1-4. Units, Standards, and the SI System

TABLE 1-1 Some Typical Lengths or Distances (order of magnitude)	
$\begin{aligned} & \text { Length } \\ & \text { (or Distance) } \end{aligned}$	$\begin{gathered} \text { Meters } \\ \text { (appraximate) } \end{gathered}$
Neutron or proton (diameter)	10
$\underset{\text { (diameter) }}{\text { Atom }}$	$10^{-10} \mathrm{~m}$
Virus [see Fig. 1-5a]	$10^{-7} \mathrm{~m}$
Sheet of paper (thickness)	10^{-4}
Finger width	10^{-2}
Football field length	10^{2}
Height of Mt. Everest [see Fig. 1-5b]	
Earth diameter	10^{7}
Earth to Sun	10^{11}
Earth to nearest star	10^{16}
Earth to nearest galaxy	10^{22}
Earth to farthest galaxy visible	10^{26}

FIGURE $1-5$ Some lengths: (a) viruses (about 10^{-7} mlong) attacking a cell; ; (b) M. Everest's
height is on the order of $10^{4} m$ (8850 m , to be precise).

(a)

(b)

The measurement of any quantity is made relative to a particular standard or unit, example, we can measure length in British units such as inches feet, or miles, or in the metric system in centimeters, meters, or kilometers. To specify that the length of a particular object is 18.6 is meaningless. The unit must be given; for clearly, For any unit we use, such as the meter for distance or the se
For any unit we use, such as the meter for distance or the second for time, we is. It is important that standards be chosen that are readily reproducible so that anyone needing to make a very accurate measurement can refer to the standard in the laboratory.
Length
he first truly international standard was the meter (abbreviated m) established as he standard of length by the French Academy of Sciences in the 1790s. The stan lard meter was originally chosen to be one ten-millionth of the distance from the Earth's equator to either pole, ${ }^{\dagger}$ and a platinum rod to represent this length was made. (One meter is, very roughly, the distance from the tip of your nose to the tip
of your finger, with arm and hand stretched out to the side.) In 1889 , the meter was defined more precisely as the distance between two finely engraved marks on a particular bar of platinum-iridium alloy in 1960 , to provide greater precision and reproducibility, the meter was redefined as $1,650,763.73$ wavelengths of a particular range light emitted by the gas krypton- 86 . In 1983 the meter was again redefined, older definition of the meter was $299,792,458 \mathrm{~m} / \mathrm{s}$, with an uncertainty of $1 \mathrm{~m} / \mathrm{s}$). The new definition reads: "The meter is the length of path traveled by light in vacuam during a time interval of $1 / 299,792,458$ of a second." ${ }^{\text { }}$
British units of length (inch, foot, mile) are now defined in terms of the meter. The inch (in.) is defined as precisely 2.54 centimeters (cm ; $1 \mathrm{~cm}=0.01 \mathrm{~m}$) Other conversion factors are given in the Table on the inside of the front cover large, rounded off to the nearest power of ten. See also Fig. 1-5. [Note that the abbreviation for inches (in.) is the only one with a period, to distinguish it from the word "in".]
Time
The standard unit of time is the seconal (s). For many years, the second was defined as $1 / 86,400$ of a mean solar day ($24 \mathrm{~h} /$ day $\times 60 \mathrm{~min} / \mathrm{h} \times 60 \mathrm{~s} / \mathrm{min}=86,400 \mathrm{~s} /$ day $)$ The standard second is now defined more precisely in terms of the frequency of radiISpecificalty, one second is defined as the time reass between two particular states.
ater
 one hour (h). Table 1-2 presents a range of measured time intervals, rounded off to the nearest power of ten
Mass
The standard unit of mass is the kilogram (kg). The standard mass is a particular platinum-iridium cylinder, kept at the International Bureau of Weights and Measures near Paris. France, whose mass is defined as exactly 1 kg . A range of masses is presented
22 pounds on Earth.]
${ }^{4}$ Moders messurements of the Earth's circumterence reveal that the intended lengtion is off by about one-fiftieth of 1%. Not bad! ${ }^{4}$ The new definition
$299092,458 \mathrm{~m} / \mathrm{s}$

6 CHAPTER 1 introduction, Measurement, Estimating

When deaing win atoms and molecules, we usually use the unitied atomic $1 \mathrm{u}=1.6605 \times 10^{-27} \mathrm{~kg}$
he delluions of other standard units for other quantities will be given as we iven inside the front cover.)

Unit Prefixes

, metric system, the larger and smaller units are delined in multiples of 10 from $1000 \mathrm{~m}, 1$ centimeter is $\frac{1}{10} \mathrm{~m}, 1$ millimeter (mm) is $\frac{1}{3} \mathrm{~m}$ or $\frac{1}{1 \mathrm{~cm}} \mathrm{~cm}$, and so on The prefixes "centi-", "kilo-", and others are listed in Table 1-4 and can be applied For example, a centiliter (CL) is $\frac{1}{100}$ liter (L), and a kilogram (kg) is 1000 grams (g). tems of Unit
consistent set of units. Several systems of units have been in use over the years, Today the most important is the Systeme International (French for International e standard for time is the second, and the standard for mass is the lilogram. This, sstem used to be called the MKS (meter-kilogram-second) system.
A second metric system is the cess systenn, in which the centimeter, gram, and
ond are the standard units of length, mass, and time, as abbreviated in the title. The British engineering system has as its standards the foot for length, the pound We use SI units almost time.
Base versus Derived Quantities

SECTION 1-4 Units, Standards, and the SI System

1-5 Converting Units

Any quantity we measure, such as a length, a speed, or an electric current, consists of a number and a unit. Often we are given a quantity in one set of units, but we table is 21.5 inches wide and we want to express this in centimeters We must use a conversion factor, which in this case is (by definition) exactly

$$
1 \mathrm{in} .=2.54 \mathrm{~cm}
$$

or, written another way,

$$
1=2.54 \mathrm{~cm} / \mathrm{in} .
$$

Since multiplying by one does not change anything, the width of our table, in cm , is

$$
21.5 \text { inches }=(21.5 \mathrm{irm}) \times\left(2.54 \frac{\mathrm{~cm}}{\mathrm{in}}\right)=54.6 \mathrm{~cm} .
$$

Note how the units (inches in this case) cancelled out. A Table containing many unit Note how the units (inches in this case) cancelled out. A Table containing many unit
conversions is found inside the front cover of this book. Let's consider some Examples.
Q) Physics Applied

The worlds tallesp peaks

FICURE $1-6$ The worlds second highest peak, K 2 , whose summit is considered the most difficult of the "8oeoores." K is mest hen here from
the north (China).

TABLE 1-6

The 8000-m Peaks
Peak \quad Height (m)

	Height (m)
Mt.Eyerest_	8850

${ }^{\mathrm{K}} \mathrm{K}^{2}$
Kangchenjunga
Lhotse
Makalu
Cho Oyu
Mansslu
Manaslu
Nanga Parba
Angaparna
Annapurna
Gasherbrum I
Broad Peak
Gasherbrum II
Shisha Pangma
©XAPFIE 1-2 The $8000-\mathrm{m}$ peaks. The fourteen tallest peaks in the world (Fig. 1-6 and Table 1-6) are reforred to as "eight-thousanders," meaning their (Fig. 1-6 and over 8000 m above sea level. What is the elevation, in feet, of an
summits are over 80 . elevation of 8000 m ?
APPROACH We need simply to convert meters to feet, and we can start with the conversion factor $1 \mathrm{in} .=2.54 \mathrm{~cm}$, which is exact. That is, $1 \mathrm{in} .=2.5400 \mathrm{~cm}$ to any number of significant figures, because it is defined to be.
solumion one foot is 12 in., so we can write

$$
1 \mathrm{ft}=(12 \mathrm{in} .)\left(2.54 \frac{\mathrm{~cm}}{\mathrm{in}}\right)=30.48 \mathrm{~cm}=0.3048 \mathrm{~m},
$$

which is exact. Note how the units cancel (colored slashes). We can rewrite this equation to find the number of feet in 1 meter

$$
1 \mathrm{~m}=\frac{1 \mathrm{ft}}{0.3048}=3.28084 \mathrm{ft}
$$

We multiply this equation by 8000.0 (to have five significant figures):

$$
8000.0 \mathrm{~m}=(8000.0 \mathrm{ma})\left(3.28084 \frac{\mathrm{ft}}{\mathrm{~m}}\right)=26,247 \mathrm{ft} .
$$

An elevation of 8000 m is $26,247 \mathrm{ft}$ above sea level.
NOTE We could have done the conversion all in one line

$$
8000.0 \mathrm{~m}=(8000.0 \mathrm{~m})\left(\frac{100 . \mathrm{cm}}{1 \mathrm{~m}}\right)\left(\frac{1 \mathrm{nh}}{2.54 . \mathrm{cm}}\right)\left(\frac{1 \mathrm{ft}}{12 \mathrm{izm}}\right)=26,247 \mathrm{ft} .
$$

The key is to multiply conversion factors, each equal to one ($=1.0000$), and to make sure the units cancel.

EXERCISE E There are only 14 eight-thousand-meter peaks in the world (see Example 1-2), and their names and elevations are given in Table 1-6. They are all in the Himalaya mountain range in India, Pakistan, Thbet, and China. Determine the elevation of the world's
three highest peaks in feet.

SaMPIE 1-3 Apartment area. You have seen a nice apartment whose floor area is 880 square feet $\left(\mathrm{ft}^{2}\right)$. What is its area in square meters?
APPROACH We use the same conversion factor, $1 \mathrm{in} .=2.54 \mathrm{~cm}$, but this time we have to use it twice.
SOLUON Because $1 \mathrm{in} .=2.54 \mathrm{~cm}=0.0254 \mathrm{~m}$, then $1 \mathrm{ft}^{2}=(12 \mathrm{in} .)^{2}(0.0254 \mathrm{~m} / \mathrm{in})^{2}=$ SOUMON Becauss $1 \mathrm{in}=2.54 \mathrm{~cm}=0.0254 \mathrm{~mm}$, then $1 \mathrm{ft}=$
$0.0929 \mathrm{~m}^{2}$ So $880 \mathrm{ft}^{2}=\left(800 \mathrm{ft}^{2}\right)\left(0.0929 \mathrm{~m}^{2} / \mathrm{ft}^{2}\right) \approx 82 \mathrm{~m}^{2}$.
NOTE As a rule of thumb, an area given in ft^{2} is roughly 10 times the number of square meters (more precisely, about $10.8 \times$).

EXAMPLE 1-4 Speeds. Where the posted speed limit is 55 miles per hour (mi / h or mph), what is this speed (a) in meters per second $(\mathrm{m} / \mathrm{s})$ and (b) in kilometers per hour (km / h)?
APPROACH We again use the conversion factor $1 \mathrm{in} .=2.54 \mathrm{~cm}$, and we recall that there are 5280 ft in a mile and 12 inches in a foot; also, one hour contains $(60 \mathrm{~min} / \mathrm{h}) \times(60 \mathrm{~s} / \mathrm{min})=3600 \mathrm{~s} / \mathrm{h}$
SOLUTION (a) We can write 1 mile as

$1 \mathrm{mi}=(5280 \mathrm{n})\left(12 \frac{\mathrm{id}}{\mathrm{h}}\right)\left(254 \frac{\mathrm{cil}}{\mathrm{in}}\right)\left(\frac{1 \mathrm{~m}}{100 \mathrm{cmi}}\right.$
 $=1609 \mathrm{~m}$

We also know that 1 hour contains 3600 s, so

$$
55 \frac{\mathrm{mi}}{\mathrm{~h}}=\left(55 \frac{\mathrm{mi}}{\mathrm{k}}\right)\left(1609 \frac{\mathrm{~m}}{\mathrm{mi}}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)=25 \frac{\mathrm{~m}}{\mathrm{~s}},
$$

where we rounded off to two significant figures

$$
55 \frac{\mathrm{mi}}{\mathrm{~h}}=\left(55 \frac{\mathrm{mi}}{\mathrm{~h}}\right)\left(1.609 \frac{\mathrm{~km}}{\mathrm{mi}}\right)=88 \frac{\mathrm{~km}}{\mathrm{~h}} .
$$

NOTE Each conversion factor is equal to one. You can look up most conversion
factors in the Table inside the front cover.
$\underset{\text { EXER }}{\text { EXimit? }}$
When changing unit you can
When changing units, you can avoid making an error in the use of conversion of 1 mi to 1609 m in Example $1-4(a)$, if we had incorrectly used the factor ($\left.\frac{100 \mathrm{~cm}}{1 \mathrm{~m}}\right)$ have ended up with meter

1-6 Order of Magnitude: Rapid Estimating

We are sometimes interested only in an approximate value for a quantity. This
might be because an accurate calculation would take more time than it is worth or would require additional data that are not available. In other cases, we may ant to make a rough estimate in order to check an accurate calculation made a calculator, to make sure that no blunders were made when the number were entered.

A rough estimate is made by rounding off all numbers to one significant figure and its power of 10 , and after the calculation is made, again only one significant figure is kept. Such an estimate is called an order-of-magnitude estimate and can be accurate within a factor of 10 , and often better. In fact, the phrase "order of magnitude" is sometimes used to refer simply to the power of 10 .

HICURE 1-7 Example 1-5. (a) How much water is in this lake? (Photo is of Nevada of California.) (b) Model of the lake as a cylinder. [We could go one step further and estimate the mass or weight of this lake. We will see later so this lake has a mass of about $\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(10^{7} \mathrm{~m}^{3}\right) \approx 10^{10} \mathrm{~kg}$, whic about 10 billion kg or 10 million metric tons (A metric ton is 1000 kg , about 2200 lbs slightly larger than a Britis
ton, 2000 lbs .)]

Estimating the rotume (or mass
EXAMPLE 1-5 ESTIMATE Volume of a lake. Estimate how much water there is in a particular lake, Fig. 1-7a, which is roughly circular, about 1 km across, and you guess it has an average depth of about 10 m .
APPROACH No lake is a perfect circle, nor can lakes be expected to have a perfectly flat bottom. We are only estimating here. To estimate the volume, we can use a simple model of the lake as a cylinder: we multiply the average depth Fig. 1-7b).
sotumion The volume V of a cylinder is the product of its height h times the area of its base: $V=h \pi r^{2}$, where r is the radius of the circular base. ${ }^{\dagger}$ The radius r
is $\frac{1}{2} \mathrm{~km}=500 \mathrm{~m}$, so the volume is approximately
$V=h \pi r^{2} \approx(10 \mathrm{~m}) \times(3) \times\left(5 \times 10^{2} \mathrm{~m}\right)^{2} \approx 8 \times 10^{6} \mathrm{~m}^{3} \approx 10^{7} \mathrm{~m}^{3}$, where π was rounded off to 3 . So the volume is on the order of $10^{7} \mathrm{~m}^{3}$, ten million cubic meters. Because of all the estimates that went into this calculation, the order-of-magnitude estimate ($10^{7} \mathrm{~m}^{3}$) is probably better to quote than the $8 \times 10^{6} \mathrm{~m}^{3}$ Eigure.
NOIE To express our result in U.S. gallons, we see in the Table on the inside ront cover that 1 liter $=10^{-3} \mathrm{~m}^{3} \approx \frac{1}{4}$ gallon. Hence, the lake contain $\left(8-x-16^{6} \mathrm{~m}^{3}\right)\left(1\right.$ gallon $\left./ 4 \times-10^{-3} \mathrm{~m}^{3}\right) \approx-2 \times-10^{9}$ gallonsof wate

EXAMFLE 1-6 ESTIMATE Thickness of a page. Estimate the thicknes of a page of this book.
APPROACH At first you might think that a special measuring device, a micrometer (Fig. 1-8), is needed to measure the thickness of one page since an ordinary ruler clearly won't do. But we can use a trick or, to put it in physics terms, make use of a symmetry: we can make the reasonable assumption that all the pages of this book are equal in thickness.
SOLUMON We can use a ruler to measure hundreds of pages at once. If you measure the thickness of the first 500 pages of this book (page 1 to page 500) , Formulas like this for volume, area, etc., are found inside the back cover of this book.
counted front and back, is 250 separate sheets of paper. So one page must have a thickness of about.
$\frac{1.5 \mathrm{~cm}}{250 \mathrm{pages}} \approx 6 \times 10^{-3} \mathrm{~cm}=6 \times 10^{-2} \mathrm{~mm}$,
or less than a tenth of a millimeter (0.1 mm).
EXAMPLE 1-7 ESTMATE Height by triangulation. Estimate the height of the building shown in Fig. 1-9, by "rriangulation," with the help of a bus-stop pole and a friend.
APPROACH By standing your friend next to the pole, you estimate the height of the pole to be 3 m . You next step away from the pole until the top of the pole is in line with the top of the building, Fig. 1-9a. You are 5 ft 6 in . tall, so your eyes are about 1.5 m above the groum. Your friend is tallex, and when she stretches out her arms, one hand touches you, and the other touches the pole, so you estimate that distance as 2 m (Figg 1-9a). You then pace off the distance from the pole to the
base of the building with big $1-\mathrm{m}$-long steps, and you get a total of 16 steps or 16 m . SOLUTION Now you draw, to scale, the diagram shown in Fig. 1-9b using these measurements. You can measure, right on the diagram, the last side of the triangle to be about $x=13 \mathrm{~m}$. Alternatively, you can use similar triangles to obtain the height x :

$$
\frac{1.5 \mathrm{~m}}{2 \mathrm{~m}}=\frac{x}{18 \mathrm{~m}}, \text { so } x \approx 13 \frac{1}{2} \mathrm{~m} .
$$

Finally you add in your eye height of 1.5 m above the ground to get your final result: the building is about 15 m tall.

EXAMPTE 1-8 ESTIMATE Estimating the radius of Earth. Believe it of not, you can estimate the radius of the Earth without having to go into space (see the photograph on page 1). If you have ever been on the shore of a large lake, you may have noticed that you cannot see the beaches, piers or rocks at water
level across the lake on the opposite shore. The lake seems to bulge out between level across the lake on the opposite shore. The lake seems to bulge out between
you and the opposite shore-a good clue that the Earth is round. Suppose you climb a stepladder and discover that when your eyes are $10 \mathrm{ft}(3.0 \mathrm{~m})$ above the water, you can just see the rocks at water level on the opposite shore. From a map, you estimate the distance to the opposite shore as $d \approx 6.1 \mathrm{~km}$. Use ius R of the Earth.
APPROACH We use simple geometry, including the theorem of Pythagoras $c^{2}=a^{2}+b^{2}$, where c is the length of the hypotenuse of any right triangle, and two sides.
Earth R - Ford the night niangle of Fig. $1-10$, the two sides are the radius of the mately the length $R+h$, where $h=3.0 \mathrm{~m}$. By the Pythagorean theorem,

$$
R^{2}+d^{2} \approx(R+h)^{2}
$$

$$
\begin{aligned}
& \approx(R+h \\
& \approx R^{2}+2 h R+h^{2} .
\end{aligned}
$$

We solve algebraically for R, after cancelling R^{2} on both sides:

$$
R \approx \frac{d^{2}-h^{2}}{2 h}=\frac{(6100 \mathrm{~m})^{2}-(3.0 \mathrm{~m})^{2}}{6.0 \mathrm{~m}}=6.2 \times 10^{6} \mathrm{~m}=6200 \mathrm{~km} .
$$

NOTE Precise measurements give 6380 km . But look at your achievement! With a few simple rough measurements and simple geonetry, you made a good estimate measuring tape. Now you know the answer to the Chapter-Opening Question on p.1.

FIGURE 1-8 Example 1-6. Micrometer uring small ticknesses. Diagrams are really useful!

FICURE 1-10 Example 1-8, but not to scale-Your ean see small rocks at water level on the opposite shore
of a lake 6.1 km wide if you stand on a stepladder.

EXAMPLE 1-9 ESTIMATE Total number of heartbeats. Estimate the

APPROACH A typical resting heart rate is 70 beats $/ \mathrm{min}$. But during exercise it can be a lot higher. A reasonable average might be 80 beats $/ \mathrm{min}$.
SOLUIION One year in terms of seconds is $(24 \mathrm{~h})(3600 \mathrm{~s} / \mathrm{h})(365 \mathrm{~d}) \approx 3 \times 10^{\prime} \mathrm{s}$. If an average person lives 77 yearss $=(70 \mathrm{yr})\left(3 \times 10^{7} \mathrm{~s} / \mathrm{yr}\right) \approx 2 \times 10^{9} \mathrm{~s}$, then th
total number of heartbeats would be about

$$
\left(80 \frac{\text { beats }}{\min }\right)\left(\frac{1 \min }{60 \mathrm{~s}}\right)\left(2 \times 10^{\mathrm{s}} \mathrm{~s}\right) \approx 3 \times 10^{9}
$$

or 3 trilion.
Another technique for estimating, this one made famous by Enrico Fermi to his physics students, is to estimate the number of piano tuners in a city, say, number of piano tuners today in San Francisco, a city of about 700,000 inhabitants, we can proceed by estimating the number of functioning pianos, how often each piano is tuned, and how many pianos each tuner can tune. To estimate the number of pianos in San Francisco, we note that certainly not everyone has a piano
A guess of 1 family in 3 having a piano would correspond to 1 piano per 12 persons, assuming an average family of 4 persons. As an order of magnitude, let's say piano per 10 people. This is certainly more reasonable than 1 per 100 people, or 1 per every person, so let's proceed with the estimate that 1 person in 10 has piano, or about 70,000 pianos in San Francisco. Now a piano tuner needs an hour or two to tune a piano. So let's estimate that a tuner can tune 4 or 5 pianos a day A piano tuner tuming 4 pianos a day, 5 days a week, 50 weeks a year can tune about 1000 pianos a year. So San Francisco, with its (very) roughly 70,000 pianos needs about 70 piano tuners. This is, of course, only a rough estimate. ${ }^{\dagger}$ It tells us at there must be many more than 10 piano tuners, and surely not as many as 1000 .

*1-7 Dimensions and Dimensional Analysis

When we speak of the dicesions of a quanity, we are referring to the type of bas wiss or base quantities that make it up. The dimensions of area, for example, are suare meters, square feet, cm^{2}, and so on. Velocity, on the other hand, can be square meters square feet, cm^{2}, and so on. Velocity, on the other hand, can be
measured in units of $\mathrm{km} / \mathrm{h}, \mathrm{m} / \mathrm{s}$ or mi / h, but the dimensions are always a length $[L]$ divided by a time $[T]:$ that $\mathrm{is},[L / T]$.

The formula for a quantity may be different in different cases, but the dimensions remain the same. For example, the area of a triangle of base b and height h is $A=\frac{1}{2} b h$, whereas the area of a circle of radius r is $A=\pi r^{2}$. The formulas are different in the two cases, but the dimensions of area are always [$\left[L^{2}\right]$

Dimensions can be used as a help in working out relationships, a procedure
ander to as dimensional analysis. One useful technique is the use of dimensions to check if a relationship is incorrect. Note that we add or subtract quantities only if they have the same dimensions (we don't add centimeters and hours); and the quantities on each side of an equals sign must have the same dimensions. (In numerical calculations, the units must also be the same on both sides of an equation.) For example, suppose you derived the equation $v=v_{0}+\frac{1}{2} u t^{2}$, where v is the
speed of an object after a time t, ${ }_{0}$ is the object's initial speed, and the object undergoes an acceleration a. Let's do a dimensional check to see if this equation

A check of the San Francisco Yellow Pages (done after this calculation) reveals about 50 listings Each
of these Istings may employ more than one tuner, turt on the other hand, each may ako do repairs as of these listings may employ more than one tuner, but
well as tuning .f any case, our estimate is reasonable.
Some Sections of this book, such as this one, may be considered optional at the discretion of the instructor, and they are marked with an asterisk ${ }^{()}$). See the Preface fort more detailis
could be correct or is surely incorrect. Note that numerical factors, like the $\frac{1}{2}$ here do not affect dimensional checks. We write a dimensional equätion as follows emembering that the dimensions of speed are $[L / T]$ and (as we shall see in Chapter 2) the dimensions of acceleration are $\left[L / T^{2}\right]$:

$$
\left[\frac{L}{T}\right] \frac{\underline{2}}{}\left[\frac{L}{T}\right]+\left[\frac{L}{T^{2}}\right]\left[T^{2}\right]=\left[\frac{L}{T}\right]+[L]
$$

The dimensions are incorrect: on the right side, we have the sum of quantities whose dimensions are not the same. Thus we conclude that an error was made in Ae derivation of the original equation.
A dimensional check can only tell you when a relationship is wrong. It can't $\frac{1}{2}$ or 2π) could be missing. Dimensional analysis ca.
t sure about. For ens can also be used as a quick check on an equation you are tion for the period of a simple pendulum T (the can't remember whether the equaswing) of length ℓ is $T=2 \pi \sqrt{\ell \bar{g}}$ or $T=2 \pi \sqrt{g \ell \ell}$, make one back-and-forth due to gravity and, like all accelerations, has dimensions $\left[L / T^{2}\right]$. Do not worry about these formulas-the correct one will be derived in Chapter 14; what we are concerned about here is a person's recalling whether it contains ℓ / g or g / l.) A dimensional check shows that the former (l / g) is correct:

$$
[T]=\sqrt{\frac{[L]}{\left[L / T^{2}\right]}}=\sqrt{\left[T^{2}\right]}=[T],
$$

whereas the latter (g / ℓ) is not:

$$
[T] \neq \sqrt{\frac{\left[L / T^{2}\right]}{[L]}}=\sqrt{\frac{1}{\left[T^{2}\right]}}=\frac{1}{[T]}
$$

Note that the constant 2π has no dimensions and so can't be checked using dimensions Further uses of dimensional analysis are found in Appendix \mathbf{C}

EXAMPLE 1-10. Planck length. The smallest meaningful measure of length is called the "Planck length," and is defined in terms of three fundamental constants in nature, the speed of light $\epsilon=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$, the gravitational constant The Planck length $\lambda_{P}(\lambda$ is the Greek letter "lambda") is given by the following combination of these three constants:

$$
\lambda_{\mathbf{p}}=\sqrt{\frac{G h}{c^{3}}} .
$$

Show that the dimensions of λ_{P} are length [L] and find the order of magnitude of λ_{P}. APPROACH We rewrite the above equation in terms of dimensions. The dimen-此 c are $[L / T]$, of G are $\left[L / M T^{2}\right]$ and of h are $\left[M L^{2} / T\right]$.

SOLUTION The dimensions of λ_{p} are

$$
\sqrt{\frac{\left[L^{3} / M T^{2}\right]\left[M L^{2} / T\right]}{\left[L^{3} / T^{3}\right]}}=\sqrt{\left[L^{2}\right]}=[L
$$

which is a length. The value of the Planck length is
$\lambda_{P}=\sqrt{\frac{G h}{c^{3}}}=\sqrt{\frac{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{s}^{2}\right)\left(6.63 \times 10^{-34} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\right)}{\left(3.0 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)^{3}}} \approx 4 \times 10^{-35} \mathrm{~m}$,
which is on the order of 10^{-34} or 10^{-35} m.
NOTE Some recent theories (Chapters 43 and 44) suggest that the smallest particles (quarks, leptons) have sizes on the order of the Planck length, $10^{-35} \mathrm{~m}$. Thes theories also suggest that the "Big Bang", with which the Universe is believed to
have begun, started from an initial size on have begun, started from an initial size on the order of the Planck length.

Vectors

In our study of physics, we often need to work with physical quantities that have both numerical and directional properties. As noted in Section 2.1, quantities of this nature are vector quantities. This chapter is primarily concerned with general properties of vector quantities. We discuss the addition and subtraction of vector quantities, together with some common applications to physical situations.
Vector quantities are used throughout this text. Therefore, it is imperative that you master the techniques discussed in this chapter.

3.1 Coordinate Systems

Many aspects of physics involve a description of a location in space. In Chapter 2, for example, we saw that the mathematical description of an object's motion require example, we saw that the mathematical description of an object's motion requires
a method for describing the object's position at various times. In two dimensions, a method for describing the object's position at various is accomplished with the use of the Cartesian coordinate system, in which perpendicular axes intersect at a point defined as the origin O (Fig. 3.1). Cartesian coordinates are also called rectangular coordinates.
Sometimes it is more convenient to represent a point in a plane by its plane polar
cortinates (r, θ) as shown in Figure 3.2a (page 60$)$. In this polar coordinate system, r is coordinates (r, θ) as shown in Figure 3.2 a (page 60). In this polar coordinate system, ris
the distance from the origin to the point having Cartesian coordinates (x, y) and θ is the angle between a fixed axis and a line drawn from the origin to the point. The fixed axis is often the positive x axis, and θ is usually measured counterclockwis

CHAPTER \square
3.1 Coordinate Systems
3.2. Vector and Scalar Quantities
3.3 Some Properties of Vectors
3.4 Components of a Vector and Unit Vectors

A signpost in Saint Petersburg Florida, shows the distance and direction to several cities. Quantities that are defined by
both a magnitude and a direction
are called vector quantities.

SOLUTION

 be a few meters and θ to be larger than 180°. the Conceptualize step, we recognize that we are simply

Figure 3.2 (a) The plane polar coordinates of a point are represented by the distance r and the angle θ, where θ is measured counterclockwise from the positive x axis. (b) The right triangle used to
relate (x, y) to (r, θ). relate (x, y) to (r, θ).
from it. From the right triangle in Figure $3.2 \mathbf{b}$, we find that $\sin \theta=y / 8$ and that \cos $\theta=x /$ n (A review of trigonometric functions is given in Appendix B.4.) Therefore, starting with the plane polar coordinates of any point, we can obtain the Cartesian coordinates by using the equation
r

$x=r \cos \theta$ $y=r \sin \theta$

Furthermore, if we know the Cartesian coordinates, the definitions of trigonometry tell us that

Polar coordinates in terms of Cartesian coordinates

$\tan \theta=\frac{y}{x}$
$r=\sqrt{x^{2}+y^{2}}$

Equation 3.4 is the familiar Pythagorean theorem.
These four expressions relating the coordinates (x, y) to the coordinates (r, θ) These four expressions relating the coordinates (x, y) to the coordinates (r, θ)
apply only when θ is defined as shown in Figure 3.2a-in other words, when posi apply only when θ is defined as shown in Figure 3.2 a -in other words, when posi-
tive θ is an angle measured counterclockwise from the positive x axis. (Some sci tive θ is an angle measured counterclockwise from the positive x axis. (Some sci-
entific calculators perform conversions between Cartesian and polar coordinates based on these standard conventions.) If the reference axis for the polar angle θ is chosen to be one other than the positive x axis or if the sense of increasing θ is chosen differently, the expressions relating the two sets of coordinates will change.

The Cartesian coordinates of a point in the $x y$ plane are $(x, y)=(-3.50,-2.50) \mathrm{m}$ as shown in Figure 3.3. Find the polar coordinates of this point.

Conceptualize The drawing in Figure 3.3 helps us conceptualize the problem. We wish to find r and θ. We expect r to
Categorize Based on the statement of the problem and converting from Cartesian coordinates to polar coordinates. We therefore categorize this example as a substitution problem. Substitution problems generally do not have an extensive Analyze step other than the substitution of Figure 3.3 (Example 3.1) numbers into a given equation. Similarly, the Finalize step Cartesian coordinates are given.

p 3.1
consists primarily of checking the units and making sure that the answer is reasonable and consistent with our expectations. Therefore, for substitution problems, we will not label Analyze or Finalize steps.

Use Equation 3.4 to find r :
Use Equation 3.3 to find θ :

Notice that you must use the signs of x and y to find that the point lies in the third quadrant of the coordinate system. That is,$\theta=216^{\circ}$, not 35.5°, whose tangent is also 0.714 . Both answers agree with our expectations in the Conceptualize step. -

.2 Vector and Scalar Quantities

We now formally describe the difference between scalar quantities and vector quan tities. When you want to know the temperature outside so that you will know how "degrees F." Temperature is therefore an example of a scalar quantity:

A scalar quantity is completely specified by a single value with an appropriate

 unit and has no direction.Other examples of scalar quantities are volume, mass, speed, time, and time inter vals. Some scalars are always positive, such as mass and speed. Others, such as arithmetic are une
If you are preparing to pilot a small plane and need to know the wind velocity, you must know both the speed of the wind and its direction. Because direction is important for its complete specification, velocity is a vector quantity:

Another example of a vector quantity is displacement, as you know from Chapter 2. Suppose a particle moves from some point (A) to some point (B) along a straight
path as shown in Figure 3.4. We represent this displacement by drawing an arrow path as shown in Figure 3.4. We represent this displacement by drawing an arrow
from (A) to (B), with the tip of the arrow pointing away from the starting point The from (A) to (B), with the tip of the arrow pointing away from the starting point. The length of the arrow represents the magnitude of the displacement. If the particle travels along some other path from (A) to (B) such as shown by the broken line in Figure 3.4, its displacement is still the arrow drawn from (A) to (B). Displacement depends only on the initial and final positions, so the displacement vector is independent of the path taken by the particle between these two points.
In this text, we use a boldface letter with an arrow over the letter, such as \vec{A}, to tepresenf a vecton Another common notation for vectors with which you should be familiar is a simple boldface character: \mathbf{A}. The magnitude of the vector $\overrightarrow{\mathrm{A}}$ is written either A or $|\vec{A}|$ The magniude of a vector has physical units, such as meters for displacement or meters per second for velocity The magnitude of a vector is atweys. a positive number.

Figure 3.4 As a particle moves from (A) to © along an arbitrary path 4 erpesented by the broken
line, its displacement line, its displacement is a vector quantity shown by
drawn from (a) to (B)
(0) uick Quiz 3.1 Which of the following are vector quantities and which are scalar - quantities? (a) your age (b) acceleration (c)-velocity (d).speed (e)-mass.-

Figure 3.5 These four vectors are equal because they have equal lengths and point in the same
direction.

Pitfall Prevention 3.1 Vector Addition Versus $\overparen{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{C}}$ is very different from $A+B=C$. The first equation is a vector sum, which must
be handled carefully, such as with the graphical method. The second equation is a simple algeraic addition of numbers that of arithmetic.

Some Properties of Vectors

In this section, we shall investigate general properties of vectors representing physical quantities. We also discuss how to add and subtract vectors using both algebraic and geometric methods.

Equality of Two Vectors
For many purposes, two vectors $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ may be defined to be equal if they haves the same magnitude and if they point in the same direction. That is, $\mathbf{A}=\mathbf{B}$ only if ple, all the vectors in Figure 3.5 are equal even though they have different starting points. This property allows us to move a vector to a position parallel to itself in a diagram without affecting the vector.

Adding Vectors
The rules for adding vectors are conveniently described by a graphical method To add vector \mathbf{B} to vector \mathbf{A}, first draw vector \mathbf{A} on graph paper, with its magnitude represented by a convenient length scale, and then draw vector \mathbf{B} to the same scale, with its tail starting from the tip of \mathbf{A}, as shown in \rightarrow gure 3.6. The resultant vector $\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$ is the vector drawn from the tail of $\overrightarrow{\mathbf{A}}$ to the tip of $\overrightarrow{\mathbf{B}}$.
A geometric construction can also be used to add more than two vectors as shown in Figure 3.7 for the case of four vectors. The resultant vector $\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}+$ $\overrightarrow{\mathbf{C}}+\overrightarrow{\mathbf{D}}$ is the vector that completes the polygon. In other words, $\overrightarrow{\mathbf{R}}$ is the vector drawn wectors is called the "head to tail method" wh method.
. This fact may seem trivial, but as you will see in Che order of the addiimportant when vectors are multiplied. Procedures for multiplying vectors are is cussed in Chapters 7 and 11.) This property, which can be seen from the geometric construction in Figure 3.8, is known as the commutative law of addition
$\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{A}}$

Figure 3.6 When vector \vec{B} is added to vector $\overrightarrow{\mathbf{A}}$, the resultant $\overrightarrow{\mathbf{R}}$ is $\stackrel{\rightharpoonup}{\mathbf{A}}$ to the tip of $\mathbf{\vec { B }}$.

igure $3.7{ }^{t}{ }^{t}$ comatric consta tion for summing four vectors. The * resultant vector $\overrightarrow{\mathbf{R}}$ is by definition
he one that completes the polygon.

Figure 3.8 This construction Figure 3.8 This construction
shows that $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{A}}$ or, in other words, that vector addition is commutative. ion
\vec{A} or, in
dition is

When three or more vectors are added, their sum is independent of the way in which the individual vectors are grouped together. A geometric proof of this rule for three vectors is given in Figure 3.9. This property is called the associative law of addition:

$\vec{A}+(\vec{B}+\vec{C})=(\vec{A}+\vec{B})+\vec{C}$

(3.6)

In summarry, a vector quantity has both magnitude and direction and also obeys the laws of vector addition as described in Figures 3.6 to 3.9. When two or more vectors are added together, they must all have the same units and they must all
be the same type of quantity. It would be meaningless to add a velocity vector (fo example, $60 \mathrm{~km} / \mathrm{h}$ to the east) to a displacement vector (for example, 200 km to the north) because these vectors represent different physical quantities. The same rule also applies to scalars. For example, it would be meaningless to add time intervals to temperatures.

The operation of vector subtraction makes use of the definition of the negative of etor. We define the operation $\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}$ as vector $-\overrightarrow{\mathbf{B}}$ added to vector $\overrightarrow{\mathbf{A}}$: $\vec{A}-\vec{B}=\vec{A}+(-\vec{B})$
The geometric construction for subtracting two vectors in this way is illustrated in Figure 3.10a.
$\overrightarrow{\mathrm{A}} \stackrel{\text { Another way of looking at vector subtraction is to notice that the difference }}{ }$ $\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}$ between two vectors $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ is what you have to add to the second vector

π

$$
\text { Vector } \overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}} \text { is }
$$ the vector we must

add to $\overrightarrow{\mathrm{B}}$ to obtain $\overrightarrow{\mathrm{A}}$

b

Figure 3.9 Geometric construc tions for verifying the associative. taw of addition.

Associative law of addition
to obtain the first. In this case, as Figure 3.10 b shows, the vector $\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbb{B}}$ points from the tip of the second vector to the tip of the first.

Cuyl The magnitudes of two vectors $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\boldsymbol{B}}$ are $A=12$ units and $B=8$ units. Which pair of numbers represents the largestand smallest possible
values for the magnitude of the resultant vector $\overrightarrow{\mathbf{R}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathbf{B}}$? (a) 14.4 units values for the magnitude of the resultant vector $\mathrm{R}=\mathrm{A}+\mathrm{B}$? (a) 14.4 u
4 units (b) 12 units, 8 units (c) 20 units, 4 units (d) none of these answers

Example 3.2 A Vacation Trip
A car travels 20.0 km due north and then 35.0 km in a direction 60.0° west of north as shown in Fig ure 3.11a. Find the magnitude and direction of the car's resultant displacement.

SOLUTION

Conceptualize The vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$ drawn in Figure 3.11a help us conceptualize the problem. The resultant vector \vec{R} has also been drawn. We expect its magnitude to be a few tens of kilometers. The angle β that the resultant vector makes with the y axis is expected to be less than 60°, the

-a.
d

Figure 3.11 (Example 3.2) (a) Graphical method for finding the resultant displacement vector $\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$. (b) Adding the vectors in reverse order $(\vec{B}+\vec{A})$ gives the same result for $\overrightarrow{\mathbb{R}}$

Categorize We can categorize this example as a simple analysis problem in vector addition. The displacement $\overrightarrow{\mathbf{R}}$ is the resultant when the two individual displacements $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ are added. We can further categorize it as a problem about the analysis of triangles, so we appeal to our expertise in geometry and trigonometry
Analyze In this example, we show two ways to analyze the problem of finding the resultant of two vectors. The first way is o solve the problem geometrically, using graph paper and a protractor to measure the magnitude of \mathbb{R} and its direction in Figure 3.11a. (In fact, even when you know you are going to be carrying out a calculation, you should sketch the vectors to check your results.) With an ordinary ruler and protractor, a large diagram typically gives answers to two-digit bue not to three-digit precision. Try using these tools on $\overrightarrow{\mathbf{R}}$ in Figure 3.11a and compare to the trigonometric analysis below!
The second way to solve the problem is to analyze it using algebra and trigonometry. The magnitude of $\overrightarrow{\mathbb{R}}$ can be obtained from the law of cosines as applied to the triangle in Figure 3.11a (see Appendix B.4).

Use $R^{2}=A^{2}+B^{2}-2 A B \cos \theta$ from the law of cosines to, $\quad R=\sqrt{A^{2}+B^{2}-2 A B \cos \theta}$ find R :

Substitute numerical values, noting that
$\theta=180^{\circ}-60^{\circ}=120^{\circ}$
$R=\sqrt{(20.0 \mathrm{~km})^{2}+(35.0 \mathrm{~km})^{2}-2(20.0 \mathrm{~km})(35.0 \mathrm{~km}) \cos 120^{\circ}}$ $=48.2 \mathrm{~km}$ vector \vec{B} from vector \vec{A}. The ve tor $-\overrightarrow{\mathbf{B}}$ is equalin magnitude to
vector $\overrightarrow{\mathbf{B}}$ and points in the oppovector B and points in the oppo-
site direction. (b) A second way of looking at vector subtraction.

$+32$
Use the law of sines (Appendix B.4) to find the direction of $\overrightarrow{\mathbf{R}}$ measured from the northerly direction:

The resultant displacement of the car is 48.2 km in a direction 38.9° west of north.

Finalize Does the angle β that we calculated agree with an
estimate made by looking at Figure 3.1la or with an actual estimate made by looking at Figure 3.11a or with an actua angle measured from the diagram using the graphical than that of both $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$? Are the units of $\overrightarrow{\mathbf{R}}$ correct?
Although the head to tail method of adding vectors
vorks well, it suffers from two disadvantages. First, some
people find using the laws of cosines and sines to be awk ward. Second, a triangle only results if you are adding
two vectors. If you are adding three or more vectors, the resulting geometric shape is usually not a triangle. In Section 3.4 , we explore a new method of adding vectors that will address both of these disadvantages.

WHAT Ift Suppose the trip were taken with the two vectors in reverse order: 35.0 km at 60.0° west of north first and then 20.0 km due north. How would the magnitude and the direction of the resultant vector change?
Answer They would not change. The commutative law for vector addition tells us that the order of vectors in an addition is irrelevant. Graphically, Figure 3.11b shows that the vectors added in the reverse order give us the same esultant vector
-

3.4 Components of a Vector and Unit Vectors

The graphical method of adding vectors is not recommended whenever high accuracy is required or in three-dimensional problems. In this section, we describe a method of adding vectors that makes use of the projections of vector along coordinate axes. These projections are called the components of the vee tor or its rectangular components, Ainy vector can be completely described by its components.
Consider a vector \vec{A} lying in the xy plane and making an arbitrary angle θ with the positive xaxis as shown in Figure 3.12a, This vector can be expressed as the
sum of two other component vectors $\overrightarrow{\mathrm{A}}$, which is parallel to the x axis and $\overrightarrow{\mathrm{A}}$, which is parallel to the y axis. From Figure 3.12b, we see that the three vectors form right triangle and that $\vec{A}=\vec{A}_{x}+\vec{A}$, We shall-ofter refer to the ${ }^{-*}$ components of a vector $\overrightarrow{\mathbf{A}}$," written A_{x} and A, (without the boldface notation). The component A_{x} represents the projection of $\overrightarrow{\mathbf{A}}$ along the x axis, and the component A represents the projection of \mathbf{A} along the y axis. These components can be positive or negative. The component A_{x} is positive if the component vector \vec{A}_{x} points in the positive x direction and is negative if $\overrightarrow{\mathbf{A}}_{x}$ points in the negative x direction. A similar statement is made for the component A_{y}.

Pitfall Prevention 3.2.
x and y Components Equations 3.
and 3.9 associate the cosine of he angle with the x component component. This association is rue only because we measured the angle θ with respect to the x axis, ions. If θ is measured with respeet the yaxis (as in some problems) hese equations will be incorrect. Think about which side of the triis adjacent to the angle and which side is opposite and then assign the cosine and sine accordingly.

A, points
Figure 3.13 The signs of the
omponents of a vector \vec{A} depend
uadrant in which the vec-
or is located.

From Figure 3.12 and the definition of sine and cosine, we see that $\cos \theta=A$ and that $\sin \theta=A, A$. Hence, the components of $\overrightarrow{\mathbf{A}}$ are

$A_{x}=A \cos \theta$

$A_{1}=A \sin \theta$,

The magnitudes of these components are the lengths of the two sides of a right tr angle with a hypotenuse of length A. Therefore, the magnitude and direction of A are related to its components through the expressions

$A=\sqrt{A_{x}^{2}+A_{1}^{2}}$
 $\theta=\tan ^{-1}\left(\frac{A_{5}}{A_{x}}\right)$

(3.10)

Notice that the signs of the components A_{x} and A, depend on the angle θ For example, if $\theta=120^{\circ} A_{x}$ is negative and A_{3}, is positive. If $\theta=225^{\circ}$, both A_{x} and $A_{\text {, are }}$ negative, Figure 3.13 summarizes the signs of the components when $\overrightarrow{\mathbf{A}}$ lies in When solving prob
A_{x} and A_{y} or with its magnitude and direction A and θ.
Suppose you are working a physics problem that requires resolving a vector into its components. In many applications, it is convenient to express the componen in a coordinate system having axes that are not horizontal and vertical but that are still perpendicular to each other. For example, we will consider the motion of objects sliding down inclined planes. For these examples, it is often convenient

O wick Ouiz 3.4 Choose the correct response to make the sentence true: A component of a vector is (a) always, (b) never, or (c) sometimes larger than the mag-- nitude of the vector.

Whil Wecters

Vector quantities often are expressed in terms of unit vectors. A unit vector is a ify a given direction and have no other physical significance. They are used solely as a bookkeeping convenience in describing a direction in space. We shall use the symbols $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$, and $\hat{\mathbf{k}}$ to represent unit vectors pointing in the positive x, y, and directions, respectively. (The "hats," or circumflexes, on the symbols are a standard notation for unit vectors.) The unit vectors i, $]$, and korm a set of mutually perpe magnitude of each unit vector equals 1 ; that is, $|\mathbf{i}|=|\hat{\mathbf{j}}|=|\mathbf{k}|=1$
Consider a vector \mathbf{A} lying in the xy plane as shown in Figure 3.14b. The product
of the component A_{w} and the unit vector $\hat{\mathbf{i}}$ is the component vector $\overrightarrow{\mathbf{A}_{x}}=\boldsymbol{A}_{\mathbf{x}} \hat{\mathbf{i}}$,

Figure 3.14\% (a) The unit vector 1, and anes, respectively. (b) Yec-

which lies on the x axis and has magnitude $\left|A_{x}\right|$. Likewise, $\overrightarrow{\mathbf{A}}_{y}=A_{y} \overrightarrow{\mathbf{j}}$ is the com ponent vector of magnitude $\left|\vec{A}_{y}\right|$ lying on the y axis. Therefore, the unit-vector notation for the vector $\overrightarrow{\mathbf{A}}$ is

$\overrightarrow{\mathbf{A}}=A_{\hat{x}} \hat{i}+A_{\hat{j}} \hat{j}$

For example, consider a point lying in the $x y$ plane and having Cartesian coordinates (x, y) as in Figure 3.15. The point can be specified by the position vector \vec{r} which in unit-vector form is given by

$$
\overrightarrow{\mathbf{r}}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}
$$

This notation tells us that the components of $\overrightarrow{\mathbf{r}}$ are the coordinates x and y. Now let us see how to use components to add vectors when the graphical method is not sufficiently accurate. Suppose we wish to add vector \mathbf{B} to vector $\overrightarrow{\mathbf{A}}$ in Equation 3.12, where vector $\overrightarrow{\mathbf{B}}$ has components B_{x} and B_{y}. Because of the bookkeeping convenience of the unit vectors, all we do is add the x and y components separately

$\overrightarrow{\mathbf{R}}=\left(A_{x} \hat{i}+A_{j} \hat{\mathbf{j}}\right)+\left(B_{\mathrm{x}} \hat{\mathbf{i}}+B_{,} \hat{\mathbf{j}}\right)$

or

$\overrightarrow{\mathbf{R}}=\left(A_{x}+B_{x}\right) \hat{\mathbf{i}}+\left(A_{x}+B_{y}\right) \hat{\mathbf{j}}$

Because $\overrightarrow{\mathbf{R}}=R_{x} \hat{\mathbf{i}} \quad \mathbf{R}=\left(R_{x}\right.$

$R_{x}=A_{x}+B_{x}$

$R_{y}=A_{y}+B_{y}$
Therefore, we see that in the component method of adding vectors, we add all the x components together to find the x component of the resultant vector and use the same process for the y components. We can check this addition by components with a geometric construction as shown in Figure 3.16
with the x axis are obtained from it components using the relationships
$R=\sqrt{R_{x}^{2}+R_{y}^{2}}=\sqrt{\left(A_{x}+B_{x}\right)^{2}+\left(A_{y}+B_{y}\right)^{2}}$

$$
\begin{equation*}
\tan \theta=\frac{R_{y} y}{R_{x}}=\frac{A_{y}+B_{y}}{A_{x}+B_{x}} \tag{3.17}
\end{equation*}
$$

At times, we need to consider situations involving motion in three component directions. The extension of our methods to three-dimensional vectors is straightthe form

$$
\begin{aligned}
& \overrightarrow{\mathbf{A}}=A_{\boldsymbol{x}} \hat{\mathbf{i}}+A_{,} \hat{\mathbf{j}}+A_{2} \hat{\mathbf{k}} \\
& \overrightarrow{\mathbf{B}}=B_{\mathrm{i}} \hat{\mathbf{i}}+B_{\mathbf{j}}^{\mathbf{j}}+B_{\mathbf{k}}^{\mathbf{k}}
\end{aligned}
$$

The sum of $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ is,

$\overrightarrow{\mathbf{R}}=\left(A_{x}+B_{x}\right) \hat{\mathbf{i}}+\left(A_{x}+B_{x}\right) \hat{\mathbf{j}}+\left(A_{2}+B_{y}\right) \hat{\mathbf{k}}$

 Noter 3.20 differs from Equation 3.14: in Equation 3.20, the resultant vector also has a z component $R_{z}=A_{z}+B_{z}$. If a vector \mathbf{R} has x, y, and z components, the magnitude of the vector is $R=\sqrt{R_{x}^{2}+R_{x}^{2}+R_{z}^{?}}$. The angle θ_{x}
 lar expressions for the angles with respect to the y and z axes.
The extension of our method to adding more than two vectors is also straight forward. For example, $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{C}}=\left(A_{x}+B_{x}+C_{x}\right) \hat{\mathbf{i}}+\left(A_{y}+B_{y}+C_{y}\right) \hat{\mathbf{j}}+$ because these types of vectors are easy to visualize. We can also add other types of

Figure 3.15 The point whose Cartesian coordinates are (x, y) can be represented by ther
vector $\overrightarrow{\mathbf{r}}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}$.

Figure 3.16 This geometric construction for the sum of two vectors shows the relationship
between the components of the resultant $\overrightarrow{\mathbf{R}}$ and the component

Pitfall Prevention 3.3 Tangents on Calculators Equaof an angle by means of a tangent function. Generally, the inverse tangent function on calculators
provides an angle between -90° provides an angle between -90°
and $+90^{\circ}$. As a consequence, if the vector you are studying lies in the second or third quadrant, the
angle measured from the positive angle measured from the positive
x axis will be the angle your calculator returns plus 180°.
vectors, such as velocity, force, and electric field vectors, which we will do in later .chapters.

Cuick aines For which of the following vectors is the magnitude of the vector \therefore equal to one of the compone $\overrightarrow{\mathbf{B}}$,
:(b) $\overrightarrow{\mathbf{B}}=-3 \hat{\mathbf{j}}$ (c) $\overrightarrow{\mathbf{C}}=+5 \hat{\mathbf{k}}$

The Sum of Two Vectors

Find the sum of two displacement vectors $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ lying in the xyplane and given by

$\overrightarrow{\mathrm{A}}=(2.0 \hat{\mathbf{i}}+2.0 \hat{\mathrm{j}}) \mathrm{m}$ and $\overrightarrow{\mathrm{B}}=(2.0 \hat{\mathbf{i}}-4.0 \hat{\mathbf{j}}) \mathrm{m}$

SOLUTION

Conceptualize You can conceptualize the situation by drawing the vectors on graph paper. Draw an approximation of the expected resultant vector.
Categorize We categorize this example as a simple substitution problem. Comparing this expression for $\overrightarrow{\mathbf{A}}$ with the general expression $\overrightarrow{\mathbf{A}}=A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}+A_{z} \hat{\mathbf{k}}$, we see that $A_{x}=2.0 \mathrm{~m}, A_{y}=2.0 \mathrm{~m}$, and $A_{z}=0$. Likewise, $B_{x}=2.0 \mathrm{~m}$, $B_{y}=-4.0 \mathrm{~m}$, and $B_{z}=0$. We can use a two-dimensional approach because there are no z components.
Use Equation 3.14 to obtain the resultant vector $\overrightarrow{\mathbf{R}}$:
$\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathrm{B}}=(2.0+2.0) \mathrm{i} \mathrm{m}+(2.0-4.0) \mathrm{j} \mathrm{m}$
Evaluate the components of $\overrightarrow{\mathbf{R}}$:

$R_{\mathrm{x}}=4.0 \mathrm{~m} \quad R_{\mathrm{g}}=-2.0 \mathrm{~m}$

Use Equation 3.16 to find the magnitude of $\overrightarrow{\mathbf{R}}$
$R=\sqrt{R_{x}^{2}+R_{F}^{2}}=\sqrt{(4.0 \mathrm{~m})^{2}+(-2.0 \mathrm{~m})^{2}}=\sqrt{20 \mathrm{~m}}=4.5 \mathrm{~m}$
Find the direction of $\overrightarrow{\mathbf{R}}$ from Equation 3.17
Your calculator likely gives the answer -27° for $\theta=\tan ^{-1}(-0.50)$. This answer is correct if we interpret it to mean 27 clockwise from the x axis. Our standard form has been to quote the angles measured counterclockwise from the $+x$ axis, and that angle for this vector is $\theta=333$
-

Example 3.4 The Resultant Displacemeht

Aparticle undergoes hree consecuive dsplacements. $\Delta \hat{r_{1}}-(15 \hat{i}+30 \hat{j}+12 \hat{k}) \mathrm{cm}, \Delta \hat{x}_{2}=(23 \hat{i}-14 \hat{j}-5.0 \hat{k}) \mathrm{cm}$, and $\Delta \vec{r}_{3}=(-13 \hat{i}+15 \hat{j}) \mathrm{cm}$. Find unitvector notation for the resultant displacement and its magnitulte.

SOLUTION

Conceptualize Although x is sufficient to locate a point in one dimension, we need a vector $\overrightarrow{\mathbf{r}}$ to locate a point in two or three dimensions. The notation $\Delta \overrightarrow{\mathbf{r}}$ is a generalization of the one-dimensional displacement Δx in Equation 2.1. Three-dimere thas in hey canot be drawn on paper like the latter
hey cannot be
pencil at the origin of a piece of graph paper with your you have drawn x and y axes. Move your pencil 15 cm to the right along the x axis, then 30 cm upward along the y axis, and then 12 cm perpendicularly toward you away
from the graph paper. This procedure provides the displacement described by $\Delta \overrightarrow{\mathbf{r}}_{1}$. From this point, move your pencil 23 cm to the right parallel to the x axis, then 14 cm 5.0 cm perpendicularly away from you toward the graph paper. You are now at the displacement from the origin described by $\Delta \overrightarrow{\mathbf{r}}_{1}+\Delta \overrightarrow{\mathbf{r}}_{\text {. }}$. From this point, move your pencil 13 cm to the left in the $-x$ direction, and (finally!) 15 cm parallel to the graph paper along the y axis. Your final position is at a displacement $\Delta \overrightarrow{\mathbf{r}}_{1}+\Delta \overrightarrow{\mathbf{r}}_{2}+\Delta \overrightarrow{\mathbf{r}}_{3}$ from the origin.

Categorize Despite the difficulty in conceptualizing in three dimensions, we can categorize this problem as a substituion problem because of the careful bookkeeping methods that we have developed for vectors. The mathematical manipulation keeps track of this motion along the three perpendicular axes in an organized, compact way, as we see below.
To find the resultant displacement,

$\Delta \vec{r}=\Delta \vec{r}_{1}+\Delta \vec{r}_{2}+\Delta \vec{k}_{3}$

$=(15+23-13) \hat{\mathbf{i}} \mathrm{cm}+(30-14+15) \hat{\mathbf{j}} \mathrm{cm}+(12-5.0+0) \hat{\mathbf{k}} \mathrm{cm}$ $=(25 \hat{i}+31 \hat{\mathbf{j}}+7.0 \hat{\mathbf{k}}) \mathrm{cm}$
Find the magnitude of the resultant vector
$R=\sqrt{R_{x}^{2}+R_{y}^{2}+R_{x}^{2}}$
$=\sqrt{(25 \mathrm{~cm})^{2}+(31 \mathrm{~cm})^{2}+(7.0 \mathrm{~cm})^{2}}=40 \mathrm{~cm}$

A hiker begins a trip by first walking 25.0 km southeast from her car. She stops and sets up her tent for the night. On the second day, she walks 40.0 km in a direction 60.0° north of east, at which point she discovers a forest ranger's tower.
(A) Determine the components of the hiker's displacement for each day.

SOLUTION

Conceptualize We conceptualize the problem by drawing a sketch as in Figure ${ }^{3.17}$. If we denote the displacement vectors on the first and second days by $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$, respectively, and use the car as the origin of coordinates, we obtain the vectors shown in Figure 3.17. The sketch allows us to estimate the resultant vector as shown.
Categorize Having drawn the resultant $\overrightarrow{\mathbf{R}}$, we can now categorize this problem as one we've solved before: an addition of two vectors. You should now have a hint of the power of categorization in that many new problems are very similar to problems we have already solved if we are careful to conceptualize them. Once a car, a tent, or a tower. It is a problem about vector addition, one that we have already solonger about a hiker, a walk, Analyze Displacement \vec{A} has a magnitude of 25.0 km and is directed 450° below. $\operatorname{Cos}(-Q)=0 \mathrm{Q}$
Find the components of \vec{A} using Equations 3.8 and $3.9: \quad A_{x}=A \cos \left(-45.0^{\circ}\right)=(25.0 \mathrm{~km})(0.707)=17.7 \mathrm{~km}$
$A_{1}=A \sin \left(-45.0^{\circ}\right)=(25.0 \mathrm{~km})(-0.707)=-17.7 \mathrm{~km}$
The negative value of A, indicates that the hiker walks in the negative y direction on the first day. The signs of A_{x} and A, also are evident from Figure 3.17
Find the components of $\overrightarrow{\mathbf{B}}$ using Equations 3.8 and 3.9:
$B_{8}=B \cos 60.0^{\circ}=(40.0 \mathrm{~km})(0.500)=20.0 \mathrm{~km}$
$B_{3}=B \sin 60.0^{\circ}=(40.0 \mathrm{~km})(0.866)=34.6 \mathrm{~km}$
(B) Determine the components of the hiker's resultant displacement $\overrightarrow{\mathbf{R}}$ for the trip. Find an expression for $\overrightarrow{\mathbf{R}}$ in
terms of unit vectors.

SOLUTION

Use Equation 3.15 to find the components of the resul-
Use Equation 3.15 to find the comp
tant displacement $\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$;
$R_{x}=A_{x}+B_{x}=17.7 \mathrm{~km}+20.0 \mathrm{~km}=37.7 \mathrm{~km}$ $R_{1}=A_{y}+B_{y}=$ $-17.7 \mathrm{~km}+34.6 \mathrm{~km}=17.0 \mathrm{~km}$

Write the total displacement in unit-vector form: $\quad \overrightarrow{\mathbf{R}}=(37.7 \hat{\mathbf{i}}+17.0 \hat{j}) \mathbf{k m}$

Finalize Looking at the graphical representation in Figure 3.17, we estimate the position of the tower to be about $(38 \mathrm{~km}, 17 \mathrm{~km}$), which is consistent with the components of $\overrightarrow{\mathbf{R}}$ in our result for the final position of the hiker. Also, both components of $\overrightarrow{\mathbf{R}}$ are positive, putting the final position in the first quadrant of the coordinate system, which is also consistent with Figure 3.17.
WHATIF? After reaching the tower, the hiker,wishes to return to her car along a single straight line. What are the components of the vector representing this hike? What should the direction of the hike be?
Answer The desired vector $\overrightarrow{\mathbf{R}}_{\text {cax }}$ is the negative of vector $\overrightarrow{\mathbf{R}}$:

$$
\overrightarrow{\mathbf{R}}_{\mathrm{car}}=-\overrightarrow{\mathbf{R}}_{\mathrm{F}}=(-37.7 \hat{\mathbf{i}}-17.0 \hat{\mathbf{j}}) \mathrm{km}
$$

The direction is found by calculating the angle that the vector makes with the x axis:

$$
\tan \theta=\frac{R_{\operatorname{cor}, 3},}{R_{\operatorname{car}, 3}}=\frac{-17.0 \mathrm{~km}}{-37.7 \mathrm{~km}}=0.450
$$

which gives an angle of $\theta=204.2^{\circ}$, or 24.2° south of west.
.

Summary

Definitions

Scalar quantities are those that have only a numerical value and no associated direction.

Vector quantities have both magnitude and direction and obey the laws of vector addition. The magnitude of a vector is always a positive number.

Concepts and Principles

When two or more vectors are added together, they must all have the same units and they all must be the
$\overrightarrow{\mathbf{B}}$ graphically. In this method (Fig. 3.6), the resultant vector $\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$ runs from the tail of $\overrightarrow{\mathbf{A}}$ to the tip of $\overrightarrow{\mathbf{B}}$.

If a vector $\overrightarrow{\mathbf{A}}$ has an x component A_{x} and a y component A, the vector can be expressed in unit-vector form as $\overrightarrow{\mathbf{A}}=A_{x} \hat{\mathbf{i}}+A_{7} \hat{\mathbf{j}}$. In this notation, $\hat{\mathbf{i}}$ is a unit vector pointing in the positive x direction and $\hat{\mathbf{j}}$ is a unit vecor pointing in the positive y direction. Because $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$ are unit vectors, $|\hat{\mathbf{i}}|=|\hat{\mathbf{j}}|=1$.

A second method of adding vectors involves com ponents of the vectors. The x component A_{x} of the vector. \vec{A} is equal to the.projection of \vec{A} along the The y component A, of $\overrightarrow{\mathbf{A}}$ is the projection of $\overrightarrow{\mathbf{A}}$ along the y axis, where $A y=A \sin \theta$.

We can find the resultant of two or more vectors by resolving all vectors into their x and y components, dding their resultant x and y components, and then ythagorean theorem to find the he resultant vector. We can find the angle that resultant vector makes with respect to the x axis by using a suitable trigonometric function.

