TABLE 1-1 Some Typical

Lengths or Distances

(order of magnitude)

Length Meters
(or Di (appren
Neutron or proton

(diameter) 1075 m
Atom

(diameter) 107 ®m
Virus [see Fig. 1-5a] 107 m
Sheet of paper

(thickness) 107¢ m
Finger width 102 m
Football field length 10? m
Height of Mt. Everest .

[see Fig. 1-5b] 10* m
Earth diameter 107 m
Earth to Sun 104 m
Earthto neareststar 10 m

Earth to nearest galaxy 102 m

Earth to farthest
galaxy visible 10% m

FIGURE 1-5 Some lengths:

(a) viruses (about 107 m long)
attacking a cell; (b) Mt. Everest’s
height is on the order of 10*m
{8850 m, to be precise). -

(®)

Units, Standards, and the SI System

The measurement of any quantity is made relative to a p dard or unit,
and this unit must be specified along with the numerical value of the quantity. For
example, we can measure length in British units such as inches, feet, or miles, or in
the metric system in centimeters, meters, or kil To specify that the length
of a particular object is 18.6 is meaningless. The unit smust be given; for clearly,
18.6 meters is very different from 18.6 inches or 18.6 millimeters.

For any unit we use, such as the meter for distance or the second for time, we
need to define a standard which defines exactly how long one meter or one second
is. It is important that standards be chosen that are readily reproducible so that
anyone needing to make a very accurate measurement can refer to the standard in
the laboratory.

o hichad

The ﬁm truly international standard was the meter (abb m) as
the standard of length by the French Academy of Sciences in the 1790s. The stan-
dard meter was originally chosen to be one ten-millionth of the distance from the
Earth’s equator to either pole,’ and a platinum rod to represent this length was
made. (One meter is, very roughly, the distance from the tip of your nose to the tip
of your finger, with arm and hand stretched out to the side.) In 1889, the meter was
defined more precisely as the d b two finely engraved marks on a
particular bar of platinum-iridium alloy. In 1960, to provide greater precision and
reproducibility, the meter was redefined as 1,650,763.73 wavelengths of a particular
orange light emitted by the gas krypton-86. In 1983 the meter was again redefined,
this time in terms of the speed of light (whose best measured value in terms of the
older definition of the meter was 299,792,458 m/s, with an uncertainty of 1m/s).
The new definition reads: “The meter is the length of path traveled by light in
vacuum during a time interval of 1/299,792,458 of a second.”*

British units of length (inch, foot, mile) are now defined in terms of the
meter. The inch (in.) is defined as precisely 2.54 centimeters (cm; 1cm = 0.01 m).
Other conversion factors are given in the Table on the inside of the front cover
of this book. Table 1-1 presents some typical lengths, from very small to very
large, rounded off to the nearest power of ten. See also Fig. 1-5. [Note that the
abbreviation for inches (in.) is the only one with a period, to distinguish it from
the word “in”.]

Time

The standard unit of time is the second (g). For many years, the second was defined as
1/86,400 of a mean solar day (24 h/day X 60 min/h X 60s/min = 86,400 s/day).
The standard second is now defined more precisely in terms of the frequency of radi-
ation emitted by cesium atoms when they pass between two particular states.
[Specifically, one second is defined as the time required for 9,192,631,770 periods of
this radiation:] There ave; by definition; 60's inrone mimute (mit) 2md 60 1

one hour (h). Table 1-2 presents a range of measured time mtervals, rounded off to
the nearest power of ten.

The standard unit of mass is the kilogram (kg). The standard mass is a particular
platinum-fridium cylinder, kept at the International Bureau of Weights and
Measures near Paris, France, whose mass is defined as exactly 1kg. A range of
masses is presented in Table 1-3. [For practical purposes, 1kg weighs about
2.2 pounds on Earth,]

*Modern of the Earth’s ci
one-fiftieth of 1%. Not bad!

*The new definition of the meter has the effect of giving the speed of light the exact value of
299792458 m/fs.

reveal that the intended length is off by about
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. TABLE 1-2 SomeTypical TimeInfervals = = TABLE1-3 Some Masses

Kilograms (lmtm!e)

mintes i

Time Interval Seconds (approximate) Object
Lifetime of very unstable subatomic particle 1025 Electron 107 kg
Lifetime of radioactive elements 102510105 Proton, neutron 107 kg
Lifetime of muon 105 s DNA molecule 1077 kg
Time between human heartbeats 10° s(=1s) Bacterium 1075 kg
One day 10° s Mosquito 107 kg
One year 3x107 s Plum 107 kg
Human life span 2x10° s Human 10* kg
Length of recorded history 10" s Ship 10* kg
Humans on Earth 104 s Earth 6X 10% kg
Life on Earth 107 s Sun 2% 10° kg
Age of Universe 0% 5 Galaxy 10" kg
When dealing with atoms and molecules, we usuaily use the unified atomic AR} E 1-4 Metric (SI) Prefixes
mass unit (u). In terms of the kilogram, =
lu — 16605 X 107kg, Prefix  Abbreviation  Valme
The definitions of other standard units for other quantities will be given as we ~ Yotfa Y 107
encounter them in Iater Chapters. (Precise values of this and other numbers are  zetta z 102
given inside the front cover.) exa B 1018
. peta P 10
N . tera T 102
system, the larger and smaller units are defined in multiples of 10 from giaa G 100
the standard unit, and this makes calcvlation particularly easy. Thus 1 kilemeter (km) M 108
is 1000m, 1 centimeter is ;i m, 1 millimeter (mm) is M or {yem, and so on. n?ega 10
The prefixes “centi-” “kilo-” and others are listed in Table 1-4 and can be applied <10 k
not only to upits of length but to units of volume, mass, or any other metric unit. hecto b 1"::
For example, a centiliter (¢L) is g5 liter (L), and a kilogram (kg) is 1000 grams (g). :eka :ﬂ :g—t
eCl
Systems of Units centi c 102
When dealing with the laws and equations of physics it is very important touse a gy o= 1073
consistent set nf units. Several systems of nmts have been in use over the years. ..ot é 1076
Today the most imp is the Syste jonal (French for International G i 10°°
System),whychsabbrevmmdSL]nSImns,tbzsmda:doﬂengthummmer i ) 1012
the standard for time is the second, and the standard for mass is the kilogram. This ~ P'°° p "
system used to be called the MKS (meter-kilogram-second) system. feiitén, £ m:m
A second metric system is the egs system, in which the centimefer, gram, and 210 2 mm
second are the standard units of length, mass, and time, as abbreviated in the title, ~ Zepto z 10
The British ing system has as its standards the foot for length, the pound ~ yocto y 107
for force, and the second for time. *puis the Greek letter “om.™
We use ST units almost exclusively in this book.
versus Derived it TABLE 1-5
Basf D Q\?a.nntx'es " ;. » SI Base Quantities and Units
Physical quantities can be divided into two categories: base quarniities and derived e
quantities. The corresponding units for these quantities are called base anity and 5 o it
derived units. A base quantity must be defined in terms of a standard. Scientists, in the _ Quaatity Usit  Abbyevistion
i st of simplicity, want the small ber of base quantities possible consistent  Length meter m
with a full description of the physical world. This number turns out to be seven, and  Time second s
those used in the SI are given in Table 1-5. All other quantities can be defined in terms  pgaqe kilogram kg
of these seven base quantities’ and hence are referred to as derived quantities. An Electric
example of a derived guantity is speed, which is defined as distance divided by the time current ampere A
it takes to travel that distance. A Table inside the front cover lists many derived  Temperature kelvin K
quantities and their units in terms of base units. To define any quantity, whether baseor A pount
derived, we can specify a rule or procedure, and this is called an eperational definition. of substance mole mol
Luminous
i o

"The only exceptions are for angls {radians—see Chapter 8) and solid angle (steradian). No general
agreement has been reached as to whether these are base or derived quantities.
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FIGURE 1-6 The world’s second
highest peak, K2, whose summit is

Convertmg Units

Any quantxty we measure, such as a length, a speed or an electric o current, consists

of a number and a unit, Often we are given a quantity in one set of units, but we
want it expressed in another set of units. For example, suppose we measure that a
table is 21.5 inches wide, and we want to express this in centimeters. We must use a
conversion factor, which in this case is (by definition) exactly

lin. = 2.54cm
or, written another way,
= 2.54cm/in.
Since multiplying by one does not change anything, the width of our table, in cm, is

21.Sinches = (2L5%m.) X (254%) = 546cm.

Note how the units (inches in this case) cancelled cut. A Table containing many unit
conversions is found inside the front cover of this book. Let’s consider some Examples.

The 8000-m peaks. The fourteen tallest peaks in the world
. (Fig. 1-6 and Table 1-6) arc reforred to as “eight-thousanders,” meaning their
summits are over 8000 m above sea level. What is the elevation, in feet, of an
elevation of 8000 m?

' APPROACH We need simply to convert meters to feet, and we can start with the
conversion factor 1in. = 2.54cm, which is exact. That is, 1in. = 2.5400cm to
| any number of significant figures, because it is defined to be. )

SOLUTION One foot is 121in., so we can write

= (121'-&)(2.54%) = 3048cm = 03043m,

which is exact. Note how the units cancel (colored slashes). We can rewrite this

8 CHAPTER 1, Introduction, M

2;&%:’;‘3 g; ;:soj&d’éf;“g:;me | equation to find the number of feet in 1 meter:
the north (China). 1t
im = = 328084 ft.
0.3048
TABLE 1-6
The 8000-m Peaks ‘We multiply this equation by 8000.0 (to have five significant figures):
Peak . Height (m) &
Mt. Everest "~ sas0 8000.0m = (8000.0'm.) ( 3.28084 :) = 26,247 ft.
K2 ) 8611 ‘ N !
Kangchenjunga 8586 An elevation of 8000 m is 26,247 ft above sea level.
Lhotse 8516 NOTE We conld have done the conversion all in one line:
Makalu - 8462
Cho Oyu . 8201 e . 100.¢nv 1. 18
Dhantagiri 167 80000m = (80(]0.0“1)( T )(mm)(nm;) = 26,247ft.
Manasstu 8156
Nanga Parbat 8125 The key is to multiply conversion factors, each equal to one (= 1.0000), and to
A s 8091 make sure the units cancel.
Gasherbrum®_ - 8068 I
Broad Peak 8047 EXEICISE E There are only 14 eight-thousand-meter peaks in the world (see Example 1-2),
Gasherbrum I 8035 and their names and elevations are given in Table 1-6.They are all in the Himalaya moun-
Shisha P 8013 - tain range in India, Pakistan, Tibet, and China. Determine the elevation of the world’s

three highest peaks in feet.

Estimating

.\partment area. You have seen a nice apartment whose

ﬂoor area is 880 square feet (ft*). What s its area in square méfers?

APPROACH We use the same conversion factor, 1in. = 2.54cm, but this time
we have to use it twice.

Because lin. = 2.54cm = 0.0254m, the
#PSo 8801 = (8801€)(0.0929 m*/fi*) ~ 82 m’.
NOTE As a rule of thumb, an area given in fi? is roughly 10 times the number of
square meters (more precisely, about 108).

Speeds. Where the posted speed limit is 55 miles per hour
(mi/h or mph), what is this speed (a) in meters per second (m/s) and (b) in
kilometers per hour (km/h)?
APPROACH We again use the conversion factor 1in. = 2.54cm, and we recall
that there are 5280 ft in a mile and 12 inches in a foot; also, one hour contains
(60 min/h) X (60s/min) = 3600s/h.
SOLUTION (2) We can write 1 mile as

We also know that 1 hour contains 3600s, so

3 - (%) 2)( ) - 2

where we rounded off to two significant figures.
(b) Now we use 1 mi = 1609 m = 1.609 km; then

mi_ mi km km

55 i (55 h )(1m9m) = gsT.

NOTE Each conversion factor is equal to one. You can look up most conversion
factors in the Table inside the front cover.

EXERCISE F Would a driver traveling at 15 m/s in a 35 mi/h zone be exceeding the speed
limit?

When changing units, you can avoid making an error in the use of conversion
factors by checking that units cancel out properly. For example, in our conversxon
of 1mi to 1609 m in Example 1-4(a), if we had incorrectly used the factor (P
instead of {%2;), the centimeter units would not have cancelled out; we would not
have ended up with meters.

PROELEM SOLVING

7 fuctors = 1
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1—06  Order of Magnitude: Rapid Estimating
We are sometimes interested only in an approximate value for a quantity. This
might be b an fculation would take more time than it is worth
or would require additional data that are not available. In other cases, we may
want to make a rough estimate in order to check an accurate calculation made
on a calculator, to make sure that no blunders were made when the numbers
were entered.

A rough estimate is made by rounding off all numbers to one significant figure
and its power of 10, and after the calculation is madc, agam only ote significant
figure is kept. Such an is called an erd and can
be accurate within a factor of 10, and often better. In fact the phrase “order of
magnitude” is sometimes used to refer simply to the power of 10.

SECTION 1-6  Order of Magnitude: Rapid Estimating 9
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FIGURE 1-7 Example 1-5. (a) How
much water is in this lake? (Photo is of
one of the Rae Lakes in the Sierra
Nevada of California.) (b) Model of
the lake as a cylinder. {[We could go one
step further and estimate the mass or
weight of this lake. We will see later
that water has a density of 1000 kg/m?,
0 this lake has a mass of about

(10° kg/m®)(107 m?) = 1010 kg, which is
about 10 billion kg or 10 million metric
tons, (A metric ton is 1000 kg, about
2200 Ibs, slightly larger than a British
ton, 2000 1bs.)]

SIS ESTIMATE | Voleme of a lake. Estimate how much water

there is in a particular lake, Fig. 1-7a, which is roughly circular, about 1km
across, and you guess it has an average depth of about 10m.

APPROACH No lake is a perfect circle, nor can lakes be expected to have a
perfectly flat bottom. We are only estimating here. To estimate the volume, we
can use a simple model of the lake as a cylinder: we multiply the average depth
of the lake times its roughly circular surface area, as if the lake were a cylinder
(Fig. 1-7b).

SOLUTION The lume V of a cyhnder is the product of its height # times the
a.rea of its base:! , where r is the radius of the circular base.” The radius »
is 3km = 500m, so the volume is appmxxmaiely

where 7 was rounded off to 3. So thc volume is on the ord.,r of 107m ten
million cubic meters. B of all the that went into this calculatmn,
the order-of-magnitude estimate (10"m®) is probably better fo quote than the
8 X 10°m® figure.

NOTE To express our result in US. gailons, we see in the Table on the inside
front cover that 1liter = 10°m® ~ }gallon. Hence, the lake contains

I PROBLEM SOL\HNG
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{8105 m){t gallon/4-x- 107 m¥)~-2 x-16" gallons of water-———————

2GRS R ESTIMATE | Thickness of a page. Fstimate the thickness
of a page of this book.

APPROACH At first you might think that a special measuring device, a micrometer
(Fig. 1-8), is needed to measure the thickness of one page since an ordinary
ruler clearly wen’t do. But we can use a frick or, o put it in physics terms, make
use of a symumetry: we can make the reasonable assumption that all the pages of
this book are equal in thickness,

SOLUTION We can use a ruler to measure hundreds of pages at once. If you
measure the thickness of the first 500 pages of this book (page 1 to page 500),

you might get something like 1.5cm. Note that 500 numbered pages,

tFormulas like ﬂns for volume, ares, etc., are found inside the back cover of this book.

Estimating

— athickaess of about— ——-

counted front and back, is 250 separate sheets of paper So one page must have

i5cm
250G pages
or less than a tenth of a millimeter (0.1 mm}.

ST I ESTIMATE | Height by tiangulation. Estimate the height
of the building shown in Fig, 1-9, by “iriangulation,” with the help of a bus-stop
pole and a friend.

APPROACH By standing your friend next to the pole, you estimate the height of
the pole to be 3m. You next step away from the pole until the top of the pole is in .
line with the top of the building, Fig. 1-%a. You are 5t 6in. tall, so your eyes are  FIGURE 1-8 Example 1-6. Micrometer
about 1.5 m above the ground. Your friend is taller, and when she stretches out her  used for measuring small thicknesses.
one hand touches you, and the other touches the pole, so you estimate that
;iiar:lt:’nce as 2m (Fig. l—g:). You then pace off the distance from the pole io the gcu’:l::e ::uamp‘,::ﬁl,j
base of the building with big, 1-m-long steps, and you get a total of 16 steps or 16 m. e y )
SOLUTION Now you draw, fo scale, the diagram shown in Fig. 1-9b using these
measurements. You can measure, right on the diagram, the last side of the
triangle to be about x = 13m. Alternatively, you can use similar friangles to
obtain the height x:

iSm _ x

2m 18m
Finaily you add i your eye height of 1.5m above the ground to get your final
result: the building is about 15m tall.

Estimating the radius of Earth. Belicve it or
not, you can estimate the radius of the Earth without having to go into space (see
the photograph on page 1). If you have ever been on the shore of a large lake,
you may have noticed that you cannot see the beaches, piers, or rocks at water
level across the lake on the opposite shore. The lake seems to bulge out between
you and the opposite shore—a good clue that the Earth is round. Suppose you
climb a stepladder and discover that when your eyes arc 10 ft (3.0m) above the
water, you can just see the rocks at water level on the opposite shore. From

= §X10%em = 6 X 1672 mm,

s 50 x =~ 13}m.

a map, you esti the di to the opp shore as d = 6.1km. Use -1
Fig. 1-10 with 2 = 3.0m to estimate the radius R of the Earth.
APPROA(H We use sxmple g the th of Pyth 2

= a? + B?, where cis the length of lhe hypotenuse of any right tnangle, and a
and b are the lengths of the other two sides.
SOLUTION For the right triangle of Fig. 1-10, the two sides are the radius of the ~ FIGURE 1-10  Example 1-8, but

Earth R and the distance d = 6.1 ki = 6100, The Hypotenuse i approxic — nottescale-Yowcan see-smaltrocks—
mately the length R + k, where k& = 3.0m. By the Pythagorean theorem, :‘f ‘:ﬁz ge;n vﬁl; ‘}i’iﬁ:‘i ::;:1
R+ d& ~ (R+ hY astepladder.
~ R*+ 2hR + W
We solve algebraically for R, after cancelling R? on both sides:

£-F _ (6100m) — (30m)?

3 =
A

~ = = 62X 10°m = .

R e om 10°m = 6200 km.
NOTE Precise measurements give 6380 k. But look at your achicvement! With a
few simple rough and simple g 1y, you made a good estimate

of the Earth’s radivs. You did not need to go out in space, nor did you need a very long
measuring tape. Now you know the answer to the Chapter-Opening Question on p. 1.

SECTION 1-6  Order of Magnitude: Rapid Estimating 11
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\PROBLEM SOLVING

_EXAMPLE 1
- total mumber of beats a typical human heart makes in a lifetime. - —- -~
APPROACH A typical resting heart rate is 70 beats/min. But during exercise it
can be a lot higher. A reasonable average might be 80 beats/min.

SOLUTION One year in terms of seconds is (24h)(3600s/h)(365d) ~ 3 X 107s.
If an average person lives 70years = (70yr)(3 X 107s/yr) ~ 2 X 10°s, then the
total number of heartbeats would be about

(30%?;—5)(%5—)(2 x 10°s) = 3 X 10,

or 3 trillion.

Another technique for estimating, this one made famous by Enrico Fermi to
his physi dents, is to esti the number of piano tuners in a city, say,
Chicago or San Francisco. To get a rough order-of-magnitude estimate of the
number of piano tuners today in San Francisco, a city of about 700,000 inhabitants,
we canl p d by estimating the ber of functioning pianos, how often each
piano is tuned, and how many pianos each tuner can tune. To estimate the number
of pianos in San Francisco, we note that certainly not everyome has a piano.
A guess of 1 family in 3 having a piano would correspond to 1 piano per 12 persons,
assuming an average family of 4 persons. As an order of magnitude, let’s say
1 piano per 10 people. This is certainly more reasonable than 1 per 100 people, or
1 per every person, so let’s proceed with the estimate that 1 person in 10 has a
piano, er about 70,000 pianos in San Francisco. Now a piano tuner needs an hour
or two to tune a piano. So let’s estimate that a tuner can tune 4 or 5 pianos a day.
A piano ought to be tuned every 6 months or a year—let’s say once each year.
A piano funer funing 4 pianos a3 day, 5 days a week, 50 weeks a year can tune
about 1000 pianos a year. So San Francisco, with its (very) roughly 70,000 pianos,
needs about 70 piano tuners. This is, of course, only a rough estimate.” It tells us
that there must be many more than 10 piano tuners, and surely not as many as 1000,

/ Dimensions and Dimensional Analysis

When we speak of the dimensions of a quantity, we are referring to the type of base
units or base quantities that make it up. The dimensions of area, for example, are
always length squared, abbreviated [L’], using square brackets; the uniis can be
square meters, square feet, cm?, and so on. Velocity, on the other hand, can be
measured in units of km/h, m/s, or mi/h, but the dimensions are always a length [L]
divided by a time [T]: that is, [L/T].

The formula for a quantity may be different in different cases, but the dimen-
sions remain the same. For example, the area of a triangle of base b and height 2 is
A = 1bh, whereas the area of a circle of radius ris A = 77% The formulas are

T ESTIVIATE | Total number of heartbeats. Estimate the

could be correct or is surely incorrect. Note that numerical factors, like the 1 here,
—do not aH’ect dimensional checks: We write 2 dimensional equation as follows, ~
ing that the di of speed are [L/T] and {(as we shall see in

Chapter 2) the dimensions of acceleration are [L/7%}:

[T+ 41 i - (2]

The dimensions are incorrect: on the right side, we have the sum of quantities
whose dimensions are not the same. Thus we conclude that an error was made in
the derivation of the original equation.

A dimensional check can only tell you when a relationship is wrong. It can’t
tell you if it is Iy right. For le, a dimensionless numerical factor (such
as } or 2) could be missing.

Dimensional analysis can also be used as a quick check on an equation you are
not sure about. For example, suppose that you can’t remember whether the equa-
tion for the period of a simple pendulum 7T (the time to make one back-and-forth
swing) of length £is T = 2aVIJg or T = 2xV/g/l, where g is the acceleration
due to gravity and, like all accelerations, has dimensions [2/77]. (Do not worry
about these formulas—the correct one will be derived in Chapter 14; what we are
concerned about here is a person’s recalling whether it contains &g or gft)
A dimensional check shows that the former (£/g) is correct:

- JE -
[r] [/ ] = [

whereas the latter (g/f) is not:

moe JETL_ [T 1
2] [ [
Note that the 27 has no di ions and so can’t be checked using dimensions.
Further uses of dimensional analysis are found in Appendix C.

Planck length. The small ingful of length is
Falled the “Planck length,” and is defined in terms of three fundamental constants
in mature, the speed of light ¢ = 3.00 X 10°m/s, the gravitational constant
G'=6.67 X 10 m*/kg-5>, and Planck’s constant % = 6.63 X 107 %kg-m?/s.
The Planck length Ap (X is the Greek letter “lambda”) is given by the following
combination of these three constants:
xe =

Show that the dimensions of Ap are length [L], and find the order of magnitude of Ap.

A‘PPROACH We rewrite the above equation in terms of dimensions. The dimen-
sions of c are [£/T], of G are [L3/MT?], and of k are [MLY/T].

12 CHAPTER 1

Dimensions can be used as a help in working out relationships, a procedure
referred to as dimensional analysis. One useful technique is the use of dimensions
to check if a relationship is incorrect. Note that we add or subtract quantities only
if they have the same dimensions (we don’t add centimeters and hours); and
the quantities on each side of an equals sign must have the same dimensions. (In
numerical calculations, the units must also be the same on both sides of an equation.)

For example, suppose you derived the equation v = v, + 3af?, where v is the
speed of an object after a time 2, v, is the object’s initial speed, and the object
undergoes an acceleration a. Let’s do a dimensional check to see if this equation

A check of the San Francisco Yellow Pages (done after this calculation) reveals about 50 listings. Bach
of these listings may employ more than one tuner, but on the other hand, each may ako do repalrs as
well as tuning. In any case, our estimate is reasonable.

*Some Sections of this book, such as this one, may be considered optional at the discretion of the
instructor, and they are marked with an asterisk (*). See the Preface for more detaifs.

1 -]

SOLUTION-The dimensions of A are
LY MT|[MLYT i
[ [L;}LJ L. vz =

which is a length. The value of the Planck length is

i = \/@ _ (667 x 10T m¥kg-5)6.63 X 10 ¥ kg-m/s)
J \/ (3.0 X 168 m/sy

which is on the order of 107 or 10 m.

NOTE Some recent theories (Chapters 43 and 44) suggest that the smallest particles

(quarks, leptons) have sizes on the order of the Planck length, 1035 m, These

theories also suggest that the “Big Bang,” with which the Universe is believed to
have begun, started from an initial size on the order of the Planck length.

~ 4X10%m,

*SECTION 1-7  Dimensions and Dimensional Analysis 13




In our study of physics, we often need to work with physical quantities that have both
numerical and directional properties. As noted in Section 2.1, quantities of this nature are
vector quantities. This chapter is primarily concerned with general properties of vector
quantities. We discuss the addition and subtraction of vector quantities, together with some
common applications to physical situations.

Vector quantities are used throughout this text. Therefore, it is imperative that you mas-

GriH AP TER

3.1 Coordinate Systems
3.2 Vector and Scalar Quantities

3.3 Some Properties of Vectors

3.4 Components of a Vector and
Unit Vectors

gnitua

{Bavmand A_Ser

ter the techniques discussed in this chapter.

51 ]

Many aspects of physics involve a description of a location in space. In Chapter 2, for
example, we saw that the mathematlcal descnpnon of an obJect s motion requlres

ometimes it is more convenient to I

as shown in Figure 3.2

Yy
10
o(x,y)
Q s
®
) L@
1 1
(o] 5 10

Figure 3.1 Designation of points
in a Cartesian coordinate system.
Every point is labeled with coordi-

nates (x, 3). 9
5
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A m (a) The plane polar coordinates of a point are represented by the distance rand the
angle 6, where 8 is measured counterclockwise from the positive xaxis. (b) The right triangle used to
relate (x, y) to (1; 6).

from it. From the right triangle in Figure 3.2b, and that co8

m (A review of trigonometric functions is given in Appendix B.4.i Therefore,
starting with the Elane iolar coordinates of any point,

(3.1
(3.2

Furthermore, if we know the Cartesian coordinates, the definitions of trigonom-
etry tell us that

(3.3)

(3.4)

!

* Equation 3.4 is the familiar Pythagorean theorem.

These four expressions relating the coordinates (x, ) to the coordinates (7, 9)
apply only when 6 is defined as shown in Figure 3.2a—in other words, when posi-
tive @ is an angle measured counterclockwise from the positive x axis. (Some sci-
entific calculators perform conversions between Cartesian and polar coordinates
based on these standard conventions.) If the reference axis for the polar angle
9 is chosen to be one other than the positive x axis or if the sense of increasing
6 is chosen differently, the expressions relating the two sets of coordinates will
change.

SOLUTION

Conceptualize The drawing in Figure 3.3 helps us conceptualize the problem. We wish to find rand 8. We expect rto
be a few meters and 6 to be larger than 180°.

Categorize Based on the statement of the problem and

the Conceptualize step, we recognize that we are simply .

converting from Cartesian coordingtes to polar coordi-

nates. We therefore categorize this example as a substitu- p

tion problem. Substitution problems generally do not have Figure 3.3

an extensive Analyze step other than the substitution of  Finding polar coordinates when
numbers into a given equation. Similarly, the Finalize step ~ Cartesian can'rdina,tes are given.

Unless otherwise noted, afl content on this page is © Cengage Leaming.
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3.2 Vector and Scalar Quantities 61

consists pr)manly of checkmg the units and making sure that the answer is reasonable and consistent w1th our expec—

tations. Therefore, for substitution problems, we will not label Analyze or Finalize steps.

Use Equation 3.4 to find 7:

Use Equation 3.3 to find 6:

Vector and Scalar Quantities

We now formally describe the difference between scalar quantities and vector quan-
tities. When you want to know the temperature outside so that you will know how
to dress, the only information you need is a number and the unit “degrees C” or
“degrees F.” Temperature is therefore an example of a scalar quantity:

Other examples of scalar quantities are volume, mass, speed, time, and time inter-
vals. Some scalars are always positive, such as mass and speed. Others, such as
temperature, can have either positive or negative values. The rules of ordinary
arithmetic are used to manipulate scalar quantities.

If you are preparing to pilot a small plane and need to know the wind velocity,
you must know both the speed of the wind and its direction. Because direction is
important for its complete specification, velocity is a vector quantity:

62 Chapter3 Vectors

Figure 3.5 These four vectors
are equal because they have equal
lengths and point in the same
direction.

Pitfall Prevention 3.1

Vector Addition Versus

Scalar Addition Notice that

A + B = C is very different
from A + B = C. The first equa-
tion is a vector sum, which must
be handled carefully, such as
with the graphical method. The
second equation is a simple alge-
braic addition of numbers that
is handled with the normal rules
of arithmetic.

Commutative law of addition »

- 3.1 Which of the following are vector quantities and which are scalar

e quant1ues> (a) your age (b) acceleration (c)-velocity (d) speed (e} mass—- - -

In this section, we shall investigate general properties of vectors representing physi-
cal quantities. We also discuss how to add and subtract vectors using both algebraic
and geometric methods.

Equality of Two Vectors

For many purposes, two vectors

ng parallel lines. For exam-
ple all Lhe vectors in Figure 3.5 are equal even though they have different starting
points. This property allows us to move a vector to a position parallel to itself in a
diagram without affecting the vector.

Adding Vectors

The rules for adding vectors are conveniently described by a graphical method.
To add vector B to vector A first draw vector A on graph paper, with its magni-
tude represented by a convenient length scale, and then draw vector B to the same
scale, with its tail starting from the tip of A, as shown infigure 3.6. Thg resultant
the vector drawn from the tail of A to the tip of B.

A geometric construction can also be used to add more than_two vectors as’
shown in Figure 3.7 for the case of four vectors. The resultant vecto
is the vector that completes the polygon. In other words, R is the vector
‘drawn from the tail of the first vector to the tip of the last vector. This technique for
adding vectors is often called the “head to tail method.”

When two vectors are added, the sum is independent of the order of the addi-
tion. (This fact may seem trivial, but as you will see in Chapter 11, the order is
important when vectors are multiplied. Procedures for multiplying vectors are dis-
cussed in Chapters 7 and 11.) This property, which can be seen from the geometric
construction in Figure 3.8, is known as the commutative law of addition:

(3.5)

Another example of a vector quantity is displacement, as you know from Chapter

2. Suppose a particle moves from some point ® to some point ® along a straight
path as shown in Figure 3.4. We represent this displacement by drawing an arrow
from @ to ®, with the tip of the arrow pointing away from the starting point. The
direction of the arrowhead represents the direction of the displacement, and the
length of the arrow represents the magnitude of the displacement. If the particle
travels along some other path from @ to ® such as shown by the broken line in
Figure 3.4, its displacement is still the arrow drawn from ® to ®. Displacement
depends only on the initial and final positions, so the displacement vector is inde-
pendent of the path taken by the particle between these two points.
In this text, we use a boldface letter with an arrow over the letter,
Avecton Another common notation for vectors with which you should be

i imple b 1dface character: !
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Figure 3.4 Asa particle moves
from @ to ® along an arbitrary
path represented by the broken
line, its displacement is a vec-
tor quantity shown by the arrow
drawn from ® to ®.
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Figure 3.6 When vector Bis

added to vector A the resultant X is

the vector that runs from the tail of
A to the tip of B.

5,
D

.Drawx. A
then add B.

=

A 4

i by alp 1
Figure 3. 8  This construction
showsthat A + B = B + A or, in
other words, that vector addition is
commutative.

Figure 3.7 Geometric construc-
tion for summing four vectors. The ¥
resultant vector K is by definition
the one that completes the polygon.
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3.3 Some Properties of Vectors 63 64

‘When three or more vectors are added, their sum is independent of the way in
which the individual vectors are grouped together. A geometric proof of this rule
for three vectors is given in Figure 3.9. This property is-called the associative law of

addition:
GGt - GO

i

In suni‘mary, avector quantity has both magnitude and direction and also obeys
the laws of vector addition as described in Figures 3.6 to 3.9. When two or more
vectors are added together, they must all have the same units and they must all
be the same type of quantity. It would be meaningless to add a velocity vector (for
example, 60 km/h to the east) to a displacement vector (for example, 200 km to the
north) because these vectors represent different physical quantities. The same rule
also applies to scalars. For example, it would be meaningless to add time intervals
to temperatures.

” @)

Figure 3.9 Geometric construc-

- tions for verifying the associative —- ——- —- - . .

law of addition.

Chapter3  Vectors

to obtain the first. In this case, as Flgure 3.10b shows, the vector A -B pomts

- from the tip of the second vector to the tip of the first.

< Associative law of addition

A Vacation Trip

SOLUTION

Conceptualize The vectors & and B drawn  in
Figure 3.11a help us 50nceptua.lize the problem.
The resultant vector R has also been drawn. We
expect its magnitude to be a few tens of kilome-
ters. The angle B that the resultant vector makes

y (km)

L—x (km)

(a) (xraphlcal method for finding the resul-
tant dlsglaa:ment vector R = A + B. (b) Adding the vectors in reverse
order (B + A) gives the same result for R

with the y axis is expected to be less than 60°, the

The geometric construction for subtracting two vectors in this way is illustrated i . s
8 s Y iedin angle that vector B makes with the yaxis.

Figure 3.10a

Categorize We can categorize this example as a simple analysis problem in vector addition. The displacement R is the
resultant when the two individual displacements X and B are added. We can further categorize it as a problem about
the aualy51s of mangles so we appeal to our expemse in geometry and trlgonometry

An%her way of looking at vector subtlactlon is to notice that the difference
— B between two vectors A and B is what you have to add to the second vector

Analyzc In this example, we show two ways to analyze the problem of fmchng the resultant of two vectors. The ﬁrst way is

We wonldidrant iy ,’ Vector G=A - Bis to solve the problem geometrically, using graph paper and a protractor to measure the magnitude of R and its direction

B eet 164 wexe i the Sechorwe must, in Figure 3.11a. (In fact, even when you know you are going to be carrying out a calculation, you should sketch the vectors

ALt . add 2 B o obialy A to check your results.) With an ordinary ruler and protractor, a large diagram typically gives answers to two-digit but not to
s pras / ] three-digit precision. Try using these tools on Rin Figure 3.11a and compare to the trigonometric analysis below’

The second way to solve the problem is to analyze it using algebra and trigonometry. The magnitude of R can be
obtained from the law of cosines as applied to the triangle in Figure 3.11a (see Appendix B.4).

Add:ng —Broi Figure 3.10 (a) Subtracting

find R:

is equivalent to vector | B from vector A. The vec-
F i subu'aclmgﬁ tor — B is equal in magnitude to 2 :
vector B and points in the oppo- Substitute numerical values, noting that

site direction. (b) A second way of
looking at vector subtraction.
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3.4 Components of a Vector and Unit Vectors

Use the law of sines (Appendlx B 4) tofind the dlrectlon
of R measured from the northerly direction:

Tﬂ%ﬁkﬁn@&sphwnmcmmm&kmﬁmdmcs .

Fmallze Does the angie B that we calculated  agree wnh an
estimate made by looking at Figure 3.11a or with an actual
angle measured from the diagram using the }raphxml
method? Is it reasonable that the magnitude of R is larger
than that of both A and B? Are the units of R correct?
Although the head to tail method of adding vectors
works well, it suffers from two disadvantages. First, some

people fmd using the laws of cosines and sines to be awk—
ward. Second, a triangle only results if you are adding
two vectors. If you are adding three or more vectors, the
resulting geometric shape is usually not a triangle. In Sec-
tion 34, we explore a new method of adding vectors that
will address both of these disadvantages.

WIISETS Suppose the trip were taken with the two vectors in reverse order: 35.0 km at 60.0° west of north first and
then 20.0 km due north. How would the magnitude and the direction of the resultant vector change?

Answer They would not change. The commutative law for vector addition tells us that the order of vectors in an
. addition is irrelevant. Graphically, Figure 3.11b shows that the vectors added in the reverse order give us the same
resultant vector.

B

The graphical method of adding vectors is not recommended whenever high
accuracy is required or in three-dimensional problems. In this section, we
describe a method of adding vectors that makes use of the projections of vectors
along coordinate axes. : i

- Pitfall Prevention3.2.. .
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x and y Components Equations 3.8
and 3.9 associate the cosine of

the angle with the x component
and the sine of the angle with the

y component. This association is
true only because we measured the
angle @ with respect to the xaxis,
s0 do not memorize these equa-
tions. If 8 is measured with respect
to the yaxis (as in some problems),
these equations will be incorrect.
Think about which side of the tri-
angle containing the components
is adjacent to the angle and which
side is opposite and then assign the
cosine and sine accordingly.

¥

]
A, points ' A, points
leftand is — i rightand is +

: 1 :

A, points i A, points
up and is + \/ up and is +
A, points ) ) \ A, points
leftand is — .\, rightandis +
A, points . I A, points
down and is — down and is —

Figure 3.13 Thesigns of the
components of a vector A depend
on the quadrant in which the vec-
tor is located.

Chapter3 Vectors

From Figure 3.12 and the definition of sine and cosme, we see that cos § = A,/A

-~—-and-thatsin = Ay/A Hence, the components of A Afes=—r pe=s am=s o s

(.8
(3.9)

The magnitudes of these components are the lengths of the two sides of a right tri-
angle with.a hypotenuse of length A. Therefore, the magnitude and direction of A
are related to its components through the expressions

thé varlous quadmnts

Suppose you are working a physics problem that requires resolving a vector into
its components. In many applications, it is convenient to express the components
in a coordinate system having axes that are not horizontal and vertical but that
are still perpendicular to each other. For example, we will consider the motion of
objects sliding down inclined planes. For these examples, it is often convenient to
orient the x axis parallel to the plane and the yaxis perpendicular to the plane.

(@ uick Quiz 3.4 Choose the correct response to make the sentence true: A com-
ponent of a vector is (a) always, (b) neveg, or (c) sometimes larger than the mag-
o nitude of the vector. '

of unit vectors. #
Unit vectors are used to spec-
ify a given direction and have no other physical significance. They are used solely
asa bookkeepmg convenience in describing a direction in space. We shall use the
aymbols i, j, and kto represent unit vectors pomtmg in the positive x, y, and z
dixections, respecuvely (The “hats,” or cu‘cumflcxes, ogx ‘the symbols are a standard
not;mon for unit vectors.) TH -

Vector quantities often are expressed in ter

of a vector A,” written A and Ay (wnhout the boldface notation). The compo-
nent A, represents the prOJe_(;tmn of A along the x axis, and the component A
represents the projection of A along the yaxis. These components can be positive
or negative. The component 4, is positive if the component vector A, points in
the positive x direction and is negative if A, points in the negative x direction. A
similar statement is made for the component A,.

(a) A vector A
lying in the xy plane can be rep-
resentcd by its component vectors
A and A (b) The y component
vector A can be moved to the
right so that itadds to A The
vector sum of the component
vectors is A. These three vectors
form a right triangle.

 Sonkdtay 4t 5 cchprr).

Cengage Learni i any ti

2%(a) The unit vectors
 Js and Kk are directed along the x,
2 and zaxes, respectively. (b) Vec-
tor A = A, + Ajjlyingin the xy
plane has components A,and 4,.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, soanned, or duplicated, in whole of in part.
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magnitude of each umt vector equals I1; that is,
Consider a vector A lying in the xy plane as shown in Figure 3.14b. Th
of the component A, and the unit vector iis the component vector
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3.4 Components of a Vector and Unit Vectors 67

which lies on the x axis and has magmtude |A,|. Likewise, K =A Y is the com-

"~ ponent vector of magmtude ]Ay] lying on the y axis. Thelefore, the unit-vector -

notation for the vector A is

(3.12)

For example, consider a point lying in the xy plane and having Cartesian coordi-
nates (x, y) as in Figure 3.15. The point can be specified by the position vector ¥,
which in unit-vector form is given by

(3.13)

This notation tells us that the components of T are the coordinates xand y.

Now let us see how to use components to add vectors when the graphical method
is not sufficiently accurate. Suppose we wish to add vector B to vector A in Equa-
tion 3.12, where vector B has components B, and B,. Because of the bookkeeping
convenience of the unit vectors, g}l we do is add the xand y components separately.
The resultant vector R = A + B is

or
(314)

= & %
Because R = R, i+ R, j, we see that the components of the resultant vector are

T 3.45)
wlipmr——

Therefore, we see that in the component method of adding vectors, we add all the
x components together to find the x component of the resultant vector and use the
same process for the y components. We can check'this addition by components with
a geometric construction as shown in Figure 3.16.

The magnitude of R and the angle it makes with the xaxis are obtained from its
components using the relationships

(3.16)

(3.17)

At times, we need to consider situations involving motion in three component
directions. The extension of our methods to three-dimensional vectors is straight-

forward—If-A—and-B-beoth-have-#-y-and-z-compenents;-they-can-be-expressed-in-
the form ¥

(3.18)
(3.19)

(3.20)

Notice that Equation 3.20 differs from Equauon 3.14: in Equanog 3.20, the resul-
tant vector also has a z component R, = A, + B If a vector R has x, 3, and z com-
ponents, the magnitude of the vector is 1 The angle 6,
that R makes with the x axis is found from the expression cos 0. = R./R, with simi-
lar expressions for the angles with respect to the yand z axes.

The extension of our method tg adding more than two vectors is also straight-
forward. For example, A+B+C= (A, + B, + C)i+ (Ay+B +G)j+
(A, + B, + C)k. We have described adding displacement vectors in this section
because these types of vectors are easy to visualize. We can also add other types of

i

¥ The point whose
Cartesnan coordinates are (¥, y)
can be represented by the position
vector ¥ = xi + yj.

W

gl
SO S

construcnon for the sum of two
vectors shows the relationship
between the components of the
resultant R and the components
of the individual vectors.

Pitfall Prevention 3.3
Tangents on Calculators Equa-

of an angle by means of a tangent
function. Generally, the inverse
tangent function on calculators
provides an angle between —90°
and +90°. As a consequence, if
the vector you are studying lies in
the second or third quadrant, the
angle measured from the positive
xaxis will be the angle your calcu-
lator returns plus 180°.
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tion 3.171nvolves the calculation
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vectors, such as velocity, force, and electric field vectors, which we will do in later

@%ﬁ% For which of the following vectors is the magnitude of the vector
: equal to one of the e,components of the vector? (a) A= 2i + 5 j
s (b) B = —31 (c) ¢ +5k

SOLUTION

Conceptualize You can conceptualize the situation by drawing the vectors on graph paper. Draw an approximation of
the expected resultant vector. g .

Categorize We categorize this example as a simple substitution problem. Comparing this expression for & with
the general expression A= Ai+ Ay_| + Ak, we see that A, = 2.0 m, A, =20m,and 4, = 0. Likewise, B, = 2.0 m,
B,= —4.0 m, and B, = 0. We can use a two-dimensional approach because there are no z components.

Use Equation 3.14 to obtain the resultant vector B

"
Evaluate the components of R:

Use Equation 3.16 to find the magnitude of R

Find the direction of R from Equation 3.17:

o

Your calculator likely gives the answer —27° for § = tan™(—0.50). This answer is correct if we interpret it to mean 27°
clockwise from the xaxis. Our standard form has been to quote the angles measured counterclockwise from the +x
axis, and that angle for this vectoris 6 = 333° .

]

SOLUTION

Conceptualize Although «x is sufficient to locate a point
in one dimension, we need a vector T to locate a point in
two or three dimensions. The notation AT is a generaliza-
tion of the one-dimensional displacement Axin Equation
2.1. Three-dimensional displacements are more difficult
to conceptualize than those in two dimensions because
‘they cannot be drawn on paper like the latter.

For this problem, let us imagine that you start with your
pencil at the origin of a piece of graph paper on which
you have drawn x and y axes. Move your pencil 15 cm
to the right along the x axis, then 30 cm upward along
the y axis, and then 12 cm perpendicularly toward you away

Copyright 2016 Cengage Leaning. Al Rights Rescrved. May not be copie, scanmed, or duplicated, in whole or in part. Du ic i i ‘content may
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from the graph paper. This procedure provides the dis-
placement described by A¥;. From this point, move your
pencil 23 cm to the right parallel to the xaxis, then 14 cm
parallel to the graph paper in the —y direction, and then
5.0 cm perpendicularly away from you toward the graph
paper. You are now at the displacement from the origin
described by AT; + AF,. From this point, move your
pencil 13 cm to the left in the —x direction, and (finally!)
15 cm parallel to the graph paper along the y axis. Your
final position is at a displacement A¥; + A¥, + A¥;
from the origin.
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Categorize Despite the difficulty in conceptualizing in three dimensiéns, we can categorize this prbbleﬁ as a substitu-
tion problem because of the careful bookkeeping methods that we have developed for vectors. The mathematical manip-
ulation keeps track of this motion along the three perpendicular axes in an organized, compact way, as we see below. |

To find the resultant displacement,
add the three vectors:

Find the magnitude of the resultant
vector:

A hiker begins a tnp by first walking 25.0 km southeast from her car. She stops
and sets up hettent for the night. On the second da}7 she walks 40\0 km in a
direction 60.0° north of east, at which point she'discovers a ?Jtest f‘auger s tower.

(A) Determine the components of the hiker’s displacement for each day.

SOLUTION

Conceptualize We conceptualize the problem by drawing a sketch as in Figure
3] 17. If we denote the displacement vectors on the first and second days by A and
B, respectively, and use the car as the origin of coordinates, we obtain the vec-
tors shown in Figure 3.17. The sketch allows us to estimate the resultant vector as
shown.

(Example 3.5) The
total dlsplacemem of the hiker is
thevector K = A + B.

Categorize Having drawn the resultant f{), we can now categorize this problem
as one we've solved before: an addition of two vectors. You should now have a
hint of the power of categorization in that many new problems are very similar to
problems we have already solved if we are careful to conceptualize them. Once
we have drawn the displacement vectors and categorized the problem, this problem is no longer about a hlker, awalk,
a car, a tent, or a tower. Itis a problem about vector addition, one that we have a.lready solved.

Analyze stplacement A has a magnltude of 23 O km and is dlrected 45 0° be[ow the posmve xaxis.

Find the components of A using Equations 3.8 and 3.9: (—45.0°) = (25.0km)(0.707) = 17.7km

70 Chapter3  Vectors

Write the total displacement in unit-vector form:

Finalize Looking at the graphical representation in Figure ?1;17, we estimate the position of the tower to be about
(38 km, 17 km), which is consistent with the components of R in our result for the final position of the hiker. Also,
both components of R are positive, putting the final position in the first quadrant of the coordinate system, which is
also consistent with Figure 3.17.
WIETNE 15 After reaching the tower, the hiker,wishes to return to her car along a single straight line. What are the
components of the vector representing this hike? What should the direction of the hike be?
Answer The desired vector ﬁw is the negative of vector R:

‘ R (—87.71 — 17.03) km

The direction is found by calculating the angle that the vector makes with the x axis:

which gives an angle of § = 204.2°, or 24.2° south of west.

B

Summary

. Scalar quantities are those that have only a
numerical value and no associated direction.

Vector quantities have both magnitude and direction and
obey the laws of vector addition. The magnitude of a vector is
always a positive number.

Concepts and Principles

When two or more vectors are added together, they

must all have the same units and they all must be the
We-ean add-two-v A a1

A second method of adding vectors involves com-

ponents of the vectors. The x component 4, of the
ector A 1 aqnal to_the. r,rmerhnn of A nlnmr the.

~45.0°) = (25.0 km)(—0.707) = —17.7km

The negative value of A; indicates that the hiker walks in the negative y direction on the first day. The signs of A,and
A4, also are evident from Figure 3.17.
(40.0 km)(0.500) = 20.0 km

= (40.0 kn)(0.866) = 34.6km

Find the components of B using Equations 3.8 and 3.9:

. - 3 . g . .. - .
(B) Determine the components of the hiker’s resultant displacement R for the trip. Find an expression for Rin
terms of unit vectors.

SOLUTION

Use Equation 3.15 to find the components of the resul-
tant displacement §

5 17.7km + 200km = 37.7km

= —177km + 34.6km = 17.0 km
continued
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F
B graphlcaly In thxs method (Fig. 3.6), the resultant xaxis of a coordinate system, where A=A cos 9.
vector R = A + B runs from the tail of A to the The ycomponemA] of X is the projection of A along
tipof B. the y axis, where A, Asin 6.

| We can find the resultant of two or more vectors

by resolving all vectors into their xand y components,
adding their resuitant xand y components, and then
pointing in the positive xdirection and jisa unitvec- using the Pythagorean theorem to find the magnitude

tor pointing in the positive y direction. Because i and j i of the resultant vector. We can find the angle that the
are unit vectors, [i| = [j| = 1. resultant vector makes with respect to the x axis by
using a suitable trigonometric function.

. Ifavector A hasan x component A, and a y compo-
nent A, the vector can be expressed in unit-vector form
as A A,l + A, j-In this notation, i is a unit vector

ed, or duplicated, in whole or in part. Due o i i content may e o oChapter(s).
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