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Tb mearrreceat af aayrymttrykdcretetke to a'pafiicfusMard or d,
asd &h $BA mq*t bs {pedfird atong xift *. e numoricsl *el$e d &c quaatity. For
eranple, we ca$ mea$ure length in Britisb uaits such as incleg feet, or ruiles, or in
the metrie system in ceatimetera, meterq er kilometers. To specify that &e teugth
of a parfic-ular ebject is 18.6 is eeaai*gles* Tte nait nrssf be gvea; for clearly,
18.6 reetert ir very different from 18,5 incbea or 18.6 millimetere

&e asy rmif wa urgruch a*lte retcr for dtctaoff or the rcmad for tiaeny*
nxd tc defiue a ffiir{ whicb defises e.xa$ly how [ong ene m&t€r sf ene eeeoad
is. It is impartaat that standards be choesa that are readily reproducihle so that
ery*acaeedi*g to aake I v€.ry a€€*rate mea$rrrement eaa referto the siandard iu
lhe laboratory.

Irr#
lte firet tn{y irternatlonal stardr,nd lras tbs nciw {obbrerrhted ra} e*nbfthed ar
tts #*rd of Lryh by tbe Freach Acadamy of Scienees in the 1790s fhe staa-
dard rneter wae cniginally choseo. to be opa ten-millionth of the distarce from the
Earth"s €quator to either pole,t and a platiaum rod to rsprereat thfu length was
m*de- {One aeter iq r-ery rarg$y, the distaace ftom the tip of your nose to the tip
*f yarr fi*ger, *'itl arm and Land stretched cut to the side.) In 1889, tle meter was
defiqed more precisely as the dista$Ee between firo finely engraved mark$ on a
particrJar bar *f platinum:iridium all*y. I* 1960, te provide greEtsr precision and
repmdueibiEty, t&e meter was redefiaed as 1,650,763.73 wavelengtL* of a particutar
erange [ight emitted by the gas kryptcrd6. In 1983 the meter y4s *grin redefrned
thb time ia terer of the speed of liglt {whosa best neasured yalua is lerss oI ihe
older defiaitioa of the meter waa X99,7Y2,458m/a with an uncertainty of 1 m/s).
Tle aew defieitiea reads: "The meter i* the length of path travekd by fight in
yirculrln dwiag a time interval aLll299/Y2,458 of a secoud."t

British uni* of length (irch, foot, mile) are row defined ir ierals of tle
mefer.The inoh{i&}isdeflinedaspreci;sely2.S4centiuetert(crE; t{ffi:*.C1 m}.
Other csnversion factors are givea in the Tbble on the inside of the front cover
of thic boot. Ihbte 1-1 presents sone typic*l tengths, ftom very srrall to very
I*:ge, ro*cded cff to tEe rearost p*wer of te-n. See aloa Fig 1-5. [Hate tEat the
abbreyiatistr fot hches (iu.) is the oaly oae with a period, to disfinguish it &om
the rord sin",l

m*
T-bXn#gi dt'oG btboteiad {r}.Formany years,the seeoad*ae defined as
1186,400 ef a meau solar day (zah1day x 60min/h x 60s1mia :86,400s/day).
The etardard seomd is uow defined mcre p,reciseiy in terms of the&eryrency of radi-
atiao esEigtd. by c*ium atorns e&eIr tbey pass betrveen t#o pef,:icular $tate&

[$pecffieallS one seoond iE defined ae &e time required tor 9]V2,631|7iperiode of
6*s-Er6r6mla

oae Lsur {h}. Thble 1-2 presentr a raage ol measured timc interval+ rauaded ofl to
the nearest power of ten,

Mnrs
frc sr*adadd e(rxk&* &gm{t*}.Ihe stasdard rsass i$ a par{icular
plati*ua-Hdium cyliadar, ke.pt at the latefllatioeal Bure.au ef Weighte and
Mea$rrss neer Parig Fral^ce, whose mass is defined as exactly lkg. A range of
rrarrc&a is prercnted ie lable L-3. [For practical purposeq lkg veighs about
22 pounde on Earth=]

tt odcra tae.cEt@dG $f rhe Earttrt cimderease reveal *hat t&o intflded lengfb i* offi by rbcut
me-ffrie* cf IF* Idct badl
tThe cew ddEnitian of tie meter has the effeea ci giving the speed of tighr r$e exast value of
49,7!?,458lg/+
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Wheo dealing c.ith atsmr aad uolesrles, ve ueuaity uee

mrm uuii {u}, In &rms sf tfoe kilqgrala!
1u:1.6605x10-als

Tle deEnitiors of sther shndard lrnis Jor other quautities will bs given as we yotta

etrccuBttr t&e,c i* Iater Chapters. iPresiss salrres *f thie aad otber altebsrs are zettr.

given inside thE &ont cover.) o.
Unit Frefires
In the metric system,&e larg€tr strd maller rair are defiued in mdtiples of 10 Aom
the standard E !it, aad &b pate alculatirou partirularly easy.Thus I kilometer ftm)
is 1000m, 1 ceatiraeter i* t*, 1 ,rliltimelel {ram) is 1fom ot ftcrr, and so on"
The prefixes *@nH-,o otile-," and othes are listed ie Ihble 1-4 aad ean be applied
not only ts Enils of length btrt to units af voluae" rrrass' ar any otter rnetdc unit.
For examplq a eatiliter {*:r } ie # Hts {L}, aid a hilogram {kg) is ltr0graaas (g).

"M-a"f*q*
l#bea dealiag x'ith th€ larrs aad equatiors of physies it ir very iryortmt to use e
c+Eshtent ret afunitu $ererat syctees sf r:*it* haye beea in use oyw xhe ycar&
Today the soat irystrnt ir tLo ffic kter&nrl (Freach for hfarnatioqal
$6cu! whfoh i* abh{exiatsd SL In SI i4r, tte. stardard of ktrgih i* Iie oler,
ths,stad&!d forrtmreic flrc *cem4dtho sta*drrrdfor mass fu the kilqr-rm.This
system used to be Btr€d lk MKS (*etar-kilograe+econd) $ysten.

A secolrd metrie systenr is tbe ry 4ffi.is rhich tle centimeter, gram, ar:d
second are th.e staadard uaits ef leagth,mas*, aad time, as abbreviated in the titla
Tle Xdli* qhskC*ym tas m irctqrddds &o foot fsrlcrry&, tftc pound
for force, and rhe remd fs( iim*

'We use SI usi* almest exelusively ir this hoot.

F.s.s"-y-m-*^P#--ffi *$-4s
fbyscal quautities w be *ivided futo tsc categodes: base qwatffiia ard, derised

derhxd lm,l.itr,. Abme gunft;r must be drfiucd if, t€{ms of a standard. Scientists, iu &e
interest of $mplbity, *aat the $mailett nurnber sf bae quantities posaihile mrsistent
with a full cf t&a phyeicat scrsldTfoie aumber truas out to be.tevea, aad
thce used ia the $I are given in thbBc 1-5.AIl cther quantities can be defmed in termE
of these seven baso T,aatiti€4r aod fuesse are refe,rred fs a$ deritod gdiilier, ea
example of a derired quautityis ryeed"whi:h is defiaed as distaqoe divided bythe time
it takee to travel &at di*are- lL fshk insi& the front cover liss rn*ny derived
quautitie* ard their unitr !n fenus e3 fo6p :rniBTa defiue aay quantity, ulhether bare or
derived, vre cac sgrci$r a nrle u goeedures aed thb is called an op€nrtb* Idffiicn

'TUe 
ouly ercegtions ar* {sp ragle {radi*:u---+ee Chrptcr S) and gslid angte (str.radiaa). No general

agreeuefi }rsbesn rcccted rs to pftefter *ett src tase srdedved quantities.
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&"-.-ffi Conyerting Units
:' :- .' :- :' -- -' -:' :- -'Any quantity we measure, such as a l6agth, a speed, or an electric'current, corisists

of a aumber snd a unit, Often we are giver. a quautity iu one set of uaies, but we
want il expressed in another set of unit* For example, suppose we measure that a
table is 21J iaches wide, and we want to exllress this in centimeterc We must use a
mnredruftttor, which in this case is (by definitioa) exactly

1iu. : 2.54em

or,vrittoa anot&er waE

I : 2.54cm1in.

Since multiplyitrg by one doer not change anythirg the width of aur tablg in w, ir

2lsinches : (2151e*) . (r."#) : 54.6su.

Nate hcx the units (inshes in this case) cancelied cut. A Table contaieicg many unit
mversims is fiomd inside the kcnt coveraf this book.IEt's eonsidcr sffie Exsmplx.

pt{Ysrfi$ A,*{}t.rfrtr
i lis u. ul .1", .t*'rJi{,: ,i,'€,ikr

FffiUnE 1-6 T&e*orldhsmed
highest pea\ K2, whee *urnrait is
masidered the mast difficqJt of fte
"8000-ers"K2 is ceae hare &ffi
themrth (China).

uB1"E r-5
Ilrc erem hals

Ildttt(E)

ilre 80O(Fm gcale The fourteeo tallest peaks in the world
(Fig; 1-6 *ad Table 1-6) are referred !o a$ "eight-rhousanderq" mesning their
ffimmit* are ove-r 80fr)m above ma level'l4lhat io the el-e-vatica, in- fee-t, o-f aa
elevation cf 80ff!m?

iPPR{IUEH We need simply to convert metem la feet, and we c&n stail with rhe
cenverslen factar 1 in. : 2.54Ep, rhieh is sxact. That is, 1i*. : 2.54{X}ml to
aay uurakr of sigailicaat figureqbecause itis, ilefrrredtabr..

StlE nOfi Cne foot is 1Zin.,so we caa write

lft- : 3$.i*Bem : Ofil.l$c,

shich lg exa$. Note how the 'r*its caac€l (colored slashes). We can rewrite this
equatioo to fird the number of feet in 1 meter:

lm: : 3.?ffif$.
0.ax{t

lfemultipty this equation by 8000.0 (1o have five simifieart figurer):

tur"-l{:s*ff)

1ft

B00S.0m : (8fi)0.08-) 338GS49. : 26l47tt.
x:t
Kang&eojuage
LhoBe
ItaLalu
Cho Oyu
Dhaulagiri

Manastr
Nau&aPartat

Arupuma
Gisherbrumi.
BroadPeaL

Ga$ertruaII
$hishaPalgma

8611

8586

8516

w2
ffitrt
8L6T

E1S
8725

&B1

An eleyatian of 8000m ia26347 ft above sea level.

lltlfE Itsa *.suld hayc do-ue the eonversion all in sae liac:

B{ffrom : {8frr{rom.)f '9""t)/='tn- 
\/ trt \

\ rr,e /\es4-J\?i*J = 282a7ft'

lte key is fa railtiply couversion &ctorq each equal to oae (- 1.fl000), and to
make sure the urits cancel.

EEEOIiE E Tlrere are only 14 eiglrt-thms*nd-meter peaks io the world (see F,xample 1-2),
aod their sases and elevations are givea in Thhle 1-6.Tley are al! ir th+ I*r*ataya rnolur-
taia raage in I*dia, Pakistar, Tlbet, and Ctrina Detetrnine t&e elevatioe of the wodd's
thrae higkt pe*ks ir feet.

fiFE
80tr/

ffi5
fr}I3

t CHAPIER I intuodudiorl Meaurenren!, Estimating

I lfparhant arra You have seeu a aice apar&acnt
sqEtre fed (ffl'What* iEf aiea tr iquar6 rie-tdrs? -: 

-

APpKll&f We use the same coaversioq faetor, lin. = 254rp, but this time
we havc to use it rwire-
qJJIUf Becat:se 1in-: 2.54e$ : O-OAS+*.tn @lfFbo sff)# : (sto#)lo.omrsr?s'i s,8Er#.
I{OIE Ae a rule ef thumb, aE area givee ie ft2 ic roughly 10 tirne+ t]e numkr cf
sqrare eetert (more prechelgabont 1O8x).

Speeds. l#tere tfte poeted ryecd limit is 55 !*ilee pc.r hour
in aetffi per second {mls} and (t} inwhat is tlis speed {a}

Lilometers per hour {tm1hP
APFf,OA$t We again use the eoqversioo factsr lio. : 2.54co., and we recall
that thcro ars 52ffift in a mile and ll inches in a foot; also, one hour mntains
(60rdn/h) x {60s/min} : 3d00sA.
SflIm(}il {a} We c*n q.rite 1 mile as

IIV'e also knew lhat t hour contaius 3600r, so

whose
"- .-

wbere we tsusded offto two xiggif,€aat fi$rren
(6) Now ne ute 1mi : 160!lm : 1.6SlLm; ther

: ("#)('**i(ulft) -,,?'

:889.
h

!c.!
i:i l

#
1;.=I P8{lBLEfrt SOLIIIHG
{:..}Ju.r:' iri,'r .Ji3r-Jr:rs .=. l

_- mI,tu

,,+: ("*)(,*#)
ilOIE Each cmversim tacbr is equal to sila You can lsok up raosf mnversion
factors in theTable ineide the frmt ccsar.

I ffiOSE f 'lUould s driver trarcling at 15m/s in a 35mi/h zone be exceeding the speed
I ti-itt

ffislr sfuarging unis, you car avoid mating an srror in tk use tf mnvetsion
factors by chectieg that uqite cascel cut properly. For exa!trple, itr sur ccoversicc
of lrni to 1609u in Example f-.a{a},if we [ad iacorrectly used the tactor f#]
iest€ad of tdfr), the oentimeter uoits rould Ect haye eancelled out; lre wpuld not
have ende.d up ryith meters.

F. B E.B L E M. 9 A L V I N. G

t.jtiil {ci4llttrj.l!i i.r 'lli*t;lri ii r**rirs ,j.o
ps*tt catu:*l

X"*ffi Orrds of{tdasrdhde: trapid Es*irnatins
Tfe are eemetimcs intere$ed ouly h an appreximate value for a quautity. ThiE
might be because aE aceur&te calculatkrn woul6 take more time than it is worth
or weuld require additio*al data that are eot asailahle. [l otler case$! ne may
want to meke a roagh estimate ir order ts chesk aE accur€te caleulatisn made
on a calculator, to make zure that no hlucders were made whea the nrmbers
were eatered"

A rougbestipate i**ade byromdiog off all auaberu to oae sipiEcant figure 'H PEOBI.Eff SOLVIT{6
l:{ttu.: lo *t*kr:,s tnlr.gJi +"x?i,oratcand its power <rf 14 aad after t&e *aleulatiou is uade, agein only one significeal

figue ie kepL $uch ae eetimate ir caEed an ordenof-nnrgnitnrilu €sCE*c aad can
be accurate withia a fa*tor of 10, aad oftca better. Ia fact, the phrase "sr&r of
magnitude" is aornetimcs. used to refer cimply to the power of 10.

SECflON I -6 Order of Magnihrde: RapH Estirnating I



(a)

tb)

FI$UfrE 1-7 liz*slFle 1.-5. (a] How
euch wataris iB thisiake? {Photo is of
oae of the Rae Lakee i* the Sierra
Nevada of Califoraia) {b} Madel of
the lake ar a cyliader. ['Ttie could ga one
step flirther aad estiuaie the mass or
weight of this laLe-We suill see later
that water has a deadty of 1000 kglm3,
e0 thir lake has amass sf absut

{trdtg7mt)(1orrr3} * 10u&g, which is
abcut 1O billion kg or lG cillion metric
tous. (A uetrietoa i* Xll$tgabout
Zfil lbs, slightly iarger than a Britioh
tol12000lbs.)

ldgme of a lake. Estimate h*w rngch water
thsrc is ia a particular kkq Eg. 1-7a, which is roughly circular, about 1km
affot& aad yon gssss it has an ayerage depth of abo$ 10m.

tfPEfllCH Na Iake is a perfect circle, nar car lakes be ex;ncted to have a
perfecdy flat *attopa" We are oaly estimatiag tere. To estimate the vol:rmq *e
can use a simple model of tle lake as a cylinder: we multiply the arerage depth
ef the lake time* its roughly circtrlar surface area, as if the take lyere a cylinder
{ris.1-?b}.
SOUmOil The;gS*Ir of a cyliader is the product of its height & times the
area of its base: ffi, wkere r is fhe radius of tle ckcular haset Tle radius r
iE *km : 50Sm, so the volume is approximately

rhere r x'as rsunded off to 3. So the vslame is an fhe ard.sr cf 1.0?m3, tea
millies cubie meters. Because of ell the estfumtes thaE went inta this ealculation,
the *rder-af-magnitude estimate (fA7m3) is probably better t* qr:ote than the
I x 1#m3figure.
XOIE To ExFrEss our result in U.S gallonq we see in the Table on tle iuside

(,flpnY$r€s Ailr,IrHp
-!r;riir,.,irt ,'l: ::: 1,", t" l,tt .. , s' ,r-,'

lr irle;.irtx Lil"rr.r .J-tt. l-i

i':Te ryrtt;'.r*/,,"'+, iJ li{.i? J;il'}-t,; l+:'

frast eo$er thet lliter:10-3onx*:|ga[on. ]Ience, the iake contnins
{e-x-f fmxx1:gaiim/a-ri0a m3}a;€-rf Fga[onrsf waier:----

E+.. PEOBLSM $OI.1'I&I€

tFormtlas like tiio for volurue, area, ete, *re fourd iuside the beck cover of thil book

IO CHAPIER I lntroductien irtea*;remerd Esfimating

Itidaess of a page. Esrineats the rhiekness
af a page of this book.

rFPnorcH At lirst you might tff$k that a special measuring device, amicrometer
{Fig; 1-S}, is ceeded to measure tfue thickness af ore page siace aa ordinary
ruler elearly w*n'f do. But we ca* r$e a frick or, to put it lr physics termsn make
use trf a sy*tssFy; we car make fhe reasonable assumption that *lt the pages of
this book are equal in thicknes*
SIIfIXOI{ We caa use a ruler ic Eesasure huadreds cf pager at oace. If you
msasure lhe thickness of the first 5ff) pages of this book (page 1 to page 500),
you miCht get somethiag likr 1.5cm. Note that 50S aurubered pageg

/'

I couted frost and baek, i$ 25S separate skte of paper, So aee Fage must have

I 1-5ennI * 
- ^,6x1c-3e.rn 

: 6x10+mm,
I zsupages

I 
o.r** than a teuth of a millimeter (0.1mn].

H€trht bf Elantulttsoa Bstimate rha height
of the building sbown b. Hg. 1-9, ty "lriaagulation," with the help of a bus-stop
pale cnd a frierd.

APpR(}itEll By standing your friend next lo the polq you estimate {he height of
the pole to be 3 s. Yau next siEl away &am the pole uotil the top of the pole is in
Iire with tke top ef t&e bdldi*gFIg 1*9a.You arc 5ft 6in. tall,scyour eye$ are
about 15m ab<rve the grourd-l'our &imd is taller, and wheu she sketches out her
arms, one hacd tsrde$ you, aad the other touches the pole, so you estimate lhat
rlistrase as 2m {Eig 1*9a}.'fan thea pace off &e distance from the gole to the
base cf the buildirg with big" le-laag st€p6, asd ysu get a total of 16 stsp$ or 16 ra
SOUlIIOtil Now yeru draw, to seatq the diagrae shown in Flg.1'-9lt using &ese
measurens$fs You can rneariurei riglrt om t&e diagram, tle last side of the
fiiailgte to be abaut .r:13rc, Alteraatively, ycu can u6e siftiltr triaagles to
obtain t&e keighf .r:

lf-:,f 
' sa r*13*m.?m 18m

Fiaalty yau add ia your eye height ol 1.5s above t-he ground to get yaur fiaal
resulr the buildiag is about 15m all-

tp+&**(fi+if
rc R! + ?hR + FP.

W'e solve alpbraica$y nor r?, after eancelli:rg J{P on both sides:

{610$m}z - {3.Su}2 : 6.2x 1t)6m : 62mkm.
6.0m

flCIE Precise Ere6ar$eme&ts #ve 63ffi km. Eut look at your aehievemenl! With a
few sfunple raugh uemlrrements and simple geometry, you made a good estimate
sf the Ear&'s radius.Yaudid rctseed to ga out inrya6,nor didyot need a very long
ne*suri*g tepe"!{ow yaa Ea*v &e *rsrrcr tc &e Chapter-Apeniug Qr:e*ticm aa trl 1.

FIGUIE I-8 Exmplel-d.Micrwetct
used for mea*ring s-a!l t&icknesses

FIGURE I-9 Emmple 1-7.
Diagramr are mdly useful!

.;#dt
r' lE

a stepladder.

f, t;./ ,-./ t\:
t'

f".,
1 lit;

fnl

ffi Esffnrdltr tfie redius of Eet&. Eelieve it or
trot,yotr ead esriuate thc rfidius of f&e E6rth wilhott having to go iato space {see
the photegrapk arr fagc 1). Ifycu have ever been on the shore of a Iarge lake,
ys,u rray hase asticed that ycu s*utrGt see fhe Eeacheg piers, ar meks Lt watar
lelel aercffi the lgto aa the opporite shff€.The late seems to bulge *et betweea
you and tle opposite ehere-a goad clue tkat the Earth is round. Suppose you
climb a ste.pladder ard discaver th*t when yflrr Eyes are 10ft {3I}m} above the
waler, yo$ can iu$t tee the rocks a? sater level on the opposite shore. From
a map, you estimate the dist*nce to tbe ol4raite shore as il a 6,1tm. Use
Fig 1-10 c.ith f? : 3-0:r to estirtlete tbe radius fi at the Earth.

JtF?EO[ft] We use siruple geometry, irciudhg t&e theoreu of $4hagorag
c2 : &2 * *, wbere e is tke leagfh cf the hypotenuse of any right frraclflq and, a
and & are the leaglhe ef the other twa sides"

$IUmOil Far the right triaagle oi Fig 1-1t, rhe two sid€f arc the ffidirlr oi the FrcUnE tr-Io Example 1-8, but

HitE-E-e6afffiA-d66ffi_a-=AfmA-=-efixy6-Tre-@nottasealf-Ycnoaa*easmdFrocks-*-
mately tbe }eagtb ,& + tr', where fr : 3.$ m. Ey the Pythagoreas thecrem, at waler lecel.ea t&e oFllasite $hore

of a lakc 6.1 km rddc ifvou staodon

**#

'-- lliffi'---' ----'s
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t{}t*l.rreab€r-ofbeatsatypical'humaobeartmakesiu-alifetima. - ,' --' .--

*PPHrff,H A rypi$al re+ting heart rate is T0beats/rnis. But during exercke it
caa be a Iat hig[er. A reasorable ayenrge migbt be S0beats/mia.

ItllIIlI$! Oneyearintennsof secetdsis (2lh)(3@0tAX36Sd) sc 3 x 10?a
If aa agerage penisn lives ?Oysarr * (Alyr)(3 x 1d ilyr) ac 2 x 1#s, then tbe
totrol auasba af heartbeats would be about

(-#XH)Pxrco * 3xIs'
or 3 trillioa.

To[al numher of hearlteds, Estimate the

i{nsther techaique for estimatiag thit aae raade fatnous by Enrico Rrmi to
his plrysic* rtudentg is to e*timate t*e number of piano tuners in a city, say'

Chic*ga or San Francisco. To get a rough order-cf-magnitude eetimate of tle
mmberof piano hrtrets today in San Fraacisco,acity of ibout 7{X},0{X} inhabitaotq
we c&tr proceed by estimati.g &e number of firnctioning pianoq how often each

gian* is trmed, aud how many piauas each tunsr san tu:ie.To estimate the number
af pierm in Sar Franeisco, y/e note that certainly not eYeryone has a piato.
Aguess of l family in 3 haviag a piana n'auld correspond to l piaao per 12 persong

as*mitg &r e\rerage family cf 4 per*oaa As as order of mapitude, let's eay

1 piano per 10 paoplaThis is certaialy lsore reasonable thaa 1 per 180 people, or
I per every pertotrt so lpt's proceed with the estimate that 1 persao ir 10 bas a
piarc, er *beut ?$,000 pianos in 8** Franeisco. Now a pianc tuner teeds an hour
or tvo tG tune a piano, So let's estimate that a tuner can tune 4 or 5 pianos a day.
A piano ought to be tuned every 6 raonths or a year-let's say oace eacb year.
A piano hr*er &nriag 4 piauos a day,5 days a week,50 weels a yesr can tuile
abnut 10fi) piaaoe a year. So Sau Flaacisco, with iis (very) roughly 70.0fi) pianoq
reeds about 70 piano tuners This is, of murse, only a rough sstimst€J It tells us
t&ai t&ere mu*t be raany morc thatr 10 piam turrert, and surely rrc! e ffiatry as 1000.

4
.1::::.i pnoaLEM StlLlr'IHc

i"r,{rr,r iii r.f &r:'ir: raxc}' f:iri.e{r fi.i'J *:::,

l1{,".3 0I- i:i rj ;:i?-.

n 
3 *-P Dimensftrns and Dimensitnralnnal;rsjp
When we speat of tle dhtndon of a guantity, we are referring to the type of base
rrnits oq' bate quantities that make it up.1|te dimensions of srea, fr exarnf,e, are
alxaSr length equarcd, atrbrsvi&tod [f-2], using quare bractetq tlre uaits can be
square mete$, square feet, cm2, and so on. Yelocity, on tle other hald, can be
messnred in ffiits of tm/h, m/s, or ftiflr, bnt the dimensions are alrays a length [f,]
divided by a time [fl: that i$, E/n,

The formuls for a quartity may be different in different casse, but the dimen-
sioas rsnain the same. Sor exqmFle, fle area of a triangle of base $ and height & is
A : +bh, whereas lhe area of J cirete of radius r is L : rrz- Thaf*rmulas are

* diffcre,nt in t&e tso cases. but the diecssiog$ of area are always t+. ']^
Dimensiont can be used as a help ia working out retaiioushipq a procedure

referred tq as dfortdof,d u.ly,fr. Oae usefut tschri{ui is tte rrr of dimensioas
to c&€ct if e rclationship ic iflarrrsd. Nste that we add or subtract quaatities only
if they bave ihe earne dimensions (we don't add centimeters and hours); aad
the quantities ca each side of an equals siga must have the saue dineosions. (In
aumeri:al ealctrlatioaqthe rrnits f,trEst alsa be the same on both side* of aa equation.)

For examp{e, suppcre you derired ihe equation ,} : ao + }*f2, rvhere u is the
speed of an ebject after a time l, rt is the object's initial speed, and the objeet
undergcer aE eceetreratisn a. Let's do e dimeneienal check te see if tkis equatioe

1A c&rck sfttc Sm ftewise Ycllow Pages (dorr a*cr ttis caleulation) rcvealr abofi 5{ tistirgs. Each
d &ere listi*6c :*ary eeplay more thaa ace tuna, bet al t&e oeher kaad, eer* rn*y ako do teg,aks as

*eIl ae truirg In r*y cueq our estimete ir rcasonrblc.
i$me Sst*ions o{ tth boot, sucL ss this otrsr Bay bc cossidcrcd optianal * thc dirercrion of tte
iEetfiretor, e{d tke8r are mar*ed with aa asteriek (+}. Sec ,}e ?reface for more detaiEr

12 CtIAFIER I lrtsodudion, Measuremert Edimating

could be suacl or iB sllr€ly iBcorrect. Hete thnt aunerical factorq ute the I her€,
-do not afiect diraeacional checlrr.-we.*rite.a-dirngrlsioml eq.urltioa-ae muawE--

tftat the dineasioas ef ryeed arc lLl7} asd ias we shall see in
Chapter 2) the dimensious of aecelerarion are [e7i"j,

[i] = [*] . [;]r"r = [#] .,u
The dimeasions are fucorrccu oa the fght Bide we haye the sum of quantities
whose dims*$ions are nct the sama Ttus we ccuclude *rat ar errer was'made in
the derivatior *rf the origiaal equatioc.

A diuessioml eheck qa ouly tefl you uhea a relationship is wroag. It cau,t
tell you-ifit is cmplete$ right.&r examplqa dimensiontess uumericalfa&or (sueh
as i or 2a) could be missing

Dime*iaal analysir car also be ueed as aquict check sa aa equatica you are
not sure abaat For eramptg suprrse that you ean"t remember wtether the equa-
ticr far the periad af a simple pendulum r {the time to make oee baet-and-forth
*ving) of leagth ! ir T : b{i/-g or T : ZoWt, where g is rhe ae*lerarion
duc to gravitg ead, lite aII aeeleratioc4 has diecasious {z/r"1. {Do roi rrorry
abotrt thec€ rlrssule$-&e cerrect ore xill be derived ;n cLaptei 14; what we are
macemed ahout here is a persoa,r recafliag vhet-her it ce-ntaias qg ar g/1.)
A dimensioaal check shou,s tbat the fonaer {t/f} is correcE

{ rttvt-{ffi=VIFI=r?1,
whereas the latter {g#} k aat:

B, z ign ra- Iur*{_Jrt :VIFI:1rI.
Note thrtthe{s6tartt2rn hrerc dimembw*nd so cm,tbe checked udtng dimensiou*

Ftrrth€r uses of disercional analysls are fouad in.Appendix C

ll;flW Ha* teltSEt The smallest meeningtul measure cf lengrh is
called the *Pl&ack length,'ead is defiaed in lermr af tluee fuudanrcatal coffjants
T "uf*r, the rye$ of $gtt c:3.{X} x ldm/s, the graviratioaal eustant
9 -!-.6? x l0-rdftg.f, aad planck,s co*raui h:Z.AS x fO-tfe;r/..
The?laack l*ngth l" {r is &e Greek letfer *laebda") is given by the foTkwiag
combination of t&ese ttree corrst nts:

i-:#'
show that t&e dirge$sic*s af "i" are Ieqgth fr.J, and fi$d the srder of mag*itrrde Gf .tp .
,tPPRd}tol we r€cirits &e ab*se equatlon ia tenns of rrimersie,,e The diqer-
sions of c are [Lfi'|, at G are lfs I ruial and *t tt are l*tt x /f].

W:vw:rlt
which is a lergfh-Ihe v*lue trf the pta*et la:gth is

rP:

which is m the arder of l0-s or lil-sm.

have begun, *arted hrrrn a:r initiat size an the tvrder of the planck lengrh.

kg'm'/ e 4 X 10-33m,
iciv7

NorE sonoe reeat &eeries (cbaptere 4l and ,14) suggest that tle mallest particles
(guarlq leptons) have sizes oa the order of tle Hancft leagth, 10-sni. fno"
tbeorie* eko erygest drst &e'tsig Bary"* rith which the uniiexe is believed to

x 10-nm3lkg-fXf.m x
(s.o x r$m/sf

*SECIIOfiI I-? DimensionsandDimen*i*nalAnatysis II
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Vectors

Coordinate Systems

Vector and Scalar 0uantities

Some Properties of Vectors

Cornponents of a Vector and

Unit Vectors

ln our study of physics, we often need to work with physical quantities that have both l\:rqn;,ri::i ir 5a:rt fu1.ei':burg,

numerical and directional properties.As noted in Section 2.1, quantities of this nature are Jiri:d:r,::i.:rrc riiri: ijis:lanre

vector quantities. This chapter is primarily concerned with general properties of vector ;r:ri dirtrii':;I t'i'rt'i'.ri'l riiits

quantities. We discuss the addition and subtraetion of vector quantities, together with some 'l!i;rr'(i:!e; 
that aIr ii"r'inti i'l'

common applications to physicalsituations. ::j::::;:;:i::;:;,1;:"'"
Yeqlgfgrtatltl.s .1. liuJg*tlrogg!_ou$ll:_t&lgqfole, 4jr-1ltpStltr-vg-th4_y9u rnzs- __ ,s1.1ix;i,.,ij1,tri_*

ter the techniques discussed in this chapter.

t

m Cpor dinate',,5ysternsd

Many aspects of physics involve a description of a location in space. In Chapter 2, ftrr
example, we saw that the mathematical description of an object's motion requires
a method for deqglibing the object's position at various times. [n nrro dirraniiionf,
this description is accomplished with the use of the Cartesian coordinate system,

@ig.&.:pe+qqd$nlar :ali;";iigiii'olFis. 3.1).

3"1

3"3

3.4

qviug Cartesian coordinates (a y) and fl
drawn from the orisin to thifiB'fnt. Ttte:d.igln:ril.$ffi mt$:Yr$it

aW:i$3*9iihlry:'dieakiiid' .driilieilt*akwiie

P,&iA,lt$:l-I,rt
Iiiiffi:}}is:an

Figure 3.1 Designation of points
in a Cartesian coordinate system.
Every point is labeled rrith coordi-
nates (*,1,).

59
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\:l l$

ffi (a) The plane polar coordinates of a point are represented by the distance rand tJ.e

l@Ellill, *n"r. O is measured counterclockwise from the positive x axis. (b) Tbe right triangle used to
relate (n, 1) to (r 0).

frqpg it. From the right triangle in Figure 3.2b, #&WW
4& I L *^,;aw ^i..i-^-^-orrir frrnrrinnc i" oi6. t@
startins with the

M
know the Cartesian coordinates,

(3.r)

(3.2|

the definitions of trigonom;Furthermore, if we
etry tell us that

ws (3.3)

(s.+)

Equation 3.4 is the familiar?ythagorean theorem.
These four expressions relating the coordinates (x, y) to the coordinates (t 0)

apply only when 0 is defined as shown in Figure 3.2a-ir, other words, when posi-
tive g is an angle measured counterclockwise from the positive x axis. (Some sci-

entific calculators perform conversions between Cartesian and polar coordinates
based on these standard conventions.) If the reference axis for the polar angle

I is chosen to be one other than the positive r axis or if the sense of increasing
g is chosen differently, the expressions relating the two sets of coordinates will
change.

@
Conceptualize The drawing in Figure 3.3 helps us conceptualize the problern. We wish to find rand'9. We expect rto
be a few meters and 0 to be larger than 180".

Categorize Based on the statement of the problem and

the Conceptualize step, we recognize that we are simply -
converting from Cartesian coordingtes to Polar coordi
nates. We therefore categorize thisrexample as a substitu-

tion problem. Substitution problems geneplly do not have

an extensive Analyze step other ttgLn the sutrstitution of
numbers into a given equation. Similarly, the Finalize step

f, (m)

Figure3.3 W
Finding polar coordinates when
Cartesian coordinales are given.

I (m)

copyrishr2il6c6€,ger,mtoeArRisreR"*d.kymrbeopie4**.d,orderiqreu'in,vroreqhpdtur",*u*"*,","*"Y*l$t#9H,Hf#L'{,?**,**liJffif,t9jgffilff"f'n
Ed;ro;u riewlas dmJ tat ry;FBd @ht d6 ls'Babidly'rfiet rb olenl Imiry q?qi@e C@w L@ingffiB fte dE rt b mw€ nddtiotd mM d ey tuc ifsubsq@t riShh HtriotiGrqde il



3.2 Vector and Scalar Ouantities

& 3.!
:-- --:

consists primarily of checkirg the units and making sure that the answer is reasonable alrd consistent with our expec-
tations. Therefore, for substitution problerns, we will not label Analyze or Finalize steps.

Use Equation 3.4 to find r:

Use Equation 3.3 to {ind 0:

w

6l

@Vector and Scalar Quantities
We now formally describe the difference between scalar quantities and vector quan-
tities. When you want to know the temperature outside so that you will know how
to dress, the only information you need is a number and the unit "degrees C" or
"degrees F.'Temperature is therefore an example of a scalar quantity:

Other examples of scalar quantities are volume, mass, speed, time, and time inter-
vals. Some scalars are always positive, such as mass and speed. Others, such as

temperature, can have either positive or negative values. The rules of ordinary
arithmetic are used to manipulate scalar quantities.

If you are preparing to pilot a small plane and need to know the wind velocity,
you must know both the speed of the wind and its direction. Because direction is
important for its complete specification, velocity is a uector tluanti,$:

Another example of a vector quantity is displacement, as you know from Chapter
2. Suppose a particle moves from sorne point @ to some point @ along a straight
path as shown in Figure 3.4. We represent this displacement by drawing an arrow
from @ to @, with the tip of the arrow pointing away from the starting point. The
direction of the arrowhead represents the direction of the displacement, and the
length of the arrow represents the magnitude of the displacement. If the particle
travels along some other path from @ to @ such as shown by the broken line in
Figure 3.4, its displacement is stitl the arrow drawn from @ to @. Displacement
depends only on the initial and final positions, so the displacement vector is inde-
pendent of the path taken by the particle between these two points.

In this text, we use a boldface letter with an arrow over the letter,

WW Another common not3tion, for 1ggrgM4lhlg[Qlr should be

Figure 3.4 As a particle moves
from @ to @ along an arbitrary
path represented by the broken
line, its displacement is a vec-

tor quantity shown by the arrorv
drarvn from @ to @,

familiar is a si boldface character:

U0less otheruise 0oted, all cmtent on ftis paqd is @ Cen{age Learning.
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Figure 3.5 These fourvectors
are equal because they have equal
lengths and poi[t irr the same
direction.

Pitfall Prevention 3.1

Vector Addition Versus
Scalar Addition Notice that
i + il: disverydifferent
from .d t .8 : C. The first equa-
tion is a vector sum, which must
be handled carefully, such as

with the graphical method. The
second equation is a simple alge-
braic addition of numbers that
is handledwith the normal rules
of arithmetic.

Commutative law of addition F

S Ll irk *.u ie 3.I lffhich of the following are vector quantities and which are scalar
1.-qu4ntitiqs?-(a).your age (blacceleration (clvelq€ity (dispe€d (dmass--. --- i---

In this section, we shall investigate general properties ofveciors representing physi-
cal qqantities. We alsq discuss how to add and subtractvectors using both algebraic
and geometric methods.

Eqtrality of Two Vectors
Fo-r many purposes, two vectors

parallel lines. For exam-
ple, all the vectors in Figure 3.5 are equal even though they have different starting
points. This property allows us to move a vector to a position parallel to itself in a
diagram without affecting the vector.

Adding Vectors
The rules for adding vectors are conveniently described by a graphical method.
To add vector Ii to vector A, first draw vector A on graph paper, with its magni-
tude represented by a convenient length scale, and then draw vector B to the same

scale, with its tail stArting from the tip of A, as shown inTigure 3.6. The resultant

# rh. u..ro, orawn riom rhe rarl o, a ,o rhe up of 
-8.

A gpometric construction can also be used to add more than two vectors as'

sIoryALn rrgure J. / ror tne case or rour vec[ors. r ne re su*an, u-..rrf;*ffi,
ffi" lhe vector that completes the polygon. In other words, R is thE vicior
'drawn from the tail of the firstvector to the tip of the lastvector. This technique for
adding vectors is often called the "head to tail method."' When two vectors are added, the sum is independent of the order of the addi-
tion. (This fact may seem trivial, but as you will see in Chapter 11, the order is
important when vectors are multiplied. Procedures for multiplying vectors are dis-
cussed in Chapters 7 and l1J This property, which can be seen from the geometric
construction in Figure 3.8, is known as the commutative law of addition:w

f,,

{3.5}

#
Figure 3.6 whenvector i i* 

-added tovector A, the resuJtant R is

the vector that runs from the tail of
i to th. tip of i.

Ai
ll

Figure 3.7 Geometric construc-
rion for summir:e four vectors. The I
resultant vector R is by definition
the one that completes the polygon.

+
.DrawA, *
dlenadd6.

*+'i.-r).*. {
Figure'3.8-'fhis construction
showsthatA + B: B-l- Aotin
other words, thatvector addition is

commutative.
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result toA

When three or rnore vectors are added, their zum is independentpf the way in
which the individual vectors are grouped together. A geometric proof of thls rule
for three vectors is given in Figure 3.9. This property iscalled the associative law of
addition:

. t ry-'--..q

In sunlmlry, a vector quantity has both magnitude and direction and also obeys
the laws 6f vector addition as described in Figures 3.6 to 3.9. When two or more
vectors a?e added together, they must all have the same units and lhey must all
be the same type of quantity. It would be meaningless to add a velocity vector (for
example, 60 km/h to the east) to a displacementvector (for example, 200 km to the
north) because these vectors represent different physical quantities. The same rule
also applies to scalars. For example, it would be meaningless to add time intervals
to temperature$.

_ {a3*g{; __. .lJ#t.'*,fiffi:ffi.Tffi_then addC@
d.r€sdt lawofaddition.

3.3 Some Propertiesof Vectors

(3.6) { Associative law ofaddition

63

The geometric construction for subtracting two vectors in this way is illustrated in

- 
Angh3r way of looking at vector subtraction is to notice that the difference

A - B betrveen two vectors A and B is what you have to add to the second vector

Wewoulddraw,,! I Vector.d-i-ii,
d here if wc rere ,' a" rotrr*a -"rt,addingitoi. ,, i ildofitoobaini.

C =A-B
_B

ir
Addiog -B toA
is equiralent to
subtracting B
fromA

Figure_3.1O (a) Subrracting
vector B from vector A. The vec-
tor - d is equal in magnitude to
vector B and points in the oppo-
site direction. (b) A second way of
looking at vector subtraction.
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@
, Conceptualize The vectorsiaodCdra*o in

Figure 3.11a help us conceptualize thg problem.
The resultant vector R has also been drawn. We
expect its magnitude to be a few tens of kifome-
ters. The angle B that the resultant vector makes

with the l axis is expected to be less than 60', ther +,
angle that vector B makes ruth the y axis.

to obtain the first. In this case, as Figure 3.10b shows,

-frorr thC@ of6e secon-d vectorlo&-e tipGltfiFftrst. '

A Vacation Trip

N
l
l-w-{l}*e

I

S
t t.

i

x(kn)

+
B pointsthe vector:-: :-:

+A.-

ffi.' ;., .".".

E (alCraphical method for finding the resul-
tant disXlacffient vector R : A + B . (b) Adding the vectors in reverse

order (E + A) gives the same result flor R.

, (km) ) (km)

Categorize We can categorize this example as a simple analysis problem in vectqr addition. The displacernent R is the
resultant when the two individual displacements A and B are added. We can further categorize it as a problem about
the analysis of triangles, so we appeal to our expertise in geometry and trigonometry.

Analyze In this example, we show two ways to anilyzn the problen of finding the resultant of two vectors. The first way is

to solve the problem geometrically, using graph paper and a protractor to measure the magnitude of R and its direction
in Figure 3,11a. (In fact, even when you knowyou are going to be carrying out a calculation, you should sketch the vectors

to check your resutts) l,Yith an ordinary ruler and protractor:, a large diagram typically gives answers to two-digit but not to
three-digit precision..Try using these tools on R in Figure 3.11a and corypare to the trigonometric analysis below!

The second way to solve the problem is to analyze it using algebra and trigonornetry. The magnitude of R can be

obtained from the law of cosines as applied to the triangle in Figure 3.11a (see Appendix B.4).

find fi:

Substiture numerical lalues, noting that

-

rt
Ljnless otheruise rcted. all cmtent on rhis page is @ Cenpge Leamingi
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3.4 Components of a Vector and Unit Vectors

il ?f

Use the law of sines (Appendix 8.4) tofind the direction
of R measured from the northerly direction:

WK

Finalize Does the angle B that we calcu:lated agree with an people find using the lans of cosines and sines to be awk-

estimatemadebylookingatFigure3.11.aor\^rithanactual ruard. Second, a triangle only results if you are adding

angle measured from the diagram using the3raphical two vectors, If you are adding three or more vectors' the

method? Is it reasonable that the magnitude of Ii is larger resulting geometric shape is usuallynot a triangle. In Sec-

thau that of botfr i anA il Are the units of il. correct? tton TA,we explore a new method of adding vectors that
Although the head to tail method of adding vectors will address troth of these disadvantages.

works well, it suffers from two disadvantages. First, some

mmfmil Suppose the trip were taken lvith the two vectors in reverse order: 35.0 km at 60.0' west of north first and
then 20.0 km due north. How would the magnitude and the direction of the resultant vector change?

Answer They would not change. The commutatiye law for vector addition tells us that the order of vectors in an

. addition is irrelevant. Graphically, Figure 3.11b shows that the vectors added in the reverse order give us the sarne

resultant vector.

ffi

The graphical method of adding vectors is not recommended whenever high
accuracy is required or in three-dimensional problems. In this section, we

65

describe a method of adding vectors that makes use of the projections of vectors
along coordinate axes.

nent ,4, represents the projection of A along the x axis, and the component $
represents the projection of A along the y axis. These components can be positive
or negative. The component A, is positive if the component vector A* points in
the positive .r direction and is negative if A* points in the negative x direction. A
similar statement is made for the component dr.

0
, rl,

A_

W(a)Avector i
lying in the 11 plane can be rep-
resentedty its component vectors
A. and Ar. (b) The 1: component
vector A, can be moved to the
right so that it adds to A,. The
vector sum.of the compo[ent
vectors is i. Th"." three vectors
form a right triangle.

Unless oihetr'se noted. all oment on this page is O Cengage learning.
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Pitfall Prevention 3.2- : -
x and y fanponents Equations 3.8
and 3.9 associate the cosine of
the angle with the ,component
and the eine of thg anglewith-tfrc ..r ..

,comPonenL This aesociation is

tte onlybecause we measured the
angle d with respect to the raxh,
ro do notmemorize these equa-
tions. If I is measuredwith respect
to Ore raxis (as in some problerns),
these equations will be incorrect.
Think aboutwhich side ofthe tri-
angle containhg the components
is adjacent to the angle and rvhich
side is opposite and then assign the
cosine and sine accordingly.

From Figure 3.12 and the definition of sine and cosine, we see that cos 0 : A*/A
and-tharsin 6-: ,\l*. Hence; the componeats of A are . -. . -: . --: : '-' . _'-: -:

(3.8)

{3.s)

The magnitudes of these components are the lengths of the two sides of a right tri-
angle witha hypotenuse of length A. Therefore, the magnitude and direction of A
are related to its components through the expressions

(3ro)

(e.tt)

For

K6{e Figure 3.13

the various quadrants,
of the components when A

in a coordinate system having axes that are not horizontal and vertical but that
are still perpendicular to each other. For example, we will consider the motion of
objects stiding down inclined planes. For these examples, it is often convenient to
orient the raxis parallel to the plane and the y axis perpendicular to the Plane.

S uirk cf Li!z 3.4 Choose the correct response to make the sentence true: Acom-
: ponent of alector is (a) alwap, (b) nevgor{c),p9ry99igr9! }arger than the mag-

. nitude of the vector.

M

w
@

Figure 3.13 Thesigns of the
components of avector A depend
on the quadrant inwhich the vec-

tor is located.

Vector ouantities often are exoressed in terms of unit vectors. i

Unitvecto;g are used to sPec-

ify i given direction and have no other physical silnificance. fhey are used solely
as a bookkeeping convenience in describing a direction in space. We shali use the
sym{oh i i ""J fr to ..pr.r.nt unit u..t*t pointiflg.in the positive x, y, a,',d z

.il* points
left and is -
l, points
up and is *

x
A, points
left and is -

di4ections, respectively. (TE "hats," or ci
-ogithe

ithe symiols are a siandard
notation for unit vectors.)

magnitude ot each urut vector equals I ; that ls, lBlwwKSBBwxp
Consider a vector A lying in the ry plane as shown in Figure 3.1ab. Tlggg5[59Uonslcler a vector A rylng m tne ,) planeas snown In .t(lgure a.tatD. tne Droouct.

ofthecomponentA*and'theunitvectoriisthecomponentvectorw

ffita) Theunitvectors
i, j, and k are directed along the rc,

1 and z axeq respectively. (b) Vec-

tor A : A-i + Aljlyinginthexy
plane has components l*aud /r.

Unlss otheNise 0oted, all mntent on this pags is O Cengage leaming!
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which lies on the tr axis and has magnitude 1,4.1. Likewise, d, : Ari is the com-

loneritvec-torof magh$ride l4l ryn-Son thelaiii-ThEiefoie, tliC-uniEi,ectof '--
notation for the vector A is

k*M
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lffi rhe pointwhose
Cartesian cmrdinates are (x,1)

can be represented by the position
vector?=*i+yj.

(3.12,

For example, consider a point lying in the xy plane and having Cartesian coordi-
nates (x, 1) as in Figure 3.15. The point can be specified by the position vector ?,
which in unit-vector form is given by

Thisnotationtellsusthatthe."*mthecoordinatesxand1.(3.13}
Now let us see how to use componLnts to add vectors whegthe graphical method

is not sufficiently accurale. Suppose we wish to add vector B to vector A in Equa-
tion 3.12, where vector B has components B* and 3r. Because of the bookkeeping
convenience of the unit vectors, all we do is add the x and y components separately.
Theresultantvector R : A * B is

-+
Because n : /i"i * fi,j, we see that the components of the resultantvector are

'iluxw (3.rs): €3plG${ry
Therefore, we see that in'the component method of adding vectors, we add all the
# components together to find the x component of the resultant vector and use the
same process for the y components. We can ch6ck'this addition by components with
a geometric construction as shown in Figure 3.16.

The magnitude of R and the angle itmakeswith the xaxis are obtainedfrom its
components using the relationships

(3.r6)

(3.r7)

sffiW rhisgeornetric
construction for the sum of two
vectors shows the relationship
between the components of the
resultant f, and the components
of the individual vectors.

At times, we need to consider situations involving motion in tlree componext pitfall prevention 3.3
directions. The extension of our methods to three-dimensional vectors is straight- 

Tangents on Calculators Equa_@d-ilbotb,-have-'a;1-, and-reompoaentsithe1€a*&eexpress.a i"-_-ffilffiffi,*=,*rr6fi- ;-----
the form + ofan angle by means ofa t lngent

# 4+8,
ffiF= *=;*;,

M
(3.rs)

(s.rg)

(r.zo)

Notice that Equation 3.20 differs from Equation 3.14: in Equation 3.20, the resul-
tantvector also has a zcomponent & : A. + BJf ale€or R has x, ), and zcom-
ponents,tnemagl1r[uoeoItnevector1Sffirtreangteu*
that R makes with the xaxis is found from the expression cos 0, : lt /R, with simi
lar expressions for the angles with respect to the y and z axes.

The extension of our method to ad{SB more than two vectors is also straight-
forward. For^example, I + E + i: (A*+ B*+ C,)i+ (4+4+ c))i+
(A,+ B,+ C,)fr. We have described adding displacementvectori in this section
because these types of vectors are easy to visualize, W'e car also add other types of

k function. Generally, the invcrse
tangent function on calculators
provides an angle bctween -90"
aad *90". As a consequence., if
the rrcctor you are studying lies in
the second or third quadrant, the
angle measured from *re positive
x axis will be the angle your calcu-
lator reurrns plus 180'.
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Use Equation 3.14 to obtain the resultant vector fr:

Evaluate the components of fr.:

+
Use Equation 3.16 to find the magnitude of R:

+
Find the direction of R from Equation 3.17 w€ts#?w

vectors, such as velocity, force, and electric field vectors, which we will do irr later
.chapters. . ---

@W For which of the following vectors is the magnitude of the vector

: .q"4 to one of the components of the vector? (a) A : 2 i + 5i
; (b) B : -3j G) c :-J,q.*.

Categorize We categorize this -example as a simple substitution problem. Comparing this expression for d with

thegeneralexpressionl:a-i+4j+A,t,weseethatA,.:2.0*,Ar:2.0m,and4:0.Likewise,4:2.0m,
4 : - 4.O m, and B, : 0. W'e can use a two-dimensional approach because there are no z comPonents'

@
Conceptualize You can conceptualize the situation by drawing the vectors on graph paper. Draw an approximation of
the expected resultant vector,

Your calculator likely gives the answer -27' for g : 12n-1(-0.50). This answer is correct if we interpret it to mean 27'

clockwise from the #axis. Our standard form has been to quote the angles measured counterclockwise from the *r
axis, and that angle for this vector is 0 : n33'

&

@
Conceptualize Although x is sufficient to locate a point
in one dimension, we need a vector ? to locate a point in
two or three dimensions. The notation A? is a generaliza-
tion of the one-dimensional displacement Axin Equation
2.1. Three-dimensional displacements are more difficult
to conceptualize than those in two dimensions because

.they cannotbe drawn on paper like the latter.
For this problem,letus imagine thatyou startwith your

pencil at the origin ofa piece ofgraph paper on which
you have drawn x and y axes. Move your pencil 15 cm

to the right along the x axis, then 30 cm upward along
the 1 axis, and then 12 an perpendi'cularly toward, you auay

from the graph paper. This procedure provides the dis-
placement described by A?1. From this point, move your
pencil 23 cm lgthg {ight parallel to the xaxis, then 14 cm

parallel to the graph paperin the ldirection, and then
5.0 cm perpendicularly away from you toward the graph
paper. You are now at the displacement from the origin
described by A?1 + A4. From this point, move your
pencil 13 cm to the left in the -xdirection, and (finallyl)
15 cm parallel to the graph paper along the 1 axis. Your
final position is at a displacement A?1 + A?, + A?3

from the origin.
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3.4 Components of a Vector and Unit Vectors

r i.q

Categorize Despite the difficulty in conceptualizing in three dimensions, we can categorize this problem as a substitu-
tion problem because of the careful bookkeeping methods thatvr,e have developed forvectors, The mathematical manip-
ulation keeps track of this motion along the three perpendicular axes in an organized, compact way, as we see belorv.

To find the resultant displacement,
add the three vectors:

Find the magnitude of the resultant
vector:

ffi

l@
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l.r \....-s ...J-F,/

A hiker begins-a Hp Uy first walking 25.0 km southeast from her car. She stops
and sets up hetttht for the night. On the second.dSr, str_3grtt<;. 4,Og.U*rj9 ,
direction 60.0' north of easr, at;hich poirt rt.trls#i, , ffi#rt fiigtst tOi^di.

(A) Determine the components of the hiker's displacement for each day.

@
Conceptualize We conceptualize the problem by drawing a sketch as in Figure
3 .17 . If we denote the displacement vectors on the first and second dals by A and
il, respectively, and use the car as the origin of coordinates, we obtain the vec-
tors shown in Figure 3,17, The sketch allows us to estimate the resultantvector as

shown.

Categorize Having drawn the resultant R, *. .url now categorize this problem
as one we've solved trefore: an addition of two v€ctors. You should now have a
hint of the power of categorization in that many new problems are very similar to
problems we have already solved if we are careful to conceptualize them. Once

,d (km)

{} : 6.""{r"*t

ffiW (Exarnple3.5)The r' Lr

total displacement of the hiker is
therectorR=A+8.

we have drawn the displacement vectors and categorized the problem, this problem is no longer about a hiker, a walk,
a car, a tent, or a tower. It is a problem about vector addition, one that we have already solved. C, :, (: $j *, ,,1 * i;..'..._.
Analyze Displacement i h"r , magnitude ot25.0km and is directed 45.0'below the positive raxis. (, -,ry*

Find the componglts St d usingEquations 3.8 and 3.9: ss&ffi(*45.0") : (25.0 km)(0.70?) : l?.? kql

y (krn) 
!

The negative value of ,t indicates that the hiker ryalks in the negative y direction on the first day. The signs of A, and
l, also are evidentfrom Figure 3.17.

Find the components of C using Equations 3.8 and 3.9: (40.0km)(0.500) : Zo.otm

(4o.okm)(0.s66) : 34.6km

(B) Determine the components of the hiker's resultant displacement R for the trip. Find an expression for R in
terms ofunitYectors,

@
Use Equation 3.15 to find the components of the resul-
ranr orspracemenr -TE

ffi-45.0") : (zs-okm)(-0.r07) : *t?.? t<m

re L1.7kn + 20.0km : 37.7y,n

-fi.t k,.\+ 34.6krn : u.okm
continued
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Write the total displacement in unit-vector form:

Finalize Looking at the graphical representation in Figure {7, we estimate the position of the tawer to be about
(38 km, 17 km), which is consistent with the components of R in our result for the final position of the hiker. Also,
both components of R are positive, putting the final position in the first quadrant of the coordinate system, which is
also consistent with Figure 3.17.

mEtffi After reaching the tower, the hikerrwishes to return to her car along a single straight line. What are the
components of the vector representing this hike? What should the direction of the hike be?

Answer The desired vector d.* is the negative of vector il:

fuffi= ?zz.7i- lz.oi)km
The direction is found by calculating the angle that the vector makes with the x ads:

ffi -17.0 km :4.450
-37.7 brrr

which gives an angle of 0 : 244.2", or 24.2" south of west.

ffi

S Scalar quaqtitics are those tliat have only a
numerical value and no associated direction,

$ Yector quantitieshave both nagnitude aild direction and
obey the larys ofv.ectorraddltion; The.:pag4itudeof aveetor is
afubsaposiavenumber. l

* Wfren two ormore yectors are added together, they S A second rnethod of adding vector ini/olves. com-
must all hav.a !-h.e sameunit$ and they all must bg the oonents of the vectors. The r comoonent A of the

B grapiiially. In this mEthod (fig.3.6), tB resultant
vectorB: A + Brunsfromthetailof Atothe:+
tip of B-

raxis of a coordinate systern, where 4: Aco*.
The y componeut r\ of A is the projectioa of A along
the I axis, where 4t a 

"i11 
e.

1* We cao firrd the resultant of two oi *bre v"ctom
by resolving all vectors into their r and 1 components,
adding their resultant r and 1 components, and then
using the Pythagorean theorem to find the magnitude
of thl resultantvector. We can find the angle that the
resultant vector makes with respect to the x axis by
using a suitable trigonometric function.

$ If a vector i h", * .f, compooent A. arrA a ;1 compo-

".114, the vector can be expressed in unit-vector form
as A : 4i + +i.In this notation, iis aunitvector
pointing in the positive *difeaion and j is a unit vec-
tor pointing in the positive y direction. Because i and j
areunitvectors, lil : l-il : t.
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