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Relative Acceleration

Motion in Two
Dimensions

In this chapter, we explore the kinematics of a particle moving in two dimensions.
Knowing the basics of two-dimensional motion will allow us -in future chapters—to exam
ine a variety of situations, ranging from the motion of satellites in orbit to the motion of
electrons in a uniform electric field. We begin by studying in greater detail the vector nature
of position, velocity, and acceleration. We then treat projectile motion and uniform circular
motion ds special cases of motion in two dimensions. We also discuss the concept of relative
motion, which shows why observers in different frames of reference may measure different

positions and velocities for a given particle.

The Position, Velocity, and Acceleration Vectors

In Chapter 2, we found that the motion of a particle along a straight line such as
the x axis is completely known if its position is known as a function of tme. Let
us now extend this idea to two-dimensional motion of a particle in the xy plane.
We begin by describing the position of the particle, In one dimension, a single
numerical value describes a particle’s position, but in two dimensions, we indicate
its position by its position vector ¥, drawn from the origin of some coordinate sys-
tem to the location of the particle in the xy plane as in Figure 4.1. At time £, the
particle is at point @, described by position vector ¥, At some later time £, it is at
point ®, described by position vector 7. The path followed by the particle from
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4. Ecotourists use their global positioning system judica

 tor to determine their location inside 4 botanical gar
den as latitude 0.002 43 degree south of the equator,
longitude 75.642 88 degrees west. They wish 1o visit
a tree at latitude 0.001 62 degree north, longitude
75.644 26 degrees west. (a) Determine the straight-
line distance and the direction in which they can walk
to reach the tree as {ollows. First model the Earth
as azxr\dm o:ndlui,&b’l % 10° m to determine the
west and northward dhphcemcn _ t components
required, in meters. Then model the Earth as a flat
surface to complete the calculation, (b) Explain why
it is possible to use these two geometrical models
together to solve the problem.

65. A rectangular parallelepiped has dimensions a, b, and
¢ as shown in Figure P3.65. (a) Obtain a vector expres-
sion for the face diagonal vector R,. (b) What is the
r&agnitude of this vector? (¢) Notice that i,, ck, and

¢ make a right triangle. Obtain a vector expression
for the body diagonal vector R,

66, Vectors A and B have equal magnitudes of 5.00.
The sum of A and B is the vector 6.00j. Determine
the angle between A and B.

Challenge Problem
67. A pirate has buried his treasure on an istland wigy,

Probk.m

trees located at the points (30.0 m, —20 0 five

80.0 m), (~10.0 m, —10.0 m), 40.0 m, -,"',";,‘:;f’.:;

(=700 m, 60.0 m), all measured relative 1o some ory.

gin, as shown in Figure P3.67. His ship’s log instrucis

you to start at tree A and move toward tree B, but 1o
cover only one-half the distance between A and B.
Then move toward tree €, covering one-third the
distance between your current location and C. Next
move toward tree D, covering one-fourth the distance
between where you are and D, Finally move toward
tree £, covering one-fifth the distance between you
and £, stop, and dig. (a) Assume you have correctly
determined the order in which the pirate labeled the
trees as A, B, C, D, and E as shown in the figure. What
are the coordinates of the point where his treasure is
buried? (b) What If? What if you do not really know
the way the pirate labeled the trees? What would hap-
pen to the answer if you ri the order of the
trees, for instance, to B (30 m, —20 m), A (60 m, 80 m),
E (=10 m, =10 m), C (40 m, =30 m), and D (=70 m,
60 m)? State reasoning to show that the answer does
not depend on the order in which the trees are labeled.
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4.1 The Position, Velocity, and Acceleration Vectors 79

® to @ is not necessarily a straight line. As the particle moves from @ to ® in the
time interval Al = 1, = 1, its position vector changes from ¥, to 7. As we learned
in Chapter 2, displacement is a vector, and the displacement of the particle is the
difference between its final position and its initial position, We now define the dis-
placement vector AT for a particle such as the one in Figure 4.1 as being the differ-
ence between its final position vector and its initial position vector:

AT =7, -7, (4.9)

I'he direction of A¥ is indicated in Figure 4.1, As we sec from the figure, the mag-
nitude of AT is less than the distance traveled along the curved path followed by the
particle.

As we saw in Chapter 2, it is often useful to quantify motion by looking at the
displacement divided by the time interval during which that displacement occurs,
which gives the rate of change of position. Two-dimensional (or three-dimensional)
kinematics is similar to one-dimensional kinematics, but we must now use full vector
notation rather than positive and negative signs to indicate the direction of motion.

We define the average velocity v, of a particle during the time interval At as
the displacement of the particle divided by the time interval:

- AY

2 ™ —A—" (4.2)
Multiplying or dividing a vector quantity by a positive scalar quantity such as At
changes only the magnitude of the vector, not its direction. Because displacement
is a vector quantity and the time interval is a positive scalar quantity, we conclude
that the average velocity is a vector quantity directed along AY. Compare Equa-
tion 4.2 with its one-dimensional counterpart, Equation 2.2.

The average velocity between points is independent of the path taken. That is
because average velocity is proportional to displacement, which depends only
on the initial and final position vectors and not on the path taken. As with one-
dimensional motion, we conclude that if a particle starts its motion at some point and
returns to this point via any path, its average velocity is zero for this trip because its
displacement is zero. Consider again our basketball players on the court in Figure 2.2
(page 28). We previously considered only their one-dimensional motion back and
forth between the baskets. In reality, however, they move over a two-dimensional sur-
face, running back and forth between the baskets as well as left and right across the
width of the court. Starting from one basket, a given player may follow a very compli-
cated two-dimensional path. Upon returning to the original basket, however, a play-
er's average velocity is zero because the player’s displacement for the whole trip is zero.
_ Consider again the motion of a particle between two points in the_xy plane as
shown in Figure 4.2 (page 80). The dashed curve shows the path of the particle. As
the time interval over which we observe the motion becomes smaller and smaller—
that is, as ® is moved to ®' and then to ®" and so on—the direction of the displace-
ment approaches that of the line tangent to the path at @. The instantaneous velocity
7 is defined as the limit of the average velocity A¥/At as Atapproaches zero:

o AT _ 47 ;
¥ P.?;At dt @)

That is, the instantaneous velocity equals the derivative of the position vector with
respect to time. The direction of the instantaneous velocity vector at any point in
a particle’s path is along a line tangent to the path at that point and in the direc-
tion of motion. Compare Equation 4.3 with the corresponding one-dimensional
version, Equation 2.5.

The magnitude of the instantancous velocity vector v = [¥] ofa particle is called

the speed of the particle, which is a scalar quantity.

4 Displacement vector

4 Average velocity

Figure 4.1 A particle moving
in the xy planc is located with
the position vector ¥ drawa from
the origin to the particie. The
displacement of the particle as it
moves from @ o in the tme .
interval &1 = (= { is equal o the
vector AV = ¥, - ¥,

4 Instantancous velocity
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Figure 4.2 Aga particle moves
between twa points, its average
velocity (s in the direction of the
displacement vector A¥ By defin
ton, the instantaneous velocity at
® s directed along the hoe tan

As the end point approaches ), At
approaches rero and the disection
of A7 approaches that of the green
line tangent to the curve at

e 1 Direction of va®
As the end point of the path is
moved from @ to B @', the
respective displacements and
corresponding time intervals
become smaller and smaller.
0 x

As a particle moves from one point to another along some path, its immnfa-
neous velocity vector changes from v, at time #;10 v, at time 4. Knowing the velocity
at these points allows us to determine the average acceleration of the particle. The
average acceleration @,,, of a particle is defined as the change in its instantaneous
velocity vector AV divided by the time interval At during which that change occurs:

v, -V
Average acceleration » By = E e i (4.4)
AL 4=

Because @, is the ratio of a vector quantity AV and a positive scalar quantity At
we conclude that average acceleration is a vector quantity directed along AV. As
indicated in Figure 4.8, the direction of AV is found by adding the vector —V, (the
negative of ¥)) to the vector V) because, by definition, AV = v, = V.. Compare
Equation 4.4 with Equation 2.9.

When the average acceleration of a particle changes during different time inter-
vals, it is useful to define its instantaneous acceleration. The instantaneous accel-
eration ® is defined as the limiting value of the ratio AV /At as Atapproaches zero:

¢ In;tanta;leous ;ecele’ntlon'b { 2 ; , x : i - lim A—V— = -d-?- . 3 j ; (4..5)
a-0 At dt

In other words, the instantaneous acceleration equals the derivative of the velocity
vector with respect to time. Compare Equation 4.5 with Equation 2.10,

Various changes can occur when a particle accelerates. First, the magnitude
of the velocity vector (the speed) may change with time as in straight-line (one-
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dimensional) motion. Second, the direction of the velocity vector may change with
time even il its magnitude (speed) remains constant as in (wo-dimensional motion
along a curved path. Finally, both the magnitude and the direction of the velocity
vector may change simultaneously,

Qult L a1 Consider the following controls in an automobile in motion: gas
pedal, brake, steering wheel. What are the controls in this list that cause an
acceleration of the car? (a) all three controls (b) the gas pedal and the brake

« (¢) only the brake (d) only the gas pedal (e) only the steering wheel

Two-Dimensional Motion
with Constant Acceleration

In Section 2.5, we investigated one-dimensional motion of a particle under con-
stant acceleration and developed the particle under constant acceleration model.
Let us now consider two-dimensional motion during which the acceleration of a
particle remains constant in both magnitude and direction. As we shall see, this
approach is useful for analyzing some common types of motion.

Before embarking on this investigation, we need to emphasize an important
point regarding two-dimensional motion. Imagine an air hockey puck moving in
a straight line along a perfectly level, friction-free surface of an air hockey table.
Figure 4.4a shows a motion diagram from an overhead point of view of this puck.
Recall that in Section 2.4 we related the acceleration of an object to a force on the
! object. Because there are no forces on the puck in the horizontal plane, it moves

with constant velocity in the x direction. Now suppose you blow a puff of air on
the puck as it passes your position, with the force from your puff of air exactly in
the y direction. Because the force from this puff of air has no component in the x
direction, it causes no acceleration in the x direction. It only causes a momentary
acceleration in the y direction, causing the puck to have a constant y component
' of velocity once the force from the puff of air is removed. After your puff of air on
the puck, its velocity component in the x direction is unchanged as shown in Figure
4.4b. The generalization of this simple experiment is that motion in two dimen-
sions can be modeled as two independent motions in each of the two perpendicular
directions associated with the x and y axes. That is, any influence in the y direc-
tion does not affect the motion in the x direction and vice versa.
The position vector for a particle moving in the xy plane can be written

|

|

|

|

‘ =ity (4.8)

‘ . where x, y,-and T change with time as the particle moves while the unit veetors i . . . . . - * .

and j remain constant. If the position vector is known, the velocity of the particle
can be obtained from Equations 4.3 and 4.6, which give

v=%=%i+%j-u,i+v3 (a.7)

The hortzonai red vecors, | @0 @-—-@- sty

ting the x | — — — —
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Velocity vector as
a function of time for g
Particle under constant
acceleration in two
dimensions

Position vector as p
a function of time for a
particle under constant
acceleration in two
dimensions

Figure 4.5 Vector representa-
tions and components of (a) the
velocity and (b) the position of a
particle under constant accelera-
tion in two dimensions,

Because the ncceleration o of the particle is assumed constant in this discussioy,
its components a, and @, also are constants. l’hcrefom,_we cn:: n;cx'iel the particle -
a particle under constant arcclerall?ln (ndcpcndendy'm cac :‘o ( \c‘ two directions
and apply the equations of kinematics v:Pautcly to the xand y wndpon:nu of the
velocity vector. Substituting, from Equation 2.18, o, = Uy + atan Uy = vyt at
into Equation 4.7 to determine the final velocity at any time ¢, we obtain

Voo (o + a )i + (uy 4 'l,f)j = (vl + vf) + (ad+ ajh

V=, + T “9)

This vesult states that the velocity of a particle at some time lleqf'*'f‘:’f” V:::::‘l'
sum of its initial velocity ¥, at time ¢ = 0 and.thc a'dditwnal v;com{ v:cq <]
Attme tas a result of constant acceleration. Equation 4.8 is the vector versio
Equation 2,14 5 ;

Similarly, from Equation 2,16 we know that the xand y coordinates of a particle
under constant acceleration are

2
Xr=x+ vt + fa st y=yntos+ “'7‘

Substituting these expressions into Equation 4.6 (and labeling the final position
vector l’f\ gives

= (% + vyt + fa i + (3 + vyt + #a,t')j
(x4 3]) + (v + U,.])‘ +§(ad + a’j)‘!
=T Vo i “.9)

which is the vector version of Equation 2.16. Equation 4.9 tells us that the position
vector ¥ of a particle is the vector sum of the original position ¥, a displacement
Vit arising from the initial velocity of the particle, and a displacement §ae? result-
ing from the constant acceleration of the particle.

We can consider Equations 4.8 and 4.9 to be the mathematical representation
of a two-dimensional version of the particle under constant acceleration model.
Graphical representations of Equations 4.8 and 4.9 are shown in Figure 4,5. The
components of the position and velocity vectors are also illustrated in the figure.
Notice from Figure 4.5a that vy is generally not along the direction of either ¥V, or
@ because the relationship between these quantities is a vector expression. For the
same reason, from Figure 4.5b we see that ¥, is generally not along the direction of
v, ¥, or &, Finally, notice that Vyand ¥, are generally not in the same direction.

Y y
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m Motion in a Plane U4

4.2 Two-Dimensional Motion with Constant Acceleration

A particle moves in the xy plane, starting from the origin at ¢ = 0 with an initial velocity having an x component of

20 m/s and a y component of —15 m/s. The particle experiences an acceleration in the x direction, given by a, =

4.0 m/s™.

(A) Determine the total velocity vector at any time.

SOLUTION

Conceptualize The components of the mitial velocity tell
us that the particle starts by moving toward the right and
downward. The x component of velocity starts at 20 /s and
increases by 4.0 m/s every second. The y component of veloe-
ity never changes from its initial value of ~15 m/s. We sketch
a motion diagram of the situation in Figure 4.6. Because the
parucle s accelerating in the +x direction, its velocity compo-
nentin this direction increases and the path curves as shown
in the diagram. Notice that the spacing between successive
images increases as time goes on because the speed is increas-
ing. The placement of the acceleration and velocity vectors in
Figure 4.6 helps us lurther conceptualize the situation,

Figure 4.6 (Example 4.1) Motion diagram for the particle.

Categorize Because the initial velocity has components in both the x and y directions, we categorize this problem
as one involving a particle moving in two dimensions. Because the particle only has an x component of accelera-
tion, we model it as a particle under constant acceleration i‘ll the x direction and a particle under constant velocity in the

y direction.

Analyze To begin the mathematical analysis, we set v, = 20 m/s, Uy = ~15m/s, a, = 4.0 m/s*, and a,= 0.

Use Equation 4.8 for the velocity vector:

. ’
Substitute numerical values with the velocity in meters
per second and the time in seconds:

V=V @= (v + a4 (v, + o)

V= [20 + (4.0)di + [~15 + (0)d]j

(1) ¥, = (20 + 4.00)i — 15j)

Finalize Notice that the x component of velocity increases in time while the y component remains constant; this result

is consistent with our prediction.

(B) Calculate the velocity and speed of the particle at ¢ = 5.0 s and the angle the velocity vector makes with the x axis.

SOLUTION

'Analy'zc : s )

Fvaluate the result from Equation (1) at ¢t = 5.0s: V= [(20 + 4.0(5.0))i — 15j] = (40 ~ 15§) m/s

v Lf=15m/ N
Determine the angle 6 that ¥ makes with the xaxis 0 = m“(;’-’) = an ‘(—l“—i) = =21

att=5.0s:

'/, 40m/s

Evaluate the speed of the particle as the magnitude ¢ = [V = Vo, + v, =V(40)* + (~15)' m/s = 48 m/s

of Vy:

Finalize The negative sign for tbemg!e 0 indicates that the velocity vector is directed at an angle of 21° below the posi-
tive xaxis. Notice that if we caleulate v, from the xand y components of Vi, we find that v, > v, Is that consistent with

our prediction?

(€) Determine the xand y coordinates of the particle at any time tand its position vector at this time.
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Analyze
P e k t
Use the components ol Equation 4.9 with x, < y, = 0 at ;= vyl ¥ gal 204 + 2.04
= 0and with xand yin meters and ¢in seconds: y = ugd 15¢
! 3 Nl - 1544
Express the position vector of the particle at any ime ¢ £ = xh by = (2004 200 )k = 154

Finalize Letus now consider a limiting case for very large values of ¢

mmm What if we wait a very long time and then observe the motion of the particle? How would we describe the
motion ol the particle for large values of the time?

Answer Looking at Figure 4.6, we see the path of the particle curving toward the xaxis. There is no xr-.uml 1o assume
this tendency will ¢ hange, which suggests that the path will become more and more parallel to the xaxis as time grows
large. Mathematic ally, Equation (1) shows that the y component of the velocity remains constant while the x compo-
neat grows linearly with . Therefore, when ¢ is very large, the x component of the velocity will be much l"’x” than
the y¢ omponent, suggesting that the velocity vec tor becomes more and more parallel to the xaxis The magnitudes of
both X and y, continue 1o grow with time, although X grows much faster

: = . *

Pitfall Prevention 4.2 Projectile Motipn
Acceleration at the Highest Point

As discussed in Pitfall p

revention Anyone who has observed a baseball in motion has observe
2.8, many people claim that the

dvgro'cclilc motion.
LA R ;

f I'he ball moves in a curved path and returns to the ground. jec

:a;rlu.:nuu of J{plnjrllllt at the an objectis simple to analyze if we make two assumptions: (1) fhe freesfall ac s
OpPMmosl ')()ll\( of s l(-l]('( li)[)’ " 2 2 2 v ¢ 1 el (. e
2ero. This mistake arises from Hons COI‘PS{BIIL. over the ﬂnge ofmo!ion and is awm : .
confusion between zero vertical citect of air resistance is negligible.” With these assumptions, we find that the path

velocity and zero acceleration. If
the projectile were 1o experience
zero acceleration at the highest
poin, its velocity at that point

of a projectile, which we call its trajectory, is always a parabola as shown in Figure 4.7.
We use these assumptions throughout this chapter.

I'he expression for the position vector of the projectile as a function of time

follows directly from Equation 4.9, with its acceleration being that due to gravity,
would not change; rather, the — {
le woul =7
projectile would move horizontally
at constant speed from then on! P Uity . 1-2.2
That does not happen, however, =t kvt t B! (4'101
because the acceleration is notzero  \hore (he initial xand y components of the velocity of the projectile are
' -anywhere alang the trajectory. . . - . 5 : 2 X = 2 . % 2 4 p R
(Uy = v, cos 0, vy = v, sin 0 (4.11)

I'he expression in Equation 4.10 is plotted in Figure 4.8 for a projectile launched
from the origin, so that ¥, = 0. The final position of a particle can be considered to
be the superposition of its initial position ¥;; the term V.1, which is its displacement
if no acceleration were present; and the term Yg¢* thatarises from its acceleration
due to gravity. In other words, if there were no gravitational acceleration, the par-
ticle would continue to move along a straight path in the direction of V.. Therefore,
the vertical distance §g¢* through which the particle “falls” off the straight-line
path is the same distance that an object dropped from rest would fall during the
same time interval.

£ster (showity

"This assumption is reasonable as long as the range of motion is small compared with the radius of the Eanh
A welder cuts holes through a heavy (6.4 % 10°m), In effect, this § i equivalent to ing the Earth is flatover the range of motton considered,
metal construction beam with a hot

This assumption is often not justificd, especially at high velocities, In addition, any spin lmparted 1o a projectile,
wrch. The sparks generated in the such as that applied when a pitcher throws a curve ball, can give rise to some very interesting effects ussociated with
process follow parabaolic paths. aerodynamic forces, which will be discussed in Chapter 14,

Loang All Rights Reserved —h—ﬁ“uwuu-ummuw—m-—mm-—Iqh-q-:t-lhm—:uw
&m‘”ﬂw ,,:. :-”-—wmhwnnhnnwc*lmmwm it oty

» '!'ZE"C%A_




1.1 Projectile Motion

The y component of
velocity is zero at the The =¢ sl
Y peak of the path. ) ‘q""”m‘:'
-l 2 1 constant because
=y © [ there s no
" ,‘f"-b .\\ acceleradon in the x
A0 N direction

The projectile is launched
with initial velocity ¥,.

: In Section 4.2, we stated that two-dimensional motion with constant accelera-
ll.()ll can be analyzed as a combination of two independent motions in the xand y
directions, with accelerations a, and a,. Projectile motion can also be handled in '
this way, with acceleration a, = 0 in the xdirection and a constant acceleration a, =
—gin the ydirection. Therefore, when solving projectile motion problems, use two
analysis models: (1) the particle under constant velocity in the horizontal direction

(Eq. 2.7):
SR XA

and (2) the particle under constant acceleration in the vertical direction (Eqs.
2.13-2.17 with x chariged to y and a =-g):

Y =%+ v + ot

The horizontal and vertical components of a projectile’s motion are completely
independent of each other and can be handled separately, with time ¢ as the com-
mon variable for both components.

SJuc a2 (1) As a projectile throvn upward ‘moves in ifs parabolic path’
(such as in Fig. 4.8), at what point along its path are the velocity and accelera-
tion vectors for the projectile perpendicular to each other? (a) nowhere (b) the
highest point (c) the launch point (ii) From the same choices, at what point are

» the velocity and acceleration vectors for the projectile parallel to each other?

gl (o] Range and Maximum Heightiofa:Projecie”

Before embarking on some examples, let us consider a special case of projectile
motion that occurs often. Assume a projectile is Jaunched from the origin at { =
0 with a positive v, component as shown in Figure 4.9 and returns to the same hori-
zontal level. This situation is common in sports, where baseballs, footballs, and golf
balls often land at the same level from which they were launched.

85

wrhf parabalic path

ol a projectile that leaves the ori
gin with a velocity v, The wlocity
voctor ¥ changes with time in
both magnitude and direction.
This change Is the result of accel
eratbon & = g In the negative
ydirection

Figure 4.8 The position vector
7, of a projectile launched from
the origin whose inmtal velocity
at the origin is ¥,. The vector V4
would be the displacement of the
projectile If gravity were absent,
and the vector §g¢* s is vertical
displacement from a straight-line
path due to its downward gravita-
tional acceleration.

P 0
- ®s
v S ~ %
R A N
Aodbmt \®

bo— — — K

Figure 4.9 A projectile launched
over a flat surface from the origin
At = 0 with an mial velocity

Two points in this motion are especially interesting to analyze: the peak point @, Y- The maximum height of the
which has Cartesian coordinates (R/2, h), and the point ®, which has coordinates w’”' ;;_“tm:’x::&:’
(R,0). trajectory, the particle has coordi-
W Let us find hand Rmathematically in terms of v, 6, and g nates (R/2, A).
uﬂ::nmmwmmﬁ:'r&xuhﬁ—l- e or i port. [ ™
Firsad review s doomod (hat sy magpeosaad st docs mol msterially offet rw L -
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sPitfall Prevention 4.3

The Range Equation Equation
413 s useful for calc ulating Ronly
for a symmetric path as shown in
Figure 4.10. If the path is not sym-
metric, do not use this equation. The
particle under constant velocity
and particle under constant accel-
eration models are the important
starting points because they give
the position and velocity compo-
nents of any projectile moving
with constant acceleration in two
dimensions at any time 1.

Figure 4.10 A projectile
launched over a flat surface from
the origin with an initial speed
of 50 m/s at various angles of

projection,

E.quatinu 2,13 1o determine ll'lc time tg at which the projectile reaches the peak:

Motion in Two Dimensions

we can use the y direction version

Vg = Wy T 0= v, 800 e
»
Substituting this expression for Ly into the y direction version of Equation 2.16

and replacingsy e obtain an expression for & in terms of the magni-
tude and direction of the initial velocity vector:

e b s Wy e O
-

‘o

he range Ris the horizontal p6 thatis twice the
time at which it reaches its peak, that is, at time Using the particle under

constant velocity model, noting that = Uy = jeoR B and setting xg = Rat (=

';'Iw, we find that
G vt o Resute sy cos f)Rtay
R e )
0 = R

Using the identity §if20 = 2sin B'cos @ (sce Appendix B.4), we can write R in the

more compact form

(4.12)

(4.13)

fThe maximum value of R from
‘sense because the maximum value
Therefore, Risa maximum when 6, )

Figure 4.10 illustrates various trajectories for a projectile having a given initial
speed but launched at different angles. As you can see, the range is a maximum
for 8, = 45° In addition, for any 6, other than 45° a point having Cartesian coordi-
nates (R, 0) can be reached by using either one of two complementary values of 8,
such as 75° and 15°, Of course, the maximum height and time of flight for one of
these values of 0, are different from the maximum height and time of flight for the
complementary value.

() uick Quiz 4.3 Rank the launch angles for the five paths in Figure 4.10 with
e respect to time of flight from the shortest time of flight to the longest.

y (m)

150
Complementary
values of the initial

100 angle 0, result in the
same value of R

2 RS
\ \\\\
I 3 = o)

s 200 250




1.1 Projectile Motion

We suggest you use the following approach when solving projectile motion problems.

1. Conceptualize. Think about what is going on physically in the problem. Establish
the mental representation by imagining the projectile moving along its trajectory.

2. Categorize, Confirm that the problem involves a particle in free Ball and that air

resistance is neglected. Select a coordinate system with x in the horizontal direction

and yin the vertical direction. Use the particle under constant velocity model for the
x component of the motion. Use the particle under constant acceleration model for

the ydirection. In the special case of the projectile returning to the same level from

which it was launched, use Equations 4.12 and 4.13.

1. Analyze. If the initial velocity vector is given, resolve it into x and y components.
Select the appropriate equation(s) from the particle under constant acceleration
model for the vertical motion and use these along with Equation 2.7 for the horizontal
motion to solve for the unknown(s).

4. Finalize. Once you have determined your result, check to see if your answers are
consistent with the mental and pictorial representations and your results are realistic,

SOLUTION

Conceptualize The arms and legs of a long jumper move in a complicated way,

but we will ignore this motion. We conceptualize the motion of the long jurmper . =
HIE PO

as equivalent to that of a simple projectile.

87

Figure 4,11 (Example 4.2)

Categorize We categorize this example as a projectile motion problem. Romain Barras of France competes
Because the initial speed and launch angle are given and because the final in the men's decathlon long jump at
height is the same as the initial height, we further categorize this problem as the 2008 Berjing Olympic Games.

satisfying the conditions for which Equations 4.12 and 4.13 can be used. This

approach is the most direct way to analyze this problem, although the general methods that have been described will

always give the correct answer.

Analyze

SOLUTION

Use Equation 4.13 to find the range of the jumper: “ ‘m 3"& = l — e

Analyze -
Find the maximum height reached by using A% - DIRm
Fquation 4.12: “

Finalize Find the answers to parts (A) and (B) using the general method, The results should agree. Treaung the
long jumper as a particle is an oversimplification. Nevertheless, the values obtained are consistent with experience in
sports. We can model a complicated system such as a long jumper as a particle and still obtain reasonable resulis,

Copyright 2016 Cangngs Lesming umk—-ﬂm-hqﬂ—-‘-ﬁuh“.im.ﬁ e d ety ™ [ p——
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Chapter 4 Mation in Two Dimensions

mple 4.3 A Bull's-Eye Every Time

; ‘ ‘tile leaves the gun at
Ina popular lecture demonstration, a projectile is fired at a target in such a way that the projectile .
the same time the tar

Retis dropped from rest. Show that if the gun is initially aimed at the stationary target, the pro-
Jectile hits (he falling

target as shown in Figure 4.12a

Conceptualize We conceptualize
numerical v,

the problem by studying Figure 4.12a

Notice that the problem does not ask for
d result muse involve

alues, The ¢ Xpecte an algebraic argument

The velocity of the projectile (red
Armows) changes in direc tion and
magnitude, but ity acceley

aton
(purple ArTows) rem

)y
alng constant

|
o
o™ 2
o | i
| lx-, tan 0,
I
Point of l
collision x
J,

Figure 4,12 (Example
is aimed directly at the ta
hit the target (b) Schem:

4.3) (a) Multiflash

photogr aph of the projectile
rgetand is fired at

the same ins
Atic diagram of the projectile

target demonstration. If the gun
tant the target begins to fall, the projectile will
target demonstration

Categorize Be

cause both objects
in free f

all, the target moving in o
under constant acceleration in one
y direction and

are subject only to gravity, we ¢
ne dimension
dimension.
a particle under constant velocit

ategorize this problem as one
and the projectile moving in two. The t
The projectile P is modeled
yin the xdirection,

involving two objects
arget T is modeled as a particle
as a particle under constant acceleration in the
Analyze Figure 4.12b shows th

at the initial y coordinate Y,
with acceleration ay = —a

ir OF the targetis x, tan f;and its initial velocity is zero, It falls

Write an expression for the y coordinate M yr =y + (0) - tgt? = xptan 0, — Yg*
«of the target at any moment after release, | 2 : ! i
noting that its initial velocity is zero:

Write an expression for the y coordinate

@) 3= yp + vpt = $gi* = 0 4 (v, sind, )t — gt = (v,p sing,)t — bat*
of the projectile at any moment:
Write an expression for the x coordinate Xp = Xp+ vgpt = 0 + (vpcos )t = (v cos )¢
of the projectile at any moment:
5 Xp
Solve this expression for time as a function t= Ty
of the horizontal position of the projectile: f
'
3 3 3 Xp % P o e
; Substitute this expression into Equation (2):  (3) Yo = (vp sin 0,)(m) bt = xptan 0, gl
| ‘ e i jectile and target are the
We see that when the x coordinates of the projecti g
{ Finalize Compare Equations (1) and (3). \ ! ; - s
é same—that is, when xp = xy—their y coordinates given by Equations (1) and () are the same and a collision resu:
t»
-]
: j g w-rgmmnntghomm
2

oo e d™ g 4 J



4.1 Projectile Motion 89

dhotis-Quiteanrat- L1

T v 200m/s

Conceptualize Study Figure 4.13, in which we have indi- 0 d}".. WY, an
<5 X

cated the trajectory and various parameters of the motion
of the stone.

S

Categorize We categorize this problem as a projectile
motion problem. The stone is modeled as a particle under con
stant acceleration in the ydirection and a particle wder constant
veloaityin the xdirection,

Anal ‘e have i =y, = = ~45
n l_yn' We have lh(.‘ mformation x, =y, ‘ 0, 4.);0 rq, Figure 4.13
a, = —g and v, = 200 m/s (the numerical value ol y, 18 (Example 4.4) A

negative because we have chosen the point of the throw as stone Is thrown from
the origin). the top of 4 bullding

Find the initial xand y components of the stone’s M". /9
velocity: Lol f
7

o
Express the vertical position of the stone from the particle W"’
under constant acceleration model:
(4 oy 9o m/EI

Substitute numerical values:

Solve the quadratic equation for f:

Analyze Use the velocity equation in the particle m

under constant acceleration model to obtain the y
component of the velocity of the stone just before

it strikes the ground:

Substitute numerical values, using ¢ = 4.22s:

Use this component with the horizontal compo-

m-nwﬂzm to find the speed of the

stone at = 4.22s:

inal speed is

Finalize Is it reasonable that the y component of the final velocity is negative? Is it reasonable that the f

larger than the initial speed of 20.0 m/s?
the same direction as the stone is thrown and it causes the stone

What if a horizontal wind is blowing in
500 m/s2? Which part of this example, (A) or (B), will have a dif-

1o have a horizontal acceleration component a, = 0.
ferent answer?
x and y directions are independent. Therefore, the horizontal wind cannot
affect the vertical motion. The vertical motion determines the time of the projectile in the air, so the answer to part
(A) does not change. The wind causes the horizontal velocity component to increase with tine, so the final speed will
be larger in part (B). Taking a, = 0.500 m/s?, we find vy = 194 m/s and v, = 36.9 m/s.

-

Answer Recall that the motions in the

Unikass otharwiss oted. all contont on this page is © t‘-ﬂ'A
Cogyright 1016 Congapn | sy, Al Wights Reservesd. it be s, o dhagdicnteal, 10 winite o G part
Mm--u—-du-v-q-—du-u—u-—dy L "
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Chapter4  Motion in Two Dimenslons

_ The End of the Ski Jump
vy

Conceptualize We can conceptualize
of observing winter Olym,
be airborne for

zontally. We
the incline,

this problem based on memories
pic ski competitions. We estimate the skier 1o
perhaps 4 s and to travel distance of
should expect the value of d, the
0 be of the same ord
Categorize We cate; As one of a particle in projectile
motion. As with other Projectile motion problems, we use the particle
under constant velocity mode] tor the horizontal motion and the particle
under constant acceleration

del for the vertical motion,
Analyze Itis convenient (o se
gin. The initial ve
the right triangle
nates at the |

about 100 m hari-

distance traveled along
er of magnitude,

gorize the problem

lect the beginning of the jump as the ori- 'MEMmplc 4.5) A&ijumm
lori(y('um;mncnm.nr Uy = 25,0 m/s and Uy = 0 From  the track moving in a honzontal direction.

n Figure 4.14, we see that the jumper’s xand y coordi-

anding point are given by X = dcos ¢ and ) = —dsin ¢,

Express the coordin
) = veps

ates of the Jumper as
time, using the part

icle unde
for xand the position equatic

afunction of
Fconstant velocity model

m from the particle under ’m'wg%
(B deosd = v,y

constant acceleration model for y:

Solve Equation (3) for ¢
Equation (4);

and substitute the result into

Solve for d and substitute numerical values:
Evaluate the xand ycoordinate

s of the point at which
the skier lands:

|y = dsing = =(109m) sin 35.0" = =625

xpectations. We expected the horizontal distance to be on the order of

don this order of magnitude. It might be useful to calculate the time interval

and compare it with our estimate of about 4 s

Suppose everything in this example is the same ex urved so that the jumper is pro-
Jected upward at an angle from the end of the track. Is this design better in terms of maximizing the length of the
Jump?

Finalize Letus compare these results with our ¢
100 m, and our result of 89.3 m is indee
that the jumper is in the air

cept the ski jump is ¢

Answer If the initial velocity has an upward component, the skier will be in the air longer and should therefore travel
farther. Tilting the initial velocity vector upward, however, will reduce the horizontal component of the initial veloc-
ity. Therefore, angling the end of the ski track upward at a large angle may actually reduce the distance. Consider the
extreme case: the skier is projected at 90° to the horizontal and simply goes up and comes back down at the end of the
ski track! This argument suggests that there must be an optimal angle between 0° and 90° that represents a balance
between making the flight time longer and the horizontal velocity component smaller.

Let us find this optimal angle mathematically. We modify Equations (1) through (4) in the following way, assum-

ing the skier is projected atan angle  with respect to the horizontal over a landing incline sloped with an arbitrary
angle ¢:
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By climinating the tme £ between thea equation
(alter several steps; see Problem #4)

o the Rillowin """I: li:‘\i'n"r.;.’ dilferentiation o maximize d in terms of 0, we arrive
§ ation or the angle # that gives the maximum value of d:
&
. 2
For the slope angle in Figure 4.14, ¢ = 35.0%; this cquation results in an optimal lsunch angle of 0 = 27.5". For a slope

angle of ¢ = 07, whicl
wullllld bnde s [2:',,‘,:."\:?;::"“ a horizontal plane, this equation gives an optimal launch angle of 0 = 45°, as we

0 = 45"

{\nalysis Model: Particle
in Uniform Circular Motion

?'lgurc 4.15a vshows a car moving in a circular path; we describe this motion by call-
ng “Mmﬂon. If the car is moving on this pathowith gunstant speed v W©

callivuniform cireular motion. Because it occurs so often, this type of motion is
recognized as an analysis model called the M*hﬂmmm We

discuss this model in this section,
It is s ; LS 3 at evi g bject moves at a
llls olten 3:llp||smg to students to find that cven m”“}j"h u ()')jf: gt i Pitfall Prevention 4.4
constant spee . ar pi [ aceelerations To sec why, consice
1stant speed in a circular pn_h, it \'lI” has an ock ' 0 see Wi Acceleration of 8 Particle
defining equation for acceleration, a = AV /db(Eq. 4.5). Notice £ Nﬂ" T in Uniform Circular Motion
(tion depends on the change in the velocity. Because veloei qUANULY AR g mber that acceleration in
can occur in two ways as mentioned in Section 4.1: by a change in the  ohysics is defined as a change
tion of the velocity. in the vrlocity, not a change in

o in a circular path. }hc, the sperd (contrary to the every-

"”‘A’"""I(IN)I the velocity and by a change in the direc
day interpretation). In circular

m«.wcuu foran object moving with constant spee .

astant-magnitude velocity vector is always tangent to the pathvof the.objestands T Ly eciar s

endicular (o the radius of.the.cisculanpatheThereforey Wieitires ofither [0 hanging in direction, 30

ity yector is always changing { there is indeed an acceleration

Let us first argue that the acceleration vector in uniform circular mouon 1§

always perpendicular o the path and always points toward the center of the circle.

If that were not true, there would be a component of the acceleration parallel to

the path and therefore parallel to the velocity vector. Such an acceleration compo-

nent would lead to a change in the speed of the particle along the path. This situa-

tion, however, is inconsistent with our sctup of the situation: the particle moves with

constant speed along the path. Therefore, for uniform circular motion, the accelera-

tion vector can only have a component perpendicular to the path, which is toward

the center of the circle.
Let us now find the magnitude of the acceleration of the particle. Consider the

diagram of the position and velocity vectors in Figure 4151 The figure also shows

change in position AT for an arbitrary time interval,

lll(' vector ICPI('Sl'l“i"g the
s shown by the dashed

The particle follows a circular path of radius 7, part of which i

H =
P 1o Figure 4,15
\ igure 4.15 (a) A car moving along a circular path at con-
. Topview stant speed experiences uniform circular motion. (b) Asa
particle moves along a portion of a circular path from ® w

®, its velocity vector changes from v, to V,. (c) The construc-
tion for determining the direction of the chunge in velocity
AV, which is toward the center of the circle for small Ar'.

Unless otherwise noted, afl content mmw-oc.rmm
All Rights Beserved. May mt be onswed, whe Clactums righan oont T
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92 Chapter 4 Motion in fwo Dimensions

Centripetal acceleration »
for a particle in uniform
circular motion

Period of circular motion »
for a particle in uniform
circular motlon

at that time is v, itis at ® at

Let us also assume v, and V,
-y becanse

el and is velocity

at that time 18 ¥y
i (he same (that 18, ¥

ricle is at @ at tim
and It veloaity ‘
thelr magnitudes art

curve. The pa
some later tme fy
differ only in direction;

i : tion) :
it is wndform circular mo . . e
In I';lguw 4.16¢, the velocity vectors in Figu e

v connects the tips of the vecLars, ref

b have been redrawn (A'l! 1o
enting the vector addition

ind 4.16¢, we can identify triangles that help

tail. The vector A |
¢ two position vectors in Figure

v, = v, + AV. In both Figures 4 16b

p tween th )
us analyze the motion. Ihe angle Al betw he e i Pigure I brcause
4,151 is the same as the angle between the velocity

i < ion vector 7. Therefore,
the velocity vector v is always perpendic ular to th;:‘:»:;s:;:f R ocacan o
the two triangles are similar. (Two (rmugllrs are simi s s ®
sides is the same for both triungles and if the ratio © e s s i
the same.) We can now write a relationship between the lengths

two triangles in Figures 4.15b and 4.156¢:

s

g 'l
' s

i v!, and the
where v = v, = yoand r = r, = 7, This equation can be solved for |A l,

! . Gy 2 = AV/At, to give
expression obtained ¢an be substituted into Equation 4.4, l.«,l i pa'rl.iClc %

the magnitude of the average acceleration over the time intervd
move from @ 1o ®;

Now imagine that points ® and ® in Figure 4.15b become extremely close
together. As ® and ® approach each other, At approaches zero, |A¥| a.lpp_roachcs
the distance traveled by the particle along the circular path, and the ratio IA'?l/A‘
approaches the speed v. In addition, the average acceleration becomes the instan-
taneous acceleration at point @. Hence, in the limit At — 0, the magnitude of the

acceleration is )
e
%31‘.« s

An acceleration of this nature is called a centripetal acceleration (centripetal means
center-seeking). The subscript on the acceleration symbol reminds us that the accel-
eration is centripetal.,

In many situations, it is convenient to describe the motion of a particle moving
with constant speed in a circle of radius rin terms of the period 7, which is defined
as. the time interva) required for one complete revolution of the particle. In the time
interval 7, the particle moves a distance of 277, which is equal to the circumference
of the particle's circular path. Therefore, because its speed is equal to the circum-
ference of the circular path divided by the period, or v = 2mr/7; it follows that

m’l (4.a5)

The period of a particle in uniform circular motion is a measure of the num-
ber of seconds for one revolution of the particle around the circle. The inverse of
the period is the rotation rate and is measured in revolutions per second. Because
one full revolution of the particle around the circle corresponds to an angle of 27
radians, the product of 277 and the rotation rate gives the angular speed  of the
particle, measured in radians/s ors

(4.16)
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Jning this («(]ll;l(ll()ll with 1‘l||l.nm|| 4 [F,‘ we find a lf"dll“ll\hi,; between shaulyr
and the translational speed with which the particle travels in the ciecul - (!l
Hiar ,).! 1

%’“ (4.17)

Equation 4.17 demonstrates that, for a fixed angular speed, the translat ] /|
hecomes larger as the radial position becomes larger, Hw;rrmv >hu r"';f":’:);l"ﬂ' ‘-‘
nuny-go:rmuul rotates at a fixed angular speed w, a rider at .mvmm'v ;un'ﬂwn it
Jarge rwill be }rnvcling through space faster than a rider at an inner position 'u
\(l).l'll('l r. We will investigate Equations 4.16 and 4.17 more deeply in Ch «;,m r 1 ‘
\\.c can express the centripetal acceleration of a particle 1 uniform cirealar
motion in terms of angular speed by combining Equations 414 and 4.17
oy (4.18)

ar mouon

comb
,pcctl

hquau(.)n‘ﬁ 4.14-4.18 are 1o be used when the particle in uniform circ ul
model is identified as appropriate for a given situation

0"?" Oulz 4.4 A particle moves in a circular path of radius 7 with speed v, It then
increases its speed to 20 while traveling along the same circ ular path. (i) The cen-
tripetal acceleration of the particle has changed by what fuc tor? Choose one:

(1) 0.25 (b) 0.5 (c) 2 (d) 4 (¢) impossible to determine (ii) From the sam
s by what factor has the period of the particle changed?

e choices,

CGEIGIINLIEN  Particle in Uniform Circular Motion

at can be modeled as a particle. If it moves
agnitude of its

Imagine a moving object th
in a circular path of radius rat a constant speed v, the m

centripetal acceleration is

a = Ei (4.14) S » aplanet
T ’/
and the period of the particle’s motion is given by Il’
=22 @18
v \
The angular speed of the particle is pL nucle
2
w = (4.16)

T

SOLUTION

Conceptualize Think about a mental image
as a particle and approximate the Earth’s orbit

as circular
Categorize The Conceptualize step allows us to categorize this problem

Analyze We do not know the orbital speed of the Earth to substitute

4.15, however, we can recast Equation 4.14 in terms of the period of the Earth’s orbit, which we know

the radius of the Earth's orbit around the Sun, which is 1.496 x 10" m.

contunt on this page & © Loarnig
Mighas

Examples:
o arock twirled in a circle on a s

of constant length
raveling around a per-

fectly circular orbit (Chap!
» acharged par
form magnetic fie
e an electron in orbit

of the Farth in a circular orbit around the Sun. We
(it's actually slightly elliptical, as we discuss in Chapter 13).

Pitfall Prevention 4.5

Centripetal Acceleration

s Not Constant We derived the
magnitude of the centripetal
aceeleration vecwr and ferund it 10

be constant for uniform circular

motion, but ihe centripelal accrlers:
furn vector (s net cmstand It always
poinis oward the center of the

e, bt it concinuously changes

cirel
ect moves

direction as the obj
around the circular path

(ring

ter 13)

ticle moving 1n a uni-
id (Chapter 29)

around a

us in the Bohr model of the
hydrogen atom (Chapter 42)

will model the Earth

as one of a particle in uniform circular motion.

into Equation 4.14. With the help of Equation

is one year, and

continued

U cinad
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| —
,,'b‘#;;,\ ,r;—)- % o

% 100 m) tytisnsY 3 \
wa,,m_q(?x: _-y?(ﬂ m)ﬁqw

Combine Equations 1,14 and 4.15

Substitute numenical v alues

(B) Whatis the angular sprﬂl of the Earth in its orbit around the Sun?

[SQLUTION ]

Analyae .\
)

e aticn 18 -l 90 % 1075
Substitute numerical values into Fquation 4.16: w ™ :

er than the free-fall acceleration on the surface of the Earth .I\ll
14 in terms of the period T of the motion
(B), we see that the angular speed of the
d the circular path once.

fFinalize The acceleraton m part (A) 1s much small
eplacing the speed vin Equation 4.
T'is known rather than v. In part

arth takes an entire year to go aroun

important tec hnique we lear ned here st
In many problems, it is more likely that
Earth is very small, which is to be l'\l)(‘l'll‘(l because the E

Tangential and Radial Acceleration
Let us consider a more general motion ghan that presented in Section 4.4 pasti-

cle moves to the right along a curved.

and in magnitude as glescribed in Figure A0 In this situation, the velocity vector
is always tangent to the path; the acceleration vector @, however, is at some angle
to the path. At each of three points ®, ®, and © in Figure 4.16, the dashed blue
circles represent the curvature of the actual path at each point. The radius of each

circle is equal to the path’s radius of curvature at each point.
As the particle moves along the curved path in Figure 4.16,
total acceleration vector & changes from point to point, At a
tor can be resolved into two components based on an origin a
dashed circle corresponding o that instant: & dial ¢
of the circle and a tangential’component ¢
I e \ ‘
Total acceleration b T a0 (@9

the direction of the
ny instant, this vec-
t the center of the

Tangential acceleration

Figure 4.16 The motion ofa
particle along an arbitrary curved
path lying in the xy plane. If the
locity vector ¥ (always tang
to the path) changes in direction
and magnitude, the components
y of the acceleration & are a tan-
gential component a,and a radial |
component 4,. 3

SR | Ll Tt S SN



4.5 Tangential and Radial Acceleration

ppe— 2 4.21)

where ris the radius of curvature of the path at the point in question. We recog-
nize the magnitude of the radial component of the acceleration as the centripetal
acceleration discussed in Section 4.4 with regard to the particle in uniform circular
motion model. Even in situations in which a particle moves along a curved path
with a varying speed, however, Equation 4.14 can be used for the centripetal accel-
eration, In this situation, the equation gives the instantaneous ccntriprml accelera-
tion at any time. The negative sign in Equation 4.21 indicates that the direction
of the centripetal acceleration is toward the center of the circle representing the
radius of curvature. The direction is opposite that of the radial unit vector f, which
always points away from the origin at the center of the circle.

Because @, and a, are Il('ll)cllditu ar component vectors of &, it follows that
the magnitude of a isfa= Viﬁﬁm a given speed, a, is large when the
radius of curvature is small (as at points ® and ® in Fig. 4.16) and small when ris
large (as at point ©). The direction of d, is either in the same direction as ¥ (if vis
increasing) or opposite V (if vis decreasing, as at point ®).

In uniform circular motion, where v is constant, , = Ofnd«
always completely radial as described in Section4.4. In other words, uniform circu-
lar |_nnlinn is a special case of motion along a general curved path. Furthermore A1
the direction of ¥ does not change, there is no radial acceleration and the motion
is one dimensional (inhis casguap= 0, but g;may not be z€ro).

®u 4.5 A particle moves along a path, and its speed increases with time.
(i) In which of the following cases are its acceleration and velocity vectors paral-
lel? (a) when the path is circular (b) when the path is straight () when the path
is a parabola (d) never (i) From the same choices, in which case are its accelera-
« tion and velocity vectors perpendicular everywhere along the path?

-

{ Ol : [ Over the Rise

A car leaves a stop sign and exhibits a constant acceleration of
10,300 m/s* parallel to the roadway. The car passes over a rise

in the roadway such that the top of the rise is shaped like an 4
arc of a circle ofyad my At the moment the car is at the :
- top of the rise, its velt vector is horizontal and has amag- - - . . . -

i ‘gt"f.‘oo‘mlﬁwm: are the magnitude and direction of
the total acceleration vector for the car at this instant?

SOLUTION

Conceptualize Conceptualize the situation using Figure
4.17a and any experiences you have had in driving over rises
on a roadway.

“ Radial acceleration

a, = 0.300 m/s*
— i',

_—’V
v= 0600 m/s

95

Calegorize Because the accelerating car is moving along a m, (E e 47) (a) A ise th
4« : B . X Example 4.7) (a) A car passes over a rise that
cuw.cd Palh' fvc C_awgonle this P‘_Oblem as ?"c "w"l“"'g a is shaped like an arc of a circle. (b) The total acceleration

particle experiencing both tangential and radial acceleration, vector @ is the sum of the tangential and radial acceleration

We recognize that it is a relatively simple substitution problem. vectors @, and .

The tangential acceleration vector has magnitude 0.300 m/s* and is horizontal. The radial acceleration is given by
Equation 4.21, with v = 6.00 m/s and r = 500 m., The radial acceleration vector is directed straight downward.

§

continued
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96 Chapter 4

Evaluate the radial acceleration:

Find the magnitude of &

Find the angle ¢ (sec Fig. 4.17b) between @ and the

horizontal:
) A P
& R
 po
A P
B e h .
-5 0 " T
B P
X
0 +5 S

Figure 4,18 Different observers
make different measurements

(a) Observer A is located 5 units
to the right of Observer B. Both
observers measure the position of
a particle at 2 (b) If both obsery-
ers see themselves at the origin of
their own coordinate system, they
disagree on the value of the posi
tion of the particle at 2.

! *  The woran standing on the -

! beltway sees the man moving with
: a slower speed than does the
woman observing the man from
the stationary floor.

Motion in Two Dimensions

TPa————

o B N usmant
Valawh! VI=GoT0 w78+ (6%0 m/oR

R R -

WM Relative Velocity and Relative Acceleration

In this section, we describe how observations made by different observers in dif-
ferent frames of reference are related to one another. A frame of reference can be
described by a Cartesian coordinate system for which an observer is at rest with
respect to the origin.

Let us conceptualize a sample situation in which there will be different observa-
tons for different observers. Consider the two observers A and B along the number
line in Figure 4.18a. Observer A is located 5 units to the right of observer B. Both
observers measure the position of point P, which is located 5 units to the right of
observer A. Suppose each observer decides,that he,is located gt the origin of an
x axis as in Figure 4.18b. Notice that the two observers disagree on the value of the
position of point 2. Observer A claims point Pis located at a position with a value
of x, = +5, whereas observer B claims it is located at a position with a value of x, =
+10. Both observers are correct, even though they make different measurements.
Their measurements differ because they are making the measurement from differ-
ent frames of reference.

Imagine now that observer B in Figure 4.18b is moving to the right along the x
axis. Now the two measurements are even more different. Observer A claims point
P remains at rest at a position with a value of +5, whereas observer B claims the
position of Pcontinuously changes with time, even passing him and moving behind
him! Again, both observers are correct, with the difference in their measurements
arising from their different frames of reference.

We explore this phcnomenon further by comidenng two observers watchmg a
man walking on a moving beltway at an airport in Figure 4,19, The woman standing
on the moving beltway sees the man moving at a normal walking speed. The woman
observing from the stationary floor sees the man moving with a higher speed because
the beltway speed combines with his walking speed. Both observers look at the same
man and arrive at different values for his speed. Both are correct; the difference in
their measurements results from the relative velocity of their frames of reference.

In a more general situation, consider a particle located at point P in Figure
4.20. Imagine that the motion of this particle is being described by two observers,
observer A in a reference frame S, fixed relative to the Earth and a second observer
B in a reference frame Sy moving to the right relative to S, (and therefore rela-
tive to the Earth) with a constant velocity V. In this discussion of relative veloc-
ity, we use a double-subscript notation; the first subscript represents what is being
observed, and the second represents who is doing the observing. Therefore, the
notation Vg, means the velocity of observer B (and the attached frame Sy) as mea-
sured by observer A. With this notation, observer B measures A to be moving to the
left with a velocity Vg = —Vya For purposes of this discussion, let us place each
observer at her or his respective origin.

We define the time ¢ = 0 as the instant at which the origins of the two reference
frames coincide in space. Therefore, at time ¢, the origins of the reference frames
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