Matuliene et al. 2008; Nibali et al. 

2016), a decision to attempt surgical explora-

tion and if possible regenerative surgery was 

made. No through‐and through FI could be 

detected intra‐surgically, although probably 

only a very limited layer of bone may have 

been present. Therefore, regenerative therapy 

with EMD was provided (see Chapter 7 for a 

step‐by‐step guide to the furcation regener-

ative surgical technique). Post‐ 

operative 

 photos and radiographs are presented in 

Chapter 15 (Figure 15.5). The main reasons 

for this choice are summarized in Table 14.5.

 References

Abouassi, T., Woelber, J.P., Holst, K. et al. 

(2014). Clinical efficacy and patients’ 

acceptance of a rubber interdental bristle: A 

randomized controlled trial. Clinical Oral 

Investigations 18, 1873–1880. doi:10.1007/ 

s00784‐013‐1164‐3.

Table 14.4 

Case 2, re‐evaluation.

Tooth 36 (LL6)

v‐PPD

CAL

h‐PPD

Mesio‐buccal

2

2

Buccal

6

8

4

Disto‐buccal

10

13

Mesio‐lingual

3

3

Lingual

6

6

4

Disto‐lingual

9

11

CAL = clinical attachment loss; h‐PPD = horizontal 

probing pocket depth; v‐PPD = vertical probing 

pocket depth.

Table 14.5 

Case 2, main reasons for treatment 

choice (regenerative therapy with enamel matrix 

derivative).

Factors

TOOTH

Good mesial bone support

Good bone support on neighbouring 

tooth 37

Reduced tooth divergence

Intrabony defect affecting distal root 

and furcation

Tooth vitality and no restorative 

concerns

Importance in masticatory function

PATIENT Clear medical history

Non‐smoker

Motivation to keep the tooth

No financial or other concerns for 

surgical treatment


background image

Chapter 14

266

Ammons, W.F., and Harrington G.W. (2006). 

Furcation: Involvement and treatment. In: 

Carranza’s Clinical Periodontology (ed. 

M.G. Newman, H.H. Takei, P.R. Klokkevold, 

and F.A. Carranza), 991–1004. St. Louis, 

MO: Saunders Elsevier.

Becker, W., Becker, B.E., Alsuwyed, A., and 

Al‐Mubarak, S. (1999). Long‐term 

evaluation of 282 implants in maxillary and 

mandibular molar positions: A prospective 

study. Journal of Periodontology 

70, 896–901.

Becker, W., Becker, B.E., and Berg, L.E. (1984). 

Periodontal treatment without maintenance: 

A retrospective study in 44 patients. Journal 

of Periodontology 55, 505–509.

Blomlöf, L., Jansson, L., Appelgren, R. et al. 

(1997). Prognosis and mortality of root‐

resected molars. International Journal of 

Periodontics and Restorative Dentistry 

17, 190–201.

Carnevale, G., Pontoriero, R., and di Febo, G. 

(1998). Long‐term effects of root‐resective 

therapy in furcation‐involved molars: A 

10‐year longitudinal study. Journal of 

Clinical Periodontology 25, 209–214.

Christou, V., Timmerman, M.F., Van der 

Velden, U., and Van der Weijden, F.A. 

(1998). Comparison of different approaches 

of interdental oral hygiene: Interdental 

brushes versus dental floss. Journal of 

Periodontology 69, 759–764. doi:10.1902/ 

jop.1998.69.7.759.

Cortellini, P., Stalpers, G., Mollo, A., and 

Tonetti, M.S. (2011). Periodontal 

regeneration versus extraction and 

prosthetic replacement of teeth severely 

compromised by attachment loss to the 

apex: 5‐year results of an ongoing 

randomized clinical trial. Journal of Clinical 

Periodontology 38, 915–924.

Cortellini, P., and Tonetti, M.S. (2001). 

Evaluation of the effect of tooth vitality on 

regenerative outcomes in infrabony defects. 

Journal of Clinical Periodontology 

28, 672–679.

de Andrade, A.K., Feist, I.S., Pannuti, C.M. 

et al. (2008). Nd:YAG laser clinical assisted 

in class II furcation treatment. Lasers in 

Medical Science 23, 341–347. doi:10.1007/ 

s10103‐007‐0482‐6.

Del Peloso Ribeiro, E., Bittencourt, S., Nociti, 

F.H., Jr et al. (2007). Comparative study of 

ultrasonic instrumentation for the non‐

surgical treatment of interproximal and 

non‐interproximal furcation involvements. 

Journal of Periodontology 78, 224–230. 

doi:10.1902/jop.2007.060312.

Drago, C.J. (1992). Rates of osseointegration of 

dental implants with regard to anatomical 

location. Journal of Prosthodontics 1, 29–31.

Dunlap, R.M., and Gher, M.E. (1985). Root 

surface measurements of the mandibular 

first molar. Journal of Periodontology 

56, 234–248.

Eickholz, P., Nickles, K., Koch, R. et al. (2016). 

Is furcation class involvement affected by 

adjunctive systemic amoxicillin plus 

metronidazole? A clinical trial’s exploratory 

subanalysis. Journal of Clinical 

Periodontology 43, 839–848.

Fardal, O., and Grytten, J. (2013). 

A comparison of teeth and implants during 

maintenance therapy in terms of the number 

of disease‐free years and costs: An in vivo 

internal control study. Journal of 

Clinical Periodontology 40, 645–651. 

doi:10.1111/jcpe.12101.

Fleischer, H.C., Mellonig, J.T., Brayer, W.K. 

et al. (1989). Scaling and root planing 

efficacy in multirooted teeth. Journal of 

Periodontology 60, 402–409. doi:10.1902/ 

jop.1989.60.7.402.

Glickmann, I. (1953). Clinical Periodontology

Pennsylvania, PA: Saunders.

Graziani, F., Donos, N., Needleman, I. et al. 

(2004). Comparison of implant survival 

following sinus floor augmentation 

procedures with implants placed in pristine 

posterior maxillary bone: A systematic 

review. Clinical Oral Implants 15, 677–682.

Hamp, S.E., Nyman, S., and Lindhe, J. (1975). 

Periodontal treatment of multirooted teeth: 

Results after 5 years. Journal of Clinical 

Periodontology 2, 126–135.

Helldén, L.B., Elliot, A., Steffensen, B., and 

Steffensen, J.E.M. (1989). Prognosis of 

tunnel preparations in treatment of class III 


background image

Assessment of Two Example Cases 267

furcations: A follow‐up study. Journal of 

Periodontology 60, 182–187.

Jepsen, S., Eberhard, J., Herrera, D., and 

Needleman, I. (2002). A systematic review of 

guided tissue regeneration for periodontal 

furcation defects: What is the effect of 

guided tissue regeneration compared with 

surgical debridement in the treatment of 

furcation defects? Journal of Clinical 

Periodontology 29 (Suppl. 3), 103–116.

Jepsen, S., Heinz, B., Jepsen, K. et al. (2004). 

A randomized clinical trial comparing enamel 

matrix derivative and membrane treatment of 

buccal Class II furcation involvement in 

mandibular molars. Part I: Study design and 

results for primary outcomes. Journal of 

Periodontology 75, 1150–1160.

Joseph, I., Varma, B.R., and Bhat, K.M. (1996). 

Clinical significance of furcation anatomy of 

the maxillary first premolar: A biometric 

study on extracted teeth. Journal of 

Periodontology 67, 386–389.

Langeland, K., Rodrigues, H., and Dowden, W. 

(1974). Periodontal disease, bacteria, and 

pulpal histopathology. Oral Surgery, Oral 

Medicine, Oral Pathology 37, 257–270.

Langer, B., Stein, S.D., and Wagenberg, B. 

(1981). An evaluation of root resections: 

A ten‐year study. Journal of Periodontology 

52, 719–722.

Leon, L.E., and Vogel, R.I. (1987). A 

comparison of the effectiveness of hand 

scaling and ultrasonic debridement in 

furcations as evaluated by differential dark‐

field microscopy. Journal of Periodontology 

58, 86–94. doi:10.1902/jop.1987.58.2.86.

Little, L.A., Beck, F.M., Bagci, B., and Horton, 

J.E. (1995). Lack of furcal bone loss 

following the tunnelling procedure. Journal 

of Clinical Periodontology 22, 637–641.

Machtei, E.E., Zubrey, Y., Yehuda, A.B., and 

Soskolne, W.A. (1989). Proximal bone loss 

adjacent to periodontally ‘hopeless’ teeth 

with and without extraction. Journal of 

Periodontology 60, 512–515.

Martin, J.A., Fardal, O., Page, R.C. et al. (2014). 

Incorporating severity and risk as factors to 

the Fardal cost‐effectiveness model to create 

a cost–benefit model for periodontal 

treatment. Journal of Periodontology 85, 

e31–e39. doi:10.1902/jop.2013.130237.

Matia, J.I., Bissada, N.F., Maybury, J.E., and 

Ricchetti, P. (1986). Efficiency of scaling of 

the molar furcation area with and without 

surgical access. International Journal of 

Periodontics and Restorative Dentistry 

6, 24–35.

Matuliene, G., Pjetursson, B.E., Salvi, G.E. et al. 

(2008). Influence of residual pockets on 

progression of periodontitis and tooth loss: 

Results after 11 years of maintenance. 

Journal of Clinical Periodontology 35, 

685–695.

Moraschini, V., Poubel, L.A., Ferreira, V.F., and 

Barboza Edos, S. (2015). Evaluation of 

survival and success rates of dental implants 

reported in longitudinal studies with a 

follow‐up period of at least 10 years: A 

systematic review. International Journal of 

Oral and Maxillofacial Surgery 44, 377–388.

Muller, H.P., and Eger, T. (1999). Furcation 

diagnosis. Journal of Clinical Periodontology 

26, 485–498.

Nevins, M., Camelo, M., Nevins, M.L. et al. 

(2003). Periodontal regeneration in humans 

using recombinant human platelet‐derived 

growth factor‐bb (rhPDGF‐BB) and 

allogenic bone. Journal of Periodontology 

74, 1282–1292.

Nibali, L., Zavattini, A., Nagata, K. et al. 

(2016). Tooth loss in molars with and 

without furcation involvement: A systematic 

review and meta‐analysis. Journal of Clinical 

Periodontology 43, 156–166.

Pjetursson, B.E., Tan, W.C., Zwahlen, M., and 

Lang, N.P. (2008). A systematic review of the 

success of sinus floor elevation and survival 

of implants inserted in combination with 

sinus floor elevation. Journal of Clinical 

Periodontology 35, 216–240.

Pontoriero, R., and Lindhe, J. (1995). Guided 

tissue regeneration in the treatment of 

degree III furcation defects in maxillary 

molars. Journal of Clinical Periodontology 

22, 810–812.

Ribeiro Edel, P., Bittencourt, S., Sallum, E.A. 

et al. (2010). Non‐surgical instrumentation 

associated with povidone‐iodine in the 


background image

Chapter 14

268

treatment of interproximal furcation 

involvements. Journal of Applied Oral 

Sciences 18, 599–606.

Schwendicke, F., Graetz, C., Stolpe, M., and 

Dorfer, C.E. (2014). Retaining or replacing 

molars with furcation involvement: A 

cost‐effectiveness comparison of different 

strategies. Journal of Clinical Periodontology 

41, 1090–1097.

Stoller, N.H., Johnson, L.R., and Garrett, S. 

(2001). Periodontal regeneration of a class II 

furcation defect utilizing a bioabsorbable 

barrier in a human: A case study with 

histology. Journal of Periodontology 72, 

238–242.

Sugaya, T., Kawanami, M., and Kato, H. (2002). 

Effects of debridement with an ultrasonic 

furcation tip in degree II furcation 

involvement of mandibular molars. Journal 

of the International Academy of 

Periodontology 4, 138–142.

Tarnow, D., and Fletcher, P. (1984). 

Classification of the vertical component of 

furcation involvement. Journal of 

Periodontology 55, 283–284.

Thoma, D.S., Zeltner, M., Hüsler, J. et al. 

(2015). EAO Supplement Working Group 

4 – EAO CC 2015. Short implants versus 

sinus lifting with longer implants to restore 

the posterior maxilla: A systematic review. 

Clinical Oral Implant Research 26 (Suppl. 

11), 154–169.

Tomasi, C., and Wennstrom, J.L. (2011). 

Locally delivered doxycycline as an adjunct 

to mechanical debridement at retreatment 

of periodontal pockets: Outcome at 

furcation sites. Journal of Periodontology 82, 

210–218. doi:10.1902/jop.2010.100308.


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c15.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:22:44 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 269

269

Diagnosis and Treatment of Furcation-Involved Teeth, First Edition. Edited by Luigi Nibali. 

© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd. 

Companion website: www.wiley.com/go/nibali/diagnosis

15.1   Introduction

What do you do when facing a molar with 

 

furcation involvement (FI)? Extract? 

Ignore? Treat? And how? Regeneration? 

Root resection? Several papers in the peri-

odontal  literature have covered the treat-

ment of molars with FI. Previous chapters 

of this book have reviewed and carefully 

scrutinized the evidence for no treatment, 

and for conservative, regenerative, and 

resective therapy. But how do we approach 

decision‐making? How can we merge the 

patient’s preferences and needs with the 

financial considerations and the clinical 

criteria discussed in this book to achieve a 

favourable outcome? We embark on this 

chapter with a scientific evidence‐based 

approach to try to answer these questions. 

However, in the absence of randomized 

 controlled trials comparing different man-

agement options for molars with varying 

degrees of FI, pragmatic considerations and 

experience will complement the evidence 

in order to obtain treatment guidelines. 

The main points to consider are highlighted 

in what follows.

15.2   First  Things  First: 

Proper Diagnosis

Diagnosis is the first step towards treatment. 

As in any other field of medicine, every effort 

needs to be expended for a correct diagnosis 

of the problem (Khullar et al. 2015). Most of 

the mistakes I have made in my professional 

career or have seen made by students or col-

leagues were due to incorrect diagnosis. This 

is particularly important for furcations, since 

diagnosis is not straightforward. Therefore, 

spending more time and effort for diagnostic 

purposes before rushing to pick up blade or 

forceps is recommended.

Furcation diagnosis has been covered by 

Eickholz and Walter in Chapter 2. Their clear 

message is that clinical and radiographic 

diagnoses need to be combined to obtain a 

correct measure of the involvement of the 

furcation area. A curved Nabers probe is vital 

for measuring the bone loss in the furcation 

area, although the difference between degrees 

II and III might be difficult to ascertain, espe-

cially in maxillary molars. Three‐dimensional 

radiography may also be needed for treat-

ment planning purposes in some cases.

Chapter 15

Furcations: A Treatment Algorithm

Luigi Nibali

Centre for Immunobiology and Regenerative Medicine, Centre for Oral Clinical Research, Institute of Dentistry, Barts and the London 
School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK


background image

Chapter 15

270

Figure  15.1 shows a furcation diagnosis 

algorithm, essential for treatment planning. 

It is suggested that a Nabers probe is used in 

all cases of probing pocket depths > 4 mm in 

molars, to establish a furcation diagnosis. In 

the case of FI degree II or III, further diag-

nostic tests, including periapical radiographs 

and endodontic and occlusal assessments, 

may be necessary for treatment planning. 

When the diagnosis and extent of FI are not 

clear, posing doubts about the best treatment 

plan, cone‐beam computed tomography 

(CBCT) may be justifiable as a useful 

 diagnostic adjunct, especially for maxillary 

molars (Walter et al. 2016; see Chapter 2 for 

more details).

The main differential diagnostic elements 

to consider for complex treatment planning 

are briefly highlighted in Table 15.1.

Bearing in mind all the factors discussed, 

treatment guidelines for different degrees of 

FI are proposed in the following sections. 

These cannot be applied as ‘blanket’ 

 treatment guidelines, but need to be adapted 

to every different patient and every different 

molar.

15.3   Degree  I Furcation 

Involvement

The evidence from the literature, summa-

rized in a recent systematic review and dis-

cussed in Chapter 5, suggests that increasing 

FI degree is associated with an increased 

risk  of tooth loss (Nibali et  al. 2016). The 

long‐term risk of tooth loss appears minimal 

in degree I FI molars undergoing regular care 

compared with molars with no FI. In fact, 

re‐examining data from that systematic 

review, it appears that molars with degree I FI 

undergoing regular supportive periodontal 

therapy (SPT) have an identical tooth loss 

rate to molars with no FI (0.01 teeth/patient/

year; Nibali et al. 2016). For this reason, the 

consensus opinion at present is that degree I 

FI is not suitable for complex treatment such 

as periodontal regeneration. Authors of a 

previous systematic review had also con-

cluded that degree I FI could be success-

fully managed by non‐surgical mechanical 

debridement (Huynh‐Ba et al. 2009).

Less is known about FI degree I molars not 

undergoing regular periodontal care. Data 

Periodontal probe: pockets

on molars

Probing degree I

Probing degree II or III

Periapical radiograph, assessment 
of endodontic status, and occlusion

Nabers probe

Complex treatment planning

Consider cone-beam CT

No probing in furcation

Periodontal 

treatment

Maintenance/treatment

Figure 15.1 

Proposed algorithm for furcation diagnosis.


background image

Furcations: A Treatment Algorithm 271

from SHIP (Study for Health In Pomerania) 

show an incidence rate ratio (IRR) for molar 

loss of 1.73 (95% confidence interval [CI] 

1.34–2.23, p < 0.001) for degree I FI versus no 

FI after 11 years of follow‐up, suggesting that 

no treatment’ worsens the prognosis of molars 

with FI degree I (Nibali et al. 2017a).

Therefore, it could be suggested that oral 

hygiene instructions and non‐surgical therapy 

represent the treatment of choice for degree I 

FI, irrespective of location or other factors. 

Odontoplasty might complement this treat-

ment in cases where the furcation entrance 

anatomy might contribute to the presence of a 

degree I FI and might interfere with oral 

hygiene manoeuvres (see Figure 15.2).

15.4   Degree II Furcation 

Involvement

The real complexity starts when considering 

degree II FI, as this seems to be the threshold 

at which the risk of tooth loss sharply increases 

(Nibali et al. 2016, 2017a). Therefore, treat-

ment is needed to reduce the impact of such 

FI in determining tooth loss. The main treat-

ment goal should be the reduction of degree 

Table 15.1 

Main differential diagnostic elements to consider for complex furcation treatment planning.

Factors

Thresholds/grades

ANATOMY

Endodontic status

Degree 1–5 (Ørstavik et al. 1986)

Restorability

Class I–III (Esteves et al. 2011)

Degree of furcation involvement

I–III (Hamp et al. 1975)

Number of furcation 

involvements

Single, double, or triple

Vertical probing

A–C (Tarnow and Fletcher 1984)

Degree of separation (root 

divergence)

30° (Muller and Eger 1999)

Separation degree

⅓ (Muller and Eger 1999)

Bone loss

⅓, ⅔ of root length (Muller and Eger 1999)

Position of furcation fornix 

relative to bone crest and 

interproximal bone levels

Coronal or apical (Bowers et al. 2003)

Furcation width

Narrow or wide (Horwitz et al. 2004)

Other anatomical features

Length of root cone, root trunk etc.

PATIENT

Medical history

Healthy vs medically compromised

Smoking

Current/former/never

Preferences/motivation

Refusal to undergo surgery

Financial

Inability/unwillingness to pay for complex 

treatment

Oral hygiene dexterity

Inability to access furcation entrance

OPERATOR

Ability/experience

STRATEGY

Abutment

Functional

RISK

Anatomical risks, surgical risks

ALTERNATIVES

Replacement with implant, prosthetic bridge, removable denture


background image

Chapter 15

272

II FI to degree I FI or to no FI (ideal). It is 

implied that oral hygiene instructions and 

non‐surgical therapy (with or without 

adjuncts) are a prerequisite for this treatment 

algorithm, and they should always represent 

the starting point. In some occasions, oral 

hygiene instructions and non‐surgical 

 therapy can already lead to the reduction of 

degree II FI to degree I FI through mecha-

nisms including reduction of gingival 

oedema, epithelial reattachment, reduced 

probe penetration, and potentially radio-

graphic bone fill (see the case in Figure 15.3). 

However, residual degree II FI after causal 

therapy needs to be further addressed.

15.4.1  Mandibular Degree II 

Furcations

Except for cases of degree II FI after initial 

periodontal therapy where odontoplasty 

and/or surgical osteoplasty could lead to a 

reduction to degree I FI, reduction of degree 

II FI could be achieved via regenerative ther-

apy. Chapters 6 and 7 have presented the evi-

dence for the efficacy of regeneration in 

furcations. Based on the discussion in these 

chapters, an important differentiation needs 

to be made between maxillary and mandibu-

lar degree II furcations. Figure 15.4 shows a 

Furcation degree I

Oral hygiene and non-surgical

maintenance

(consider odontoplasty)

Supportive periodontal therapy

Figure 15.2 

Proposed algorithm for furcation 

treatment (degree I furcation involvement).

(a)

(b)

Figure 15.3 

(a) Periapical radiographs of molars of a female 32‐year‐old aggressive periodontitis patient at 

periodontal diagnosis. Radiolucency inside the furcation areas is visible, particularly for UR6 and 7 (both 

degree II clinical furcation involvement [FI] diagnosis), UL6 and 7 (degree I FI), LL6 (degree I FI), 

and LR6 (degree II FI), often associated with intrabony defects. (b) Periapical radiographs of the same molars 

one year after initial periodontal therapy (oral hygiene instructions and supra‐ and subgingival debridement 

with adjunctive systemic antibiotics and extraction of UL8), showing radiographic bone fill in furcation defects 

and intrabony defects, associated with clinical reduction of FI degrees (now only degree I for UR6 and 7, UL6 

and 7, and LR6).


background image

Furcations: A Treatment Algorithm 273

proposed algorithm for the treatment of 

mandibular degree II FI. A hierarchy is pre-

sented starting from the preferred choice at 

the top, although this is rather arbitrary and 

not strictly evidence based.

Another important differentiation to be 

drawn is based on whether the furcation is 

single (e.g. only buccal or only lingual) or 

double (both buccal and lingual). In a case of 

single degree II mandibular FI following 

 initial therapy, regeneration seems to be the 

preferred choice. The evidence reviewed by 

Jepsen and Jepsen in Chapter 7 shows that, 

although complete furcation closure in degree 

II FI is not a predictable outcome, treatment 

with either guided tissue regeneration (GTR) 

or enamel matrix derivative (EMD) has pro-

duced histological evidence of regeneration 

(Stoller et  al. 2001; Nevins et  al. 2003) and 

consistently more favourable clinical out-

comes (reduction to degree I or closure) 

compared with access flaps, especially in 

mandibular furcations (Jepsen et  al. 2002, 

2004). Alternatives to regenerative therapy 

are non‐surgical maintenance/SPT, access 

flap with or without osteoplasty, or apically 

positioned flap (APF), to improve access for 

professional cleaning of the furcation region. 

Similar treatment options are recommended 

for combined degree II and I mandibular 

furcations.

However, when double degree II mandibu-

lar furcations are present, regeneration 

becomes much less predictable, albeit not 

impossible (see Figure  15.5, in relation to 

Case 2 described in Chapter 14).

In contrast, tunnelling comes into play as 

probably the preferred option. Tunnelling 

surgery can improve access to self‐performed, 

as well as professional, cleaning of the furca-

tion area, so it could be indicated too in cases 

of double degree II mandibular FI. Studies 

with 5–10 years follow‐up show success rates 

varying between 51 and 93% (Hamp et  al. 

1975; Dannewitz et al. 2006). Patient selec-

tion (good oral hygiene and motivation, low 

caries risk) and tooth selection (short root 

trunk, favourable root divergence; Muller 

Mandibular degree II

Non-surgical 
maintenance, 
odontoplasty

Access flap/apically
positioned flap/
osteplasty

Regeneration 

Non-surgical maintenance, 
odontoplasty

Access flap/apically positioned flap/
osteoplasty

Single 

Combined 

Resection/hemisection

Tunnelling

Regeneration

II + II 

II + I 

Non-surgical 
maintenance, 
odontoplasty

Access flap/apically
positioned flap/ 
osteoplasty

Regeneration

Supportive periodontal therapy

Figure 15.4 

Proposed algorithm for furcation treatment (degree II mandibular furcation involvement).


background image

Chapter 15

274

and Eger 1999) are vital for tunnelling, and 

for access reasons mandibular furcations 

are clearly more suitable.

Other options such as non‐surgical 

 

maintenance/odontoplasty, root resection/

hemisection, or access flap (or APF) are also 

realistic. We should bear in mind that root‐

resection studies with follow‐ups at 5–10 

years showed success rates of 62–100% 

(Carnevale et al. 1998; Dannewitz et al. 2006) 

(c)

(d)

(e)

(f)

(a)

(b)

Figure 15.5 

Clinical photograph (a) and periapical radiograph (b) of 47‐year‐old patient diagnosed with 

chronic periodontitis and affected by double degree II furcation involvement and distal intrabony defect 

(disto‐buccal and disto‐lingual probing pocket depth [PPD] 12 mm) on tooth 36 (LL6). Following non‐surgical 

periodontal therapy, regenerative surgery with enamel matrix derivative was carried out (c and d, buccal and 

lingual intra‐operative views after full‐thickness flaps elevation), with favourable outcomes at five years after 

surgery, with reduction of PPD to 4 mm and only degree I furcation lingual (e) and fill of intrabony and 

furcation defect (f).


background image

Furcations: A Treatment Algorithm 275

and, with the exception of three studies, the 

average survival rate of the molars treated 

with root separation/resection was close to 

90% (see Chapter 8). Access flap (or APF) with 

or without ostectomy could improve access 

for professional cleaning of the  furcation area 

and lead to reduction of  probing pocket 

depths and inflammation (Wang et al. 1994).

15.4.2  Single Maxillary Degree II 

Buccal Furcations

Maxillary molars with degree II FI after 

 initial periodontal therapy present probably 

the most challenging scenario in terms of 

potential treatment choices and expected 

outcome. Again, in the absence of rand-

omized controlled trials comparing all 

options, we need to draw guidelines mainly 

based on low‐evidence studies, experience, 

and common sense. Figure  15.6 shows 

options for degree II maxillary furcations.

Favourable results could be achieved with 

GTR therapy and EMD in maxillary degree II 

furcations (Yukna and Yukna 1996; Casarin 

et  al. 2010), but the evidence suggests that 

such results are more predictable in buccal 

sites (Pontoriero and Lindhe 1995a). 

Therefore, regeneration could be a good 

alternative to non‐surgical maintenance, 

odontoplasty, and access flap surgery in 

order to reduce the buccal furcation to 

degree I or to achieve complete closure. The 

decision for regenerative therapy would 

depend on factors mentioned in the previous 

section (see Table 15.1), such as smoking and 

financial considerations, as well as good 

interproximal bone levels, reduced vertical 

furcation component, and reduced furcation 

width, all shown to favour regeneration in 

animal and human studies (Pontoriero et al. 

1992; Bowers et al. 2003; Horwitz et al. 2004).

15.4.3  Single Maxillary Degree II 

Interproximal Furcations

Overall, the application of GTR, EMD, or 

combination therapy (EMD/bone grafts) to 

proximal furcations in maxillary molars 

achieved some furcation closures, but was 

not as favourable as that in mandibular 

 furcations or buccal maxillary furcations 

Interproximal

Maxillary degree II

Buccal 

Non-surgical 
maintenance, 
odontoplasty 

Access flap/apically
positioned flap/
osteoplasty 

Resection 

Non-surgical 
maintenance, 
odontoplasty 

Access flap/osteoplasty 

Regeneration 

Single

Combined

Interproximal

Buccal/interproximal

Access flap/apically
positioned flap/
osteoplasty 

Access flap/apically
positioned flap/
osteoplasty 

Resection/ 
root separation

Resection/root 
separation 

Tunnelling 

Tunnelling 

Non-surgical 
maintenance, 
odontoplasty 

Non-surgical 
maintenance, 
odontoplasty 

Regeneration 

Supportive periodontal therapy

Figure 15.6 

Proposed algorithm for furcation treatment (degree II maxillary furcation involvement).


background image

Chapter 15

276

(Pontoriero and Lindhe 1995a; Avera 

et  al.  1998; Casarin et  al. 2010; Peres et  al. 

2013). Therefore, non‐surgical maintenance/ 

odontoplasty, access flap/osteoplasty (or 

APF), and potentially also root resection 

could be valid alternatives. The latter could 

be  particularly suitable for previously endo-

dontically treated molars.

15.4.4  Combined Maxillary 

Degree II Furcations

Although regenerative periodontal therapy 

may be a viable option for degree II maxillary 

molars, this would be probably only limited 

to single degree II maxillary defects, as the 

unpredictability would certainly increase 

several‐fold in multiple degree II maxillary FI 

(which often could hide a true degree III FI). 

Therefore, root resection, access flap, and 

tunnelling procedures are probably the best 

alternatives to choose from in these cases.

As previously discussed for mandibular 

degree II furcations, root‐resective surgery 

and access flap/APF with or without ostec-

tomy could be good potential alternatives 

(Wang et  al. 1994; Carnevale et  al. 1998). 

Root resection/separation is mainly recom-

mended for previously endodontically 

treated maxillary molars with combined 

 furcations degree II, particularly when the 

worst‐affected root is the disto‐buccal. 

Tunnelling, given the correct patient and 

molar selection, could be another appropri-

ate treatment choice in selected cases.

When for patient or tooth reasons these 

options are not feasible or not worth pursu-

ing, non‐surgical maintenance with frequent 

SPT recalls based on a patient risk profile 

(Lang and Tonetti 2003) remains a valid 

option, with the clear limitation of difficul-

ties in achieving proper debridement of the 

furcation area (Fleischer et al. 1989).

Root resection and tunnelling options may 

be more indicated in cases of combined 

 buccal/interproximal degree II furcations, 

rather than when both are interproximal. 

The reasons for this are that resecting the 

palatal root (in cases of mesial and distal 

degree II FI) is less favourable owing to ana-

tomical features (see Chapter  8), and that 

access to the furcation tunnel for self‐per-

formed hygiene is easier from a buccal access 

(see Chapter 9). Therefore, a slightly different 

hierarchy of choice is presented in Figure 15.6, 

with root resection and tunnelling consid-

ered to have more ‘worth’ for combined 

 buccal–interproximal FI, and more conserva-

tive options probably indicated for combined 

interproximal furcations.

The unlikely case of triple non‐through‐

and‐through degree II furcation involvement 

could be considered within the degree III FI 

treatment options.

15.5   Degree III Furcation 

Involvement

When bone loss in the furcation area goes 

through and through, from one root‐separation 

area to another on the same tooth, we are 

faced with degree III FI. The main treatment 

challenge here derives from the limitations of 

regenerative therapy in such cases. No clini-

cal study in humans has so far reported any 

degree III furcation closures with GTR, EMD, 

or both combined, but only clinical reduc-

tions in furcation degree in some very lim-

ited cases (Pontoriero et al. 1989; Pontoriero 

and Lindhe 1995b; Eickholz et al. 1998, 1999; 

Jepsen et al. 2002; Donos et al. 2004). Jepsen 

and Jepsen in Chapter 7 reviewed the availa-

ble evidence to conclude that degree III FI 

cannot be improved predictably by regenera-

tive therapy, until new developments in 

regenerative material and techniques are 

available (discussed in Chapter 6). Therefore, 

it would be difficult to justify the use of 

regenerative surgery on degree III FI at pre-

sent. The persistence of a degree III furcation 

defect which is not regenerable and is diffi-

cult to clean (see Chapter 3) equals a higher 

risk of future tooth loss than for degree I and 

degree II FI molars (Nibali et al. 2016). Hence 

the need to find a solution to manage these 

cases and to reduce the risk of tooth loss. 

The  treatment options are presented in 


background image

Furcations: A Treatment Algorithm 277

Figure  15.7, divided between maxillary and 

mandibular molars.

The difference, clearly, is that maxillary 

molars, with three furcation entrances, could 

potentially have three through‐and‐through 

furcation lesions, making the access for clean-

ing (both professional and self‐performed) 

very challenging. On the other hand, 

 mandibular degree III FI molars can only 

have one through‐and‐through furcation 

lesion, with access both buccally and 

 lingually. While bearing in mind the evidence 

of success for tunnelling and root‐resection 

procedures in long‐term clinical trials 

(Helldén et al. 1989; Carnevale et al. 1998), 

we need to stress the importance of proper 

diagnosis and patient and molar selection. 

The factors highlighted in Table  15.1 need 

again to be kept in mind in order to ensure 

long‐term success.

15.5.1  Mandibular Degree III 

Furcations

Tunnelling could be considered the treat-

ment of choice for mandibular degree III FI. 

As already mentioned, tunnelling should be 

avoided in cases with high caries risk, high 

tooth sensitivity, poor compliance, or poor 

manual dexterity, as lack of proper oral 

hygiene defies the purpose of this therapy. 

Molars with a short root trunk, high degree 

of separation (root divergence), and a large 

band of keratinized gingiva are particularly 

suitable for this procedure (see Chapter  9). 

When tunnelling is not indicated, root sepa-

ration (premolarization) could be considered 

a valid alternative, especially in cases of good 

residual bone support in the distal aspect of 

the distal root and in the mesial aspect of the 

mesial root. This would again aim to improve 

cleaning (by removal of the furcation region), 

but would entail extensive restorative work. 

Long‐term non‐surgical maintenance 

( preceded or not by surgical access) and root 

resection represent possible alternatives if 

tooth survival is chosen.

15.5.2  Maxillary Degree III 

Furcations

Root resection or non‐surgical maintenance 

could be considered the treatment of choice 

for degree III FI maxillary molars. These two 

Root resection/separation

Maxillary degree III

Mandibular degree III

Tunnelling

Non-surgical maintenance

Extraction 

Non-surgical maintenance

Root resection

Tunnelling

Extraction 

Root separation

Root separation

Supportive periodontal therapy

Figure 15.7 

Proposed algorithm for furcation treatment (degree III furcation involvement).


background image

Chapter 15

278

procedures have different indications, as root 

resection is generally more advisable in the 

case of a double degree III FI, mainly affecting 

one root. In this case, the resection of a root 

(preferably if it is the smallest disto‐ buccal 

root) could leave two easily maintainable 

roots with no FI. As Rotundo and Fonzar dis-

cussed in Chapter 6, root resection in a case 

of a triple degree III FI is less advisable, as it 

would anyway result in a residual  difficult‐to‐

clean furcation. In such a case (triple degree 

III FI), regular subgingival debridement 

seems the most reasonable option in cases 

where tooth survival is preferred. This could 

be preceded or not by surgical access for 

 furcation debridement, shown to improve 

professional cleaning efficacy (see Chapter 3). 

Other factors mentioned earlier, such as 

patient preferences and financial considera-

tions, play an important role in the decision 

of whether to maintain such teeth or not.

Under exceptional circumstances, tunnel-

ling could be considered an option for triple 

degree III FI, mainly in cases of very compli-

ant patients with good manual dexterity and 

low caries risk. Tunnelling can occur either 

naturally, by virtue of gingival recession, as a 

result of oral hygiene and non‐surgical ther-

apy, or can be created surgically. The main 

reason for the failure of tunnelling is not 

 periodontal but restorative, linked with root 

caries following the exposure of the root sur-

face (Helldén et al. 1989). Figure 15.8 shows a 

case of surgically created triple degree III FI 

in maxillary molars maintained for over 

10  years with no clinical and radiographic 

signs of disease progression or caries (Case 1 

described in Chapter 14).

Root separation is also a possible option 

for degree III maxillary molars, associated or 

not with root resection. Careful endodontic 

and prosthetic considerations are needed 

before deciding on this treatment option 

(Carnevale et al. 1998).

However, in making the decision on 

whether to extract or not, one should take 

into account that, despite a higher tooth loss 

risk, the majority of maxillary degree III FI 

molars could be maintained over at least a 

10–15‐year period of periodontal supportive 

care (Nibali et al. 2016), meaning that extrac-

tion of molars affected by degree III FI should 

not be a given.

15.6   Upper  Premolars

Upper first premolars are normally two‐

rooted, while second maxillary premolars 

and mandibular canines are occasionally 

two‐rooted. However, very little data exist in 

the literature about the treatment of non‐

molar teeth with FI (Hamp et  al. 1975). 

As  discussed in Chapter  7, the majority of 

maxillary first premolars have fused roots. In 

upper premolars with separated roots, the 

furcation entrance is on average 8 mm apical 

to the cemento‐enamel junction and only 

7–10% of furcation entrances are in the coro-

nal third of the root (Joseph et  al. 1996; 

Dababneh and Rodan 2013). Furthermore, 

root grooves and concavities are the norm in 

upper premolars. Owing to these anatomical 

features, root resection and tunnelling are 

not usually viable options for upper premo-

lars with FI, and access flap and/or non‐ 

surgical maintenance should be preferred.

15.7   Innovative  Treatment

Novel treatments for furcation‐involved 

teeth were discussed in Chapter 10. Some of 

these, such as adjunctive photodynamic 

therapy, lasers, or air‐polishing devices, 

could be added to the options discussed in 

this  chapter, although more evidence needs 

to be gathered before routinely recommend-

ing these therapies.

15.8   So,  When  Should 

We Extract?

The emphasis of this chapter, and perhaps of 

the whole book, has been on tooth retention. 

However, there are cases where even the most 


background image

Chapter No.: 1  Title Name: <TITLENAME> 

c15.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:22:44 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 279

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 15.8 

Clinical photograph (a) and periapical radiographs (b and c) of 50‐year‐old patient diagnosed with chronic periodontitis and 

affected by triple degree III furcation involvement on 17 (UR7), 16 (UR6), and 27 (UL7). Following non‐surgical periodontal therapy, 

tunnelling surgery was carried out (d, intra‐operative view after full‐thickness flaps elevation and osteoplasty), with favourable outcomes at 

12 years after surgery with probing pocket depths < 5 mm (e), continued good oral hygiene access to furcations (f, g, and h), and stable 

radiographic bone levels (i and j).


background image

Chapter 15

280

daring periodontist has to admit that a tooth 

is hopeless or irrational to treat, and  extraction 

might be the best option. Several definitions 

of ‘hopeless’ have been proposed in the peri-

odontal literature. Becker and  

colleagues 

(1984) reported a range of criteria for  hopeless 

teeth, including degree III FI or bone 

loss > 75%. Machtei and co‐workers (1989) 

defined as hopeless teeth with bone loss ≥ 50%, 

or radiographic evidence of total bone loss in 

the furcation area (grade III FI). In their land-

mark prognosis paper, McGuire and Nunn 

(1996) more vaguely identified as hopeless 

teeth with ‘inadequate attachment’. Hopeless 

has also been defined as having loss of ≥ 70% 

bone height (Graetz et al. 2011) or as having 

bone loss to the apex (Cortellini et al. 2011).

We recently assigned an ‘unfavourable’ 

prognosis to teeth with ≥ 70% bone loss which 

were also either unrestorable (Esteves et  al. 

2011), with an endodontic periapical index 

(PAI) score of 4 (Ørstavik et al. 1986), or with 

mobility grade III or FI degree III (Nibali et al. 

2017b). This new prognostic system aims to 

be more conservative than previous propos-

als, based on the data discussed earlier show-

ing that degree III FI alone should not qualify 

a tooth as hopeless (Nibali et al. 2016). In the 

reality of everyday practice, patient‐related 

factors (e.g. risk of caries, compliance, and 

smoking), patient preferences, financial con-

siderations, and overall strategic value need 

to accompany clinical and radiographic crite-

ria in reaching a decision about maintaining 

or extracting. Further considerations on 

 possible extraction and implant replacement 

can be found in Chapter 11.

Finally, it is important to remember that 

community‐wide oral hygiene instruction 

and primary prevention programmes are the 

best measures for reducing oral diseases and 

tooth loss.

 References

Avera, J.B., Camargo, P.M., Klokkevold, P.R. 

et al. (1998). Guided tissue regeneration 

in class II furcation involved maxillary 

molars: A controlled study of 8 split‐mouth 

cases. Journal of Periodontology 69, 

1020–1026.

Becker, W., Becker, B.E., and Berg, L.E. (1984). 

Periodontal treatment without maintenance: 

 Summary  of Evidence

 

Furcation diagnosis is crucial for treat-

ment planning purposes.

 

Degree I, II, and III maxillary and man-

dibular molars have very different treat-

ment indications.

 

Degree I furcation involvement (FI) has a 

good long‐term prognosis and does not 

represent a higher risk of tooth loss if 

under periodontal maintenance care.

 

Degree II FI could benefit from periodon-

tal regeneration or other conservative 

therapy (or root resection).

 

Degree II interproximal maxillary FI is 

less suitable for regeneration.

 

Degree III FI is linked with a higher risk of 

tooth loss and treatment options need to 

be carefully considered before embarking 

on treatment or extraction.

 

A holistic approach, including clinical and 

radiographic parameters but also overall 

strategic tooth value, financial considera-

tions, and patient preferences, needs to be 

pursued in order to obtain the most satis-

factory outcome of furcation therapy.

 

General dentists should bear in mind that 

referral to a periodontist is advised for 

molars with severe FI, and that most 

molars with FI can be maintained func-

tionally in the long term.

 

Adherence to patient‐tailored supportive 

periodontal therapy is crucial to reduce 

the long‐term tooth loss risk.


background image

Furcations: A Treatment Algorithm 281

A retrospective study in 44 patients. Journal 

of Periodontology 55, 505–509.

Bowers, G.M., Schallhorn, R.G., McClain, P.K. 

et al. (2003). Factors influencing the 

outcome of regenerative therapy in 

mandibular class II furcations: Part I. 

Journal of Periodontology 74, 1255–1268.

Carnevale, G., Pontoriero, R., and di Febo, G. 

(1998). Long‐term effects of root‐resective 

therapy in furcation‐involved molars: A 

10‐year longitudinal study. Journal of 

Clinical Periodontology 25, 209–214.

Casarin, R.C., Ribeiro Edel, P., Nociti, F.H., Jr 

et al. (2010). Enamel matrix derivative 

proteins for the treatment of proximal class 

II furcation involvements: A prospective 

24‐month randomized clinical trial. 

Journal of Clinical Periodontology 

37, 1100–1109.

Cortellini, P., Stalpers, G., Mollo, A., and 

Tonetti, M.S. (2011). Periodontal 

regeneration versus extraction and 

prosthetic replacement of teeth severely 

compromised by attachment loss to the 

apex: 5‐year results of an ongoing 

randomized clinical trial. Journal of Clinical 

Periodontology 38, 915–924.

Dababneh, R., and Rodan, R. (2013). 

Anatomical landmarks of maxillary 

bifurcated first premolars and their 

influence on periodontal diagnosis and 

treatment. Journal of the International 

Academy of Periodontology 15, 8–15.

Dannewitz, B., Krieger, J.K., Husing, J., and 

Eickholz, P. (2006). Loss of molars in 

periodontally treated patients: 

A retrospective analysis five years or more 

after active periodontal treatment. Journal 

of Clinical Periodontology 33, 53–61.

Donos, N., Glavind, L., Karring, T., and 

Sculean, A. (2004). Clinical evaluation of an 

enamel matrix derivative and a 

bioresorbable membrane in the treatment of 

degree III mandibular furcation 

involvement: A series of nine patients. 

International Journal of Periodontics and 

Restorative Dentistry 24, 362–369.

Eickholz, P., and Hausmann, E. (1999). 

Evidence for healing of class II and III 

furcations 24 months after GTR therapy: 

Digital subtraction and clinical 

measurements. Journal of Periodontology 

70, 1490–1500.

Eickholz, P., Kim, T.‐S., and Holle, R. (1998). 

Regenerative periodontal surgery with  

non‐resorbable and biodegradable barriers: 

Results after 24 months. Journal of Clinical 

Periodontology 25, 666–676.

Esteves, H., Correia, A., and Araújo, F. (2011) 

Classification of extensively damaged teeth 

to evaluate prognosis. Journal of the 

Canadian Dental Association 77, 105.

Fleischer, H.C., Mellonig, J.T., Brayer, W.K. 

et al. (1989). Scaling and root planing 

efficacy in multirooted teeth. Journal of 

Periodontology 60, 402–409.

Graetz, C., Dorfer, C.E., Kahl, M. et al. (2011). 

Retention of questionable and hopeless 

teeth in compliant patients treated for 

aggressive periodontitis. Journal of Clinical 

Periodontology 38, 707–714.

Hamp, S.E., Nyman, S., and Lindhe, J. (1975). 

Periodontal treatment of multirooted teeth: 

Results after 5 years. Journal of Clinical 

Periodontology 2, 126–135.

Helldén, L.B., Elliot, A., Steffensen, B., and 

Steffensen, J.E.M. (1989). Prognosis of 

tunnel preparations in treatment of class III 

furcations: A follow‐up study. Journal of 

Periodontology 60, 182–187.

Horwitz, J., Machtei, E.E., Reitmeir, P. et al. 

(2004). Radiographic parameters as 

prognostic indicators for healing of class II 

furcation defects. Journal of Clinical 

Periodontology 31, 105–111.

Huynh‐Ba, G., Kuonen, P., Hofer, D. et al. 

(2009). The effect of periodontal therapy on 

the survival rate and incidence of 

complications of multirooted teeth with 

furcation involvement after an observation 

period of at least 5 years: A systematic 

review. Journal of Clinical Periodontology 

36, 164–176.

Jepsen, S., Eberhard, J., Herrera, D., and 

Needleman, I. (2002). A systematic review 

of guided tissue regeneration for 

periodontal furcation defects: What is the 

effect of guided tissue regeneration 


background image

Chapter 15

282

compared with surgical debridement in the 

treatment of furcation defects? Journal of 

Clinical Periodontology 29 (Suppl. 3), 

103–116.

Jepsen, S., Heinz, B., Jepsen, K. et al. (2004). 

A randomized clinical trial comparing 

enamel matrix derivative and membrane 

treatment of buccal class II furcation 

involvement in mandibular molars. Part I: 

Study design and results for primary 

outcomes. Journal of Periodontology 75, 

1150–1160.

Joseph, I., Varma, B.R., and Bhat, K.M. (1996). 

Clinical significance of furcation anatomy of 

the maxillary first premolar: A biometric 

study on extracted teeth. Journal of 

Periodontology 67, 386–389.

Khullar, D., Jha, A.K., and Jena, A.B. (2015). 

Reducing diagnostic errors: Why now. 

New England Journal of Medicine 373, 

2491–2493.

Lang, N.P., and Tonetti, M.S. (2003). 

Periodontal risk assessment for patients in 

supportive periodontal therapy (SPT). Oral 

Health & Preventive Dentistry 1, 7–16.

Machtei, E.E., Zubrey, Y., Yehuda, A.B., and 

Soskolne, W.A. (1989). Proximal bone loss 

adjacent to periodontally ‘hopeless’ teeth 

with and without extraction. Journal of 

Periodontology 60, 512–515.

McGuire, M.K., and Nunn, M.E. (1996). 

Prognosis versus actual outcome. III. The 

effectiveness of clinical parameters in 

accurately predicting tooth survival. Journal 

of Periodontology 67, 666–674.

Muller, H.P., and Eger, T. (1999). Furcation 

diagnosis. Journal of Clinical Periodontology 

26, 485–498.

Nevins, M., Camelo, M., Nevins, M.L. et al. 

(2003). Periodontal regeneration in humans 

using recombinant human platelet‐derived 

growth factor‐BB (rhPDGF‐BB) and 

allogenic bone. Journal of Periodontology 

74, 1282–1292.

Nibali, L., Krajewski, A., Donos, N. et al. 

(2017a). The effect of furcation involvement 

on tooth loss in a population without 

regular periodontal therapy. Journal of 

Clinical Periodontology 44, 813–821.

Nibali, L., Sun, C., Akcalı, A. et al. (2017b). 

A retrospective study on periodontal disease 

progression in private practice. Journal of 

Clinical Periodontology 44, 290–297.

Nibali, L., Zavattini, A., Nagata, K. et al. 

(2016). Tooth loss in molars with and 

without furcation involvement: A systematic 

review and meta‐analysis. Journal of Clinical 

Periodontology 43, 156–166.

Ørstavik, D., Kerekes, K., and Eriksen, H.M. 

(1986). The periapical index: A scoring 

system for radiographic assessment of apical 

periodontitis. Endodontics & Dental 

Traumatology 2, 20–34.

Peres, M.F.S., Ribeiro, E.D.P., Casarin, R.C.V. 

et al. (2013). Hydroxyapatite/β‐tricalcium 

phosphate and enamel matrix derivative for 

treatment of proximal class II furcation 

defects: A randomized clinical trial. 

Journal of Clinical Periodontology 

40, 252–259.

Pontoriero, R., and Lindhe, J. (1995a). Guided 

tissue regeneration in the treatment of 

degree II furcations in maxillary molars. 

Journal of Clinical Periodontology 

22, 756–763.

Pontoriero, R., and Lindhe, J. (1995b). Guided 

tissue regeneration in the treatment of 

degree III furcation defects in maxillary 

molars. Journal of Clinical Periodontology 

22, 810–812.

Pontoriero, R., Lindhe, J., Nyman, S. et al. 

(1989). Guided tissue regeneration in the 

treatment of defects in mandibular molars: 

A clinical study of degree III involvements. 

Journal of Clinical Periodontology 

16, 170–174.

Pontoriero, R., Nyman, S., Ericsson, I., and 

Lindhe, J. (1992). Guided tissue regeneration 

in surgically‐produced furcation defects: An 

experimental study in the beagle dog. 

Journal of Clinical Periodontology 

19, 159–163.

Stoller, N.H., Johnson, L.R., and Garrett, S. 

(2001). Periodontal regeneration of a class II 

furcation defect utilizing a bioabsorbable 

barrier in a human: A case study with 

histology. Journal of Periodontology 

72, 238–242.


background image

Furcations: A Treatment Algorithm 283

Tarnow, D., and Fletcher, P. (1984). Classification 

of the vertical component of furcation 

involvement. Journal of Periodontology 55, 

283–284.

Walter, C., Schmidt, J.C., Dula, K. et al. 

(2016). Cone beam computed tomography 

(CBCT) for diagnosis and treatment 

planning in periodontology: A systematic 

review. Quintessence International 47, 

25–37.

Wang, H.L., Burgett, F.G., Shyr, Y., and 

Ramfjord, S. (1994). The influence of 

molar furcation involvement and mobility on 

future clinical periodontal attachment loss. 

Journal of Periodontology 65, 25–29.

Yukna, C.N., and Yukna, R.A. (1996). Multi‐

center evaluation of bioabsorbable collagen 

membrane for guided tissue regeneration in 

human class II furcations. Journal of 

Periodontology 67, 650–657.


background image

Chapter No.: 1  Title Name: <TITLENAME> 

bindex.indd

Comp. by: <USER>  Date: 14 May 2018  Time: 04:23:02 PM  Stage: <STAGE>  WorkFlow:

<WORKFLOW>

 

Page Number: 285

285

Diagnosis and Treatment of Furcation-Involved Teeth, First Edition. Edited by Luigi Nibali. 

© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd. 

Companion website: www.wiley.com/go/nibali/diagnosis

Page numbers in italics refer to illustrations; those in bold refer to tables

a

accessory canals  56–57, 57

Acute Defect Model  107, 111

Acute/Chronic Defect Model  107–108, 

111–112115–116

air‐polishing devices  195–196

allograft  48–49

alveolar ridge preservation  212–213

amoxicillin 197–199

animal models of regenerative furcation 

therapy 105–128

available models  105–106

dog 106

miniature pig  106

primates 106

class II defects  110–117

bone grafts  110–113

cell therapy  114–117

enamel matrix proteins  13–114

growth factors  114, 115–116

guided tissue regeneration  110–113

class III defects  117–124

bone grafts  117–119

cell therapy  124

enamel matrix proteins  119–120, 121

122123

growth factors  120–124

guided tissue regeneration  117, 

118–119

defect types  106–108

critical size defect concept  108–110

experimentally induced defects   

107–108

naturally occurring periodontitis  107, 

111–112

ethical codes  127

limitations 125–127

antimicrobial treatment

local 196–197, 

198

systemic 197–199

antiseptic treatment  196

apical foramina  57–58

b

barrier membranes see guided tissue 

regeneration (GTR)

bifurcation ridges  4–5, 4

bite test  72

bone grafts  48–49

animal models  110–113, 117–119

combined with enamel matrix 

derivative 147–148

combined with guided tissue 

regeneration 139–144, 

145

bone loss  232–233238

implant positioning and  212–213

bone morphogenetic proteins (BMPs), animal 

models  114, 121

bone quality  211

bone resorption  64

c

caries, after furcation tunnelling  185, 

188237

cavity test  76

cell therapy, animal models  114–116, 124, 125

Index


background image

Index

286

cemento‐enamel junction (CEJ)  5

cervical enamel projections (CEPs)  6–8, 78

4850

classification  6

Chronic Defect Model  107, 112

clinical diagnosis  15–22, 23

examination 72

reproducibility and validity  22

see also diagnosis

cone‐beam computed tomography 

(CBCT) 26–28, 

26, 270

costs

cost‐effectiveness studies  230, 

239–242, 241

cost‐of‐disease studies  230

cost‐utility analyses  230

cost–benefit analysis  230

furcation involvement costs  231–239, 

234–237

see also health economic aspects

cracked tooth syndrome  58

cracked tooth testing  73

critical size defect (CSD)  108–110

curettes  39, 45, 46

d

debridement  34, 39–45, 46

effectiveness studies  40–45, 41–44

healing after  33–34

imperfect 34

longitudinal studies  34–38, 35–37

open flap  48–4950

versus guided tissue regeneration  139, 

140–142

versus non‐surgical closed 

debridement 40

dental floss  47

dentine tubules  55–56

diagnosis  71–77, 269–271

algorithm 270, 

270

case examples  257, 262–263, 262

clinical 15–22, 

23, 72

pre‐surgical 161–162

radiographic 22–28, 

2526, 73, 74

162, 269

reproducibility and validity  22

differential diagnosis  271

digital subtraction radiography (DSR)   

25, 25

disease progression  91–92

documentation 22, 

24

e

economic aspects see health economic  

aspects

enamel matrix derivative (EMD)

animal models  113–114, 119–120, 121

122123, 125

degree II furcation defects  144–148, 

273, 274

combination therapy  147–148

mandibular molars  144–146, 147

maxillary molars  146–147, 148

versus guided tissue regeneration   

144–146, 147

degree III furcation defects  149

regenerative periodontal surgery  150

enamel pearls  8–9, 89

endodontic‐periodontal disease

bacteria involved  59

classification 63–71

primary endodontic lesion  64, 656566

primary endodontic lesion with 

secondary periodontal 

involvement 66–68, 

68

primary periodontal lesion  64–66, 67

primary periodontal lesion with 

secondary endodontic 

involvement 68–70, 

69

true combined lesion  70–71, 717278

diagnosis of see diagnosis

effect on pulp tissue  60–63, 61–62

endodontically treated teeth  77–78

management 77

see also periodontitis

EuroQol Questionnaire  250

f

fibroblast growth factor (FGF), animal 

models  114, 120–121

fistula tracking  73

fistulous sinus track  73, 73

furcation probes  16–17, 16, 269

furcation ridges  4–5, 4

furcation tunnelling  177–185, 178

caries after  185, 188237

case examples  260, 261, 261, 264

degree II furcation defects  273–274, 276


background image

Index 287

degree III furcation defects  277, 278, 279

follow‐up studies  186–187

indications 177–179

maintenance phase  185

oral hygiene in the furcation  182–184, 183

double tunnels  183–184, 184

patient selection  179

postoperative follow‐up  182–183

pulp reaction  184–185

tunnelling procedure  179–182, 180

181182

upper first premolar  184, 185

g

gingivectomy 179, 

180

gingivitis  10, 33

Gracey curettes  39, 45, 46

case examples  258, 263

growth factors, animal models  114, 115–116

120–124

guided tissue regeneration (GTR)  79, 

109, 273

animal models  109, 110–113, 117, 

124–125

bone grafts and GTR  110–113

degree II furcation defects  138–144

animal models  110–113

combination therapy  139–144, 145

long‐term results  144

non‐resorbable versus biodegradable 

barrier membranes  139, 143

versus enamel matrix derivative   

144–146, 147

versus open‐flap debridement  139, 

140–142

degree III furcation defects  148–149

animal models  117

mandibular molars  149

maxillary molars  149

regenerative periodontal surgery  150

h

healing after debridement  33–34

health economic aspects

case examples  261, 265

cost‐effectiveness studies  239–242, 241

furcation involvement costs  231–239, 

234–237

health economic analysis  230–231

relevance of furcation 

involvement 229–230

research gaps  242–243

health‐related quality of life (HRQoL)  250

home care  45–47

horizontal bone augmentation  215

horizontal probing attachment loss 

(PAL‐H) 15, 

23

horizontal probing bone level (PBL‐H)  15

i

iatrogenic lesions  11, 78

inferior alveolar nerve damage  213–214

root canal perforations  58

implant placement  209–211

anatomical considerations  211–213

bone loss and implant positioning   

212–213, 212

bone quality  211–212

bone augmentation in maxillary molar 

region 214–217

horizontal augmentation  215

osteome‐mediated sinus floor 

elevation 216–217, 

217

sinus lift  215–216

case examples  260–261, 264

complications 219–220, 

219

mandibular molar region  213–214

bone augmentation  214

short implants  218–219

inferior alveolar nerve damage  213–214

insulin growth factor (IGF‐1), animal 

models 114

interdental brushes  46–47

case examples  258, 263

tunnelling procedure and  179, 179

180, 180

intermediate bifurcation ridge (IBR)  4

l

laser therapy  192–193

lateral canals  56–57

local antibiotic therapy  196–197, 198

low‐level laser therapy (LLLT)  193

m

magnetostrictive scalers  39

mesenchymal stem cells (MSCs)  114–117

metronidazole 197–199


background image

Index

288

microbial plaque see plaque

minimally invasive surgical therapy  200

mobility test  72

molars 1

anatomical aetiological factors  6–9

cervical enamel projections  6–8,  

678

enamel pearls  8–9, 89

anatomical factors in furcation 

involvement 2–6, 

3

bifurcation ridges  4–5, 4

furcation entrance area  3–4

root surface area (RSA)  5

root trunk length  5–6

anatomy 1–2

development 2

periodontal aetiological factors  9–11

iatrogenic factors  11

occlusal trauma  10

plaque‐associated inflammation  10

pulpal pathology  10–11

vertical root fractures  10, 58, 5859

root resection 27

multi‐rooted teeth  15–16, 16

o

occlusal trauma  10, 73, 74

open flap debridement  48–4950

versus guided tissue regeneration  139, 

140–142

versus non‐surgical closed debridement  40

Oral Health Impact Profile (OHIP‐14)  250

oral health‐related quality of life 

(OHRQoL)  250, 251

implementation of in furcation treatment   

254–255

oral hygiene

after furcation tunnelling  182–184, 183

degree I furcation involvement  271

patient home care  45–47

Oral Impacts on Daily Performance (OIDP) 

questionnaire  250, 251

Osteogain 120

osteogenic protein‐1 (OP‐1)  121–124

osteoplasty 180, 

181

outcome measures  137–138

clinical outcomes  138

degree II furcation defects  137–138

degree III furcation defects  138

histology 137

patient‐reported outcome measures 

(PROMS)

furcation involvement  251–252

periodontology 249–251

overhanging dental restorations  11

p

palpation 72

patient feedback  252–254

patient selection

furcation tunnelling  179

regenerative furcation therapy  149

resective therapy  170

patient‐reported outcome measures 

(PROMS) 249–252

furcation involvement  251–252

implementation of in furcation 

treatment 254–255

periodontology 249–251

percussion 72

peri‐implantitis 219–220

risk factors  219–220

therapy 220

periodontal chart  24

periodontal endoscope  191–192

periodontal ligament (PDL)  114

periodontal therapy  92, 92

periodontitis  10, 33, 40, 64–66, 101, 199

disease progression  91–92

model 239, 

240

see also tooth loss

furcation involvement frequency  28–29

health economics studies  232233238

242243

see also endodontic‐periodontal disease

photodynamic therapy (PDT)  193–195, 194

phototherapy 193

piezoelectric scalers  39, 46

plaque 33–34

removal 33–34

effectiveness evaluation  38

see also debridement

role in gingivitis and periodontitis  33

plaque‐associated inflammation  10

platelet‐derived growth factor (PDGF), animal 

models  114, 121

platelet‐rich fibrin (PRF)  148

platelet‐rich plasma (PRP)  114–117, 148

pocket probing  73–74

povidone‐iodine 197


background image

Index 289

powered scalers  39

powered toothbrushes  45–46

probes 16–17, 

16, 269

probing 73–74

probiotics 199–200

pulp vitality tests  74–76, 75

pulpal pathology  10–11

necrosis  63, 69, 7076

periodontal disease relationship  60–63, 

61–62

periodontal furcation therapy 

relationship 78–82

non‐surgical therapy  78–79

regenerative therapy  79–80

resective therapy  80–82

pulpitis  65, 76

reaction to tunnelling procedure  184–185

r

radiographic diagnosis  22–28, 73, 74, 269

digital subtraction radiography (DSR)   

25, 25

pre‐surgical 162

radiation exposure issues  28

three‐dimensional radiography  26–28, 26

regenerative furcation therapy  79–80, 105, 

137–152

case examples  260, 263–264

challenges 150–151

degree II furcation defects  138–148, 

273, 275

enamel matrix derivative  144–148

guided tissue regeneration  138–144

platelet concentrates  148

degree III furcation defects  148–149

enamel matrix derivative  149

guided tissue regeneration  148–149

outcome measures  137–138

clinical outcomes  138

degree II furcation defects  137–138

degree III furcation defects  138

histology 137

see also patient‐reported outcome 

measures (PROMS)

patient selection  149

pulp relationship  79–80

recommendations 80

regenerative periodontal surgery  150, 

151152

tooth selection  149–150

see also animal models of regenerative 

furcation therapy

resective therapy  80–82, 81, 161–173

anatomical considerations  161

case examples  260, 264

contraindications 169–170

degree II furcation defects  276

degree III furcation defects  277–278

indications 163–167

root resection 164–167,  165

root separation  163–164, 164, 166–167, 

166167

furcation tunnelling  177–179

patient selection  170

pre‐surgical diagnosis  161–162

procedure 170–173

crown build‐up  171

endodontic treatment  170

final prosthesis  173

periodontal surgery  172–173

provisional restoration  172

root separation/resection  171–172

pulp relationship  80–82

recommendations 82

scientific studies  167, 168, 169

tooth selection  170

restorations, overhanging  11

rizectomy  5978165166

rizotomy  164

root canal

accessory canals  56–57, 57

iatrogenic perforations  58

root complex  5

root cone length  6

root dentine hypersensitivity  79

root fractures  10, 58, 5859

root resection  27

root resorption  58–59, 60

root separation  163–164, 164

root surface area (RSA)  5

mandible 5

maxilla 5

root trunk length  5–6

s

scaling and root planing  33–34, 39

case examples  258, 263

endoscopy‐aided 191–192

healing after  33–34

see also debridement


background image

Index

290

selective anaesthesia test  77

short implants  218–219

sinus lift  215–216

osteome‐mediated sinus floor elevation   

216–217, 217

sonic scalers  39

split‐mouth design  34

stellate reticulum  2

surgical treatment

furcation regeneration  149–150

patient selection  149

regenerative periodontal surgery  150

tooth selection  149–150, 151

innovations 200

minimally invasive surgery  200

root separation/resection  170–173

crown build‐up  171

during preliminary prosthetic 

preparation 171–172

endodontic treatment  170

final prosthesis  173

patient selection  170

periodontal surgery  172–173

provisional restoration  172

tooth selection  170

tunnelling procedure  179–182, 180

181182

see also open flap debridement; resective 

therapy

systemic antimicrobial treatment  197–199

t

tetracyclines 197–199

three‐dimensional radiography  26–28, 26

tooth extraction

versus treatment  209–211

when to extract  278–280

see also implant placement

tooth loss  92–101

by different furcation degree  99

by vertical furcation component  99

risk of  98, 99–101, 100

study procedures  95–97

treated teeth  93–99

untreated furcation‐involved teeth  93

tooth mobility  72

tooth selection

regenerative furcation therapy  149–150

resective therapy  170

toothbrushes 45–46

transforming growth factor‐beta (TGF‐β), 

animal models  114

treatment

degree I furcation involvement   

270–271, 272

degree II furcation involvement  271–276, 

273275

mandibular 272–275, 

273

maxillary, combined  276

maxillary, single buccal  275, 275

maxillary, single interproximal  275–276

degree III furcation involvement   

276–278, 277

mandibular 277

maxillary 277–278, 

279

innovative treatment  278

options 162–163

treatment versus extraction and 

implants 209–211

upper premolars  184, 185, 278

when to extract  278–280

see also specific treatments

tunnelling see furcation tunnelling

u

ultrasonic scalers  39, 45, 47, 258, 263

upper premolar treatment  278

furcation tunnelling  184, 185

v

vertical root fractures  10, 58, 5859

w

WaterPik 47




رفعت المحاضرة من قبل: Mustafa Shaheen
المشاهدات: لقد قام 6 أعضاء و 186 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل