background image

background image

Abhay R. Satoskar, MD, PhD

Ohio State University

Columbus, Ohio, USA

Gary L. Simon, MD, PhD

Th e George Washington University 

Washington DC, USA

Peter J. Hotez, MD, PhD

Th e George Washington University

Washington DC, USA

Moriya Tsuji, MD, PhD

Th e Rockefeller University

New York, New York, USA

Medical Parasitology

Austin, Texas

U.S.A.

v a d e m e c u m

L A N D E S

B

 

I

 

O

 

S

 

C

 

I

 

E

 

N

 

C

 

E


background image

VADEMECUM

Parasitology

LANDES BIOSCIENCE

Austin, Texas USA

Copyright ©2009 Landes Bioscience
All rights reserved. 
No part of this book may be reproduced or transmitted in any form or by any means, 
electronic or mechanical, including photocopy, recording, or any information storage 
and retrieval system, without permission in writing from the publisher.
Printed in the USA.

Please address all inquiries to the Publisher:
Landes Bioscience, 1002 West Avenue, Austin, Texas 78701, USA
Phone: 512/ 637 6050; FAX: 512/ 637 6079

ISBN: 978-1-57059-695-7

Library of Congress Cataloging-in-Publication Data

Medical parasitology / [edited by] Abhay R. Satoskar ... [et al.].
      p. ; cm.
 Includes bibliographical references and index.
 ISBN 978-1-57059-695-7
 1.  Medical parasitology.  I. Satoskar, Abhay R.
 [DNLM: 1.  Parasitic Diseases.  WC 695 M489 2009]
 QR251.M426 2009
 616.9'6--dc22
                                                           2009035449

While the authors, editors, sponsor and publisher believe that drug selection and dosage and 
the specifi cations and usage of equipment and devices, as set forth in this book, are in accord 
with current recommend ations and practice at the time of publication, they make no warranty, 
expressed or implied, with respect to material described in this book. In view of the ongoing 
research, equipment development, changes in governmental regulations and the rapid accumula-
tion of information relating to the biomedical sciences, the reader is urged to carefully review and 
evaluate the information provided herein.


background image

Dedications

To Anjali, Sanika and Monika for their support —Abhay R. Satoskar

To Vicki, Jason and Jessica for their support —Gary L. Simon

To Ann, Matthew, Emily, Rachel, and Daniel —Peter J. Hotez

To Yukiko for her invaluable support —Moriya Tsuji


background image

background image

About the Editors...

ABHAY R. SATOSKAR is Associate Professor of Microbiology at the Ohio 

State University, Columbus. Main research interests include parasitology and 
development of immunotherapeutic strategies for treating parasitic diseases. 
He is a member of numerous national and international scientifi c organiza-
tions including American Association of Immunologists and American Society 
of Tropical Medicine and Hygiene. He has served as a consultant for several 
organizations including NIH (USA), National Research Foundation (South 
Africa), Wellcome Trust (UK) and Sheikh Hamadan Foundation (UAE). 
He holds visiting faculty appointments in institutions in India and Mexico. 
Abhay Satoskar received his medical degree (MB, BS and MD) from Seth 
G. S. Medical College and King Edward VII Memorial Hospital affi  liated to 
University of Bombay, India. He received his doctoral degree (PhD) from 
University of Strathclyde, Glasgow. 


background image

About the Editors...

GARY L. SIMON is the Walter G. Ross Professor of Medicine and 

Director of the Division of Infectious Diseases at Th e George Washington 
University School of Medicine. He is also Vice-Chairman of the Department 
of Medicine. Dr. Simon is also Professor of Microbiology, Tropical Medicine 
and Immunology and Professor of Biochemistry and Molecular Biology. His 
research interests are in the diagnosis and treatment of HIV infection and 
its complications. He is especially interested in the interaction between HIV 
and diseases of sub-Saharan Africa, notably tuberculosis.

Dr. Simon is a native of Brooklyn, New York, but grew up in the Wash-

ington, DC metropolitan area. He obtained his undergraduate degree in 
chemistry from the University of Maryland and a PhD degree in physical 
chemistry from the University of Wisconsin. He returned to the University 
of Maryland where he received his MD degree and did his internal medicine 
residency. He did his infectious disease training at Tuft s-New England Medi-
cal Center in Boston.


background image

About the Editors...

PETER J. HOTEZ is Distinguished Research Professor and the Walter G. Ross 

Professor and Chair of the Department of Microbiology, Immunology and Tropi-
cal Medicine at Th e George Washington University, where his major research 
and academic interest is in the area of vaccine development for neglected tropical 
diseases and their control. Prof. Hotez is also the President of the Sabin Vaccine 
Institute, a non-profi t medical research and advocacy organization.  Th rough the 
Institute, Dr. Hotez founded the Human Hookworm Vaccine Initiative, a product 
development partnership supported by the Bill and Melinda Gates Foundation, 
to develop a recombinant vaccine for human hookworm disease, and the Global 
Network for Tropical Neglected Diseases Control, a new partnership formed to 
facilitate the control of neglected tropical diseases in developing countries. He is 
also the Founding Editor-in-Chief of PLoS Tropical Neglected Diseases.

Dr. Hotez is a native of Hartford, Connecticut. He obtained his BA degree in 

Molecular Biophysics Phi Beta Kappa from Yale University (1980) and his MD 
and PhD from the medical scientist-training program at Weill Cornell Medical 
College and Th e Rockefeller University. 


background image

About the Editors...

MORIYA TSUJI is Aaron Diamond Associate Professor and Staff  Investiga-

tor, HIV and Malaria Vaccine Program at the Aaron Diamond AIDS Research 
Center, Th e Rockefeller University, New York. He is also Adjunct Associate 
Professor in the Department of Medical Parasitology at New York University 
School of Medicine. He is a member of various national and international 
scientifi c organizations, including Faculty of 1000 Biology, United States-Israel 
Binational Science Foundation, the Center for Scientifi c Review at the National 
Institute of Health of the United States Department of Health and Human 
Services, the Science Programme at the Wellcome Trust of the United Kingdom, 
the French Microbiology Program at the French Ministry of Research and New 
Technologies, and the Board of Experts for the Italian Ministry for University 
and Research. He is also an editorial board member of the journal Virology: 
Research and Treatment
. His major research interests are (i) recombinant viral 
vaccines against microbial infections, (ii) identifi cation of novel glycolipid-based 
adjuvants for HIV and malaria vaccines, and (iii) the protective role of CD1 
molecules in HIV/malaria infection. Moriya Tsuji received his MD in 1983 from 
Th e Jikei University School of Medicine, Tokyo, Japan, and in 1987 earned his 
PhD in Immunology from the University of Tokyo, Faculty of Medicine.


background image

Contents

  

Preface 

.......................................................................xxi

Section I. Nematodes

 1. 

Enterobiasis.................................................................. 2

Janine R. Danko

 2. 

Trichuriasis 

.................................................................. 8

Rohit Modak

 3. 

Ascariasis 

................................................................... 14

Afsoon D. Roberts

 4. 

Hookworm 

................................................................. 21

David J. Diemert

 5. 

Strongyloidiasis 

.......................................................... 31

Gary L. Simon

 6. 

Trichinellosis 

.............................................................. 39

Matthew W. Carroll

 7. 

Onchocercosis 

............................................................ 45

Christopher M. Cirino

 8. 

Loiasis 

........................................................................ 53

Murliya Gowda

 9. 

Dracunculiasis 

............................................................ 58

David M. Parenti

  10.  Cutaneous Larva Migrans: “Th e Creeping Eruption” ... 63

Ann M. Labriola

  11.  Baylisascariasis and Toxocariasis ................................. 67

Erin Elizabeth Dainty and Cynthia Livingstone Gibert

 12. Lymphatic Filariasis ................................................... 76

Subash Babu and Th omas B. Nutman

Section II. Trematodes

 13. Clonorchiasis and Opisthorchiasis .............................. 86

John Cmar

 14. Liver Fluke: Fasciola hepatica ...................................... 92

Michelle Paulson


background image

 15. Paragonimiasis ........................................................... 98

Angelike Liappis

  16.  Intestinal Trematode Infections ................................ 104

Sharon H. Wu, Peter J. Hotez and Th addeus K. Graczyk

 17. Schistosomiasis: Schistosoma japonicum ................... 111

Edsel Maurice T. Salvana and Charles H. King

 18. Schistosomiasis: Schistosoma mansoni ...................... 118

Wafa Alnassir and Charles H. King

 19. Schistosomiasis: Schistosoma haematobium .............. 129

Vijay Khiani and Charles H. King

Section III. Cestodes

  20.  Taeniasis and Cyticercosis ........................................ 138

Hannah Cummings, Luis I. Terrazas and Abhay R. Satoskar

 21. Hydatid Disease ....................................................... 146

Hannah Cummings, Miriam Rodriguez-Sosa 

and Abhay R. Satoskar

Section IV. Protozoans

  22.  American Trypanosomiasis (Chagas Disease) ........... 154

Bradford S. McGwire and David M. Engman

 23. African Trypanosomiasis .......................................... 161

Guy Caljon, Patrick De Baetselier and Stefan Magez

  24.  Visceral Leishmaniasis (Kala-Azar) ........................... 171

Ambar Haleem and Mary E. Wilson

 25. Cutaneous Leishmaniasis 

.......................................... 182

Claudio M. Lezama-Davila, John R. David 

and Abhay R. Satoskar

 26. Toxoplasmosis .......................................................... 190

Sandhya Vasan and Moriya Tsuji

 27. Giardiasis ................................................................. 195

Photini Sinnis

 28. Amebiasis 

................................................................. 206

Daniel J. Eichinger


background image

 29. Cryptosporidiosis .................................................... 214

Gerasimos J. Zaharatos

 30. Trichomoniasis 

......................................................... 222

Raymond M. Johnson

 31. Pneumocystis Pneumonia .......................................... 227

Allen B. Clarkson, Jr. and Salim Merali

 32. Malaria 

..................................................................... 237

Moriya Tsuji and Kevin C. Kain

Section V. Arthropods

 33. Clinically Relevant Arthropods ................................ 250

Sam R. Telford III

  

Appendix 

.................................................................. 261

 

    Drugs for Parasitic Infections .......................................................261

 

    Safety of Antiparasitic Drugs .......................................................284

 

    Manufacturers of Drugs Used to Treat Parasitic Infections ...287

  

Index 

........................................................................ 291


background image

background image

Editors

Abhay R. Satoskar, MD, PhD

Department of Microbiology

and

Department of Molecular Virology, Immunology 

and Medical Genetics

Ohio State University

Columbus, Ohio, USA

Email: satoskar.2@osu.edu

Chapters 20, 21, 25

Gary L. Simon, MD, PhD

Department of Medicine

and

Department of Microbiology, Immunology 

and Tropical Medicine

and

Department of Biochemistry and Molecular Biology

Division of Infectious Diseases

Th e George Washington University

Washington DC, USA

Email: gsimon@mfa.gwu.edu

Chapters 5

Peter J. Hotez, MD, PhD

Department of Microbiology, Immunology 

and Tropical Medicine

Th e George Washington University

Washington DC, USA

Email: mtmpjh@gwumc.edu

Chapter 16

Moriya Tsuji, MD, PhD

HIV and Malaria Vaccine Program

Th e Aaron Diamond AIDS Research Center

Th e Rockefeller University

New York, New York, USA

Email: mtsuji@adarc.org

Chapters 26, 32


background image

background image

Wafa Alnassir, MD
Department of Medicine
Division of Infectious Diseases
University Hospitals of Cleveland
Cleveland, Ohio, USA
Email: wafanassirali@yahoo.com
Chapter 18

Subash Babu, PhD
Helminth Immunology Section
Laboratory of Parasitic Diseases
National Institutes of Health
Bethesda, Maryland, USA
Email: sbabu@niaid.nih.gov
Chapter 12

Guy Caljon, PhD
Unit of Cellular and Molecular 

Immunology

Department of Molecular and Cellular 

Interactions

VIB, Vrije Universiteit Brussel
Brussels, Belgium
Email: gucaljon@vub.ac.be
Chapter 23

Matthew W. Carroll, MD
Division of Infectious Diseases
Th e George Washington University 

School of Medicine

Washington DC, USA
Email: mcarroll@gwu.edu
Chapter 6

Christopher M. Cirino, DO, MPH
Division of Infectious Diseases
Th e George Washington University

School of Medicine

Washington DC, USA
Email: ccirino710@hotmail.com
Chapter 7

Allen B. Clarkson, Jr, PhD
Department of Medical Parasitology
New York University 

School of Medicine

New York, New York, USA
Email: clarka01@med.nyu.edu
Chapter 31

John Cmar, MD
Department of Medicine
Divisions of Infectious Diseases 

and Internal Medicine

Sinai Hospital of Baltimore
Baltimore, Maryland, USA
Email: doc.operon@gmail.com
Chapter 13

Hannah Cummings, BS
Department of Microbiology
Ohio State University
Columbus, Ohio, USA
Email: cummings.123@osu.edu
Chapters 20, 21

Erin Elizabeth Dainty, MD
Department of Obstetrics 

and Gynecology

University of Pennsylvania
Philadelphia, Pennsylvania, USA
Email: erin.dainty@uphs.upenn.edu
Chapter 11

Janine R. Danko, MD, MPH
Department of Infectious Diseases 
Uniformed Services University 

of the Health Sciences

Naval Medical Research Center
Bethesda, Maryland, USA
Email: janine.danko@med.navy.mil
Chapter 1

Contributors


background image

John R. David, MD
Department of Immunology 

and Infectious Diseases

Harvard School of Public Health
Boston, Massachusetts, USA
Email: jdavid@hsph.harvard.edu
Chapter 25

Patrick De Baetselier, PhD
Unit of Cellular and Molecular 

Immunology

Department of Molecular and Cellular 

Interactions

VIB, Vrije Universiteit Brussel
Brussels, Belgium
Email: pdebaets@vub.ac.be
Chapter 23

David J. Diemert, MD
Human Hookworm Vaccine Initiative
Albert B. Sabin Vaccine Institute
Washington DC, USA
Email: david.diemert@sabin.org
Chapter 4

Daniel J. Eichinger, PhD
Department of Medical Parasitology
New York University 

School of Medicine

New York, New York, USA
Email: eichid01@med.nyu.edu
Chapter 28

David M. Engman, MD, PhD
Departments of Pathology 

and Microbiology-Immunology

Northwestern University
Chicago, Illinois, USA
Email: d-engman@northwestern.edu
Chapter 22

Cynthia Livingstone Gibert, MD
Department of Medicine 
Division of Infectious Diseases
Th e George Washington University
Washington VA Medical Center
Washington DC, USA
Email: cynthia.gibert@med.va.gov
Chapter 11

Murliya Gowda, MD
Infectious Disease Consultants (IDC)
Fairfax, Virginia, USA
Email: pgowda2000@yahoo.com
Chapter 8

Th addeus K. Graczyk, MSc, PhD
Department of Environmental 

Health Sciences

Division of Environmental 

Health Engineering

Johns Hopkins Bloomberg 

School of Public Health

Baltimore, Maryland, USA
Email: tgraczyk@jhsph.edu
Chapter 16

Ambar Haleem, MD
Department of Internal Medicine
University of Iowa
Iowa City, Iowa, USA
Email: ambar-haleem@uiowa.edu
Chapter 24

Raymond M. Johnson, MD, PhD
Department of Medicine
Indiana University School of Medicine
Indianapolis, Indiana, USA
Email: raymjohn@iupui.edu
Chapter 30


background image

Kevin C. Kain, MD, FRCPC
Department of Medicine
University of Toronto
Department of Global Health
McLaughlin Center for Molecular 

Medicine

and
Center for Travel and Tropical 

Medicine

Toronto General Hospital
Toronto, Ontario, Canada
Email: kevin.kain@uhn.on.ca
Chapter 32

Vijay Khiani, MD
Department of Medicine
University Hospitals of Cleveland
Cleveland, Ohio, USA
Email: vijay.khiani@gmail.com 
Chapter 19

Charles H. King, MD, FACP
Center for Global Health and Diseases
Case Western Reserve University 

School of Medicine

Cleveland, Ohio, USA
Email: chk@cwru.edu 
Chapters 17-19

Ann M. Labriola, MD
Department of Medicine 
Division of Infectious Diseases
Th e George Washington University
Washington VA Medical Center
Washington DC, USA
Email: ann.labriola@va.gov
Chapter 10

Claudio M. Lezama-Davila, PhD
Department of Microbiology
and
Department of Molecular Virology, 

Immunology and Medical Genetics

Ohio State University
Columbus, Ohio, USA
Email: lezama-davila.1@osu.edu
Chapter 25

Angelike Liappis, MD
Departments of Medicine 

and Microbiology, Immunology 
and Tropical Medicine

Division of Infectious Diseases
Th e George Washington University
Washington DC, USA
Email: mtmapl@gwumc.edu
Chapter 15

Stefan Magez, PhD
Unit of Cellular and Molecular 

Immunology

Department of Molecular and Cellular 

Interactions

VIB, Vrije Universiteit Brussel
Brussels, Belgium
Email: stemagez@vub.ac.be
Chapter 23

Bradford S. McGwire, MD, PhD
Division of Infectious Diseases
and
Center for Microbial Interface Biology
Ohio State University
Columbus, Ohio, USA
Email: brad.mcgwire@osumc.edu
Chapter 22


background image

Salim Melari, PhD
Department of Biochemistry
Fels Institute for Cancer Research 

and Molecular Biology

Temple University School of Medicine
Philadelphia, Pennsylvania, USA
Email: salim.merali@temple.edu
Chapter 31

Rohit Modak, MD, MBA
Division of Infectious Diseases
Th e George Washington University 

Medical Center

Washington DC, USA
Email: Rohitmodak@yahoo.com
Chapter 2

Th omas B. Nutman, MD
Helminth Immunology Section
Laboratory of Parasitic Diseases
National Institutes of Health
Bethesda, Maryland, USA
Email: tnutman@niaid.nih.gov
Chapter 12

David M. Parenti, MD, MSc
Department of Medicine 
and
Department of Microbiology, 

Immunology and Tropical Medicine

Division of Infectious Diseases
Th e George Washington University
Washington DC, USA
Email: dparenti@mfa.gwu.edu
Chapter 9

Michelle Paulson, MD
National Institute of Allergy 

and Infectious Diseases

National Institutes of Health
Bethesda, Maryland, USA
Email: paulsonm@niaid.nih.gov
Chapter 14

Afsoon D. Roberts, MD
Department of Medicine
and
Department of Microbiology, 

Immunology and Tropical Medicine

Division of Infectious Diseases
Th e George Washington University 

School of Medicine

Washington DC, USA
Email: aroberts@mfa.gwu.edu
Chapter 3

Miriam Rodriguez-Sosa, PhD
Unidad de Biomedicina
FES-Iztacala
Universidad Nacional Autómonia

de México

México
Email: rodriguezm@campus.iztacala.

unam.mx

Chapter 21

Edsel Maurice T. Salvana, MD
Department of Medicine
Division of Infectious Diseases
University Hospitals of Cleveland
Cleveland, Ohio, USA
Email: edsel.salvana@case.edu 
Chapter 17

Photini Sinnis, MD
Department of Medicine
and
Department of Medical Parasitology
New York University School of 

Medicine

New York, New York, USA
Email: photini.sinnis@med.nyu.edu
Chapter 27


background image

Sam R. Telford, III, SD, MS
Department of Biomedical Sciences
Infectious Diseases
Tuft s University School 

of Veterinary Medicine

Graft on, Massachusetts, USA
Email: sam.telford@tuft s.edu
Chapter 33 

Luis I. Terrazas, PhD
Unidad de Biomedicina
FES-Iztacala
Universidad Nacional Autónoma 

de México

México
Email: literrazas@campus.iztacala.

unam.mx

Chapter 20

Sandhya Vasan, MD
Th e Aaron Diamond AIDS 

Research Center

Th e Rockefeller University
New York, New York, USA
Email: svasan@adarc.org
Chapter 26

Mary E. Wilson, MD, PhD
Departments of Internal Medicine, 

Microbiology and Epidemiology

Iowa City VA Medical Center
University of Iowa
Iowa City, Iowa, USA
Email: mary-wilson@uiowa.edu
Chapter 24

Sharon H. Wu, MS
Department of Microbiology, 

Immunology and Tropical Medicine

Th e George Washington University
Washington DC, USA
Email: sharonwu@gwu.edu
Chapter 16

Gerasimos J. Zaharatos, MD
Division of Infectious Diseases, 

Department of Medicine

and
Department of Microbiology
Jewish General Hospital
McGill University
Montreal, Quebec, Canada
Email: gerasimos.zaharatos@mcgill.ca
Chapter 29


background image

background image

Preface

Infections caused by parasites are still a major global health problem. 

Although parasitic infections are responsible for a signifi cant morbidity and 
mortality in the developing countries, they are also prevalent in the developed 
countries. Early diagnosis and treatment of a parasitic infection is not only 
critical for preventing morbidity and mortality individually but also for reduc-
ing the risk of spread of infection in the community. Th is concise book gives 
an overview of critical facts for clinical and laboratory diagnosis, treatment 
and prevention of parasitic diseases which are common in humans and which 
are most likely to be encountered in a clinical practice. Th is book is a perfect 
companion for primary care physicians, residents, nurse practitioners, medical 
students, paramedics, other public health care personnel and as well as travel-
ers. Th e editors would like to thank all the authors for their expertise and their 
outstanding contributions. We would also like to thank Dr. Ronald Landes 
and all other staff  of Landes Bioscience who has worked tirelessly to make this 
magnifi cent book possible.

Abhay R. Satoskar, MD, PhD

Gary Simon, MD, PhD

Moriya Tsuji, MD, PhD

Peter J. Hotez, MD, PhD


background image

background image

S

ECTION

 I

Nematodes


background image

Chapter 1

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Enterobiasis

Janine R. Danko

Background

Enterobius vermicularis, commonly referred to as pinworm, has the largest 

geographical distribution of any helminth. Discovered by Linnaeus in 1758, it was 
originally named Oxyuris vermicularis and the disease was referred to as oxyuriasis 
for many years. It is believed to be the oldest parasite described and was recently 
discovered in ancient Egyptian mummifi ed human remains as well as in DNA 
samples from ancient human coprolite remains from North and South America.

Enterobius is one of the most prevalent nematodes in the United States and in 

Western Europe. At one time, in the United States there are an estimated 42 million 
infected individuals. It is found worldwide in both temperate and tropical areas. 
Prevalence is highest among the 5-10 year-old age group and infection is uncom-

mon in children less than two years old. Enterobiasis has been reported in every 
socioeconomic level; however spread is much more likely within families of infected 
individuals, or in institutions such as child care centers, orphanages, hospitals and 
mental institutions. Humans are the only natural host for the parasite.

Infection is facilitated by factors including overcrowding, wearing soiled cloth-

ing, lack of adequate bathing and poor hand hygiene, especially among young 
school-aged children. Infestation follows ingestion of eggs which usually reach 
the mouth on soiled hands or contaminated food. Transmission occurs via direct 

anus to mouth spread from an infected person or via airborne eggs that are in the 
environment such as contaminated clothing or bed linen. Th e migration of worms 
out of the gastrointestinal tract to the anus can cause local perianal irritation and 
pruritus. Scratching leads to contamination of fi ngers, especially under fi ngernails 
and contributes to autoinfection. Finger sucking and nail biting may be sources of 

recurrent infection in children. Spread within families is common. E. vermicularis 
may be transmitted through sexual activity, especially via oral and anal sex.

When swallowed via contaminated hands, food or water, the eggs hatch releasing 

larvae (Fig. 1.1). Th e larvae develop in the upper small intestine and mature in 5 to 
6 weeks without undergoing any further migration into other body cavities (i.e., 
lungs). Both male and female forms exist. Th e smaller male is 2-5 mm in length and 
0.3 mm in diameter whereas the female is 8-13 mm long and up to 0.6 mm in di-
ameter (Fig. 1.2). Copulation occurs in the distal small bowel and the adult females 

settle in the large intestine where they can survive for up to 13 weeks (males live for 

approximately 7 weeks). Th e adult female can produce approximately 11,000 eggs. 

A gravid female can migrate out through the anus to lay her eggs. Th is phenomenon 
usually occurs at night and is thought to be secondary to the drop in host body 


background image

3

Enterobiasis

1

temperature at this time. Th e eggs embyonate and become infective within 6 hours 

of deposition. In cool, humid climates the larvae can remain infective for nearly 2 
weeks, but under warm, dry conditions, they begin to lose their infectivity within 
2 days. Most infected persons harbor a few to several hundred adult worms.

Disease Signs and Symptoms

Th e majority of enterobiasis cases are asymptomatic; however the most common 

symptom is perianal or perineal pruritus. Th is varies from mild itching to acute 
pain. Symptoms tend to be most troublesome at night and, as a result, infected 

individuals oft en report sleep disturbances, restlessness and insomnia. Th e most 
common complication of infection is secondary bacterial infection of excoriated 
skin. Folliculitis has been seen in adults with enterobiasis.

Gravid female worms can migrate from the anus into the female genital tract. 

Vaginal infections can lead to vulvitis, serous discharge and pelvic pain. Th ere are 

Figure 1.1. Life-cycle of Enterobius vermicularis. Reproduced from: Nappi 

AJ, Vass E, eds. Parasites of Medical Importance. Austin: Landes Bioscience, 

2002:84.


background image

4

Medical Parasitology

1

numerous reports of granulomas in the vaginal wall, uterus, ovary and pelvic peri-
toneum caused by E. vermicularis dead worms or eggs. Pre-pubertal and adolescent 
girls with E. vermicularis infection can develop vulvovaginitis. Scratching may lead 

to introital colonization with colonic bacteria and thus may increase susceptibility 
to urinary tract infections.

Although ectopic lesions due to E. vermicularis are rare, pinworms can also 

migrate to other internal organs, such as the appendix, the prostate gland, lungs 
or liver, the latter being a result of egg embolization from the colon via the portal 

venous system. Within the colonic mucosa or submucosa granulomas can be 
uncomfortable and may mimic other diseases such as carcinoma of the colon or 
Crohn’s disease. E. vermicularis has been found in the lumen of uninfl amed ap-

pendices in patients who have been operated on for acute appendicitis. Although 
eosinophilic colitis has been described with enterobiasis, eosinophilia is uncommon 
in infected individuals.

Diagnosis

Th e diagnosis of E. vermicularis infestation rests on the recognition of dead 

adult worms or the characteristic ova. In the perianal region, the adult female 
worm may be visualized as a small white “piece of thread”. Th e most successful 

diagnostic method is the “Scotch tape” or “cellophane tape” method (Fig. 1.3). 
Th is is best done immediately aft er arising in the morning before the individual 
defecates or bathes. Th e buttocks are spread and a small piece of transparent or 
cellulose acetate tape is pressed against the anal or perianal skin several times. 
Th e strip is then transferred to a microscope slide with the adhesive side down. 

Th e worms are white and transparent and the skin is transversely striated. Th e 
egg is also colorless, measures 50-54 × 20-27 mm and has a characteristic shape, 

Figure 1.2. Enterobius vermicularis.


background image

5

Enterobiasis

1

fl attened on one side. Examination of a single specimen detects approximately 
50% of infections; when this is done on three consecutive mornings sensitivity 
rises to 90%. Parija et al. found a higher sensitivity if lacto-phenol cotton blue 

stain was used in detecting eggs aft er the tape test was performed. Six consecu-
tive negative swabs on separate days are necessary to exclude the diagnosis. Stool 
examination for eggs is usually not helpful, as only 5-15% of infected persons 
will have positive results. Rarely, E. vermicularis eggs have been found in cervi-
cal specimens (done for routine Papanicolaou smears), in the urine sediment, 

or the worms have been seen during colonoscopy. Serologic tests specifi c for E. 
vermicularis
 are not available.

Treatment

E. vermicularis is susceptible to several anthelmintic therapies, with a cure rate 

of >90%. Mebendazole (100 mg), albendazole (400 mg), or pyrantel pamoate 
(11 mg/kg of base) given as a single dose and then repeated aft er 14 days are all 

eff ective regimens. Mebendazole or albendazole are preferred because they have 
relatively few side eff ects. Th eir mode of action involves inhibition of the micro-
tubule function in adult worms and glycogen depletion. For children less than 2, 
200 mg should be administered. Although equally eff ective, pyrantel pamoate is 
associated with more side eff ects including gastrointestinal distress, neurotoxicity 

and transient increases in liver enzymes. Both mebendazole and albendazole are 
category C drugs, thus contraindicated in pregnancy although an Israeli study by 
Diav-Citrin et al of 192 pregnant women exposed to mebendazole, failed to reveal 

an increase in the number of malformations or spontaneous abortions compared 
to the general population.

 

Persons with eosinophilic colitis should be treated for 

three successive days with mebendazole (100 mg twice daily). Experience with 

Figure 1.3. Enterobius vermicularis captured on scotch tape.


background image

6

Medical Parasitology

1

mebendazole or albendazole with ectopic enterobiasis is limited; persons who 

present with pelvic pain, those who have salpingitis, tuboovarian abscesses or 
painful perianal granulomas or signs or symptoms of appendicitis oft en proceed 

to surgery. In most reported cases, the antiparasitic agent is given aft er surgery 
when the diagnosis of pinworm has been established. Conservative therapy with 

local or systemic antibiotics is usually appropriate for perianal abscesses due to 
enterobiasis. Ivermectin has effi  cacy against pinworm but is generally not used for 
this indication and is not approved for enterobiasis in the United States. Overall, 

prognosis with treatment is excellent. Because pinworm is easily spread throughout 

households, the entire family of the infected person should be treated. All bedding 
and clothing should be thoroughly washed. Th e same rule should be applied to 
institutions when an outbreak of pinworm is discovered.

Prevention and Prophylaxis

Th ere are no eff ective prevention or prophylaxis strategies available. Although 

mass screening campaigns and remediation for parasite infection is costly, treatment 
of pinworm infection improves the quality of life for children. Th e medications, 
coupled with improvements in sanitation, especially in rural areas can provide a 
cost-eff ective way at treating this nematode infection. Measures to prevent rein-
fection and spread including clipping fi ngernails, bathing regularly and frequent 

hand washing, especially aft er bowel movements. Routine laundering of clothes 
and linen is adequate to disinfect them. House cleaning should include vacuum-
ing around beds, curtains and other potentially contaminated areas to eliminate 

other environmental eggs if possible. Health education about route of infection, 
especially autoinfection and these prevention tactics should always be incorporated 
into any treatment strategy.

Disclaimer

Th e views expressed in this chapter are those of the author and do not neces-

sarily refl ect the offi  cial policy or position of the Department of the US Navy, the 
Department of Defense or the US Government.

I am a military service member (or employee of the US Government). Th is 

work was prepared as part of my offi  cial duties. Title 17 USC §105 provides that 
‘Copyright protection under this title is not available for any work of the United 

States Government.’ Title 17 USC §101 defi nes a US Government work as a work 
prepared by a military service member or employee of the US Government as part 
of that person’s offi  cial duties. —Janine R. Danko

Suggested Reading

  1.  Al-Rufaie HK, Rix GH, Perez Clemente MP et al. Pinworms and postmenopausal 

bleeding. J Clin Path 1998; 51:401-2.

  2.  Arca MJ, Gates RL, Groner JL et al. Clinical manifestations of appendiceal 

pinworms in children: an institutional experience and a review of the literature. 

Pediatr Surg Int 2004; 20:372-5.

  3.  Beaver PC, Kriz JJ, Lau TJ. Pulmonary nodule caused by Enterobium vermicularis. 

Am J Trop Med Hyg 1973; 22:711-13.

  4.  Bundy D, Cooper E. In: Strickland GT, ed. Hunter’s Tropical Medicine and 

Emerging Infectious Diseases, 8th Edition. Philadelphia: W.B. Saunders Company, 

2000.


background image

7

Enterobiasis

1

  5.  Diav-Citrin O, Shechtman S, Arnon J et al. Pregnancy outcome aft er gestational 

exposure to mebendazole: a prospective controlled cohort study. Am J Obstet 

Gynecol 2003; 188:282-5.

  6.  Fernandez-Flores A, Dajil S. Enterobiasis mimicking Crohn’s disease. Indian J 

Gastroenterol 2004; 23:149-50.

  7.  Georgiev VS. Chemotherapy of enterobiasis. Exp Opin Pharmacother 2001; 

2:267-75.

  8.  Goncalves ML, Araujo A, Ferreira LF. Human intestinal parasites in the past: New 

fi ndings and a review. Mem Inst Oswaldo Cruz 2003; 98:103-18.

  9.  Herrstrom P, Fristrom A, Karlsson A et al. Enterobius vermicularis and fi nger 

sucking in young Swedish children. Scand. J Prim Healthcare 1997; 115:146-8.

 10.  Little MD, Cuello CJ, D’Allessandra A . Granuloma of the liver due to Enterobius 

vermicularis: report of a case. Am J Trop Med Hyg 1973; 22:567-9.

 11.  Liu LX, Chi J, Upton MP. Eosinophilic colitis associated with larvae of the pin-

worm Enterobius vermicularis. Lancet 1995; 346:410-12.

 12.  Neva FA, Brown HW. Basic Clinical P, 6th Edition. Norwalk: Appleton and Lange, 

1994.

 13.  Parija SC, Sheeladevi C, Shivaprakash MR et al. Evaluation of lacto-phenol 

cotton blue stain for detection of eggs of Enterobius vermicularis in perianal surface 

samples. Trop Doctor 2001; 31:214-5.

 14.  Petro M, Iavu K, Minocha A. Unusual endoscopic and microscopic view of 

E. vermicularis: a case report with a review of the literature. South Med Jrnl 2005; 

98:927-9.

 15.  Smolyakov R, Talalay B, Yanai-Inbar I et al. Enterobius vermicularis infection of 

the female genital tract: a report of three cases and review of the literature. Eur J 

Obstet Gynecol Reproduct Biol 2003; 107:220-2.

 16.  Sung J, Lin R, Huang L et al. Pinworm control and risk factors of pinworm 

infection among primary-school chdilren in Taiwan. Am J Trop Med Hyg 2001; 

65:558-62.

 17.  Tornieporth NG, Disko R, Brandis A et al. Ectopic enterobiasis: a case report and 

review. J Infect 1992; 24:87-90.

 18.  Wagner ED, Eby WC. Pinworm prevalence in California elementary school 

children and diagnostic methods. Am J Trop Med Hyg 1983; 32:998-1001.


background image

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Trichuriasis

Rohit Modak

Background

Trichuris trichiura is an intestinal nematode aff ecting an estimated 795 

million persons worldwide. Also known as whipworm due to its characteristic 
shape, Trichuris can be classifi ed as a soil-transmitted helminth because its life cycle 
mandates embryonic development of its eggs or larvae in the soil. It is the second 
most common nematode found in humans, behind Ascaris.

Trichuriasis is more common in areas with tropical weather such as Asia, 

Sub-Sarahan Africa and the Americas, particularly in impoverished regions of 

the Caribbean. It is also more common in poor rural communities and areas that 
lack proper sanitary facilities with easily contaminated food and water. A large 
number of individuals who are infected actually harbor fewer than 20 worms 

and are asymptomatic; those with a larger burden of infection (greater than 200 
worms) are most likely to develop clinical disease. School age children tend to be 
most heavily infected.

Th ere is no reservoir host for Trichuris. Transmission occurs when contaminated 

soil reaches the food, drink, or hands of a person and is subsequently ingested. 

Th erefore, poor sanitary conditions is a major risk factor. It is noteworthy that 
patients are oft en coinfected with other soil-transmitted helminths like Ascaris 
and hookworm due to similar transmission modalities.

Life Cycle

Adult female worms shed between 3,000 to 20,000 eggs per day, which are 

passed with the stool. In the soil, the eggs develop into a 2-cell stage, an advance 
cleavage stage and then embryonate. It is the embryonated egg that is actually 

infectious. Environmental factors such as high humidity and warm temperature 
quicken the development of the embryo. Th is helps explain the geographic 
predilection for tropical environments. Under optimal conditions, embryonic 
development occurs between 15-30 days. Infection begins when these embryo-
nated eggs are ingested.

Th e eggs fi rst hatch in the small intestine and release larvae that penetrate the 

columnar epithelium and situate themselves just above the lamina propria. Aft er 
four molts, an immature adult emerges and is passively carried to the large intestine. 

Here, it re-embeds itself into the colonic columnar cells, usually in the cecum and 
ascending colon. Heavier burdens of infection spread to the transverse colon and 
rectum. Th e worm creates a syncytial tunnel between the mouths of crypts; it is 
here that the narrow anterior portion is threaded into the mucosa and its thicker 

C

HAPTER

 2


background image

posterior end protrudes into the lumen, allowing its eggs to escape. Maturation 
and mating occur here as well.

Th e pinkish gray adult worm is approximately 30-50 mm in length, with the 

female generally being slightly larger than the male. Th e nutritional requirements of 
Trichuris are unclear; unlike hookworm however, it does not appear that Trichuris is 
dependent on its host’s blood. Eggs are fi rst detectable in the feces of those infected 
about 60-90 days following ingestion of the embryonated eggs. Th e life span of an 

adult worm is about one to three years. Unlike Ascaris and hookworm, there is no 
migratory phase through the lung.

9

Trichuriasis

2

Figure 2.1. Life Cycle of Trichuris Trichura. Reproduced from: Nappi AJ, Vass E, 

eds. Parasites of Medical Importance. Austin: Landes Bioscience, 2002:73.


background image

Disease Signs and Symptoms

Frequently, infection with Trichuris is asymptomatic or results only in peripheral 

eosinophilia. Clinical disease most oft en occurs in children, as it is this population 
that tends to be most heavily-infected and presents as Trichuris colitis. In fact, this is 
the most common and major disease entity associated with infection. Acutely, some 

patients will develop Trichuris dysentery syndrome, characterized by abdominal 
pain and diarrhea with blood and mucus. With severe dysentery, children develop 
weight loss and become emaciated. Anemia is common and results from both 
mucosal bleeding secondary to capillary damage and chronic infl ammation. Th e 
anemia of trichuriasis is not as severe as that seen with hookworm. Trichuris infec-

tion of the rectum can lead to mucosal swelling. In that case, tenesmus is common 
and if prolonged can lead to rectal prolapse, especially in children. Adult worms 
can be seen on the prolapsed mucosa.

Chronic trichuriasis oft en mimics infl ammatory bowel disease. Physical symp-

toms include chronic malnutrition, short stature and fi nger clubbing. Th ese symp-
toms are oft en alleviated with appropriate anthelminthic treatment. Rapid growth 
spurts have been reported in children following deworming with an anthelminthic 
agent. Defi cits in the cognitive and intellectual development of children have also 

been reported in association with trichuriasis.

Host Response

Infection with Trichuris results in a low-grade infl ammatory response that 

is characterized by eosinophilic infi ltration of the submucosa. Th ere is an active 

humoral immune response to Trichuris infection, but it is not fully protective. 
Like hookworm infections, anthelminthic therapy in endemic areas provides only 

10

Medical Parasitology

2

Figure 2.2. Egg of Trichuris trichiura. Reproduced from: Centers for Disease 

Control and Prevention (CDC) (http://www.dpd.cdc.gov/DPDx/).


background image

transient relief and reexposure to contaminated soil leads to reinfection. Th e T-cell 

immune response to Trichuris infection is primarily a Th 2 response. Th is suggests 
that trichuriasis, like other nematode infections, has modest immunomodulatory 

eff ects.

Diagnosis

Infection can be diagnosed by microscopic identifi cation of Trichuris eggs in 

feces. Th e eggs are quite characteristic, with a barrel or lemon shape, thick shell 
and a clear plug at each end.

Because the level of egg output is high (200 eggs/g feces per worm pair), a 

simple fecal smear is usually suffi  cient for diagnosis. However in light infections, 

a concentration procedure is recommended.

Trichuriasis can also be diagnosed by identifying the worm itself on the mucosa 

of a prolapsed rectum or during colonoscopy. Th e female of the species is generally 
longer, while the male has a more rounded appearance.

Because of the frequency of co-infections, a search for other protozoa, specifi -

cally Ascaris and hookworm should be considered. Charcot-Leyden crystals in the 
stool in the absence of eggs in the stool should lead to further stool examinations 
for T. trichuria. Although infl ammatory bowel disease is oft en in the diff erential, 
the sedimentation rate (ESR) is generally not elevated in trichuriasis and the degree 
of infl ammation evident on colonoscopic examination is much less than that seen 

with Crohn’s disease or ulcerative colitis.

Treatment

Benzimidazoles are the drugs of choice in treating trichuriasis. Th eir anthelm-

inthic activity is primarily due to their ability to inhibit microtubule polymeriza-
tion by binding to beta-tubulin, a protein unique to invertebrates. A single dose 
of albendazole has been suggested for treatment; however, despite the appeal of 
adequate single dose therapy, clinical studies have shown a cure rate of less than 25 
percent. Longer duration of therapy, resulting in higher cure rates, is recommended 

for heavier burdens of infection. High cure rates are diffi  cult to establish because 
of the constant re-expsoure to the organisms. Mebendazole at a dose of 100 mg 
twice daily for three days is also eff ective, with cure rates of almost 90 percent. In 

some countries, pyrantel-oxantel is used for treatment, with the oxantel compo-
nent having activity against Trichuris and the pyrantel component having activity 
against Ascaris and hookworm.

Albendazole and mebendazole are generally well tolerated when given at doses 

used to treat trichuriasis, even in pediatric populations. Adverse eff ects include 

transient abdominal pain, diarrhea, nausea and dizziness. With long-term use, 
reported toxicities include bone marrow suppression, alopecia and hepatotox-
icity. Both drugs are not recommended in pregnancy, as they have been shown to 

be teratogenic and embryotoxic in laboratory rats. However, albendazole should 
be considered in pregnant women in the second or third trimester when the 
potential benefi t outweighs the risks to the fetus. Although these drugs have not 
been studied in very young children, the World Health Organization (WHO) has 
recommended that both agents may be used for treatment in patients as young as 

12 months, albeit at reduced dosages.

11

Trichuriasis

2


background image

Prevention and Prophylaxis

Drinking clean water, properly cleaning and cooking food, hand washing 

and wearing shoes are the most eff ective means of preventing soil-transmitted 
helminth infections. Adequately sanitizing areas in which trichuriasis is prevalent 

is extremely problematic; these communities oft en lack the resources needed for 
such a substantial undertaking.

Direct exposure to sunlight for greater than 12 hours or temperatures exceed-

ing 40 degrees C in excess of 1 hour kills the embryo within the egg, but under 

optimal conditions of moisture and shade in the warm tropical and subtropical soil, 
Trichuris eggs can remain viable for months. Th ere is relative resistance to chemical 
disinfectants and eggs can survive for prolonged periods even in treated sewage. 

Th erefore, proper disposal of sewage is vital to control this infection. In areas of the 
world where human feces is used as fertilizer, this is practically impossible.

Because the prevalence of trichuriasis has been estimated to be up to 80% in 

some communities and can frequently be asymptomatic, the WHO advocates 
empiric treatment of soil-transmitted helminths by administering anthelminthic 
drugs to populations at risk. Specifi cally, WHO recommends periodic treatment 

of school-aged children, the population in whom the burden of infection is great-
est. Th e goal of therapy is to maintain the individual worm burden at a level less 
than that needed to cause signifi cant morbidity or mortality. Th is strategy has 
been used successfully in preventing and reversing malnutrition, iron-defi ciency 
anemia, stunted growth and poor school performance. Th is is in large part due to 

the effi  cacy and broad spectrum activity of a single dose of anthelminthic drugs 
like albendazole. Because reinfection is a common problem as long as poor sanitary 
conditions remain, it is proposed that single dose therapy be given at regular inter-

vals (1-3 times per year). Th e WHO hopes that by 2010, 75% of all school-aged 
children at risk for heavy infection will have received treatment.

Major challenges to controlling the infection include continued poor sanitary 

conditions. Additionally, the use of benzimidazole drugs at regular intervals may 
lead to the emergence of drug resistance. Resistance has been documented in live-

stock and suspected in humans. Since the single dose regimen is not ideal (although 
the most feasible), continued monitoring and screening is necessary.

Suggested Reading

  1.  Adams VJ, Lombard CJ, Dhansay MA et al. Effi  cacy of albendazole against the 

whipworm Trichuris trichiura: a randomised, controlled trial. S Afr Med J 2004; 

94:972-6.

  2.  Albonico M, Crompton DW, Savioli L. Control strategies for intestinal nematode 

infections. Adv Parasito 1999; 42:277-341.

  3.  Albonico M, Bickle Q, Haji HJ et al. Evaluation of the effi  cacy of pyrantel-oxantel 

for the treatment of soil-transmitted nematode infections. Trans R Soc Trop Med 

Hyg 2002; 96:685-90.

  4.  Belding D. Textbook of Parasitology. New York: Appleton-Century-Crofts, 

1965:397-8.

  5.  Cooper ES. Bundy DAP: Trichuris is not trivial. Parasitol Today 1988; 4:301-5.

  6.  De Silva N. Impact of mass chemotherapy on the morbidity due to soil-transmitted 

nematodes. Acta Tropica 2003; 86:197-214.

  7.  de Silva NR, Brooker S, Hotez PJ et al. Soil-transmitted helminth infections: 

updating the global picture. Trends Parasitol 2003; 19:547-51.

12

Medical Parasitology

2


background image

13

Trichuriasis

2

  8.  Despommier DD, Gwadz RW, Hotez PJ et al, eds. Parasitic Diseases, 5th Edition. 

New York: Apple Trees Productions, LLC, 2005:110-5.

  9.  Division of Parasitic Diseases, National Centers for Infectious Diseases, Centers 

for Disease Control and Prevention, Atlanta, GA: [http://www.dpd.cdc.

gov/DPDx/].

 10.  Geerts S, Gryseels B. Anthelminthic resistance in human helminthes: a review. 

Trop Med Int Health 2001; 6:915-21.

 11.  Gilman RH, Chong YH, Davis C et al. Th e adverse consequences of heavy Trichuris 

infection. Trans R Soc Trop Med Hyg 1983; 77:432-8.

 12.  Lin AT, Lin HH, Chen CL. Colonoscopic diagnosis of whip-worm infection. 

Hepato-Gastroenterol 1998; 45:2105-9.

 13.  Legesse M, Erko B, Medhin G. Comparative effi  cacy of albendazole and three 

brands of mebendazole in the treatment of ascariasis and trichuriasis. East Afr 

Med J 2004; 81:134-8.

 14.  MacDonald TT, Choy MY, Spencer J et al. Histopathology and immunohisto-

chemistry of the caecum in children with the Trichuris dysentery syndrome. J Clin 

Pathol 1991; 44:194-9.

 15.  Maguire J. Intestinal Nematodes. Mandell, Douglas and Bennett’s Principles 

and Practice of Infectious Diseases, 6th Edition. Philadelphia: Elsevier, 

2005:3263-4.

 16.  Montresor A, Awasthi S, Crompton DWT. Use of benzimadazoles in children 

younger than 24 months for the treatment of soil-transmitted helminthiases. Acta 

Tropica 2003; 86:223-32.

 17.  Sirivichayakul C, Pojjaroen-Anant C, Wisetsing P et al. Th e eff ectiveness of 3, 5, 

or 7 days of albendazole for the treatment of Trichuris trichiura infection. Ann 

Trop Med Parasitol 2003; 97:847-53.


background image

C

HAPTER

 3

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Ascariasis

Afsoon D. Roberts

Introduction

Ascariasis, a soil-transmitted infection, is the most common human helminthic 

infection. Current estimates indicate that more than 1.4 billion people are infected 
worldwide. In the United States, there are an estimated 4 million people infected, 
primarily in the southeastern states and among immigrants. Th e etiologic agent, 
Ascaris lumbricoides, an intestinal roundworm, is the largest nematode to infect 
humans. Th e adult worm lives in the small intestine and can grow to a length of 
more than 30 cm. Th e female worms are larger than the males. Important fac-

tors associated with an increased prevalence of disease include socio-economic 
status, defecation practices and cultural diff erences relating to personal and food 
hygiene as well as housing and sewage systems. Most infections are subclinical; 

more severe complications occur in children who tend to suff er from the highest 
worm burdens.

Epidemiology and Transmission

Th ere are a number of factors that contribute to the high frequency of infec-

tion with Ascaris lumbricoides. Th ese include its ubiquitous distribution, the high 
number of eggs produced by the fecund female parasite and the hardy nature of the 

eggs which enables them to survive unfavorable conditions. Th e eggs can survive 
in the absence of oxygen, live for 2 years at 5-10º C and be unaff ected by dessica-
tion for 2 to 3 weeks. In favorable conditions of moist, sandy soil, they can survive 
for up to 6 years, even in freezing winter conditions. Th e greatest prevalence of 
disease is in tropical regions, where environmental conditions support year round 

transmission of infection. In dry climates, transmission is seasonal and occurs most 
frequently during the rainy months.

Ascariasis is transmitted primarily by ingestion of contaminated food or water. 

Although infection occurs in all age groups, it is most common in preschoolers and 
young children. Sub-optimal sanitation is an important factor, leading to increased 
soil and water contamination. In the United States, improvements in sanitation and 
waste management have led to a dramatic reduction in the prevalence of disease.

Recently, patterns of variation in the ribosomal RNA of Ascaris worms isolated 

in North America were compared to those of worms and pigs from other worldwide 
locations. Although repeats of specifi c restriction sites were found in most parasites 
from humans and pigs in North America, they were rarely found in parasites from 

elsewhere. Th is evidence suggests that perhaps human infections in North America 
may be related to Ascaris suum.


background image

15

Ascariasis

3

Life Cycle

Th e adult ascaris worms reside in the lumen of the small intestine where 

they feed on predigested food (Fig. 3.1). Th eir life span ranges from 10 to 24 

months. Th e adult worms are covered with a tough shell composed of collagens 
and lipids. Th is outer covering helps protect them from being digested by in-

testinal hydrolases. Th ey also produce protease inhibitors that help to prevent 
digestion by the host.

Th e adult female worm can produce 200,000 eggs per day (Fig. 3.2). Th e eggs 

that pass out of the adult worm are fertilized, but not embryonated. Once the 
eggs exit the host via feces, embryonation occurs in the soil and the embryonated 
eggs are subsequently ingested. Th ere is a mucopolysaccharide on the surface that 

Figure 3.1. Life Cycle of Ascaris lumbricoides. Reproduced from: Nappi AJ, 

Vass E, eds. Parasites of Medical Importance. Austin: Landes Bioscience, 

2002:82.


background image

16

Medical Parasitology

3

promotes adhesion of the eggs to environmental surfaces. Within the embryonated 

egg, the fi rst stage larva develops into the second stage larva. Th is second stage larva 
is stimulated to hatch by the presence of both the alkaline conditions in the small 
intestine and the solubilization of its outer layer by bile salts.

Th e hatched parasite that now resides in the lumen of the intestine penetrates 

the intestinal wall and is carried to the liver through the portal circulation. It then 

travels via the blood stream to the heart and lungs by the pulmonary circulation. 
Th e larva molts twice, enlarges and breaks into the alveoli of the lung. Th ey then 
pass up through the bronchi and into the trachea, are swallowed and reach the 

small intestine once again. Within the small intestine, the parasites molt twice 
more and mature into adult worms. Th e adult worms mate, although egg produc-
tion may precede mating.

Clinical Manifestations

Although most individuals infected with Ascaris lumbricoides are essentially 

asymptomatic, the burden of symptomatic infection is relatively high as a result 
of the high prevalence of infection on a worldwide basis. Symptomatic disease is 
usually related to either the larval migration stage and manifests as pulmonary 
disease, or to the intestinal stage of the adult worm.

Th e pulmonary manifestations of ascariasis occur during transpulmonary 

migration of the organisms and are directly related to the concentration of 
larvae. Th us, symptoms are more pronounced with higher burdens of migratory 
worms. Th e transpulmonary migration of helminth larvae is responsible for the 

development of a transient eosinophilic pneumonitis characteristic of Loeffl  er’s 
syndrome with peripheral eosinophilia, eosinophilic infi ltrates and elevated se-
rum IgE concentrations. Symptoms usually develop 9-12 days aft er ingestion of 
the eggs, while the larvae reside in the lung. Aff ected individuals oft en develop 

Figure 3.2. Ascaris lumbricoides.


background image

17

Ascariasis

3

bronchospasm, dyspnea and wheezing. Fever, a persistent, nonproductive cough 

and, at times chest pain, can also occur. Hepatomegaly may also be present. In 
some areas of the world such as Saudi Arabia where transmission of infection is 

related to the time of the year, seasonal pneumonitis has been described.

Th e diagnosis of Ascaris-related pneumonitis is suspected in the correct clinical 

setting by the presence of infi ltrates on chest X-ray which tend to be migratory and 
usually completely clear aft er several weeks. Th e pulmonary infi ltrates are usually 
round, several millimeters to centimeters in size, bilateral and diff use.

Among the more serious complications of Ascaris infection is intestinal obstruc-

tion. Th is occurs when a large number of worms are present in the small intestine 
and is usually seen in children with heavy worm burdens. Th ese patients present 
with nausea, vomiting, colicky abdominal pain and abdominal distention. In this 

condition worms may be passed via vomitus or stools. In endemic areas, 5-35% 
of all cases of intestinal obstruction can be attributable to ascariasis. Th e adult 
worms can also perforate the intestine leading to peritonitis. Ascaris infection can 

be complicated by intussusception, appendicitis and appendicular perforation due 
to worms entering the appendix.

A potenital consequence of the intestinal phase of the infection relates to the 

eff ect it may have on the nutritional health of the host. Children heavily infected 
with Ascaris have been shown to exhibit impaired digestion and absorption of 
proteins and steatorrhea. Heavy infections have been associated with stunted 
growth and a reduction in cognitive function. However, the role of Ascaris in these 
defi ciencies is not clearly defi ned. Some of these studies were done in developing 

countries where additional nutritional factors cannot be excluded. Th ere is also 
a high incidence of co-infection with other parasites that can aff ect growth and 
nutritional status. Interestingly, a controlled study done in the southern United 

States failed to demonstrate signifi cant diff erences in the nutritional status of 
Ascaris infected and uninfected individuals.

Hepatobiliary and Pancreatic Symptoms

Hepatobiliary symptoms have been reported in patients with Ascariasis and 

are due to the migration of adult worms into the biliary tree. Aff ected individuals 
can experience biliary colic, jaundice, ascending cholangitis, acalculous cholecys-
titis and perforation of the bile duct. Pancreatitis may develop as a result of an 
obstruction of the pancreatic duct. Hepatic abscesses have also been reported. 
Sandouk et al studied 300 patients in Syria who had biliary or pancreatic involve-

ment. Ninety-eight percent of the patients presented with abdominal pain, 16% 
developed ascending cholangitis, 4% developed pancreatitis and 1% developed 
obstructive jaundice. Both ultrasonography, as well as endoscopic retrograde 

cholangiopancreatography (ERCP) have been used as diagnostic tools for biliary 
or pancreatic ascariasis. In Sandouk’s study extraction of the worms endoscopi-
cally resulted in resolution of symptoms.

Diagnosis

Th e diagnosis of ascariasis is made through microscopic examination of stool 

specimens. Ascaris eggs are easily recognized, although if very few eggs are present 
the diagnosis may be easily missed (Fig. 3.3). Techniques for concentrating the stool 


background image

18

Medical Parasitology

3

specimen will increase the yield of diagnosis through microscopy. Occasionally an 

adult worm is passed via rectum. Eosinophilia may be present, especially during 
the larval migration through the lungs. In very heavily infected individuals a plain 
X-ray of the abdomen may sometimes reveal a mass of worms.

Treatment

Both albendazole and mebendazole are effective therapies for ascariasis. 

Mebendazole can be prescribed as 100 mg BID for 3 days or 500 mg as a single 
dose. Th e adverse eff ects of the drug include gastrointestinal symptoms, headache 
and rarely leukopenia. Albendazole is prescribed as a single dose of 400 mg. 
Albendazole’s side eff ect profi le is similar to mebendazole.

Th e drug piperazine citrate is an alternative therapeutic option, but it is not 

widely available and has been withdrawn from the market in some developed 
countries as other less toxic and more eff ective therapy is available. However, in 
cases of intestinal or biliary obstruction it can be quite useful as it paralyses the 

worms, allowing them to be expelled by peristalsis. It is dosed as 50-75 mg/kg QD, 
up to a maximum of 3.5 g for 2 days. It can be administered as piperazine syrup 
via a naso-gastric tube.

Finally, pyrantel pamoate can be used at a single dose of 11 mg/kg, up to a maxi-

mum dose of 1 g. Th is drug can be used in pregnancy. Th e side eff ects of pyrantel 

pamoate include headache, fever, rash and gastrointestinal symptoms. It has been 
reported to be up to 90% eff ective in treating the infection.

Th ese medications are all active against the adult worm and are not active against 

larval stage. Th us, reevaluation of infected individuals is recommended following 
therapy. Family members should also be screened as infection is common among 
other members of a household. Treatment does not protect against reinfection.

Figure 3.3. Ascaris lumbricoides egg.


background image

19

Ascariasis

3

Prevention

Given the high prevalence of infection with Ascaris lumbricoides and the 

potential health and educational benefi ts of treating the infection in children, 
the World Health Organization (WHO) has recommended global deworming 

measures aimed at school children. Th e goal of recent helminth control programs 
has been to recommend periodic mass treatment where the prevalence of infection 

in school aged children is greater than 50%. Th e current goal is to treat infected 
individual 2 to 3 times a year with either mebendazole or albendazole. Integrated 

control programs combining medical treatment with improvements in sanitation 
and health education are needed for eff ective long-term control.

Suggested Reading

  1.  Ali M, Khan AN. Sonography of hepatobiliary ascariasis. J Clin Ultrasound 1996; 

24:235-41.

  2.  Anderson TJ. Ascaris infections in human from North America: Molecular 

evidence for cross infection. Parasitology 1995; 110:215-29.

  3.  Bean WJ. Recognition of ascariasis by routine chest or abdomen roentgenograms. 

Am J Roentgenol Rad Th er Nucl Med 1965; 94:379.

  4.  Blumenthal DS, Schultz AG. Incidence of intestinal obstruction in children 

infected by Ascaris lumbricoides. Am J Trop Med Hyg 1974; 24:801.

  5.  Blumenthal DS, Schultz MG. Eff ect of Ascaris infection on nutritional status in 

children. Am J Trop Med Hyg 1976; 25:682.

  6.  Chevarria AP, Schwartzwelder JC et al. Mebendazole, an eff ective broad spectrum 

anti-heminthic. Am J Trop Med Hyg 1973; 22:592-5.

  7.  Crampton DWT, Nesheim MC, Pawlowski ZS, eds. Ascariasis and Its Public 

Health Signifi cance. London: Taylor and Francis, 1985.

  8.  De Silva NR, Guyatt HL, Bundy DA. Morbidity and mortality due to 

Ascaris-induced intestinal obstruction. Trans R Soc Trop Med Hyg 1997; 

91:31-6.

  9.  DeSilva NR, Chan MS, Bundy DA. Morbidity and mortality due to ascariasis: 

Re-estimation and sensitivity analysis of global numbers at risk. Trop Med Int 

Health 1997; 2:519-28.

 10.  Despommier DD, Gwadz RW, Hotez PJ et al, eds. Parasitic Diseases, 5th edition. 

New York: Apple Tree Productions, 2005:115-20.

 11.  Gelpi AP, Mustafa A. Seosonal pneumonitis with eosinophilia: A study of larval 

ascariasis in Saudi Arabia. Am J Trop Med Hyg 1967; 16:646.

 12.  Jones JE. Parasites in Kentucky: the past seven decades. J KY Med Assoc 1983; 

81:621.

 13.  Khuroo MS. Ascariasis. Gastroenterol Clin North Am 1996; 25:553-77.

 14.  Khuroo MS. Hepato-biliary and pancreatic ascariasis. Indian J Gastroenterol 2001; 

20:28.

 15.  Loeffl  er W. Transient lung infi ltrations with blood eosinophilia. Int Arch Allergy 

Appl Immunol 1956; 8:54.

 16.  Mandell GL, Bennett JE, Dolin R, eds. Principles and Practices of Infectious 

Disease, 5th edition. Philadelphia: Churchill Livingstone, 2000:2941.

 17.  Norhayati M, Oothuman P, Azizi O et al. Effi  cacy of single dose albendazole on the 

prevalence and intensity of infection of soil-transmitted helminths in Orang Asli 

children in Malaysia. Southeast Asian J Trop Med Public Health 1997; 28:563.

 18.  O’Lorcain, Holland CU. Th e public health importance of Ascaris lumbricoides. 

Parasitology 2000; 121:S51-71.

 19.  Phills JA, Harold AJ, Whiteman GV et al. Pulmonary infi ltrates, asthma, eosino-

philia due to Ascaris suum infestation in man. N Engl J Med 1972; 286:965.


background image

20

Medical Parasitology

3

 20.  Reeder MM. Th e radiographic and ultrasound evaluation of ascariasis of the 

gastrointestinal, biliary and respiratory tract. Semin Roentgenol 1998; 33:57.

 21.  Sandou F, Haff ar S, Zada M et al. Pancreatic-biliary ascariasis: Experience of 300 

cases. Am J Gastroenterol 1997; 92:2264-7.

 22.  Sinniah B. Daily egg production of Ascaris lumbricoides: Th e distribution of eggs 

in the feces and the variability of egg counts. Parasitology 1982; 84:167.

 23.  Stephenson LS. Th e contribution of Ascaris lumbricoides to malnutrition in 

children. Parasitolgy 1980; 81:221-33.

 24.  Warren KS, Mahmoud AA. Algorithems in the diagnosis and management of 

exotic diseases, xxii ascariasis and toxocariaisis. J Infec Dis 1977; 135:868.

 25.  WHO Health of school children: Treatment of intestinal helminths and schistoso-

miasis (WHO/Schisto/95.112; WHO/CDS/95.1). World Health Organisation 

1995.


background image

C

HAPTER

 4

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Hookworm

David J. Diemert

Introduction

Human hookworm infection is a soil-transmitted helminth infection caused 

primarily by the nematode parasites Necator americanus and Ancylostoma duo-
denale
. It is one of the most important parasitic infections worldwide, ranking 
second only to malaria in terms of its impact on child and maternal health. An 
estimated 576 million people are chronically infected with hookworm and an-
other 3.2 billion are at risk, with the largest number of affl  icted individuals living 
in impoverished rural areas of sub-Saharan Africa, southeast Asia and tropical re-

gions of the Americas. N. americanus is the most widespread hookworm globally, 
whereas A. duodenale is more geographically restricted in distribution. Although 
hookworm infection does not directly account for substantial mortality, its 

greater health impact is in the form of chronic anemia and protein malnutrition 
as well as impaired physical and intellectual development in children.

Humans may also be incidentally infected by the zoonotic hookworms 

Ancylostoma caninum,  Ancylostoma braziliensis and Uncinaria stenocephala
which can cause self-limited dermatological lesions in the form of cutaneous 

larva migrans. Additionally, Ancylostoma ceylanicum, normally a hookworm 
infecting cats, has been reported to cause hookworm disease in humans espe-
cially in Asia, whereas A. caninum has been implicated as a cause of eosinophilic 

enteritis in Australia.

Life Cycle

Hookworm transmission occurs when third-stage infective fi lariform larvae 

come into contact with skin (Fig. 4.1). Hookworm larvae have the ability to actively 
penetrate the cutaneous tissues, most oft en those of the hands, feet, arms and legs 

due to exposure and usually through hair follicles or abraded skin. Following skin 
penetration, the larvae enter subcutaneous venules and lymphatics to gain access 
to the host’s aff erent circulation. Ultimately, they enter the pulmonary capillaries 
where they penetrate into the alveolar spaces, ascend the brachial tree to the trachea, 
traverse the epiglottis into the pharynx and are swallowed into the gastrointestinal 

tract. Larvae undergo two molts in the lumen of the intestine before developing into 
egg-laying adults approximately fi ve to nine weeks aft er skin penetration. Although 
generally one centimeter in length, adult worms exhibit considerable variation in 

size and female worms are usually larger than males (Fig. 4.2).

Adult Necator and Ancylostoma hookworms parasitize the proximal portion of 

the human small intestine where they can live for several years, although diff erences 


background image

22

Medical Parasitology

4

exist between the life spans of the two species: A. duodenale survive for on average 

one year in the human intestine whereas N. americanus generally live for three to 
fi ve years (Fig. 4.3). Adult hookworms attach onto the mucosa of the small intestine 
by means of cutting teeth in the case of A. duodenale or a rounded cutting plate in 

the case of N. americanus. Aft er attachment, digestive enzymes are secreted that 
enable the parasite to burrow into the tissues of the submucosa where they derive 
nourishment from eating villous tissue and sucking blood into their digestive tracts. 
Hemoglobinases within the hookworm digestive canal enable digestion of human 
hemoglobin, which is a primary nutrient source of the parasite.

Figure 4.1. Life cycle of the hookworm, Necator americanus. Reproduced 

from: Nappi AJ, Vass E, eds. Parasites of Medical Importance. Austin: Landes 

Bioscience, 2002:80.


background image

23

Hookworm

4

Humans are considered the only major defi nitive host for these two parasites and 

there are no intermediate or reservoir hosts; in addition, hookworms do not reproduce 
within the host. Aft er mating in the host intestinal tract, each female adult worm 
produces thousands of eggs per day which then exit the body in feces. A. duodenale 
female worms lay approximately 28,000 eggs daily, while the output from N. ameri-
canus
 worms is considerably less, averaging around 10,000 a day. N. americanus and 

A. duodenale hookworm eggs hatch in warm, moist soil, giving rise to rhabditiform 
larvae that grow and develop, feeding on organic material and bacteria. Aft er about 
seven days, the larvae cease feeding and molt twice to become infective third-stage 

fi lariform larvae. Th ird-stage larvae are nonfeeding but motile organisms that seek out 
higher ground such as the tips of grass blades to increase the chance of contact with 
human skin and thereby complete the life cycle. Filariform larvae can survive for up 
to approximately two weeks if an appropriate host is not encountered.

A. duodenale larvae can also be orally infective and have been conjectured to 

infect infants during breast feeding.

Epidemiology and Burden of Disease

Human hookworm infections are widely distributed throughout the trop-

ics and sub-tropics (Fig. 4.4). N. americanus is the most prevalent hookworm 

worldwide, with the highest rates of infection in sub-Saharan Africa, the tropical 

Figure 4.2. Adult male Ancylostoma duodenale hookworm. Reproduced 

with permission from: Despommier DD, Gwadz RW, Hotez PJ, Knirsch CA. 

Parasitic Diseases. New York: Apple Trees Productions, 2005:121.


background image

24

Medical Parasitology

4

regions of the Americas, south China and southeast Asia, whereas A. duodenale 

is more focally endemic in parts of India, China, sub-Saharan Africa, North 
Africa and a few regions of the Americas. Climate is an important determinant 
of hookworm transmission, with adequate moisture and warm temperature 
essential for larval development in the soil. An equally important determinant 
of infection is poverty and the associated lack of sanitation and supply of clean 

water. In such conditions, other helminth species are frequently co-endemic, 
with emerging evidence that individuals infected with multiple diff erent types 
of helminths (most commonly the triad of Ascaris lumbricoides, hookworm 

and Trichuris trichiura) are predisposed to developing even heavier intensity 
infections than those who harbor single-species infections. Because morbidity 
from hookworm infections and the rate of transmission are directly related to 
the number of worms harbored within the host, the intensity of infection is the 
primary epidemiological parameter used to describe hookworm infection as 

measured by the number of eggs per gram of feces.

While prevalence in endemic areas increases markedly with age in young chil-

dren and reaches a plateau by around an age of ten years, intensity of infection 

Figure 4.3. Adult hookworm, diagnosed by endoscopy. Reproduced with per-

mission from: Despommier DD, Gwadz RW, Hotez PJ, Knirsch CA. Parasitic 

Diseases. New York: Apple Trees Productions, 2005:123.


background image

25

Hookworm

4

rises at a slower rate during childhood, reaching a plateau by around 20 years and 

then increasing again from age 60 years onward. Controversy persists whether 
such age-dependency refl ects changes in exposure, acquired immunity, or a com-
bination of both. Although heavy hookworm infections also occur in childhood, 
it is common for prevalence and intensity to remain high into adulthood, even 
among the elderly. Hookworm infections are oft en referred to as “overdispersed” in 

endemic communities, such that the majority of worms are harbored by a minority 
of individuals in an endemic area. Th ere is also evidence of familial and household 
aggregation of hookworm infection, although the relative importance of genetics 

over the shared household environment is debated.

Although diffi  cult to ascertain, it is estimated that worldwide approximately 

65,000 deaths occur annually due to hookworm infection. However, hookworm 
causes far more disability than death. Th e global burden of hookworm infec-
tions is typically assessed by estimating the number of Disability Adjusted Life 

Years (DALYs) lost. According to the World Health Organization, hookworm 
accounts for the loss of 22 million DALYs annually, which is almost two-thirds 
that of malaria or measles. Th is estimate refl ects the long-term consequences of 

hookworm-associated malnutrition, anemia and delays in cognitive development, 
especially in children.

Recent data support the high disease burden estimates of hookworm infection 

and highlight its importance as a maternal and child health threat. For example, 
studies in Africa and Asia show that between one-third and one-half of moderate 

to severe anemia among pregnant women can be attributable to hookworm and 
recent evidence from interventional studies further suggest that administration of 
anthelmintics antenatally can substantially improve maternal hemoglobin as well 

as birth weight and neonatal and infant survival. In addition to pregnant women, 
hookworm contributes to moderate and severe anemia among both preschool and 
primary school-aged children.

Figure 4.4. Prevalence of hookworm infection worldwide. From: Hotez et 

al, Public Library of Science.


background image

26

Medical Parasitology

4

Clinical Manifestations

Th e clinical features of hookworm infection can be separated into the acute 

manifestations associated with larval migration through the skin and other tis-
sues and the acute and chronic manifestations resulting from parasitism of the 

gastrointestinal tract by adult worms.

Migrating hookworm larvae provoke reactions in many of the tissues through 

which they pass, including several cutaneous syndromes that result from 
skin-penetrating larvae. Repeated exposure to N. americanus and A. duodenale 

fi lariform larvae can result in a hypersensitivity reaction known as “ground itch”, 
a pruritic local erythematous and papular rash that appears most commonly on 
the hands and feet. In contrast, when zoonotic hookworm larvae (typically A. 

braziliensis,A. caninum or U. stenocephala) penetrate the skin, usually aft er direct 
contact between skin and soil or sandy beaches contaminated with animal feces, 
they produce cutaneous larva migrans, most oft en on the feet, buttocks and 

abdomen. Since these zoonotic larvae are unable to complete their life cycle in 
the human host, they eventually die aft er causing a typical clinical syndrome of 
erythematous linear tracts with a serpiginous appearance and intense pruritus. 

Th ese tracts can elongate by several centimeters a day; larvae can migrate for up 
to one year, but the lesions usually heal spontaneously within weeks to months 
although secondary pyogenic infection may occur at these sites as well as those 
of ground itch.

One to two weeks following skin invasion, hookworm larvae travel through 

the vasculature and enter the lungs, where they can uncommonly result in 
pneumonitis. Th e pulmonary symptoms that may develop are usually mild and 
transient, consisting of a dry cough, sore throat, wheezing and slight fever. Th e 

pulmonary symptoms are more pronounced and of longer duration with A. 
duodenale
 than with N. americanus infection. Acute symptomatic disease may 
also result from oral ingestion of A. duodenale larvae, referred to as the Wakana 
syndrome, which is characterized by nausea, vomiting, pharyngeal irritation, 
cough, dyspnea and hoarseness.

In hookworm infection, the appearance of eosinophilia coincides with the 

development of adult hookworms in the intestine. Th e major pathology of hook-

worm infection, however, results from the intestinal blood loss that results from 
adult parasite invasion and attachment to the mucosa and submucosa of the small 

intestine. Usually only moderate and high intensity hookworm infections in the 

gastrointestinal tract produce clinical manifestations, with the highest intensity 

infections occurring most oft en in children, although even in low intensity infec-

tions, initial symptoms may include dyspepsia, nausea and epigastric distress. A. 
duodenale
 may also result in acute enteritis with uncontrollable diarrhea and foul 

stools that may last indefi nitely.

In general, the precise numerical threshold at which worms cause disease 

has not been established since this is highly dependent on the underlying nutri-
tional status of the host. Chronic hookworm disease occurs when the blood loss 

due to infection exceeds the nutritional reserves of the host, thus resulting in 

iron-defi ciency anemia. It has been estimated that the presence of more than 40 
adult worms in the small intestine is suffi  cient to reduce host hemoglobin levels 

below 11 g per deciliter, although the exact number depends on several factors 


background image

27

Hookworm

4

including the species of hookworm and host iron reserves. Worm-for-worm, A. 

duodenale causes more blood loss than N. americanus: whereas each N. americanus 
worm produces a daily blood loss of 0.03 to 0.1 ml, the corresponding fi gure for 

A. duodenale is between 0.15 and 0.26 ml.

Th e clinical manifestations of chronic hookworm disease resemble those of 

iron defi ciency anemia due to other etiologies, while the protein loss from heavy 
hookworm infection can result in hypoproteinemia and anasarca. Th e anemia and 
protein malnutrition that results from chronic intestinal parasitism cause long-term 

impairments in childhood physical, intellectual and cognitive development. As 

iron defi ciency anemia develops and worsens, an infected individual may have 
weakness, palpitations, fainting, dizziness, dyspnea, mental apathy and headache. 
Uncommonly, there may be constipation or diarrhea with occult blood in the 

stools or frank melena, especially in children; there may also be an urge to eat soil 
(pica). Overwhelming hookworm infection may cause listlessness, coma and even 
death, especially in infants under one year of age. Because children and women of 

reproductive age have reduced iron reserves, they are considered populations that 
are at particular risk for hookworm disease. As noted above, the severe iron defi -
ciency anemia that may arise from hookworm disease during pregnancy can result 

in adverse consequences for the mother, her unborn fetus and the neonate.

Zoonotic infection with the dog hookworm A. caninum has been reported as 

a cause of eosinophilic enteritis in Australia, although considering the ubiquitous 
worldwide distribution of this parasite, unrecognized clinical disease due to this 
worm may be more widespread than previously recognized. Reported clinical 

features of this syndrome include abdominal pain, diarrhea, abdominal bloating, 
weight loss and rectal bleeding. A. ceylanicum, while normally a hookworm that 
parasitizes cats, has been reported as a cause of chronic intestinal infection in 

humans living in Asia.

Th e most common manifestations of hookworm infection seen by the average 

healthcare practitioner in developed countries are cutaneous larva migrans in 
returning travelers and chronic intestinal infection with resulting anemia and 
peripheral eosinophilia in immigrants and long-term expatriate residents or 

military personnel returning from long-term postings in endemic areas.

Diagnosis

Diagnosis of established hookworm infections is made primarily by means 

of microscopic identifi cation of characteristic eggs in the stool (Fig. 4.5). In an 
infected human, a single adult female hookworm will produce thousands of eggs 
per day. Because hookworm infections will oft en not present with specifi c signs 
and symptoms, the clinician typically requires some index of suspicion, such as 
local epidemiology or country of origin or travel, to request a fecal examination 

for ova and parasites.

Hookworm eggs are colorless and have a single thin hyaline shell with blunted 

ends, ranging in size from 55-75 

μ

m by 36-40 

μ

m. Several sensitive egg concen-

tration techniques, such as the formalin-ethyl acetate sedimentation method, can 
be used to detect even light infections. Where concentration procedures are not 

available, a direct wet mount examination of the specimen is adequate for detecting 
moderate to heavy infections. A single stool sample is oft en suffi  cient to diagnose 


background image

28

Medical Parasitology

4

hookworm infection, with diagnostic yield not appreciably increased by examining 

further specimens. Although examination of the eggs cannot distinguish between 
N. americanus and A. duodenale, this is not clinically relevant. Diff erentiation be-
tween the two species can be made by either rearing fi lariform larvae from a fecal 
sample smeared on a moist fi lter paper strip for fi ve to seven days (the Harada-Mori 
technique) or by recovering the adult worms following treatment and examining 

for such features as the mouthparts.

Besides microscopic examination of feces, eosinophilia is a common fi nding in 

persistent infection and also during the phase of migration of larvae through the 

lungs. A chest radiograph will usually be negative during the pulmonary phase of 
larval migration, although sputum examination may reveal erythrocytes, eosino-
phils and rarely migrating larvae.

Dermatological infection with the zoonotic hookworms A. caninum, A. braziliensis 

and U. stenocephala is primarily diagnosed clinically, although eosinophilia and 

elevated serum IgE occur in between 20% to 40% of patients with cutaneous larva 
migrans. Since larvae do not migrate to the gastrointestinal tract to develop into 
adult worms, fecal examination will be negative in these cases.

Treatment

Th e goal of treatment for N. americanus and A. duodenale infections is to 

eliminate adult worms from the gastrointestinal tract. Th e most common drugs 

Figure 4.5. Fertilized, embryonated hookworm egg. Reproduced with per-

mission from: Despommier DD, Gwadz RW, Hotez PJ, Knirsch CA. Parasitic 

Diseases. New York: Apple Trees Productions, 2005:123.


background image

29

Hookworm

4

used for the treatment of hookworm infections worldwide are members of the ben-

zimidazole anthelmintic class of drugs, of which mebendazole and albendazole are 
the two principle members. Th e benzimidazoles bind to hookworm 

β

-tubulin and 

inhibit microtubule polymerization, which causes death of adult worms through a 
process that can take several days. Although both albendazole and mebendazole are 

considered broad-spectrum anthelmintic agents, there are important therapeutic 
diff erences that aff ect their use in clinical practice. For hookworm, a single 500 mg 

dose of mebendazole oft en achieves a low cure rate, with a higher effi  cacy with a 
single, 400 mg dose of albendazole, although multiple doses of the benzimidazoles 
are oft en required.

Systemic toxicity, such as hepatotoxicity and bone marrow suppression, is rare 

for the benzidimazoles in the doses used to treat hookworm infections. However, 
transient abdominal pain, diarrhea, nausea, dizziness and headache can com-
monly occur. Uncommon adverse reactions include alopecia, elevated hepatic 
transaminases and rarely, leukopenia. Because the benzidimazoles are embryotoxic 
and teratogenic in pregnant rats, there are concerns regarding their use in children 
younger than one year of age and during pregnancy. Overall, the experience with 

these drugs in children under the age of six years is limited, although data from 
published studies indicate that they are probably safe. Both pyrantel pamoate and 
levamisole are considered alternative drugs for the treatment of hookworm and 

they are administered by body weight.

Cutaneous larva migrans should be treated empirically with either albendazole 

400 mg daily for three days, or ivermectin 200 mcg/kg/d for 1-2 days; topical 
thiabendazole (10% to 15%) has also been used to treat this manifestation of 
hookworm infection in the past. Mebendazole is poorly absorbed from the gas-

trointestinal tract and therefore does not attain high tissue levels necessary to kill 
larvae in the skin and treat this condition.

Prevention and Control

In the past, eff orts at hookworm control in endemic areas have focused on 

behaviour modifi cation, such as encouraging the use of proper footwear and im-
proving the disposal of human feces. Unfortunately, these eff orts largely met with 
failure due to such reasons as the continued high rate of occupational exposure 
to hookworm during agricultural work, the ability of N. americanus larvae to 
penetrate the skin of any part of the body and the use of human feces as fertilizer 

for crops. Instead, recent control eff orts have focused on the use of anthelmintic 
chemotherapy as a useful tool for large-scale morbidity reduction in endemic com-
munities throughout the world. Annual mass administration of benzidimazoles 

to school-aged children reduces and maintains the adult worm burden below the 
threshold associated with disease. Th e benefi ts of regular deworming in this age 
group include improvements in iron stores, growth and physical fi tness, cognitive 
performance and school attendance. In preschool children, studies have demon-
strated improved nutritional indicators such as wasting malnutrition, stunting 

and appetite. Treated children experience improved scores on motor and language 
testing in their early development. In addition to children, pregnant women and 
their newborns in endemic areas, if treated once or twice during pregnancy, achieve 

signifi cant improvement of maternal anaemia and benefi t from a reduction of 


background image

30

Medical Parasitology

4

low-birth weight and infant mortality at six months. In areas where hookworm 

infections are endemic, anthelmintic treatment is recommended during pregnancy 
except in the fi rst trimester.

However, periodic anthelmintic administration is not expected to lead to 

complete elimination of hookworm. Reasons include the variable effi  cacy of ben-

zimidazoles against hookworm, rapid reinfection following treatment especially 
in areas of high transmission where this can occur within four to 12 months, the 
diminished effi  cacy of the benzimidazoles with frequent and repeated use and the 

possibility drug resistance may develop in time, as has been observed in veterinary 

medicine. Development of sensitive tools for the early detection of anthelmintic 
resistance is underway, with special attention being given to in vitro tests and 
molecular biology techniques that could be adaptable to fi eld conditions. Since 

no new anthelmintic drugs will be entering the marketplace any time soon, the 
effi  cacy of currently available products must be preserved. Furthermore, these 
concerns have prompted interest in developing alternative tools for hookworm 

control, such as antihookworm vaccines. Vaccination to prevent high intensity 
hookworm infection would alleviate much of the global public health impact of 
this widespread infection.

Suggested Reading

  1.  Bethony J, Brooker S, Albonico M et al. Soil-transmitted helminth infections: asca-

riasis, trichuriasis and hookworm. Th is is a thorough review of the soil-transmitted 

helminth infections, including hookworm. Lancet 2006; 367:1521-32.

  2.  Brooker S, Bethony J, Hotez PJ. Human hookworm infection in the 21st Century. 

Adv Parasitol 2004; 58:197-288.

  3.  Hotez P, Brooker S, Bethony J et al. Hookworm Infection. N Engl J Med 2004; 

351:799-807. An excellent review.

  4.  Chan MS, Bradley M, Bundy DA. Transmission patterns and the epidemiology 

of hookworm infection. Int J Epidemiol 1997; 26:1392-1400.

  5.  Brooker S, Bethony JM, Rodrigues L et al. Epidemiological, immunological and 

practical considerations in developing and evaluating a human hookworm vaccine. 

Expert Rev Vaccines 2005; 4:35-50.

  6.  Jelinek T, Maiwald H, Nothdurft  HD et al. Cutaneous larva migrans in travelers: 

synopsis of histories, symptoms and treatment of 98 patients. Clin Infect Dis 1994; 

19:1062-6.

  7.  Crompton DW. Th e public health importance of hookworm disease. Parasitology 

2000; 121:S39-S50.


background image

C

HAPTER

 5

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Strongyloidiasis

Gary L. Simon

Background, Epidemiology

Strongyloidiasis is an intestinal infection caused by a parasitic nematode 

that has a widespread distribution throughout the tropics and subtropics. 
Th e number of individuals infected with this nematode is unknown, but esti-
mates range from 30 million to 100 million. Infection in the United States is 
relatively uncommon and the available prevalence data dates back more than 
two decades. Among the populations that have been shown to be at increased 
risk are immigrants from developing countries, veterans who have served in 

endemic areas, especially among those who were prisoners of war, and residents 
of Appalachia. Epidemiologic studies in rural Kentucky have revealed preva-
lence rates of 3-4%. A much lower prevalence is found in urban centers in the 

Southeast. Evidence of strongyloidiasis was noted in only 0.4% of stool samples 
in Charleston, West Virginia and New Orleans, Louisiana. On the other hand, 
a large study in New York City found a prevalence of 1%, presumably due to 
the large Central American immigrant population. Asymptomatic infection is 
common in Latin America, Southeast Asia and sub-Saharan Africa. Although 

less common, infection still occurs in Europe, most notably in the southern and 
eastern portions of the continent.

Strongyloides may persist in the host for decades. Evidence of infection 

for more than 40 years has been documented among British soldiers who were 
prisoners of war in the Far East during World War II. Th ere is no endemic focus 
of strongyloides in the United Kingdom so that the original infection must have 
occurred during their incarceration in Th ailand or Burma. Among 2,072 former 
prisoners who were studied between 1968 and 2002, 12% had strongyloides 

infection. Th ere was a strong association between being held in captivity along 
the infamous Th ai-Burma railway and the presence of strongyloides in stool 
specimens. Among 248 individuals with strongyloides, 70% had the typical 

larva currens rash and 68% had eosinophilia.

Strongyloides infection is not limited to human hosts. Dogs and nonhu-

man primates are susceptible to infection and this may play an important role 
in transmission. Th ere have been a number of outbreaks of strongyloidiasis 
among animal handlers. Human-to-human transmission has also been described 

among homosexual men and in day care centers and mental institutions. Most 

infections, however, are related to exposure to soil that has been contaminated 

with fecal material that contained Strongyloides stercoralis larvae.


background image

32

Medical Parasitology

5

Causative Agent

Th e vast majority of infections are caused by S. stercoralis. Th ere is another spe-

cies, S. fuelleborni, which infects infants in Papua, New Guinea and sub-Saharan 
Africa. Th ese children develop a “swollen belly syndrome” that is characterized by 

generalized edema and respiratory distress. Th ere is a signifi cant mortality associ-
ated with this condition. In a study done in Democratic Republic of Congo, Africa, 

34% of 76 children less than 7 months of age were infected with this organism and, 
in one mother, the organism was found in breast milk suggesting transmammary 

passage as a means of infection.

Life Cycle

Strongyloides stercoralis exists in both a free living form in the soil and as an 

intestinal parasite (Fig. 5.1). Th e parasitic females are 2.2 mm in length, semi-
transparent and colorless and lie embedded within the mucosal epithelium of the 
proximal small intestine where they deposit their eggs. A single female worm will 

produce up to 50 eggs per day. Th ere is no parasitic male and reproduction is by 
parthenogenesis.

Th e embryonated eggs hatch within the mucosa and emerge into the lumen of the 

small bowel as noninfectious rhabditiform larvae (Fig. 5.2). Th e rhabditiform larvae 
are excreted in the stool and, in a warm, humid environment, mature and become 

free-living adult male and female worms. Th e adult worms mate and the female 
produces embryonated eggs (Fig. 5.3) that, aft er several molts, ultimately become 

Figure 5.1. Life Cycle of Strongyloides. Adapted from Nappi AJ, Vass E, eds. 

Parasites of Medical Importance. Austin: Landes Bioscience, 2002:77.


background image

33

Strongyloidiasis

5

Figure 5.2. Rhabditiform larvae of S. stercoralis.

Figure 5.3. Ova of S. stercoralis.

infectious fi lariform larvae (Fig. 5.4). Alternatively, there may be several free-living 
cycles which precede the development of the fi lariform larvae. Th e fi lariform larvae 
are long and slender whereas the rhabditiform larvae are shorter and thicker. Th e 

fi lariform larvae penetrate intact skin leading to the parasitic phase of infection.


background image

34

Medical Parasitology

5

Aft er penetrating the skin, the fi lariform larvae migrate to the right side of the 

heart, either through the lymphatics or the venules and then to the lungs via the 
pulmonary circulation. In the lungs the larvae penetrate the alveoli, migrate up the 
tracheobronchial tree and are swallowed. In the proximal small intestine the larvae 
molt, become adult female worms and lodge in submucosal tissues. Egg production 
begins in 25-30 days aft er initially penetrating the skin.

Autoinfection, Hyperinfection

One of the more unusual features of strongyloidiasis is the concept of autoinfection. 

In the distal colon or moist environment of the perianal region rhabditiform larvae can 
undergo transformation to fi lariform larvae. Th ese infectious forms may penetrate the 
colonic mucosa or perianal skin and “reinfect” the host. Th is process of autoinfection 
may be quite common and accounts for the persistence of this organism in the host for 
decades. In fact, as a result of this autoinfection process, S. stercoralis can actually increase 

its numbers in the same individual without additional environmental exposures.

A more severe form of autoinfection is the hyperinfection syndrome in which 

large numbers of rhabditiform larvae transform to fi lariform larvae, penetrate the 

colonic mucosa and cause severe disease. Th is occurs in debilitated, malnourished 
or immunosuppressed individuals. Administration of prednisone is a common 
risk factor and cases have been reported following treatment of asthma with glu-
cocorticosteroids. Other risk factors include impaired gut motility, protein-calorie 
malnutrition, alcoholism, hypochlorhydria, lymphoma, organ transplantation and 

lepromatous leprosy. Human T-cell lymphotropic virus Type 1 (HTLV-1) has also 
been associated with severe strongyloides infection. Th e most severe form of the 
hyperinfection syndrome is disseminated infection in which larvae are found in 

other organs including the liver, kidney and central nervous system.

Figure 5.4. Posterior end of fi lariform larva of S. stercoralis.


background image

35

Strongyloidiasis

5

Immune Response

Eosinophils, mast cells and T-cell mediated immune function appear to play a role 

in resistance to strongyloides. Eosinophilia is common in controlled chronic strongy-
loides infection whereas eosinophils are absent in patients with the hyperinfection 

syndrome. Eosinophils, when in close proximity to a helminth, can kill the organism 
through exocytosis of granular contents, eosinophil major basic protein and eosinophil 

cationic protein. Eosinophils have IgE receptors on their surface and their cytotoxic 
eff ects may be mediated through an IgE-antibody dependant cellular cytotoxicity.

Mast cells have several functions in the host defense against helminths. Th ey 

promote peristalsis and mucus production which aid in expelling the parasite, 
they produce IL-4 and they attract eosinophils. Release of mast cell granules is an 

important gastrointestinal infl ammatory stimulus.

Th e immunosuppressive character of those conditions which predispose to 

hyperinfection has indicated that T-cell mediated immunity is an important com-

ponent of the host response to Strongyloides. Th us, although initially predicted to 
be an AIDS-related disease, it was rather surprising to fi nd very little evidence of 
excessive numbers of advanced strongyloidiasis among HIV-infected individuals. 

One possible explanation for these fi ndings may be the distinguishing features of 
the TH-1 and TH-2 helper lymphocyte response.

TH-1 cells are primarily associated with the cellular immune response and the 

production of proinfl ammatory cytokines such as IL-2, IL-12 and 

γ

-interferon. Th e 

predominant defect in HIV-infected individuals is in the TH-1 mediated infl am-
matory response. On the other hand, control of helminthic infections is more a 
function of the TH-2 response which stimulates the production of cytokines such 

as IL-4, IL-5 and IL-10. Interleukin-4 and IL-5 promote IgE synthesis; IL-5 regu-
lates eosinophil migration and activation. Both IL-4 and IL-10 are antagonists of 
the TH-1 response, thus promoting the shift  to a TH-2 humoral response. It is the 
absence of an eff ective TH-2 response that appears to be one of the major factors 
in promoting development of the hyperinfection syndrome.

Corticosteroids promote the hyperinfection syndrome through a variety of 

mechanisms. Corticosteroids inhibit the proliferation of eosinophils, induce 
apoptosis of eosinophils and T-lymphocytes and inhibit the transcription of IL-4 

and IL-5. Corticosteroids may also have direct eff ects on the worms themselves. 
Th ey may stimulate female worms to increase larval output and promote molting 
of rhabditiform larvae into the invasive fi lariform larvae.

Clinical Findings

Th e clinical manifestations of uncomplicated strongyloidiasis are cutaneous, 

pulmonary and gastrointestinal. Following penetration of the skin, there may be a 

localized, erythematous, papular, pruritic eruption. Migrating larvae may produce 
a serpiginous urticarial rash, larva currens (Fig. 5.5), that can progress as fast as 

10 cm/hr. Th is is frequently seen on the buttocks, perineum and thighs and may 
represent autoinfection. Within a few days of initial infection, pulmonary symp-
toms such as cough, wheezing or shortness of breath may develop as well as fl eeting 

pulmonary infi ltrates and eosinophilia. With the development of gastrointestinal 
involvement there may be epigastric discomfort suggestive of peptic ulcer disease, 
bloating, nausea and diarrhea. Rarely, more severe infections have been associated 


background image

36

Medical Parasitology

5

with malabsorption and protein-calorie malnutrition. However, in many chroni-

cally infected individuals, symptoms resolve with the appearance of larvae in the 
stool, although most have persistent eosinophilia.

Radiologic fi ndings are quite variable ranging from no abnormalities to duode-

nal dilatation and thickened mucosal folds. In severe cases, there may be nodular 
intraluminal defects secondary to granuloma formation as well as loss of mucosal 
architecture and luminal narrowing secondary to fi brosis.

Th e nonspecifi c symptoms of chronic strongyloidiasis may lead to endoscopic 

evaluation for consideration of peptic ulcer disease, especially in urban centers. 

Endoscopic fi ndings consist of mucosal hyperemia and white punctate lesions 
in the duodenum. Histologic examination reveals larvae and adult worms in the 
duodenal crypts, submucosa and lamina propria.

Th e large numbers of organisms in the intestines and lungs in patients with 

the hyperinfection syndrome result in symptoms that are in sharp contrast to the 
oft en relatively benign nature of chronic strongyloidiasis. Abdominal pain, nausea, 
vomiting and profuse diarrhea are common. An ileus may be present and bowel 
edema leading to intestinal obstruction has been described. Duodenal ulceration 

and hemorrhage, perforation and peritonitis are rare complications. Pulmonary 
fi ndings include cough, hemoptysis, shortness of breath, diff use pulmonary infi l-
trates and even respiratory failure. Larvae are oft en found in the sputum of patients 

with the hyperinfection syndrome. Patients with the hyperinfection syndrome may 
present with Gram-negative sepsis as a result of colonic bacteria entering the host 
either through intestinal perforation resulting from the invasion of fi lariform larvae, 
or on the back or in the gut of the larvae. In patients with bacteremia, respiratory 
failure may ensue as a result of the direct eff ects of larvae migrating through the 

Figure 5.5. Larva currens.


background image

37

Strongyloidiasis

5

lungs, accompanying Gram-negative pneumonia or from the development of 

sepsis-mediated adult respiratory distress syndrome. Meningitis is frequently seen 
in patients with disseminated infection. Pneumonia, peritonitis and infection of 

other organs may also occur in patients with disseminated infection. Most patients 
with severe hyperinfection or disseminated infection do not survive their illness.

Diagnosis

Th e diagnosis of strongyloidiasis can be established by identifi cation of the lar-

vae in the stool. Th is is oft en quite diffi  cult, even for the experienced parasitologist, 
because of the low number of larvae produced on a daily basis by an adult worm. 

Furthermore, release of larvae is intermittent so that even careful examination of 
a single stool specimen may not reveal the organism. Th e sensitivity for fi nding 
S. stercoralis in a single stool specimen from an infected individual has been esti-
mated to be only 30%. Multiple microscopic examinations using large volumes of 

stool concentrated by a sedimentation method are oft en necessary. Frequently, the 
only clue to the diagnosis is the presence of unexplained eosinophilia.

A variety of methods have been developed to increase the likelihood of fi nding 

larvae in a stool specimen. One method employs an agar culture on which a stool 
sample is placed on nutrient agar and then incubated for several days. As the motile 
larvae crawl over the agar, they carry bacteria with them leaving visible tracks. In one 
large study, this technique was found to be 96% sensitive in determining the pres-
ence of strongyloides. Unfortunately, it is rather laborious and time-consuming and 

is not usually employed in routine clinical laboratories. Most clinical laboratories 
utilize a lugol-iodine staining technique of a stool sample that has been subjected 
to a sedimentation procedure in order to concentrate the larvae.

Examination of specimens obtained directly from the duodenum has been used in 

the past. Both duodenal aspiration, especially in children and the string test have been 
utilized with positive results. Th e latter employs a procedure in which a gelatin capsule 
with a string attached is swallowed and then retrieved aft er several hours. Th e string is 
then stripped of mucus and examined microscopically for the presence of larvae. In many 

developed areas, these tests have been replaced by esophagogastroduodenoscopy.

Serologic tests have been developed that can aid in the diagnosis of strongy-

loidiasis. An enzyme-linked immunoassy is available from the Centers for Disease 

Control (Atlanta, GA) which has a sensitivity of 95%. Specifi city is less as a result 
of cross-reactivity with other helminth infections. An immediate hypersensitivity 
type of skin test has been developed which has a sensitivity of 82-100%, but has 
signifi cant cross-reactivity with fi larial infections.

Treatment

Th e goal of treatment of strongyloidiasis is eradication of the organism. Unlike 

hookworm, where simply reducing worm burden is effi  cacious, the process of autoin-
fection will result in prolonged infection, potentially increasing worm burden over time 

and the risk of hyperinfection in anyone with residual organisms. Th e drug of choice 
for treatment of strongyloidiasis is ivermectin given orally at a dose of 200 

μ

g/kg once 

daily for 2 days. Th iabendazole is equally eff ective at a dose of 25 mg/kg twice daily 
for 3 days, but has a much greater incidence of side eff ects including nausea, vomiting, 

foul taste and foul smelling urine. Albendazole has also been used, but is less eff ective 
than either thiabendazole or ivermectin, and requires 7 days of treatment.


background image

38

Medical Parasitology

5

Hyperinfection syndrome may be treated with either thiabendazole or ivermec-

tin. Th erapy should be continued for at least 2 weeks, an autoinfection cycle, aft er 
larvae can no longer be detected. Either drug can be administered by nasogastric 

tube or per rectum in patients unable to tolerate oral medications. If possible, im-
munosuppressive therapy should be discontinued. In those patients in whom the 

immunosuppressive condition cannot be altered, it may be prudent to repeat a 
brief course of therapy every few weeks. Preemptive therapy should be considered 
in individuals from endemic areas who are going to undergo immunosuppressive 

therapy, especially if eosinophilia is present.

Suggested Reading

  1.  Ashford RW, Vince JD, Gratten MJ et al. Strongyloides infection associated with acute 

infantile disease in Papua, New Guinea. Trans R Soc Trop Med Hyg 1978; 72:554.

  2.  Barnes PJ. Corticosteroids, IgE and atopy. J Clin Invest; 2001; 107:265-6.

  3.  Berkmen YM, Rabinowitz J. Gastrointestinal manifestations of the Strongyloidiasis. 

Amer J Roentg, Rad Th er, Nuc Med 1972; 115:306-11.

  4.  Brown RC, Girardeau MHF. Trans-mammary passage of Strongyloides spp. Larvae 

in the human host. Amer J Trop Med Hyg 1977; 26:215-9.

  5.  Concha R, Harrington, W Jr et al. Intestinal Strongyloidiasis: recognition, man-

agement and determinants of outcome. J Clin Gastro 2005; 39:203-11.

  6.  Despommier DD, Gwadz RW, Hotez PJ et al. Strongyloides stercoralis. In: 

Parasitic Diseases. New York: Apple Tree Productions, 2005:129-34.

  7.  Gatti S, Lopes R, Cevini C. Intestinal parasitic infections in an institution for the 

mentally retarded. Ann Trop Med Parasitol 2000; 94:453-60.

  8.  Genta RM. Dysregulation of strongyloidiasis: a new hypothesis. Clin Microbiol 

Rev 1992; 5:345-55.

  9.  Genta RM. Global Prevalence of Strongyloidiasis: Critical review with epidemiologic 

insights into the prevention of disseminated disease. Rev Inf Dis 1989; 11:755-67.

 10.  Georgi JR, Sprinkle CL. A case of human strongyloidiasis apparently contracted 

from asymptomatic colony dogs. Amer J Trop Med Hyg 1974; 23:899-901.

 11.  Gill GV, Welch E, Bailey JW et al. Chronic strongyloides stercoralis infection if 

former british far east prisoners of war. Q uar J Med 2004; 97:789-95.

 12.  Goka AK, Rolston DD, Mathan VI et al. Diagnosis of Strongyloides and hook-

worm infections: comparison of faecal and duodenal fl uid microscopy. Trans R 

Soc Trop Med Hyg 1990; 84:829-31.

 13.  Grove DI. Human Strongyloidiasis. Adv Parasitol 1996; 38:251-309.

 14.  Lindo JF, Conway DJ, Atkins NS et al. Prospective evaluation of enzyme-linked 

immunosorbent assay and immunoblot methods for the diagnosis of endemic 

Strongyloides stercoralis infection. Amer J Trop Med Hyg 1994; 51:175-9.

 15.  Neva FA, Gamm AA, Maxwell C et al. Skin test antigens for immediate hypersen-

sitivity prepared from infective larvae of Strongyloides stercoralis. Amer J Trop 

Med Hyg 2001; 65:567-72.

 16.  Overstreet K, Chem J, Wang J et al. Endoscopic and histopathologic fi ndings 

of Strongyloides stercoralis in a patient with AIDS. Gastrointest Endos 2003; 

58:928-31.

 17.  Salazar SA, Berk SH, Howe D et al. Ivermectin vs. Th iabendazole in the treatment 

of strongyloidiasis. Infect Med 1994; 50-9.

 18.  Sato Y, Kobayashi J, Toma H et al. Effi  cacy of stool examination for detection of 

Stronyloides infection. Amer J Trop Med Hyg 1995; 53:248-50.

 19.  Siddiqui AA, Berk SL. Diagnosis of Strongyloides stercoralis infection. Clin Inf 

Dis 2001; 33:1040-7.

 20.  Zaha O, Hirata T, Kinjo F et al. Strongyloidiasis—progress in diagnosis and treat-

ment. Intern Med 2000; 39:695-700


background image

C

HAPTER

 6

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Trichinellosis

Matthew W. Carroll

Background

Epidemiology

Trichinella spp. are tissue nematodes of nearly worldwide distribution. Only the 

Australian mainland and Puerto Rico remain trichinella free. Members of the genus 
Trichinella are able to infect a wide range domestic and wild (sylvatic) animals and 

cause the clinical syndrome trichinellosis, oft en referred to as trichinosis, in humans. 
Trichinellosis is rare in the United States; fewer than 100 cases are reported annu-
ally. Th e disease has become more common in Eastern Europe and Asia. Th is is due 
to a breakdown in governmental inspection of pork, lack of education regarding 
the cooking of pork and ongoing feeding of raw garbage to swine. Pigs will also 

eat rats and mice that may be infected, participate in pig cannibalism and eat fe-
cal matter which can lead to ingestion of live adult worms. On a worldwide basis, 
pigs represent the most frequently identifi ed vehicle of trichinellosis, although a 

variety of other animals have been recognized as transmitting this illness. In the 
United States, nearly one-half of the cases are due to consumption of wild game. 
Bear meat, cougar and wild boar have been implicated as vehicles of trichinellosis. 
In Russia, more than 90% of cases were traced to ingestion of bear or wild boar 
meat. Horse meat is a common vehicle in France and Italy.

Causative Agents

Trichinellosis is most commonly caused by the consumption of raw or un-

dercooked pork products infected with Trichinella spiralis. However, there are a 
number of other Trichinella spp. that have been associated with human infection. 

In North America both T. murelli and T. nativa have been recognized as causes 
of sylvatic (wild) trichinellosis. Trichinella murelli is most commonly acquired 
following ingestion of wild bear meat. Trichinella nativa tends to have an arctic 
or subarctic distribution and is found in polar bears, walrus, seals, wolves and sled 
dogs. Other species of Trichinella have been reported to cause human illness. In 

Europe, T. brivoti has been recognized as a cause of sylvatic disease in wild boar 
and red fox. Th ere are two Trichinella species that do not encyst in muscle. T. 
pseudospiralis
 has been described in birds of prey as well as pigs and wild game. T. 

paupae, which is endemic to New Guinea, infects domestic and wild swine. Human 
disease is common among native hunters in New Guinea who oft en consume 
undercooked game meat.


background image

40

Medical Parasitology

6

Life Cycle

Infection with Trichinella spp. occurs when raw or undercooked meat con-

taining the nurse-cell larva complex in ingested (Fig. 6.1). Larvae are released by 
acid-pepsin digestion in the stomach then enter the small intestine where they 

penetrate the columnar epithelium at the base of a villous. Th ey are obligate 
intracellular organisms and localize in the intestinal epithelial cells. Within the 
intestine the larvae molt 4 times during a 30-hour period and develop into adults. 

Th e adult female measures 3 × 0.036 mm, the male is smaller, 1.5 × 0.030 mm. 
Aft er copulation, which occurs within the intestinal epithelium, the female worms 
expel newborn larvae. Th is occurs 4-7 days aft er infection. Females survive 4-16 

weeks and, during that time, may give birth to 1,500 larvae.

Figure 6.1. Life Cycle of Trichinella spiralis. Reproduced from: Nappi AJ, Vass E, 

eds. Parasites of Medical Importance. Austin: Landes Bioscience, 2002:75.


background image

41

Trichinellosis

6

Newborn larvae measure 0.08 mm long by 7 

μ

m in diameter and possess a 

unique sword-like stylet. Th is enables the larvae to cut an entry hole in the lamina 
propria and enter the mesenteric lymphatics or capillaries. Th e newborn larvae 
subsequently make their way to the arterial circulation and disseminate throughout 

the host. Th e larvae are capable of entering any cell type but will only survive in 
striated muscle. Once within the skeletal muscle the Trichinella larva induce the 
myocyte to transform into a new cell type, a nurse cell, which sustains the life of the 
larva (Fig. 6.2). During this metamorphosis the muscle cell switches to anaerobic 
respiration and, for most species of Trichinella, develops into a cyst of collagen 

and hyaline. Th ese larva-containing cysts can persist for many years although most 
calcify and die within a few months.

Pathogenesis and Host Response

Th e development of adult worms in the intestinal epithelium leads to an 

immune-mediated infl ammatory response in an eff ort to expel the organism. IgE is 
increased and, pathologically, there is an infl ammatory infi ltrate, rich in eosinophils 
and mast cells. Eosinophils elaborate major basic protein and toxic oxygen species 

that help clear the parasite but also cause tissue damage. Mast cells produce a mol-
ecule, mast cell protease-1 (MCP-1), that is also toxic to the organism. Knock-out 
mice that lack the gene encoding MCP-1 have delayed expulsion of the worms from 
the GI tract as well as increased numbers of encysted larvae. Interleukin-5, which 
inhibits eosinophil apoptosis, is an integral part of this process. Genetically altered 

“knockout mice” that lack this gene also have delayed clearance of worms.

As larvae enter cells in various tissues during the parenteral phase of infection, 

there is widespread infl ammation. Th e resulting pathology is proportionate to the 

extent of infection. Cell death is frequent and with heavy infections there is edema, 
proteinuria and organ toxicity including the development of central nervous system 
disorders and cardiomyopathies.

Figure 6.2. Trichinella cysts in muscle.


background image

42

Medical Parasitology

6

Trichinella species tend to persist within head and neck muscles including 

the tongue, laryngeal muscles, masseter muscles, as well as respiratory muscles, 
especially the intercostals and diaphragm.

Clinical Features

Ingestion of larvae is characterized by abdominal pain, secretory diarrhea, nausea 

and vomiting during the fi rst week of infection. Occasionally, constipation may be 
present. Parasite inoculum is a major factor in disease severity and, in many cases, 

infected individuals may be asymptomatic. On the other hand, in patients with very 
heavy worm loads, severe enteritis can occur leading to severe dehydration.

Th e parenteral phase, which occurs approximately one week aft er infection, is 

accompanied by systemic symptoms; fever, oft en 40-41˚C, myalgias and muscle 

tenderness. Petechial hemorrhages may appear in the mucous membranes, con-
junctivae and subungal skin and, rarely, an urticarial rash occurs. Periorbital edema 
is a classic fi nding that has been reported to occur in 77% of those infected. Th is 

can be so severe that the infected individual is unrecognizable. Th is is thought to 
be a result of a generalized allergic reaction and typically lasts 1 to 2 weeks. Its 
resolution is heralded by spontaneous diuresis.

Muscle pain and swelling are the most prominent features of trichinellosis. 

Muscles become stiff , hard, tender and edematous and oft en appear hypertro-

phic. Change in voice is commonly seen with involvement of laryngeal muscles. 
Pharyngeal, lingual and masseter involvement may make eating and swallowing 
diffi  cult. Diplopia may occur when the extraocular muscles are aff ected. Th ese 

symptoms usually peak 2-3 weeks aft er infection and then resolve. Laboratory 
abnormalities include a modest leukocytosis with eosinophila which can be as high 
as 50%, as well as a mild elevation of creatine kinase and other muscle enzymes.

Other Trichinella species may exhibit diff erent symptoms. Trichinella nativa 

tends to produce a prolonged diarrheal illness with a paucity of systemic and my-

algic complaints, whereas Th ai patients with T. pseudospiralis infection may have 
severe myalgias for up to 4 months.

Involvement of tissues other than muscle can lead to a wide variety of com-

plications. Central nervous system involvement has been reported in 10-25% of 
patients. Most commonly, patients with neurotrichinosis present with meningo-
encephalitic signs. Paralysis, delirium, psychosis and peripheral neuropathies have 
been described.

Cardiac involvement may also occur in patients with trichinellosis. 

Pericardial effusions were found in nearly 10% of patients in one study. 

Myocarditis is uncommon, but in patients with severe infection it can be lethal. 

Electrocardiographic abnormalities may also be found including arrhythmias 
and heart blocks.

Lethal infection due to Trichinella is uncommon, but deaths have been re-

ported, mostly in patients with severe worm burdens. Besides myocarditis, central 
nervous system involvement and pneumonia may lead to a fatal outcome. Sepsis 

and death can occur in patients who develop bacteremia with enteric organisms 

following penetration of larvae from the GI tract into the bloodstream. A sudden 

reduction in eosinophils in a patient with severe trichinellosis may herald death 
or indicate superimposed bacterial infection.


background image

43

Trichinellosis

6

Diagnosis

In the United States trichinellosis is quite rare. Since its symptoms mimic com-

mon diseases such as viral gastroenteritis or food poisoning, many clinicians fail 
to consider it when formulating a diff erential diagnosis. Sporadic cases oft en go 

undetected and thus the true prevalence of this disease is oft en underestimated.

Trichinellosis should be considered in the presence of fever, myalgias, periorbital 

edema and eosinophilia; and an epidemiologic history of consumption of raw or 
undercooked meat. Muscle biopsy is the “gold standard” for the diagnosis of trichinel-

losis. Typically a 1-4 cubic millimeter piece of muscle is pressed between two slides 
and viewed under the microscope for the presence of larvae. Th is is positive in heavy 
infections. Organisms such as T. psuedospiralis and T. papaue that do not encyst, as 

well as other Trichinella species if examined prior to encysting, may be missed since 
they resemble muscle tissue. Alternatively, the muscle can be digested in 1% HCl-1% 
pepsin at 37º C for 1 hour aft er which the larvae are released from nurse cells and 

are much easier to identify. Th is process oft en destroys young larvae making it more 
diffi  cult to diagnose early infection. Routine histological examination may reveal a 
basophilic reaction in muscle tissue as well as demonstrating the presence of larvae.

Specifi c immunodiagnostic tests are also available. Several tests designed to look 

for the presence of larvae group 1 antigens are available. Th ese include indirect he-
maggutination, bentonite fl occulation, indirect immunofl ouresence and, the most 
sensitive test, an enzyme linked immunoabsorbant assay (ELISA). Th ese tests are quite 
specifi c for trichinellosis, but may be insensitive during the fi rst few weeks of infection. 

Seroconversion usually occurs between the third and fourth week of infection; the 
ELISA may be positive aft er 12 days. By day 50 virtually 100% of infected individuals 
will have IgG antibody directed against the infecting organism. Tests for the detection 

of larval antigens are also available and indicate active infection. Cross-reactions oc-
cur with both antigen and antibody assays, typically in individuals with autoimmune 
disease or patients infected with parasites that exhibit cross reactivity.

Newer molecular biologic techniques can be used for both diagnosis and to 

distinguish between species of Trichinella. Polymerase chain reaction (PCR) 

assays are able to determine the species of Trichinella with as few as one larva. 
Diff erences in 5S rRNA can be used to distinguish between Trichinella spp. that 

are morphologically identical.

Treatment

Th ere is no specifi c anthelminthic therapy that is eff ective for the treatment 

of trichinellosis. Benzimidazoles, mebendazole and albendazole, are active only 
against the adult worm. When used shortly aft er ingestion, they will reduce 
worm burden. Albendazole is given at a dose of 400 mg twice daily for 8-14 days. 

Mebendazole 200-400 mg three times a day for 3 days then 400-500 mg three times 
a day for ten days is also eff ective. Th e initial dose of mebendazole and albendazole is 
lower to prevent a Mazzoti reaction, an anaphylactic type reaction due to antigenic 
simulation following the death of the adult worms aft er treatment.

Treatment of the parenteral stage of the disease is directed towards symptomatic 

relief. In general, mild disease does not require treatment. Treatment of moderate to 
severe disease can decrease morbidity and, possibly, mortality. In such patients, corti-
costeroids have been given to reduce tissue damage. Th ese drugs may be lifesaving in 


background image

44

Medical Parasitology

6

patients with myocarditis or neurotrichinellosis. Prednisolone at doses of 40 to 60 mg 

per day are typically used. However, this will slow the clearance of adult worms from 
the gut and should not be given for a prolonged period. Analgesics and antipyretics 

such as NSAIDs and acetaminophen provide symptomatic relief.

Prevention

Eff ective prevention of trichinellosis requires proper animal husbandry practices as 

well as adequate cooking of meat. Feeding swine only cooked scraps and controlling the 
population of infected rodents will help to prevent disease. Freezing pork usually kills T. 

spiralis eff ectively. However, wild game infected with T. nativa are resistant to freezing. 
Cooking pork to when it is no longer pink (170˚F; 77˚C) exceeds the thermal death 

point of Trichinella spp. Game meat is much darker and it is necessary to use a meat ther-
mometer to determine if it has been adequately cooked. Microwave cooking oft en leaves 

“cold spots”, so this cooking method should not be used with possibly infected meat.

Suggested Reading

  1.  Centers for Disease Control. Horsemeat associated Trichinosis—France; 

MMWR1986; 35:291-2,297-8.

  2.  Bruschi F, Murell KD. New aspects of human Trichinellosis: Th e impact of new 

Trichinella Species. Postgrad Med J 2002; 78:15-22.

  3.  Capo V, Despommier DD. Clinical aspects of infection with Trichinella spp. Clin 

Microbiol Rev 1996; 9(1):47-54.

  4.  Despommier DD, Gwadz RW, Hotez PJ et al, eds. Parasitic Diseases, 5th Edition. 

New York: Apple Tree Production LLC, 2002:135-42.

  5.  Escalante M, Romarís F, Rodríguez M. Evaluation of Trichinella spiralis group 1 antigens 

for the serodiagnosis of human trichinellosis. J Clin Microbio 2004; 42:4060-6.

  6.  Knight PA, Wright SH, Lawrence CE. Delayed expulsion of the nematode T. 

spiralis in mice lacking the mucosal mast cell-specifi c granule chymase, mouse 

mast cell protease-1. J Exp Med 2000; 192:1849-56.

  7.  Pérez-Martín JE, Serrano FJ, Reina D et al. Sylvatic trichinellosis in Southwestern 

Spain. J Wildl Dis 2000; 36:531-4.

  8.  Pozio E, La Rosa G. Trichinella murelli n.sp: eitiologic agent of sylvatic trichinel-

losis in temprate areas of North America. J Parisitology 2000; 86:134-9.

  9.  Jongwutiwes S, Chantachum N, Kraivichian P et al. First outbreak of human 

trichinellosis caused by Trichinella pseudospiralis. Clin Inf Dis 1998; 26:111-5.

 10.  Ranque S, Faugère B, Pozio E et al. Trichinella pseudospiralis outbreak in France. 

Emerg Infect Dis 2000; 6:1-7.

 11.  Rehmet S, Sinn G, Robstad O et al. Trichinellosis Outbreaks—Northrhine-Westfalia, 

Germany, 1988-1999. MMWR 1999; 48:488-92.

 12.  Rombout YB, Bosch S, Van Der Giessen JW. Detection and identifi cation of eight 

trichinella genotypes by reverse line blot hybidization. J Clin Microbiol 2001; 

39:642-6.

  13.  Rotolo R, Garcia R, Habib A et al. Epidemiologic notes and reports common source 

outbreaks of thicinosis—New York City, Rhode Island. MMWR1982; 31:161-4.

 14.  Roy S, Lopez A, Schantz P. Trichinellosis survey—United States, 1997-2001; 

MMWR 52:1-8.

 15.  Centers for Disease Control and Prevention. Trichinellosis associated with bear 

meat in New York and Tennessee—2003; MMWR 2004; 53:606-9.

 16.  Centers for Disease Control and Prevention. Outbreak of Trichinellosis associated 

with eating cougar jerky—Idaho. MMWR 1996; 45:205-6.

 17.  Watt G, Saisorn S, Jongsakul K et al. Blinded, placebo controlled trial of antipara-

sitic drugs for Trichinosis myositis. J Infect Dis 2000; 182:371-4.

 18.  Zarnke RL, Worley DE, Ver Hoef JM et al. Trichinella sp. in wolves from the 

interior of Alaska. J Wildl Dis 1999; 35:94-7.


background image

C

HAPTER

 7

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Onchocercosis

Christopher M. Cirino

Background

Onchocercosis (river blindness) is caused by the fi larial nematode Onchocerca vol-

vulus and transmitted by several species of blackfl ies in the genus Simulium. Th e dis-
ease represents a leading infectious cause of blindness and visual impairment, second 
to Chlamydia trachomatis. An estimated 17.7 million people are infected worldwide, 
with 270,000 blind and 500,000 with severe visual impairment as a result.

Onchocercosis is distributed primarily in Africa between the tropics of Cancer 

and Capricorn, while smaller foci exist in Central and Latin America (Guatemala, 

Mexico, Brazil, Ecuador, Venezuela and Columbia) as well as in the Arabian pen-
insula (Yemen and Saudi Arabia). Nigeria alone accounts for more than one-third 
of the global prevalence of disease. In these areas, the disease usually is found along 

rapid-fl owing rivers and streams, where blackfl ies lay their eggs. Consequently, 
prior to eradication eff orts, whole areas of arable land had been uninhabitable 
because of the disease.

Life Cycle

Th e life cycle of O. volvulus, consists of developmental stages in the blackfl y 

vector and the defi nitive human host (Fig. 7.1). When an infected female black 
fl y takes a bloodmeal, infective larvae (larval stage 3 (L3)) penetrate a break in 

the skin and migrate into connective tissues. Aft er several stages of molting, the 
larvae develop into adult male (4 cm × 0.2 mm) and female worms (50 cm × 0.4 
mm) (macrofi lariae, Fig. 7.2) and localize in fi brous subcutaneous nodules, known 
as onchocercomas. Within these nodules female worms release 1,300-1,900 
microfi lariae daily for as long as 14 years. Microfi lariae (250 to 300 

μ

m in size) 

migrate into the subcutaneous tissues via the lymphatic vessels. Th ese microfi lariae 
may survive for 6 to 30 months, but the majority do not complete the life cycle. 

When a blackfl y bites an infected human, microfi lariae (L1) are ingested with the 
bloodmeal. Th ey develop into infective larvae (L3) in the fl y and migrate to the 
insect’s mouth within a few weeks.

Microfi lariae released from onchocercomas migrate through the subcutane-

ous tissues, eliciting only a minimal infl ammatory response. A greater reaction 

occurs with microfi larial death and degeneration in the tissue, which is exacer-
bated by onchocercosis chemotherapy. Both B- and T-cell mediated responses 
occur in response to fi larial products with antibody production, involvement of 

macrophages and recruitment of neutrophils and eosinophils. Additionally, mac-
rophages, dendritic cells and T-cells have been detected in onchocercomata.


background image

46

Medical Parasitology

7

Th e mechanism by which O. volvulus and other fi larial nematodes are able 

to evade the host immune system is under intensive investigation and has been 
reviewed elsewhere. Th ree immune manifestations of onchocerciasis have been 
described: the generalized form, the hyperreactive form and the putatively immune 
individuals (PI). Implicated are fi larial-derived molecules, T-helper subset popula-
tions, cytokine and immunoglobulin regulation, host genetic diff erences between 

various forms and a host response to the onchocercal endosymbiont Wolbachia. 
An association with high skin and blood worm loads in fi larial infections was 
made with a decreased response of T-helper cell Type 2 (Th 2) and increases 

in the immunosuppressive cytokines interleukin-10 and transforming growth 
factor-

β

. Unlike generalized onchocerciasis, the hyperreactive form (sowda) is 

associated with a heightened T-helper 2 (Th 2) which is eosinophil predominant 

Figure 7.1. Life cycle of Onchocerca volvulus. Adapted from: Nappi AJ, 

Vass E, eds. Parasites of Medical Importance. Austin: Landes Bioscience, 

2002:93.


background image

47

Onchocercosis

7

in the setting of minimal microfi laridermia. Levels of IgG1, IgG3 as well as IgE 
are elevated in this disease manifestation. Sowda has been found to have a genetic 
basis with particular major histocompatibility complex alleles and a mutation in 

the interleukin-13 gene associated with other hyperreactive states (asthma, atopy). 
Th ose putatively immune have been found to have higher interferon gamma and 
interleukin-5 levels and a mixed Th 1 and Th 2 subset response.

Endobacteria of the genus Wolbachia have been identifi ed as essential for worm 

fertility in many fi larial nematodes, including Onchocerca volvulus. Th e release 

of Wolbachia molecules aft er microfi lariae death may contribute directly to the 
pathogenesis of skin lesions and visual impairment (e.g., keratitis), the severity of 
posttreatment reactions and the persistence of infection in the host. In a murine 

model, the infl ammatory response following intracorneal injection of fi larial ex-
tracts was contingent on the presence of Wolbachia, with only a minimal response 
seen from extracts of worms pretreated with doxycycline (Wolbachia negative). 
Th ere is evidence of an innate immune response in the cornea with neutrophil 
activation mediated by host cell toll-like receptors 2 and 4 (TLR2, TLR4) to an 

endotoxin-like surface protein and Wolbachia surface protein (WSP) of this bac-
teria. Th is may contribute to a shift  in T-helper subset balance, which allows the 
parasite to persist in the host through decreased immune activation.

Disease Signs and Symptoms

Largely, the immune response to microfi lariae death and degeneration leads to 

the clinical fi ndings of the disease, including pruritis, acute and chronic dermatitis 
and visual impairment and blindness. Th e earliest and most common symptom 
of onchocerciasis is pruritis, which may be severe. Acute or chronic lymphedema, 

Figure 7.2. Onchocerca volvulus. Obtained with kind permission from Dr. 

Abhay Satoskar.


background image

48

Medical Parasitology

7

inguinal lymph node swelling and loss of elasticity resulting in an adenolymphocele, 

or “hanging groin”, have been described in some individuals as a result of microfi lariae 
migration. A classifi cation scheme was developed for the myriad skin manifestations 

of onchocercosis:

Acute Papular Onchodermatitis (APOD)

APOD presents as a scattered, pruritic, papular eruption, which may be 

transient and associated with erythema or swelling. Areas aff ected are predomi-
nantly the trunk and limbs. APOD is generally seen in younger populations in 

hyperendemic areas but may be seen in returning travelers who have acquired 
the infection.

Chronic Papular Onchodermatitis (CPOD)

CPOD consists of larger, scattered papules over the waist, buttocks and 

shoulders, which may be hyperpigmented. Pruritis is oft en severe and the resulting 
excoriation can predispose to secondary infections. CPOD is the most common 
manifestation of onchocerciasis in hyperendemic areas.

Lichenifi ed Onchodermatitis (LOD)

Lichenifi ed onchodermatitis represents a more localized hyper-reactive form of 

CPOD. Th e lesions are hyperpigmented plaques, which are usually asymmetrical, 
involving one limb with generally less numbers of microfi lariae and onchocercomas. 
Regional lymphadenopathy is seen in these chronic lesions. LOD is referred to as “sow-
dah”, Arabic for “black”, in southern Saudi Arabia and Yemen, where it is endemic.

Atrophy (ATR)

Th e skin aft er prolonged infection becomes wrinkled, thin and atrophic, with 

loss of elasticity and hair. It most commonly occurs on the buttocks and limbs.

Depigmentation (DPM)

Depigmentation is a result of longstanding infl ammation and scarring from 

onchocercosis infection. It is most commonly seen pretibially and has a patchy 
distribution, which has been referred to as “leopard skin”.

Onchocercomas

Onchocercomas are nodules composed of coiled adult female and male worms 

that average 3 cm in diameter. Th ey are usually found on bony prominences such 
as the pelvis, chest wall, head or limbs. Th e variation in location of these nodules 
between Central and South American and Africa appears to be related to the 
biting habits of the vector. In the Americas, Simulium ochraceum have a tendency 
to bite on the upper part of the body, whereas in Africa, Simulium damnosum 

typically bite below the waste line. Isolated onchocercomas caused by zoonotic 
species of Onchocercoca (usually Onchocerca gutturosa, a cattle nematode) have 
also been reported.

Visual Impairment and Blindness

Th e risk of impaired vision and blindness is associated with the proximity of 

the onchocercoma to the eyes, such as with head nodules, as well as disease burden. 


background image

49

Onchocercosis

7

Moreover, blindness appears to be geographically associated with the onchocer-

cal strains in the West African savannahs as opposed to rainforest areas where 
more severe skin disease is present. Microfi larial migration from the conjunctiva 

into the cornea likely plays a role in the pathogenesis of ocular disease. Disease 
involvement in the eye may be present in the anterior and/or posterior segment. 

Anterior disease causes punctate keratitis, identifi ed as small (0.5 mm), discrete 
areas of the superfi cial corneal stroma (snowfl akes opacities), which are generally 
reversible. Other fi ndings such as limbitis, chemosis, conjunctival injection and 

epiphora may accompany punctate keratitis. Iris and ciliary body involvement may 

lead to anterior uveitis, iridocyclitis and ultimately sclerosing keratitis, leading to 
severely impaired vision or complete blindness. With extensive infl ammation and 
synechiae formation, seclusion- and occlusion- pupillae, secondary cataracts and 

glaucoma may also ensue. Posterior disease is caused typically by microfi lariae that 
have entered the retina along posterior ciliary vessels, leading to chorioretinitis. 
Posterior disease can result in optic neuritis and lead to optic atrophy as a result 

of recurrent episodes of acute infl ammation.

Other Disease Manifestations

Systemic signs and symptoms have been described in onchocercosis infections. 

Low body weight and diff use musculoskeletal pain may occur. Growth arrest in 
severe disease, known as the Nakalonga syndrome, has been described in western 
Uganda. Onchocercosis has been linked to infertility, amenorrhea and spontane-
ous abortion.

Diagnosis

Presumptive diagnosis of onchocercosis usually can be made in a patient present-

ing with a travel history to an endemic area and the clinical syndrome of pruritis, 
dermatitis, ocular fi ndings and skin nodules. Th e standard method of diagnosis of 
onchocerciasis involves skin snippings to identify microfi laria or the identifi cation 
of macrofi lariae in extirpated onchocercoma. Th e probability that skin snips will 
detect microfi laria relates to the parasite burden and the amount of samples taken. 

Sensitivities range from 80-100%, but lower sensitivities have been noted in areas 
with long-term ivermectin programs. Skin nodules are more likely to be seen in the 
setting of greater parasite burden, and the macrofi lariae may be directly visualized 

following removal and examination of a nodule.

Indirect diagnosis may be made through the use of provocation methods, 

such as the Mazzotti reaction, originally described following the administration 
of 6 mg of oral diethylcarbamazine (DEC), characterized by fever, pruritis and 
is potentially sight threatening. More favorable is a topical application of DEC, 

referred to as the DEC-patch assay, which produces a local reaction with a raised, 
pustular rash in those harboring Onchocerca. Th e sensitivity of this method ranges 
from 30% to 92%, with specifi cities of 80 to 95%. Th e strength of the reaction was 

independent of the level of microfi laridermia, suggesting that this is a qualitative 
method. Such methods may play a greater role in screening endemic areas for 
recrudescence of infection.

Th e use of serologic studies and more recently polymerase chain reaction 

(PCR) methods have received particular attention because these methods are more 


background image

50

Medical Parasitology

7

sensitive and potentially less invasive than skin snips. Using ELISA and various 

onchocercal antigen “cocktails” have achieved a sensitivity ranging from 70-96% 
with a specifi city of 98-100%. However, these serologic methods are unable to 

discern active from past infection, as well as cross-reactivity with other parasites.

PCR methods detect the parasite DNA sequence O-150, which is only found 

in O. volvulus and have shown a nearly 100% sensitivity and specifi city when used 
on skin snips. Skin abrasion methods may reduce invasiveness and aff ord similar 
sensitivity. Newer PCR methods, such as an antigen detection dipstick, are even less 

invasive and are useful in the setting of lower parasitemia and disease prevalence. A 

urine dipstick assay demonstrated a sensitivity and specifi city near 100%.

Treatment: Current Th erapy and Alternatives

Identifi cation and removal of skin nodules can be curative in patients with a 

minimal exposure history, but its role is otherwise unclear. Nodulectomy in pa-
tients with head onchocercomata and evidence of ocular disease may reduce the 
likelihood of blindness and is therefore recommended.

Ivermectin

Ivermectin (Mectizan), released in 1987, is the most widely used treatment 

for onchocercosis. It primarily functions as a microfi laricide. A single dose of 
ivermectin clears the skin of microfi lariae and suppresses further microfi laridermia 
for several months. However, since the macrofi lariae are not very susceptible to 
ivermectin, the microfi larial burden is eventually replaced and aft er several months 
to a year, repeat treatment is necessary. Th is has formed the crux of onchocercosis 

mass treatment programs with ivermectin. Ivermectin leads to improvement in 
skin lesions and pruritis and retards the progression of anterior and posterior eye 
disease. Because high dose ivermectin has been associated with visual symptoms, 

it is usually safely dosed at 150 micrograms/kg, and repeated every 6-12 months 
until asymptomatic. A mild Mazzotti reaction may occur in 10-20% of patients 
receiving the fi rst doses of ivermectin, but can be more severe in patients with 
higher microfi larial counts. Most reactions require only supportive care.

Diethylcarbamazine (DEC)

Diethylacarbamazine, a piperazine derivative, has microfilaricide activity 

against O. volvulus, but its use has gone into disfavor, because of the potentially 
sight-threatening infl ammatory reaction that is induced from rapidly killing 
microfi lariae. Ocular complications reported in the treatment of onchocercosis 
infection with DEC are constriction of visual fi elds, damage to the optic nerves, 
chorioretinitis, anterior uveitis and punctate keratitis. Additionally, DEC was 

shown to induce encephalopathy in patients co-infected with Loa loa who had 
very high microfi larial burdens.

Doxycycline and Wolbachia Endobacteria

Wolbachia species are Rickettsial bacteria that have been identifi ed as “obligatory 

symbionts” presumably for fertility in many fi larial species, in that they are required 
for all stages of embryogenesis. Targeting Wolbachia with doxycycline therapy dosed 

at 100 mg daily for 6 weeks demonstrated potent activity against embryogenesis of 
Onchocerca. In one study of bovine onchocercosis (O. ochengi), it even demonstrated 


background image

51

Onchocercosis

7

partial macrofi laricide activity. Although doxycycline is contraindicated in some 

patient populations (children and pregnant or breastfeeding women), it may have a 
future role as prophylaxis, such as for those leaving an endemic area aft er a long stay, 

or aid in eradication eff orts through more prolonged clearance of microfi lariae.

Th ere is yet to be developed an eff ective pharmacologic treatment for mac-

rofi lariae, which may survive for more than a decade, mandating long-term 
maintenance of ivermectin treatment programs. Suramin has activity against the 
macrofi laria of onchocerciasis, but has limited applicability due to its toxicity 

and intravenous administration route. Ivermectin may actually have some mac-

rofi laricidal properties. Recent studies have shown it may exhibit macrofi larial 
activity, particularly if given at 3-monthly dosing regimens. Doxycycline’s activity 
against Wolbachia endosymbionts in Onchocerca may play a potential role as a 

macrofi laride, as demonstrated in a bovine models.

Although an eff ective vaccine has yet to be discovered, animal models have 

suggested that eff ective immunity can be mounted against stage 3 larvae (L3) and 

microfi lariae (Mf ).

Prevention and Prophylaxis

Strategies toward eradication of onchocerciasis focus on the interruption of the 

onchocercal life cycle, whether through large scale vector control or microfi laricide 
treatment. Th e Onchocerciasis Control Programme (OCP) began in 1974 and 
was comprised of vector control in seven (eventually 11) West African countries 
with hyperendemic onchocercosis. Th ese measures were intensifi ed to include 
weekly, aerial larvicide spraying in a wide area of 700,000 km

2

. Infection control 

models which focused on the identifi cation of the Community Microfi larial Load 
(CMFL) through skin snip sampling indicated that the OCP was successful, allay-
ing concerns that migration of black fl ies from outside areas would hamper eff orts. 
A micro simulation model formed in collaboration with the Erasmus University of 
Rotterdam, ONCHOSIM, predicted that a 14 year span of a satisfactory vector 

control program would control onchocerciasis infection without recrudescence. 
Vector control was discontinued aft er 14 years in 1989 and epidemiologic studies 
almost a decade later demonstrated that the onchocercosis threat was largely eradi-

cated except for small residual foci. Th e OCP concluded in 2002, aft er more than 
25 years of activity. As testimony to its success, ocular disease from onchocercosis, 
widespread prior to the OCP, has not been observed.

With the donation of ivermectin by Merck in 1987, other programs were estab-

lished in endemic areas and focused on mass distribution of ivermectin (Ivermectin 

Distribution Program (IDP)) with assistance from nongovermental development 
organizations (NDGOs), in Latin America and in Africa.

However, the potential of onchocercosis eradication in some countries remains 

unclear. Th e conclusion of an expert panel at the Conference on Eradication of 
Onchocerciasis which convened in Atlanta Georgia in 2002 was that the disease 
was not eradicable in Africa with the current methods due to several major barriers: 
the unlikelihood that ivermectin as a single intervention will interrupt transmission; 
programmatic challenges in an extensive endemic area with mobile vectors and in-

fected humans; poor health infrastructure and political instability in these countries; 
Loa loa co-infections in many onchocerciasis endemic areas; and inadequate funds 


background image

52

Medical Parasitology

7

and political support to expand the coverage to hypoendemic areas. Recrudescence 

has occurred when programs were disrupted from civil unrest. For the Americas 
and possibly Yemen, onchocerciasis transmission may be interrupted with current 

programs due to vector characteristics and/or geographic isolation of foci.

Suggested Reading

  1.  Bianco AE. Onchocerciasis-river blindness. In: Macpherson CNL, Craig PS, 

eds. Parasitic Helminths and Zoonoses in Africa. London: Unwin Hyman Press, 

1991:128-203.

  2.  Brattig NW, Bazzocchi C, Kirschning CJ et al. Th e major surface protein of 

wolbachia endosymbionts in fi larial nematodes elicits immune responses through 

TLR2 and TLR4. J Immunol 2004; 173:437-45.

  3.  Burnham G. Onchocerciasis. Lancet 1998; 351:1341-46.

  4.  Burnham G, Mebrahtu T. Review: Th e delivery of ivermectin (Mectizan). Trop 

Med Int Health 2004; 9:A26-A44 SUPPL.

  5.  Cooper PJ, Nutman TB. Onchocerciasis. Current Treatment Options in Infectious 

Diseases 2002; 4:327-35.

  6.  Dadzie Y, Neira M, Hopkins DR. Final Report of the Conference on the eradica-

bility of Onchocerciasis 2002.

  7.  Duke BOL. Evidence for macrofi laricidal activity of ivermectin against female 

Onchocerca volvulus: further analysis of a clinical trial in the Republic of 

Cameroon indicating two distinct killing mechanisms. Parasitology 2005; 

130:447-53.

  8.  Gilbert J, Nfon CK, Makepeace BL et al. Antiobiotic chemotherapy of onchocer-

ciasis: in a bovine model, killing of adult parasites requires sustained depletion of 

endosymbiotic bacteria (Wolbachia species). J Infect Dis 2005; 192:1483-93.

  9.  Hise AG, Gillette-Ferguson I, Pearlman E. Th e role of emdosymbiotic Wolbachia 

bacteria in fi larial disease. Cell Microbiol 2004; 6:97-104.

 10.  Hoerauf A, Brattig N. Resistance and susceptibility in human onchocerciasis—

beyond Th 1 vs Th 2. Trends Parasitol 2002; 18:25-31.

 11.  Hougard JM, Alley ES, Yameogo L et al. Eliminating onchocerciasis aft er 14 years 

of vector control: a proved strategy. J Infect Dis 2001; 184:497-503.

 12.  Murdoch ME, Hay RJ, Mackenzie CD et al. A Clinical classifi cation and grading 

system of cutaneous changes in onchocerciasis. Br J Dermatol 1993; 129:260-9.

 13.  Murdoch ME, Asuzu MC, Hagan M et al. Onchocerciasis: the clinical and 

epidemiological burden of skin disease in Africa. Ann Trop Med Parasitol 2002; 

9(3):283-96.

 14.  Paisier AP, van Oortmarssen GJ, Remme J et al. Th e risk and dynamics of oncho-

cerciasis recrudescence aft er cessation of vector control. Bull World Health Organ 

1991; 69:169-78.

 15.  Rodger FC. Th e movement of microfi lariae of Onchocerca volvulus in the human 

eye from lid to retina. Trans Roy Soc Trop Med Hyg 1959; 53:138-41.

 16.  World Health Organization. Onchocerciasis (river blindness). Report from the 

fourteenth inter American conference on onchocerciasis, Atlanta, Georgia, United 

States. [Congresses] Weekly Epidemiological Record 2005; 80:257-60.

 17.  World Health Organization. Onchocerciasis and its control. Report of a WHO 

Expert Committee on Onchocerciasis Control 1995; 852:1-103.

 18.  Zimmerman PA, Guderian RH, Araujo E et al. Polymerase Chain Reaction-based 

diagnosis of Onchocerca volvulus infection: improved detection of patients with 

onchocerciasis. J Infect Dis 1994; 169:686-9.


background image

C

HAPTER

 8

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Loiasis

Murliya Gowda

Introduction

Loa loa, a fi larial nematode, is the causative organism of Loiasis. More commonly 

known as the African eye worm, infection with this organism is characterized by 
transient swelling of subcutaneous tissues, known as Calabar swellings, which occur 
as the adult worms migrate. 

Epidemiology

Loa loa is endemic to the central and western regions of Africa. In these 

areas as many as 13 million people are aff ected. In endemic areas, up to 30% 
of long-term inhabitants can be infected. Th e vector, the Chrysops fl y, breeds 

in mud near shaded water sources of the rain forest. Rubber tree plantations 
are especially prone to infestation with Chrysops. Th e fl ies are typically more 
common during the rainy season and are attracted to movement, smoke, dark 
skin and clothing.

Th ere are no nonhuman reservoirs of L. loa. Th ere is a form of Loa that is 

seen in nonhuman primates, but, in contrast to human L. loa infection, the 
organism tends to have a nocturnal periodicity and the fl ies that transmit this 
infection bite at night.

Life Cycle

Th e mango fl y, or tabanid fl y, which belong to the genus Chrysops, transmits L. 

loaChrysops silacea and Chrysops dimidiata are the primary vectors. Th e female 
fl y, which feeds during daylight hours, acquires the organism when it ingests a 

microfi lariae-containing blood meal from an infected individual. Th e microfi -
lariae, which are sheathed and contain three or more nuclei in the caudad end 
(Fig. 8.1), maintain a diurnal rhythm such that they remain in the capillaries of 
the lung and other organs at night, but during the day, circulate in the peripheral 
blood and are thus available for ingestion by the day-feeding fl ies. Aft er the mi-

crofi lariae are ingested, they penetrate the wall of the stomach, and enter the fat 
body. Over the course of the next 8-12 days, the microfi lariae increase in length, 
mature to the infective larval form and then migrate to the fl y’s mouth. When 

the Chrysops fl y takes its next meal, the larvae are released into the host. Over the 
course of the next 1 to 4 years, the adult worms develop within the subcutaneous 
tissues of the host. Th e female adult worms are typically larger, measuring 0.5 mm 
in width and 50 to 70 mm in length whereas the male worms are 0.4 mm wide 
and 30 to 35 mm long. Th e adult worms reproduce and deposit microfi lariae in 


background image

54

Medical Parasitology

8

the peripheral blood during the day thus completing the cycle. Adult worms can 

survive for up to 17 years in host tissues. Th e transparent adult worms can be seen 
migrating underneath the conjunctiva and through subcutaneous tissues causing 
migratory swelling and angioedema known as “Calabar swellings.”

Immune Response

Immunological responses to parasite infection can be divided into three 

groups. Individuals who have high levels of microfi lariae in the blood, but have 
weak responses to the parasite, characterize the fi rst group. A second group in-
cludes individuals who develop the Calabar swellings and angioedema. Secretions 

from the adult worms and microfi larial antigens trigger host IgE responses and 
IL-5 production, resulting in host infl ammatory responses and eosinophilia. Th e 
third subset of patients, typically live in hyperendemic areas and have neither 
microfi lariae nor Calabar swellings. Th is group is thought to have protective 
immunity. Native individuals with L. loa infection tend to be asymptomatic 

whereas the hypersensitivity reactions are more common in expatriates and 
long-term visitors to the endemic areas. 

Clinical Manifestations

Infection with L. loa can cause a broad range of symptoms from swelling in 

the face, extremities, and periorbital areas to more serious complications such as 
renal failure, central nervous system involvement. People infected with L. loa may 
not present with symptoms for years. Infected individuals may develop pain and 

pruritis along the path of the traveling adult worms. An area of nonpitting edema 
(Calabar of fugitive swelling) may soon develop along the migratory path of the 
worm and can last from two days to several weeks. Th e swellings are believed to 

Figure 8.1. Loa loa microfi laria in blood.


background image

55

Loiasis

8

be a hypersensitivity reaction secondary to antigenic substances released by the 

parasite. Repeated episodes of swelling or angioedema are common. Typically, 
the extremities, ankles, wrists and the periorbital areas are aff ected.

Eye involvement is the most well known clinical manifestation of L. loa infec-

tion. Movement of the adult worm under the conjunctiva causes conjunctivitis, 

as well as pruritis, pain and edema of the eyelid. Occasionally, the transparent 
adult worm can be seen migrating under the conjunctiva. 

Rare ocular complications include macular deterioration and retinal artery 

occlusion. Other infrequent complications of loiasis infection include lymph-

adenitis, pulmonary infi ltrates, hydroceles and joint involvement. Occasionally, 
intense swelling can cause nerve compression and subsequent neuropathies. Th e 
median nerve is the most common site of neural involvement and can lead to the 

development of carpal tunnel syndrome. With diethylcarbamazine therapy, the 
dying organism can activate host infl ammatory responses, worsening swelling 
and nerve compression, thereby intensifying neurological symptoms. Another 

uncommon manifestation of loiasis is endomyocardial fibrosis, which has 
been epidemiologically linked to regions where L. loa is prevalent. One study 
describes a patient with loiasis and biopsy proven endomyocardial fi brosis who 

was treated with diethylcarbamazine with a subsequent decrease in eosinophilia 
and antifi larial antibodies.

More serious complications involving the kidneys may also occur in loiasis. 

Renal disease may worsen with diethylcarbamazine treatment, but are typi-
cally not permanent. Damage to the glomeruli as a result of immune complex 

deposition or direct injury from the renal fi ltration of microfi lariae can lead to 
proteinuria and hematuria. Rarely, microfi lariae are evident in the urine. 

Central nervous system involvement, particularly meningoencephalitis, can 

occur in individuals with a high microfi larial burden; typically greater than 2,500 
microfi laria/ml. Symptoms such as headaches can progress to meningoencepha-
litis or death. Seizures have also been reported. Microfi lariae can be found in the 
cerebrospinal fl uid in individuals with a high organism burden. Furthermore, 
treatment with diethylcarbamazine can exacerbate CNS symptoms. Neurological 

symptoms have also been described in patients who were treated for onchocer-

ciasis with ivermectin, but were also co-infected with L. loa.

Diagnosis

Loiasis should be considered as a potential diagnosis in individuals from en-

demic regions of Africa who have swelling in the face, extremities, and periorbital 
areas. Eosinophilia should also raise the index of suspicion for this diagnosis. 
Elevated IgE levels are commonly observed in symptomatic patients and may 
be detected despite a paucity of microfi lariae in peripheral blood samples. Th e 
diagnosis is established by detection of the microfi lariae from a daytime sample 

of peripheral blood on Giemsa or Wright’s stain. Characteristically, the microfi -
lariae are sheathed and have three or more terminal nuclei (Fig. 8.1). In patients 
with low-level parasitemia, concentration methods such as microfi ltration can 

be used to improve diagnostic sensitivity. Extraction of the adult worm from the 
conjunctiva or subcutaneous tissues is also diagnostic. 


background image

56

Medical Parasitology

8

In the past, serological testing was infrequently used due to cross reactivity 

with other fi larial antigens, especially in endemic populations in whom the 
incidence of antifi larial antibodies may be quite high. Indeed, in hyperendemic 

regions, up to 95% of population have developed antibodies to L. loa antigens 
by the age of two. However, in travelers to endemic areas who have unexplained 

eosinophilia, but no detectable microfi lariae on peripheral smear examination, 
the presence of antifi larial antibodies may be suffi  cient evidence to warrant 
therapy for loiasis. More specifi c serological tests are available through research 

institutions. IgG4 anti-Loa antibodies have been used as a marker of infection, 

and a PCR testing of blood has also been developed.

Treatment, Prevention and Control

Diethylcarbamazine is the treatment of choice for loiasis. It is eff ective against 

both adult worms and microfi lariae. Multiple courses diethylcarbamazine are 
frequently required to completely eradicate infection since recurrences have 
been documented several years aft er initial treatment. 

Administration of diethylcarbamazine is associated with a variety of adverse 

eff ects which are believed to be secondary to antigens released from dying mi-

crofi lariae. Severity of symptoms is related to organism burden. Serious renal 
and central nervous system complications tend to occur with higher organism 
burden. Milder adverse eff ects include fever, arthralgias and Calabar swellings, 

which tend to occur during the fi rst few days of therapy. To reduce the incidence 
of treatment-induced complications, a test dose of 1 mg/kg is given, followed 
by escalating doses (1 mg/kg three times a day on day 2 and 1-2 mg/kg three 
times a day on day 3), until a maximum dose of 8-10 mg/kg/d is tolerated. A 
21-day course of diethylcarbamazine at 8-10 mg/kg/d is standard treatment. 

Alternatively, some clinicians recommend 50 mg on day 1, 50 mg three times a 
day on day 2, 100 mg three times a day on day 3, and 8 mg/kg/d in three doses 
on days 4 through 14.

Antihistamine and corticosteroid therapy can also be administered to mini-

mize symptoms. Prior to initiating diethylcarbamazine, ivermectin or albenda-
zole can be used to reduce the microfi laria or adult worm burden respectively. In 
patients with a high organism levels, cytopheresis has been suggested as a means 
of reducing microfi laria burden prior to treatment with diethylcarbamazine. 

Adult worms in the eye must be removed surgically. 

In those areas with extremely high prevalence, mass treatment with diethyl-

carbamazine may help to reduce transmission to uninfected individuals. Periodic 

chemotherapy of populations at risk has been utilized in sub-Saharan Africa, 
but the side eff ects of diethylcarbamazine may limit its usefulness in this setting. 
Albendazole or ivermectin may be more useful alternatives for such unmonitored 
therapy, although the latter is associated with encephalopathy in individuals with 
extremely high levels of microfi laremia.

Prevention methods include the use of insecticides and clearing forests in 

order to control the vector population. Insect repellants and protective clothing 
also provide added protection. In endemic areas, diethylcarbamazine prophylaxis 

is recommended for visitors. A weekly dose of 300 mg is suffi  cient and over a 
course of two years was not associated with serious side eff ects. 


background image

57

Loiasis

8

Selected Readings

  1.  Akue JP, Egwang TG, Devaney E. High levels of parasite-specifi c IgG4 in the ab-

sence of microfi laremia in Loa loa infection. Trop Med Parasitol 1994; 45:246.

  2.  Boussinesq M, Gardon J, Gardon-Wendel N et al. Clinical picture, epidemiology 

and outcome of Loa-associated serious adverse events related to mass ivermectin 

treatment of onchocerciasis in Cameroon. Filaria J 2003; 2:S4.

  3.  Carme B, Boulesteix J, Boutes H et al. Five cases of encephalitis during treatment 

of loiasis with diethylcarbamazine. Am J Trop Med Hyg 1991; 44:684-90.

  4.  Loiasis. In: Conner DH, Neafi e RC, Meyers, WM, eds. Pathology of Tropical 

and Extraordinary Disease, Volume 2. Washington DC: Armed Forces Institute 

of Pathology, 1976:356-9.

 5. Th e Filariae. In: Cupp EW, Jung RC, Beaver PC, eds. Clinical Parasitology, 9th 

Edition. Philadelphia: Lea & Ferbiger 1984:350-1,377-800.

  6.  Loa loa. In: Despommier DD, Gwadz RW, Hotez PJ, Knirsch CA, eds. Parasitic 

Diseases, 4th edition. New York: Apple Tree Productions, LLC 2000:143-6.

 7. Horse fl ies, deer fl ies and snipe fl ies. In: James MT, Harwood RF, eds. Herm’s 

Medical Entomology, 6th Edition. Toronto: Macmillan Company, 1969:228-9.

  8.  Klion AD, Nutman TB. Loiasis and mansonella infections. In: Guerrant RL. 

Walker DH, Weller PF, eds. Tropical Infectious Disease Principles, Pathogens and 

Practice. Vol 2. Philadelphia: Churchill Livingstone1999:861-72.

  9.  Klion AD, Otteson EA, Nutman TB. Eff ectiveness of diethylcarbamazine in treat-

ing loiasis acquired by expatriate visitors to endemic regions: long term follow-up. 

J Infect Dis 1994; 169: 604-10.

 10.  Mackenzie CD, Geary TG, Gerlach JA. Possible pathogenic pathways in the 

adverse clinical events seen following ivermectin administration to onchocerciasis 

patients. Filarial J 2003; 2:S5.

 11.  Nutman TB, Miller KD, Mulligan M et al. Diethylcarbamazine prophylaxis for 

human loiasis. Results of a double blind study. N Engl J Med 1988; 319:752-6.

 12.  Nutman TB, Miller KD, Mulligan M et al. Loa loa infection in temporary residents 

of endemic regions: recognition of a hyperresponsive syndrome with characteristic 

clinical manifestations. J Infect Dis 1986; 154:10-8.

 13.  Nutman TB, Zimmermann PA, Kubofcik J et al. Elisa-based detection of PCR 

products. A universally applicable approach to the diagnosis of fi larial and other 

infections. Parisitol Today 1994; 10:239-43.

 14.  Ottenson EA. Filarial infections. Infect Dis Clin North Amer 1993; 7:619-33.

 15.  Loiasis. In: Strickland GT, ed. Hunter’s Tropical Medicine and Emerging Infectious 

Diseases, 8th Edition. Philadelphia: W.B. Saunders, 2000:754-6.


background image

C

HAPTER

 9

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Dracunculiasis

David M. Parenti

Dracunculiasis (also know as dracontiasis) is caused by the “guinea worm” 

Dracunculus medinensis. It has been described in humans since antiquity with 
references to this infection being noted in the Bible and ancient Greek and Roman 
texts. A calcifi ed adult worm has also been noted by X-ray in an Egyptian mummy 
and there are descriptions of the disease in ancient papyrus texts. It is transmitted 
by ingestion of a fresh water copepod (MesocyclopsMetacyclopsTh ermocyclops
containing infective larvae and is endemic only in areas where this intermediate 

host is found. Transmission occurs in underdeveloped regions with limited access 
to a safe water supply. Debilitation as a result of guinea worm infection is common, 
resulting in chronic pain, acute or chronic infection, impaired joint mobility and 

occasionally tetanus. Short term and long term disability from dracunculiasis leads 
to lost work days and decreased economic productivity.

Phylogenetically Dracunculus is related to the helminths in the Order Spirurida, 

which also contains the fi lariae. It is felt to be primarily a human parasite; but other 
Dracunculus species may infect humans and other animals. Recently ribosomal 18S 

rRNA sequencing has been able to distinguish at least some of these species and 
a worm identical to the human parasite has been obtained from a dog in Ghana. 
Th ere is no clear evidence that animals are important reservoir hosts.

Epidemiology

Two important conditions need to be satisfi ed for transmission of Dracunculus 

to occur: emergent guinea worm lesions discharging larvae need to be in contact 
with drinking water and the intermediate copepod host needs to be present in 

the water supply. Contamination of step wells, cisterns and ponds is common in 
endemic areas. Transmission in ponds is highest just before the rainy season, when 
the density of copepods may be the highest.

Dracunculus infections were once distributed throughout equatorial Africa 

from the northwest (Senegal, Burkina Faso, Ghana, Nigeria) to Sudan and Uganda. 

It was also endemic in Iran, Afghanistan, Pakistan, India and the southernmost 
new Soviet republics. An estimated 3 million cases occurred worldwide in 1986. 
Transmission oft en occurs in remote areas with limited water supplies, or where 

larval contamination can easily occur. Although transmission does not occur in 
the United States, rare importations have occurred.

More recently, following the establishment of the WHO global eradication 

campaign, endemic regions have been limited to those listed in Table 9.1.


background image

59

Dracunculiasis

9

Life Cycle

Th e copepod is the intermediate host for Dracunculus and measures 1-3 mm in 

size. Following ingestion of an infected copepod the third stage infective larva is 
released. Whether the presence of reduced gastric pH is important in this process 
is unclear. Th e larva then penetrates through the intestinal mucosa and migrates 
to connective tissues, especially in the abdominal wall and thoracic wall and re-
troperitoneum, where it develops into an adult male or female worm.

Th e adult female worms are cylindroidal, 1-2 mm in width and up to 800 mm 

in length; the males much smaller at about 40 mm in length. Th e female is likely 
fertilized in this site before migration begins to the subcutaneous tissues. By 8-9 

months aft er ingestion the uterus of the female worm becomes fi lled with eggs 
which then develop into fi rst stage larvae. Full maturation takes up to 12 months, 
contributing to its seasonal endemicity. Th e gravid worm, containing 1-3 million 
fi rst stage larvae, then embarks on a period of subcutaneous migration eventually 
taking it to the surface.

Aft er migration the anterior end of the worm approaches the dermis, where 

fi rst a papule and then a blister is formed. Th e lesions occur predominately on the 
distal lower extremities. On contact with fresh water the blister ruptures and fi rst 

stage larvae (rhabditoid) are released as the uterus prolapses either through the 
mouth or body wall. Th e motile larvae are 15-25 

μ

m × 500-750 

μ

m in size and 

are subsequently ingested by the copepods. Th ey penetrate through the intestinal 
wall, perhaps through use of a dorsal tooth that has been described and develop 
in the coelomic cavity. Th e larvae molt twice in the copepod over a period of 2-4 
weeks and remain dormant as third stage (infective) larvae. Human infection again 
takes place aft er ingestion of infected copepods.

Clinical Manifestations

Initial ingestion of the infected copepod does not usually provoke any 

symptoms although urticarial reactions sometimes occur. Clinical disease is 
a direct result of the adult female worm which migrates in the subcutaneous 
tissue until stopping to discharge the larvae through the skin. Th e individual 

may notice a palpable or migrating worm in up to one-third of cases. Others 

Table 9.1. Number of cases of Dracunculiaisis January-September 2005 

(CDC)

Sudan 5,008

Ghana 2,936

Mali 475

Nigeria 116

Niger 66

Togo 58

Ethiopia 37

Burkina Faso 

25

Cote d’Ivoire 

9

Uganda 6

Benin 1


background image

60

Medical Parasitology

9

may complain of allergic symptomatology prior to worm emergence: urticaria, 

infra-orbital edema, fever, dyspnea. Th e majority present with local signs of 
emergent worms.

Emergent lesions are primarily located in the lower extremities (> 90%), which 

are also the body areas most likely to come in contact with fresh water and thus 

allow completion of the life cycle. Worms may also emerge from the upper extrem-
ity, trunk, or head. Errant worms have appeared rarely in unusual locations such 
as the epidural space, testicle, orbit and eyelid.

Each individual usually has 1-3 worms emerge, but rarely multiple lesions may 

occur. Th e blister is usually painful and 1-3 cm in size and may also be pruritic. 
Aft er emergence an ulcer forms and this remains an open wound until the worm 
is expelled. Th e dying worm provokes a brisk infl ammatory response which may 

lead to abscess formation. Abscesses may be seen in up to 10% of non-emergent 
worms. If the female emerges near or in a joint, usually the knee or ankle, a frank 
arthritis may ensue and larvae may be recovered from joint fl uid. Nonemergent 

worms remain in the tissues to be contained by the host response and to become 
calcifi ed.

Secondary infection is also a common complication of dracunculiasis (in up 

to 50% of cases) and a cause of signifi cant morbidity. Infections may be caused 
by skin fl ora such as staphylococci or streptococci or enteric organisms such as 
Escherichia coli. Chronic skin ulcers of the extremities are an ideal portal of entry 
for Clostridium tetani and clinical tetanus is a not infrequent complication in 
endemic areas. In one study in Nigeria guinea worm lesions were the third most 

common portal of entry for the development of tetanus.

Diagnosis

Aft er the appearance of the skin ulcer and worm, the diagnosis can be certain.

Discharged material from the gravid uterus will reveal larvae characteristic of 
Dracunculus. Characteristic calcifi cations can also be identifi ed in areas where the 
worms have died and calcifi ed and represent a “sarcophagus around a long departed 
parasite”. Th ese are most common in the lower extremities where they lie along 
tissue planes in a linear fashion; but have also been noted in the upper extremities 

and in the trunk where they may have a coiled appearance.

In prepatent infection immunodiagnosis with ELISA or dot-ELISA may 

be useful, but there may also be cross reactivity with other helminths such as 

Wuchereria and Onchocerca. Eosinophilia may be present, particularly just prior 
to emergence. Th e diff erential diagnosis of dracunculiasis includes other migra-
tory helminths such as Ancylostoma braziliense (cutaneous larval migrans) and 
Stronglyoides (larva curens). Nodular lesions reminiscent of unerupted worms may 
be seen with adult worms of Onchocerca, the tapeworm Spirometra (sparganosis) 

and cutaneous myiasis. Extracted adult worms of Onchocerca have been confused 
with Dracunculus in the Central African Republic, although they are smaller in 
diameter (0.3 mm vs 1-2mm).

Treatment

Treatment of dracunculiasis is generally focused on mechanical removal of the 

worm and treatment of secondary infection. Th e traditional method has been to 


background image

61

Dracunculiasis

9

wind the protruding worm on a stick and with gentle traction to remove several 

inches at a time. Extraction of the worm may occasionally be diffi  cult. Incomplete 
removal or breakage of the worm with spillage of contents can lead to a more 

signifi cant infl ammatory response and appears to increase the risk of secondary 
infection. At least one study has suggested that removal of unerupted worms might 

be more easily accomplished with less disability. In this study in India 161 patients 
had surgical removal of worms prior to eruption, with an improvement in average 
time of disability from 3 weeks to 1 week.

Several antiparasitic agents have been studied in the treatment of dracuncu-

liasis in humans and in animal models, including thiabendazole, mebendazole, 
niridazole, metronidazole and ivermectin, with little evidence for a cidal eff ect on 
the adult worms. A variety of treatment outcomes have been evaluated including 

time to worm expulsion, prevention of emergence of new lesions and ulcer healing. 
It has been suggested that metronidazole and some of the anthelminthics may 
modulate the infl ammatory response and facilitate worm removal. Ivermectin 

has been tested in a single-blind placebo-controlled trial of 400 adults at risk 
for guinea worm infection. Th ere was no eff ect on migration of the worms or 
prevention of emergent lesions. In a randomized, single blind, controlled trial 

topical antimicrobials have been shown to reduce the rate of secondary infection 
and improve wound healing.

Prevention

Because of the lack of eff ective anthelminthic agents, mass chemotherapy 

programs for treatment or prevention have not been feasible. Th erefore the focus 
has been on elimination of the copepod intermediate host and establishment of 
safe supplies of potable water. Improved water sanitation can be accomplished by 
establishing a piped in water supply, construction of bore or tube wells, or other 
measures to prevent contamination. Implementation of individual or communal 

nylon or cloth fi lters (100-200 

μ

m pore size) has also been eff ective in preventing 

transmission. Eradication of the intermediate host through water treatment with 
cyclopiscides such as the organophosphate temephos has also been used in many 
eradication programs.

Dracunculiasis is an ideal candidate for eradication: the disease is easy to 

diagnose, the adult worms have a limited lifespan, it has only a human host, it is 

prevalent in a limited geographic area, the intermediate host is not mobile and 
treatment of the intermediate host is relatively inexpensive. Eradication programs 
have included intensive cases fi nding, health education programs, utilization of 

nylon or cloth fi lters and application of cyclopiscides.

Th e campaign for global eradication of dracunculiasis began in 1980 as part 

of the International Drinking-Water Supply and Sanitation Decade (CDC) and 
was expanded by the WHO in 1986. Substantial progress has been made with a 
98% decline in cases worldwide. Dracunculiasis eradication has been accomplished 

in Pakistan (1994) and India (1997). Th ose countries remaining with continued 
transmission are confi ned to Africa. Although many countries have continued to 
show a decline in cases during 2005, an increased number of cases has been noted 

in Mali and Ethiopia. Control measures in the Sudan have been particularly dif-
fi cult because of sociopolitical unrest.


background image

62

Medical Parasitology

9

Suggested Reading

  1.  Beaver PC, Jung RC, Cupp EW. Th e Spirurida: Dracunculus and others. Clinical 

Parasitology, 9th Edition. Philadelphia: Lea & Febiger, 1984:335-40.

  2.  Belcher DW, Wunapa FK, Ward WB. Failure of thiabendazole and metronidazole 

in the treatment and suppression of guinea worm disease. Am J Trop Med Hyg 

1975; 24:444-46.

  3.  Bimi L, Freeman AR, Eberhard ML et al. Diff erentiating Dracunculus medinensis 

from D. insignis, by the sequence analysis of the 18S rRNA gene. Ann Trop Med 

Parasitol 2005; 99:511-17.

  4.  Bloch P, Simonsen PE, Weiss N, Nutman TB. Th e signifi cance of guinea worm 

infection in the immunological diagnosis of onchocerciasis and brancroft ian fi lari-

asis. Trans R Soc Trop Med Hyg 1998; 92:518-21.

  5.  Cairncross S, Muller R, Zagaria N. Dracunculiasis (Guinea worm disease) and the 

eradication initiative. Clin Microbiol Rev 2002; 15:223-346.

  6.  CDC. Imported Dracunculiasis—United States, 1995 and 1997. MMWR 1998; 

47:209-11.

  7.  CDC/WHO. Guinea Worm Wrap-Up #157, 10/26/05. http://www.cdc.gov/

ncidod/dpd/parasites/dracunculiasis/wrapup/157.pdf

  8.  Cockshott P, Middlemiss H. Clinical Radiology in the Tropics. Edinburgh: 

Churchill Livingstone, 1979: 5-6.

  9.  Cox FEG. History of human parasitology. Clin Microbiol Rev 2002; 15:595-612.

 10.  Drugs for parasitic infections. Th e Medical Letter 2002:1-12.

 11.  Eberhard ML, Melemoko G, Zee AK et al. Misidentifi cation of Onchocerca 

volvulus as guinea worm. Ann Trop Med Parasitol 2001; 95:821-26.

 12.  Hopkins DR, Azam M. Eradication of dracunculiasis from Pakistan. Lancet 1995; 

346:621-24.

 13.  Hours M, Cairncross S. Long-term disability due to guinea worm disease. Trans 

R Soc Trop Med Hyg 1994; 8: 559-60.

 14.  Issaka-Tinorgah A, Magnussen P, Bloch P, Yakubu A. Lack of eff ect of ivermectin 

on prepatient guinea-worm: a single blind, placebo-controlled trial. Trans R Soc 

Trop Med Hyg 1994; 88:346-48.

 15.  Kaul SM, Sharma RS, Verghese T. Monitoring the effi  cacy of temephos application 

and use of fi ne mesh nylon strainers by examination of drinking water containers 

in guinea worm endemic villages. J Commun Dis 1992; 24:159-63.

 16.  Magnusssen P, Yakubu A, Bloch P. Th e eff ect of antibiotic- and hydrocorti-

sone-containing ointments in prevention secondary infections in guinea worm 

disease. Am J Trop Med Hyg 1994; 51:797-79.

 17.  Muller R. Dracunculus and dracunculiasis. Adv Parasitol 1971; 9:73-151.

 18.  Neafi e RC, Connor DH, Meyers WM. Dracunculiasis. In: Binford CH, Connor 

DH, eds. Pathology of Tropical and Extraordinary Diseases. Washington, DC: 

AFIP, 1976:397-401.

 19.  Rohde JE, Sharma BL, Patton H et al. Surgical extraction of guinea worm: dis-

ability reduction and contribution to disease control. Am J Trop Med Hyg 1993; 

48:71-76.

 20.  Sullivan JJ, Long EG. Synthetic-fi bre fi lters for preventing dracunculiasis: 100 

versus 200 micrometres pore size. Trans R Soc Trop Med Hyg 1988; 82:465-66.

 21.  WHO. Weekly Epidemiological Record. 5/13/2005; 80: 165-76.


background image

C

HAPTER

 10

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Cutaneous Larva Migrans: 

“The Creeping Eruption”

Ann M. Labriola

Background

Cutaneous larva migrans (CLM), frequently termed “creeping eruption,” is 

a parasitic skin infection that is caused by the fi lariform larvae of various animal 
hookworm nematodes. CLM has a worldwide distribution wherever humans 

have had skin contact with soil contaminated with infected animal feces. Th e 
disease most commonly occurs in subtropical and tropical regions, but may 
also occur in temperate climates particularly during the summer months and 
during rainy seasons. In the United States, CLM is seen in individuals living in 
the southeastern states, Florida and the Gulf Coast states, in travelers returning 

from sandy beaches and in military personnel returning from tropical postings. 
Children develop the disease by walking barefoot in sandy areas or playing in dirt 
or sandboxes that contain infected animal feces. Electricians, plumbers, utility 

workers and pest exterminators who have contact with soil under houses or at 
construction sites are at risk, as are fi sherman, hunters, farmers and gardeners 
who handle contaminated soil.

Causative Agents

Ancylostoma braziliense, a hookworm of wild and domestic dogs and cats is the 

most commonly identifi ed etiologic agent of CLM. A. braziliense is distributed 
throughout the tropics and subtropics, especially on the warm sandy beaches of 

the southeastern and Gulf Coast states, the Caribbean and southeast Asia where 
dogs and cats are permitted to defecate. Ancylostoma caninum (dog hookworm), 
Ancylostoma ceylanicum (dog and cat hookworm) and Ancylostoma tubaeforme 
(cat hookworm) may also produce cutaneous lesions. Whereas the skin lesions 
of A. braziliense may persist for months, the skin lesions that are seen with other 

Ancylostoma species resolve within several weeks.

A number of other nematodes have been associated with CLM-like lesions. 

Strongyloides species such as S. papillosusSwesteri, S. stercoralis, S. procyonis 

and S. myopotami, nematodes found in the small intestine of mammals, migrate 
more quickly in human skin than hookworm larva to form skin eruptions called 
larva currens (“racing larva”). Gnathostoma species, a dog and cat roundworm 
found in Southeast Asia and Dirofi laria repens, a fi larial nematode of dogs, 


background image

64

Medical Parasitology

10

cats and wild carnivores, can travel through the skin and cause dermatitis, 

swelling and subcutaneous nodules. Uncinaria stenocephala (dog hookworm) 
and Bunostomum phlebotomum (cattle hookworm) may also cause cutaneous 

disease. Ancylostoma duodenale and Necator americanus, human hookworms, 
that, upon larval migration in the skin, produce a pruritic dermatitis (“ground 

itch”) similar to CLM of animal hookworms. Free-living nematodes such as 
Peloderma strongyloides have also been described as a rare cause of cutaneous 
infection in humans.

Life Cycle

Unlike the classical hookworm life cycle, the cycle of the organisms that are 

typically associated with CLM is much abbreviated. A. braziliense third stage 
infective larvae (L3) enter the epidermis and migrate laterally in epidermis, 
generally unable to penetrate the basement membrane of the epidermal dermal 
junction. Humans are thus incidental dead-end hosts.

Disease Signs and Symptoms

Th e most common portals of entry by the larvae are the exposed areas of 

the body such as the dorsum of the feet, lower legs, arms and hands. Th e but-
tocks, thighs and abdomen also may be involved, probably due to lying directly 
on contaminated sand. CLM also occurs in the interdigital spaces of the toes, 
the anogenital region, knees and rarely on the face. Symptoms usually occur 
within the fi rst hours of larval infection, although, occasionally, the larvae may 

lie dormant for several weeks. Th e fi rst sign of infection is a stinging, tingling 
or burning sensation at the site of larval entry, followed by the development of 
an edematous, erythematous pruritic papule. Th e larvae migrate laterally from 

the papule and form raised 2-4 mm wide serpinginous tracks. Th ese tracks mark 
the migratory route of the larvae and may advance from a few millimeters to 
several centimeters each day, hence the name “creeping eruption.” As they burrow, 
the larvae produce hydrolytic enzymes that provoke the intense infl ammatory 
reaction that characterizes CLM. In heavy infections, an individual may have 

hundreds of tracts. Severe infl ammatory reactions may cause such an intense 
pruritis that individuals are unable to sleep, develop anorexia and even become 
psychotic. Secondary bacterial infections such as impetigo or cellulitis from 

scratching the skin are common complications.

CLM is a usually a self-limited disease. Th e larvae, unable to complete their 

life cycle, die in the epidermis within several weeks to months if left  untreated. 
Th ere are reports of larvae that have migrated for over one year. Th e skin 
lesions ulitmately resolve although there may be scarring. Rarely larva may 

migrate past the dermis to cause myositis, pneumonitis (Loffl  er’s syndrome) 
or an eosinophilic enteritis (viz., A. caninum) of the small intestine. A pruritic 
folliculitis is another uncommon form of CLM that presents with serpiginous 

tracks interspersed with papules and pustules confi ned to a particular area of 
the body, usually the buttocks.


background image

65

Cutaneous Larva Migrans

10

Diagnosis

Th e diagnosis of CLM is based on a history of exposure and the characteristic 

clinical appearance of the skin eruption. Th ere may be a delay in diagnosis in chronic 
cases due to superimposed allergic dermatitis, secondary bacterial infection or 

lack of recognition of CLM by health care personnel. Peripheral eosinophilia and 
increased IgE levels are found in a minority of patients. Skin biopsies are usually 

not eff ective at establishing the diagnosis. Histologic examination usually reveals 
only an eosinophilic infi ltrate or a nonspecifi c infl ammatory response, although, 

occasionally, a skin biopsy taken at the leading edge of the track may contain a 
larva trapped in a follicular canal, stratum cornea or dermis.

Th e diff erential diagnosis of CLM should also include cercarial dermatitis 

(“swimmer’s itch”), migratory myiasis, scabies, jelly fi sh sting, photoallergic der-
matitis, epidermal dermatophytosis, erythema chronicum migrans of Lyme disease 
and photoallergic dermatitis. Vesicular lesions may be mistaken for viral infections 

or phytophotodermatitis.

Treatment

Oral albendazole (400 mg daily for 1-3 days) or ivermectin (200 

μ

g/kg  daily 

for 1-2 days) are the drugs of choice for the treatment of CLM. Oral thiabendazole 
is less eff ective than either albendazole or ivermectin. Whereas the cure rate with 
oral thiabendazole was 87% aft er 3-4 consecutive days of treatment, a single dose of 

ivermectin was eff ective in 81-100% of patients. Most studies of albendazole have 
shown cure rates 92-100%. A single randomized study of single dose ivermectin 
versus albendazole revealed cure rates of 100% for ivermectin with no relapses com-
pared to a 90% cure rate with albendazole. However, half of the albendazole-treated 
patients relapsed. With treatment, symptoms of pruritus improve within 24-48 

hours and the skin lesions usually resolve within one week. Th iabendazole is poorly 
tolerated compared to either albendazole or ivermectin. Side eff ects of thiabenda-
zole include nausea, vomiting, headache and giddiness.

Treatment with topical thiabendazole is eff ective in treating patients with a 

few lesions. Th is approach avoids systemic side eff ects, but is less convenient and 
requires multiple applications. Cryotherapy or surgical excision is painful and 
not very eff ective because the larvae may be several centimeters beyond the end 
of the visible track. Its use is limited to pregnant women because of the uncertain 

teratogenic potential of ivermectin or albendazole.

Prevention and Prophylaxis

CLM can be prevented by avoiding skin contact with soil contaminated with 

infected animal feces. In geographic areas where the infection is endemic, one 

should avoid touching soil with bare hands, walking barefoot or lying directly on 
moist, warm, shady soil or warm, dry, sandy beaches protected from tidal move-

ment. Beaches should also be kept free of dogs and cats. Pets should be examined 
and treated when infected with parasites and should receive periodic prophylaxis. 
Pet feces should be disposed of in a sanitary manner and sandboxes should be 

kept covered.


background image

66

Medical Parasitology

10

Suggested Reading

  1.  Albanese G, Venturi C. Albendazole: A new drug for human parasitoses. Dermatol 

Clin 2003; 21:283-90.

  2.  Blackwell V, Vega-Lopez F. Cutaneous larva migrans: clinical features and man-

agement of 44 cases presenting in the returning traveler. Br J Dermatol 2001; 

145:434-7.

  3.  Bouchaud O, Houzé H, Schiemann R et al. Cutaneous larva migrans in travelers: 

A prospective study, with assessment of therapy with ivermectin. Clin Infect Dis 

2000; 31:493-8.

  4.  Caumes E. Treatment of cutaneous larva migrans. Clin Infect Dis 2000; 

30.5:811-4.

  5.  Caumes E, Ly F, Bricaire F. Cutaneous larva migrans with folliculitis: report of 

seven cases and review of the literature. Br J Dermatol 2002; 146:314-6.

  6.  Davies HD, Sakuls P, Keystone JS. Creeping eruption. A review of clinical pre-

sentation and management of 60 cases presenting to a tropical disease unit. Arch 

Dermatol 1993; 129:588-91.

  7.  Despommier DD, Gwadz RW, Hotez PJ et al. Parasitic Diseases. Clinical 

Parasitology; A Practical Approach, 4th ed. Philadelphia: Saunders, 1997.

  8.  Douglass MC. Cutaneous larva migrans. eMedicine.com. http://www.emedicine.

com/derm/topic91.htm. Accessed 2005.

  9.  Edelglass JW, Douglass MC, Stiefl er R et al. Cutaneous larva migrans in north-

ern climates. A souvenir of your dream vacation. J Am Acad Dermatol 1982; 

7.3:353-8.

 10.  Guill M, Odom R. Larva migrans complicated by Loffl  er’s syndrome. Arch 

Dermatol 1978; 114:1525-6.

 11.  Herbener D, Borak J. Cutaneous larva migrans in northern climates. Am J Emerg 

Med 1988; 6.5:462-4[Medline].

 12.  Hotez PJ, Brooker S, Bethony JM et al. Current concepts: hookworm infection. 

N Engl J Med 2004; 351:799-807.

 13.  Jelinek T, Maiwald H, Nothdurft  HD et al. Cutaneous larva migrans in travelers: 

synopsis of histories, symptoms and treatment of 98 patients. Clin Infect Dis 1994; 

19.6:1062-6.

 14.  Jones CC, Rosen T, Greenberg C. Cutaneous larva migrans due to pelodera 

strongyloides. Cutis 1991; 48.2:123-6.

 15.  Kelsey DS. Enteric nematodes of lower animals transmitted to humans: zoonoses, 

(monogram online). In: Baron S, ed. Medical Microbiology, 4th ed. New York: 

Churchill Livingston; 1996. http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.

View..ShowTOC&rid=mmed.TOC&depth=10. Accessed 2005.

 16.  Kwon IH, Kim HS, Lee JH et al. A serologically diagnosed human case of cuta-

neous larva migrans caused by ancylostoma caninum. Korean J Parasitol 2003; 

41:233-7.

 17.  Meyers WM, Neafi e RC. Creeping eruption. In: Binford CH, Connor DH, eds. 

Pathology of Tropical and Extraordinary Diseases, 2nd Edition. Armed Forces 

Institute of Pathology, 1976:437-9.

 18.  Richey TK, Gentry RH, Fitzpatrick JE et al. Persistent cutaneous larva migrans 

due to ancylostoma species. South Med J 1996; 89.6:609-11.

 19.  Van den Enden E, Stevens A, Van Gompel A. Treatment of cutaneous larva migrans. 

N Engl J Med 1998; 339.17:1246-7.

 20.  Wang J. Cutaneous larva migrans. eMedicine.com. 16 March 2005. http://www.

emedicine.com/ped/topic1278.htm. Accessed 2005.


background image

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Baylisascariasis and Toxocariasis

Erin Elizabeth Dainty and Cynthia Livingstone Gibert

Baylisascariasis

Background

Causative Agent

Baylisascariasis is caused by the nematode parasite Baylisascaris procyonis. Th e 

North American raccoon (Procyon lotor) is the defi nitive host for B. procyonisB. 
procyonis
 is also recognized as one of the most common causes of visceral larva 

migrans in animals, causing infection in over 100 species other than raccoons. 
Humans are infected as accidental intermediate hosts.

Geographical Distribution/Epidemiology

Raccoons are native to the Americas from Canada to Panama and have become 

increasingly concentrated in urban areas in recent years. B. procyonis is endemic 
in raccoons in most regions of the United States, with a higher prevalence on the 

West Coast, Midwest and Northeastern regions.

While the geographic distribution of the North American raccoon has been 

well established, the distribution of B. procyonis itself is not fully known. Th is 
uncertainty is due to the large abundance of eggs shed by raccoons that survive 
in the environment for extended periods of time and the large number of species 

that B. procyonis can potentially infect as accidental hosts.

Life Cycle and Mode of Transmission

Raccoons are infected by B. procyonis in one of two ways, depending on the age 

of the raccoon. Juvenile raccoons are typically infected by the ingestion of eggs in 
the environment. Younger raccoons have a higher prevalence of infection and have 

typically been shown to harbor a larger parasite burden. By contrast, adult raccoons 
are usually infected through ingesting larvae in the fl esh of paratenic hosts, such as 
squirrels and rodents. In raccoons, infection with B. procyonis rarely causes clinical 
symptoms, as the adult worms are confi ned to the small intestine.

Once ingested, larvae migrate to the small intestine of the raccoon and remain 

in the lumen as they mature into adult worms. Maturation typically takes 1 to 2 
months, depending upon the larval stage at the time of ingestion. Adult female 
worms have an extremely high fecundity rate, producing between 115,000 to 

877,000 eggs/worm/d. An infected raccoon can shed as many as 45,000,000 eggs 
daily. An infectious dose of eggs is estimated to be less than 5,000. It takes 2 to 4 
weeks for eggs to become infectious aft er being shed.

C

HAPTER

 11


background image

Communities of raccoons habitually defecate in discrete areas termed “latrines.” 

Th is serves to harbor and accumulate increasingly large numbers of B. procyonis 
eggs and becomes the main means of transmission to intermediate hosts.

Humans are infected by ingesting B. procyonis eggs, typically at the sites of rac-

coon defecation. Pica and geophagia are risk factors for infection and are common 

in children under two years of age. Aft er ingestion, larvae penetrate the intestinal 
mucosa and migrate rapidly to the liver and then to the lungs through the portal 
circulatory system. In the lungs, the larvae gain access to the pulmonary veins and 

are then distributed through the systemic circulation to the tissues. Larvae do not 

mature into adult worms in human hosts.

Clinical Features

In humans, baylisascariasis results in death or severe neurologic sequelae. To 

date, 13 confi rmed cases of baylisascariasis in humans have been reported in the 
literature. In all cases, the victims were either young children or young adults with 
severe developmental disabilities. Disease results in neural larva migrans (NLM), 
ocular larva migrans (OLM) and visceral larva migrans (VLM). B. procyonis is 
distinct from other common parasites causing larva migrans by its propensity for 

continued larval growth in intermediate hosts, invasion of the central nervous 
system and its aggressive migration through host tissues.

B. procyonis is relatively unique among the zoonotic helminthes in its ability 

to cause neural larva migrans in addition to ocular and visceral larva migrans. 
It is estimated that 5 to 7% of ingested B. procyonis eggs travel to the central 
nervous system (CNS). When CNS involvement occurs, it most commonly 
presents as acute eosinophilic meningoencephalitis. Case reports in children 
have documented clinical signs including, sudden onset of lethargy, irritabil-

ity, loss of motor coordination, weakness, generalized ataxia, stupor, coma, 
opisthotonus and death. Clinical symptoms may occur as early as 2 to 4 weeks 
post infection.

B. procyonis is the primary cause of the large nematode variant of diff use uni-

lateral subacute neuroretinitis (DUSN). Th is neuroretinitis is characterized by 
infl ammatory and degenerative changes involving the retina and optic disk.

Based on the above data, the diagnosis of baylisascariasis should be considered in 

the setting of eosinophilia, both peripherally and in the CNS, DUSN, neurologic 

signs and a history of possible environmental exposure to raccoon feces.

Diagnosis

Laboratory Tests/Microscopy

Eosinophilic pleocytosis in the cerebral spinal fl uid in combination with 

peripheral eosinophilia is highly suggestive of parasitic infection. Because of the 
prolonged, aberrant migration of B. procyonis larva, eosinophilic infl ammation can 

be quite marked (28% or higher).

Defi nitive diagnosis is through morphologic identifi cation of larvae in tissue 

sections, which is usually only accomplished at autopsy. Because B. procyonis 

does not establish an intestinal infection in humans, eggs will never be observed 
in feces.

68

Medical Parasitology

11


background image

Radiographic

Central nervous system infection with B. procyonis has been noted to cause 

diff use, periventricular white matter changes on MRI, though this fi nding is not 
pathognomonic. Global atrophy as well as capsular and brain stem changes have 

been noted as late radiographic fi ndings.

Molecular Diagnostic

Serologic testing for anti-bp antibodies in the CSF and serum by enzyme-linked 

immunosorbent assay (ELISA) or immunofl uorescent antibody (IFA) has become 
the most important defi nitive diagnostic modality. Th is antibody assay has not 

been shown to have cross-reactivity with antibodies toward other ascarids, such as 
Toxocara species. In the United States, serologic testing is only available through the 
Department of Veterinary Pathobiology at Purdue University in West Lafayette, IN 

(phone 765-494-7558). B. procyonis infection also causes an elevation in isohemaglu-
tinins due to a cross-reaction of larval proteins with human blood group antigens.

Treatment

Neural larva migrans has a universally poor prognosis. Th is is due in large 

part to failure of medical therapy when initiated at the onset of clinical signs and 
symptoms. Albendazole should be administered at a dose of 25 mg/kg for 20 days 

to a child with known exposure to raccoon stool. Ivermectin, mebendazole and 
thiabendazole can also be considered. Th eoretically, the most promising anthel-
minthic agent is albendazole because of its ability to cross the blood-brain barrier. 

Whether albendazole would have any benefi cial eff ect in treating CNS disease 
is unknown. In the past, corticosteroids have been administered to decrease the 
deleterious eff ects of the host infl ammatory response to the migrating larvae. When 
a motile larva is found in the retina in a patient with ocular larva migrans, laser 
photocoagulation is curative.

Prevention and Prophylaxis

It is likely that B. procyonis will become a more signifi cant pathogen for humans 

as the geographic distribution of the North American raccoon continues to expand 
and encroach upon urban human environments. Due to the relatively poor effi  cacy 

of treatment, preventative strategies are increasingly important. When possible, 
raccoons should be prevented from frequenting areas of human habitation. If 
an area is known to be contaminated by raccoon feces, the preferred method of 

disinfection is with direct fl ames.

Education of the public regarding the dangers of raccoon contact is paramount. 

Children should be closely monitored for ingestion of soil while playing outside. 
If ingestion of raccoon feces is suspected in a child, prophylactic treatment should 
consist of immediate administration of albendazole (25-50 mg/kg/d × 20 d; or 

400 mg twice a day × 10 days).

Suggested Reading

  1.  Chronic and Recurrent Meningitis. Harrison’s Online. McGraw-Hill Company, 

2004-2005. www.accessmedicine.com. A comprehensive review of meningitis.

  2.  Gavin PJ, Kazacos KR, Shulman ST. Baylisascariasis. Clin Microbiol Rev 2005; 

18:703-18. Th is is an excellent review.

69

Baylisascariasis and Toxocariasis

11


background image

  3.  Gavin PJ, Shulman ST. Raccoon roundworm (Baylisascaris procyonis). Pediatr 

Infect Dis 2003; 22:651-2.

  4.  Murray WJ, Kazacos KR. Raccoon roundworm encephalitis. Clin Infect Dis 2004; 

39:1484-92.

  5.  Nash TE. Visceral larva migrans and other unusual helminth infections. 

In: Mandell GM, Bennett JE, Dolin R, eds. Principles and Practice of 

Infectious Diseases, 6th Edition. Philadelphia: Elsevier Churchill Livingstone 

2005:3293-300. A comprehensive review of unusual helmith infections.

  6.  Page LK, Swihart RK, Kazacos KR. Implications of raccoon latrines in the epizo-

otiology of baylisascaris. J Wildl Dis 1999; 35:474-80.

  7.  Park SY, Glaser C, Murray WJ et al. Raccoon roundworm (Baylisascaris procyonis) 

encephalitis: case report and fi eld investigation. Pediatrics 2000; 106.http://www.

pediatrics.org/cgi/content/full/106/4-e56.

  8.  Roussere GP, Murray WJ, Raudenbush CB et al. Raccoon roundworm eggs near 

homes and risk for larva migrans disease, California communities. Emerg Infect 

Dis 2003; 9:1516-22.

  9.  Rowley HA, Uht RM, Kazacos KR et al. Radiologic-pathologic fi ndings in rac-

coon roundworm (Baylisascaris procyonis) encephalitis. Amv J Neuroradiol 2000; 

21:415-20.

 10.  Sorvillo F, Ash LR, Berlin OG et al. Baylisascaris procyonis: An emerging helmin-

thic zoonosis. Emerg Infect Dis 2002; 8:355-59.

 11.  Wise ME, Sorvillo FJ, Shafi r SC et al. Severe and fatal central nervous system 

disease in humans caused by Baylisascaris procyonis, the common roundworm of 

raccoons: A review of current literature. Microbes Infect 2005; 7:317-23.

Toxocariasis

Many animal parasites are capable of infecting humans but rarely do so. Some 

helminths, however, infect humans more frequently and cause distinctive clinical 

syndromes. In the human host, especially children, the tissue migrating larvae of 
roundworms, Toxocara canis and T. cati, can cause serious complications includ-
ing visceral larva migrans and ocular larva migrans. Originally toxocariasis was 
thought to be an uncommon pediatric infection. With improved serologic test-
ing, toxocariasis is now known to be the most prevalent helminthic zoonosis in 

industrialized countries.

Background

Geographical Distribution and Epidemiology

Worldwide, toxocariasis is one of the most commonly reported zoonotic 

infections. Toxocara infect most domestic and many feral dogs and cats as well as 

foxes. In humans, infection is far more common in children than adults. Children 
usually acquire the infection through the ingestion of soil contaminated with 
embryonated Toxocara eggs.

Exposure is most likely to occur in playgrounds and sandboxes contaminated 

with cat and dog feces. Th ere is evidence that the infection may also be acquired 

from direct contact with infected dogs, given the fact that the egg density on dog 
hair may be higher than that in soil.

Between 2% and 8% of healthy adults in Western countries in urban areas have 

serologic evidence of prior infection. Th e seroprevalence in children is much higher, 
ranging from 4 to 31% in developed countries to as high as 92.8% in rural areas in 
tropical countries. In a recent sero-epidemiological study of T. canis in schoolchildren 

70

Medical Parasitology

11


background image

in a mountainous region of Taiwan, 57.5% of children were seropositive. Th e two 

most signifi cant risk factors for infection were living in household with dogs or play-
ing in soil. In a similar study in Sorocaba, Brazil, 38.3% of children living in poorer 

outskirts of the city were infected compared to 11.1% in the central city. Overall, 
infection is most common in children with geographia or pica and exposure to pup-

pies. Several studies have shown higher rates of infection in mentally retarded adults 
and children. In Israel, 8.5% of institutionalized mentally retarded adults had serologic 
evidence of infection. Several studies of mentally retarded children have found rates 

of infection from 10.6 to 20 percent. Although infection with Toxocara is common 

in cats, Toxocara cati is under recognized as a zoonotic infection.

Life Cycle and Mode of Transmission

In humans, Toxocara worms have a life cycle similar to that of Ascaris 

lumbricoides (Fig. 11.1). In the both animals and the aberrant host, ingestion 
of embryonated eggs initiates infection. Dogs and cats can also acquire the 
infection by eating earthworms or other paratenic hosts carrying embryonated 
eggs. Following ingestion, the eggs hatch in the small intestine to release larvae 
which penetrate the intestinal wall. The larvae then migrate via the bloodstream 

to the liver, lung and trachea. In the definitive host, particularly in dogs less 
than 6 months old, the larvae complete the life cycle after they are coughed 
up and swallowed, returning to the gastrointestinal tract. The larvae develop 

into the adult stage in the small intestine 60 to 90 days after hatching. Mating 
occurs in the intestine. Female worms may produce up to 200,000 eggs per 
day (Fig. 11.2). These nonembryonated eggs are then excreted into the soil 

71

Baylisascariasis and Toxocariasis

11

Figure 11.1. Life Cycle of Toxocara canis. Reproduced from: Nappi AJ, Vass E, 

eds. Parasites of Medical Importance. Austin: Landes Bioscience, 2002:86.


background image

where embryonation occurs within one to two weeks. Embryonated eggs can 

survive in the soil from days to months depending on the soil temperature. In 
pregnant female dogs and cats, dormant larvae, activated by hormonal stimuli, 
may develop and migrate transplacentally. Puppies infected in utero or trans-
mammarily also shed eggs.

In humans, ingested eggs hatch in the small intestine and penetrate the in-

testinal wall in the same way as in the defi nitive host, but the larvae, unable to 
mature, migrate through the body for a prolonged period. Infective larvae, which 
do not mature into adult worms in humans, can persist for years aft er becoming 

encapsulated within granulomas. Hatched larvae have been isolated from the eye, 
liver, heart and brain. Besides ingestion of soil contaminated with embryonated 
eggs, infection can also occur aft er consumption of raw or undercooked meat in-
fected with Toxocara larvae, as well as by ingestion of vegetables and salads grown 
in contaminated soil.

Clinical Features

Th e severity of disease and degree of host response vary dependent upon the 

tissue invaded by the migrating larvae, the number of larvae and the age of the 
host. Th e death of the juvenile larvae in tissue, particularly the lung, liver and 

brain, evokes an infl ammatory response with marked eosinophilia, producing the 
symptoms of visceral larva migrans (VLM).

In the eye damage to the retina from the migrating larvae, ocular larva migrans 

(OLM), results in a granulomatous reaction and impaired vision. OLM is thought 
to occur mostly in children not previously sensitized to toxocariasis while VLM 

occurs following repeated exposure to migrating larvae.

72

Medical Parasitology

11

Figure 11.2. Toxocara canis egg.Reproduced from: Centers for Disease 

Control and Prevention (CDC) (http://www.dpd.cdc.gov/dpdx/).


background image

Visceral Larva Migrans

VLM occurs primarily in young and preschool children. Most infections are 

asymptomatic, but fulminant disease and death do occur. Children come to medical 
attention with unexplained prolonged fever, cough, hepatosplenomegaly, wheeze 

and eosinophilia.

Other clinical signs and symptoms include lymphadenopathy, skin lesions, 

pruritus, anemia, failure to thrive, decreased appetite, nausea, vomiting, headache 
and pneumonia, as well as behavioral and sleep disturbances. In children with 
toxocariasis, pica or geographia are common. Myocarditis, respiratory failure or 

seizures may complicate overwhelming infection. Other less frequently reported 

complications included multiple ecchymoses with eosinophilia, pyogenic liver 
abscess, urticaria or prurigo, Henoch-Schönlein purpura, nephrotic syndrome, 
secondary thrombocytosis and eosinophilic arthritis. Th ere is a report of VLM 
mimicking lymphoma with hilar and mediastinal lymphadenopathy and another 
of systemic vasculitis with lymphocytic temporal arteritis. Both of these two com-
plications occurred in patients over 60 years of age.

Toxocariasis has been suggested to be an environmental risk factor for asthma 

among children living in urban areas, but supportive evidence for this hypothesis 
is lacking. Central nervous system involvement is a rare complication reported 

more frequently in adults. Toxocariasis should be considered as a causative agent 
in patients with eosinophilic meningoencephalitis or meningitis. T. canis has been 
reported to cause epileptic seizures, particularly late-onset partial epilepsy.

Ocular Larva Migrans

Ocular toxocariasis occurs primarily in young adults and older children who 

present with unilateral visual loss over days to weeks. OLM follows entrapment of 
a larva in the eye causing an intense eosinophilic infl ammatory reaction. Posterior 

pole granuloma is the most common form of OLM in children between 6 and 14 
years and causes decreased vision. Peripheral granuloma is usually seen at an older 
age in association with macular heterotropia, strabismus and decreased vision. 

Endophthalmitis occurs in younger children aged 2 to 9 years in whom there is 
marked visual impairment with evidence of vitritis and anterior uveitis. Retinal 
detachment may be seen on fundoscopic examination. OLM should be included 
in the diff erential diagnosis of any child with leukocoria.

Diagnosis

Th e presence of eosinophilia in a child with unexplained fever, abdominal 

pain, hepatosplenomegaly and multisystem illness raises the possibility of VLM, 
especially if there is a history of geographia or pica and contact with puppies. 

For a child with unilateral visual loss and strabismus, a diagnosis of OLM must 
be excluded. In OLM the blood eosinophil count is frequently not elevated. 
Leukocytosis, hypergammaglobulinemia, increased anti-Toxocara IgE serum con-

centration and elevated isohemagglutinin titers to A and B blood group antigens 
may be present in VLM.

Th e diagnosis of both VLM and OLM is usually based on serologic tests. 

However, serologic tests do not reliably distinguish between recent and past infec-
tion. Th e most frequently performed test is the enzyme-linked immunosorbent assay 

(ELISA) which uses Toxocara excretory-secretory antigens of the second-stage larvae. 

73

Baylisascariasis and Toxocariasis

11


background image

Th is test is suffi  ciently specifi c to be the best indirect diagnostic assay. At a titer of 

greater than 1:32 the sensitivity of this test for diagnosing VLM is about 78%. Th e 
ELISA is less reliable for the diagnosis of OLM. Th e presence of elevated vitreous 

and aqueous fl uid titers relative to serum titers supports the diagnosis of OLM.

Microscopy

A defi nitive diagnosis of VLM is based upon the visualization of the larvae in 

infected tissue such as lung, liver, or brain. In OLM the larvae may be seen in the 
enucleated eye.

Molecular Diagnostics and Radiographic

In OLM, ultrasound biomicroscopy has been used to detect the morphologic 

changes of peripheral vitreoretinal toxocariasis.

Ultrasonographic fi ndings of hepatic toxocariasis complicating VLM may 

include ill-defi ned focal lesions, hepatosplenomegaly, the presence of biliary sludge 
and dilatation and periportal lymphadenopathy. If present, follow-up CT scan or 
MR imaging should be considered following treatment.

In patients with cerebral granulomatous toxocariasis, multiple subcortical, corti-

cal, or white matter lesions that were hypoattenuating on CT scan, hyperintense on 
T2-weighted MR images and homogeneously enhancing have been reported. Th ese 
fi ndings are nonspecifi c. It has been suggested, nonetheless, that serial MR imaging 

may be used to monitor the course of disease treated with anthelminthic therapy.

Treatment

Th e decision to treat toxocariasis is made based on the type of infection and 

severity of clinical symptoms. Most patients do not require treatment.

Current Th erapy and Alternative Th erapies

Visceral Larva Migrans

Albendazole, in doses of 10 mg/kg or 400 mg, both given twice daily for 5 

days is the treatment of choice for toxocariasis. Mebendazole is a second-line 
therapy since it is not absorbed outside of the gastrointestinal tract. Th ese two 
agents have fewer side eff ects than thiabendazole and diethylcarbamazine, both 
of which require treatment for one to three weeks. Injury to the parasite may 
cause a more intense infl ammatory response with worsening of symptoms for 

which antihistamines and corticosteroids may be of benefi t.

Ocular Larva Migrans

Th e goal of therapy for the treatment of OLM is to decrease the severity of the 

infl ammatory response. If given within the fi rst four weeks, systemic or intraocular 
corticosteroids are the most eff ective intervention. Th ere are reports of treatment 

with albendazole and corticosteroids although the ocular penetration of albendazole 
and other benzimidazoles has not been established. Diethlycarbamazine (DEC) may 
be the preferred agent for ocular disease, but the activity of DEC may be inhibited 

by corticosteroids. Accordingly, they should not be co-administered. If the migrat-
ing larva can be visualized, laser photocoagulation is eff ective and will destroy the 

organism. Treatment of chronic ocular infection, infection for more than 8 weeks, is 
problematic and should be managed by an experienced ophthalmologist.

74

Medical Parasitology

11


background image

Follow-Up aft er Treatment

Within a week of treatment there is usually a rise in eosinophilia accompanied 

by improvement in clinical parameters. By 4 weeks post-therapy, eosinophilia has 
usually resolved and the antitoxocara IgE has become negative.

Prevention and Control

Exposure to toxocariasis occurs primarily in overcrowded urban areas where 

children are in close contact with dogs and cats. Public education and control ef-
forts should be directed at limiting exposure of children to soil contaminated with 

Toxocara eggs in public parks, playgrounds, sandboxes, home gardens and other 
areas where children congregate. Dogs and cats should be restricted from entering 

public areas where children play. Dog owners should clean up aft er their pets have 
defecated and have their pets wormed regularly. Children should wash their hands 
aft er playing in a park or coming in close contact with dogs, especially puppies and 
cats. Children with geographia or pica require medical evaluation.

Suggested Reading

  1.  Glickman LT, Schnatz PM. Epidemiology and pathogenesis of zoonotic toxoca-

riasis. Epidemiol Rev 1981; 3:230-50.

  2.  Wolfe A, Wright IP. Human toxocariasis and direct contact with dogs. Vet Rec 

2003; 152:419-22.

  3.  Fan Ck, Liao CW, Kao TC et al. Sero-epidemiology of Toxocara canis infection 

among aboriginal schoolchildren in the mountainous areas of northeastern Taiwan. 

Ann Trop Med Parasitol 2005; 99:593-600.

  4.  Coelho LM, Silva MV, Dini CY et al. Human toxocariasis: a seroepidemiological survey 

in schoolchildren in Sorocaba, Brazil. Mem Inst Oswaldo Cruz 2004; 99:553-7.

  5.  Kaplan M, Kalkan A, Hosoglu S et al. Th e frequency of Toxocara infection in 

mental retarded children. Mem Inst Oswaldo Cruz 2004; 99:121-5.

  6.  Huminer D, Symon K, Groskopf I et al. Seroepidemiologic study of toxocariasis 

and strongyloidiasis in institutionalized mentally retarded adults. Am J Trop Med 

Hyg 1992; 46:278-81.

  7.  Gillespie SH. Migrating worms. In: Cohen J, Powderly W, eds. Infectious Diseases, 

2nd Edition. Oxford: Elsevier Inc., 2004:1633-5. A comprehensive review, includ-

ing the pathogenesis.

  8.  Beaver PC. Th e nature of visceral larva migrans. J Parasitol 1969; 55:3-12.

  9.  Buijs J, Borsboom G, van Gemund JJ et al. Toxocara seroprevalence in 5-year-old elemen-

tary schoolchildren: relation with allergic asthma. Am J Epidemiol 1994; 140:839-47.

 10.  Sharghi N, Schantz PM, Caramico L et al. Environmental exposure to Toxocara as a 

possible risk factor for asthma: a clinic-based case-control study. Clin Infect Dis 2001; 

32:111-6. Th e association of Toxocara infection with asthma is refuted in this study.

  11.  Nicoletti A, Bartoloni A, Reggio A et al. Epilepsy, cysticercosis and toxocariasis: a pop-

ulation-based case-control study in rural Bolivia. Neurology 2002; 58:1256-61.

 12.  Hemang P, Goldstein D. Pediatric uveitis. Pediatr Clin N Am 2003; 50:125-36. A 

comprehensive review of pediatric uveitis including toxocariasis and other infec-

tious pathogens.

 13.  Good B, Holland CV, Taylor MRH et al. Ocular toxocariasis in schoolchildren. 

Clin Infect Dis 2004; 39:173-8.

 14.  Gillespie SH, Bidwell D, Voller A et al. Diagnosis of human toxocariasis by antigen 

capture enzyme linked immunoabsorbent assay. J Clin Pathol 1993; 46:551-4.

 15.  Xinou E, Lefk opoulos A, Gelagoti M et al. CT and MRI imaging fi ndings in 

cerebral toxocaral disease. Am J Neuroadiol 2003; 24:714-8.

 16.  Strucher D, Schubarthi P, Gualzata M et al. Th iabendazole vs. albendazole in treat-

ment of toxocariasis: a clinical trial. Ann Trop Med Parasitol 1989; 83:473-8.

75

Baylisascariasis and Toxocariasis

11


background image

C

HAPTER

 12

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Lymphatic Filariasis

Subash Babu and Thomas B. Nutman

Background

Th e term “lymphatic fi lariasis” encompasses infection with three closely related 

nematode worms—Wuchereria bancroft i, Brugia malayi and Brugia timori. All 
three parasites are transmitted by the bites of infective mosquitoes and have quite 
similar life cycles in humans (Fig. 12.1) with the adult worms living in the aff erent 
lymphatic vessels while their off spring, the microfi lariae, circulate in the peripheral 
blood and are available to infect mosquito vectors when they feed. Th ough not fatal, 
the disease is responsible for considerable suff ering, deformity and disability and 

is the second leading parasitic cause of disability with DALYs (disability-adjusted 
life years) estimated to be 5.549 million.

Lymphatic fi lariasis is a global health problem. At a recent estimate, it has 

been determined that over 2 billion people are at risk and at least 129 million 
people actually infected. W. bancroft i accounts for nearly 90% of these cases. W. 
bancroft i
 has the widest geographical distribution and is present in Africa, Asia, 
the Caribbean, Latin America and many islands of the Western and South Pacifi c 
Ocean. B. malayi is geographically more restricted, being found in Southwest 

India, China, Indonesia, Malaysia, Korea, the Philippines and Vietnam. B. timori 
is found in Timor, Flores, Alor, Roti and Southeast Indonesia.

Humans are the defi nitive host and mosquitoes are the intermediate hosts of 

Wbancroft i and Brugia spp. Th e life cycle of fi larial parasites involves four larval 
stages and an adult stage. Infection begins with the deposition of infective stage 
larvae (L3) on the skin near the site of puncture during a mosquito bite. Th e larvae 
then pass through the puncture wound and reach the lymphatic system. Within 
the lymphatics and lymph nodes, the L3 larvae undergo molting and development 

to form L4 larvae. Th is takes about 7-10 days for both W. bancroft i and B. malayi
Th e L4 larvae undergo a subsequent molting/developmental step to form adult 
worms. Th is occurs about 4-6 weeks aft er L3 entry in the case of B. malayi and 

aft er several months in the case of W. bancroft i. Th e adult worms take permanent 
residence in aff erent lymphatics or the cortical sinuses of lymph nodes and generate 
microscopic live progeny called “microfi lariae”. Th e female worms can give birth 
to as many as 50,000 microfi lariae per day, which fi nd their way into the blood 
circulation from the lymphatics. Th e adult worms are estimated to survive for a 

period of 5-10 years although longer durations have been recorded.

Th e major vectors of W. bancroft i are culicine mosquitoes in most urban and 

semi-urban areas, anophelines in the more rural areas of Africa and elsewhere and 
Aedes species in many of the endemic Pacifi c islands. For the Brugian parasites, 


background image

77

Lymphatic Filariasis

12

Mansonia species serve as the main vector, but in some areas anopheline mosqui-

toes can transmit infection as well. Culex quinquefasciatus is the most important 
vector of W. bancroft i and is responsible for more than half of all lymphatic 
fi larial infections. Th e microfi lariae of W. bancroft i and B. malayi, for the large 

part, exhibit a phenomenon called nocturnal periodicity, i.e., they appear in 
larger numbers in the peripheral circulation at night and retreat during the day. 
Subperiodic or nonperiodic W. bancroft i and B. malayi are also found in certain 
parts of the world.

Filarial nematodes belong to the phylum Nematoda, class Secernentea, and 

superfamily Filarioidea. Adult W. bancroft i and B. malayi worms are long, slender, 
tapered and cylindrical worms. Th e males (4 cm × 0.1 mm for W. bancroft i and 

Figure 12.1. Generalized life cycle of fi lariids. Adapted from: Nappi AJ, Vass E, 

eds. Parasite of Medical Importance. Austin: Landes Bioscience, 2002:93.


background image

78

Medical Parasitology

12

3.5 cm × 0.1 mm for B. malayi) are strikingly smaller than the females (6-10 cm × 

0.2-0.3 mm for W. bancroft i and 5-6 cm × 0.1 mm for B. malayi). Th e microfi lariae 
of W. bancroft i are ensheathed and measure about 245-300 

μ

m by 7.5-10 

μ

m (Fig. 

12.2). Th e microfi lariae of B. malayi are ensheathed and measure 175-230 

μ

m by 

5-6 

μ

m. Most pathogenic human fi larial parasites are infected with a bacterial en-

dosymbiont called Wolbachia. It is an alpha-proteobacteria, related to Rickettsia, 
Erlichia and Anaplasma and is maternally inherited. It has been detected in all 
life cycle stages of the parasite and found to be essential for adult worm viability, 
normal fertility and larval development.

Clinical Manifestations

Lymphatic fi lariasis can manifest itself in a variety of clinical and subclinical 

conditions.

Subclinical (or asymptomatic) microfi laremia: In areas endemic for lymphatic 

fi lariasis, many individuals exhibit no symptoms of fi larial infection and yet, on 
routine blood examinations, demonstrate the presence of signifi cant numbers 
of parasites. Th ese individuals are carriers of infection (and the reservoir for 

ongoing transmission) and have commonly been referred to as asymptomatic 
microfi laremics. Th e parasite burdens in these individuals can reach dramatically 
high numbers, exceeding 10,000 microfi lariae in 1 ml of blood. With the advent 

of newer imaging techniques, it has become apparent that virtually all persons 
with microfi laremia have some degree of subclinical disease. Th ese include pro-
found changes such as marked dilatation and tortuosity of lymph vessels with 
collateral channeling and increased fl ow and abnormal patterns of lymph fl ow, a 
considerable degree of scrotal lymphangiectasia and microscopic hematuria and/

Figure 12.2. Microfi laria of W.bancrofti in a blood fi lm stained with Giemsa. 

The stain reveals the nuclei and the sheath.


background image

79

Lymphatic Filariasis

12

or proteinuria (indicative of low-grade renal damage). Th us, while apparently free 

of overt symptomatology, the asymptomatic microfi laremic individuals clearly 
are subject to subtle pathological changes.

Acute Clinical Disease

Th e acute manifestations of lymphatic fi lariasis are characterized by recurrent 

attacks of fever associated with the infl ammation of lymph nodes (lymphadenitis) 
and lymphatics (lymphangitis). In brugian fi lariasis, episodes of fever, lymph-

adenitis and lymphangitis are common, while bancroft ian fi lariasis present more 
insidiously with fewer overt acute episodes. Th e lymph nodes commonly involved 

are the inguinal, axillary and epitrochlear nodes and, in addition, the lymphatic 
system of the male genitals are frequently aff ected in W. bancroft i infection leading 

to funiculitis, epididymitis and/or orchitis.

It has been proposed that there are at least two distinct mechanisms involved in 

the pathogenesis of acute attacks. Th e more classical is acute fi larial adenolymphan-

gitis, which is felt to refl ect an immune-mediated infl ammatory response to dead 
or dying adult worms. Th e striking manifestation is a distinct well-circumscribed 
nodule or cord along with lymphadenitis and retrograde lymphangitis. Funiculo-
epididymoorchitis is the usual presenting feature when the attacks involve the 
male genitalia. Fever is not usually present, but pain and tenderness at the aff ected 

site are common.

Th e other has been termed acute dermatotolymphangitis, a process character-

ized by development of a plaque-like lesion of cutaneous or subcutaneous infl am-

mation and accompanied by ascending lymphangitis and regional lymphadenitis. 
Th ere may or may not be edema of the aff ected limbs. Th ese pathological features 
are accompanied by systemic signs of infl ammation including fever and chills. Th is 
manifestation is thought to result primarily from bacterial and fungal superinfec-
tions of the aff ected limbs.

Manifestations of Chronic Infection

Th e chronic sequelae of fi lariasis are postulated to develop approximately 10 to 

15 years aft er initial infection. In Bancroft ian fi lariasis, the main clinical features 
are hydrocele, lymphedema, elephantiasis and chyluria. Th e manifestations in 
descending order of occurrence are hydrocele and swelling of the testis, followed 
by elephantiasis of the entire lower limb, the scrotum, the entire arm, the vulva 
and the breast. In Brugian fi lariasis, the leg below the knee and the arm below the 

elbow are commonly involved but rarely the genitals. Lymphedema can be classifi ed 
or graded, a scheme proven very useful in clinical trials:

Grade 1

Pitting edema reversible on limb elevation.

Grade 2

Pitting/nonpitting edema not reversible on limb elevation and normal skin.

Grade 3

Nonpitting edema of the limb, not reversible on elevation with skin 

thickening.


background image

80

Medical Parasitology

12

Grade 4

Nonpitting edema with fi brotic and verrucous skin changes (elephantiasis) 

(Fig. 12.3A).

In men, scrotal hydrocele is the most common chronic clinical manifestation 

of bancroft ian fi lariasis (Fig. 12.3B). Hydroceles are due to accumulation of 
edematous fl uid in the cavity of the tunica vaginalis testis. Chronic epididymitis 

and funiculitis can also occur. Chyloceles can also occur. Th e prevalence of chyluria 
(excretion of chyle, a milky white fl uid in the urine) is very low.

Tropical Pulmonary Eosinophilia

Tropical pulmonary eosinophilia (TPE) is a distinct syndrome that develops 

in some individuals infected with W. bancroft i and B.malayi. Th is syndrome aff ects 
males and females at a ratio of 4:1, oft en during the third decade of life. Th e majority 

of cases have been reported from India, Pakistan, Sri Lanka, Brazil, Guyana and 
Southeast Asia. Th e main clinical features include paroxysmal cough and wheez-
ing that are usually nocturnal (and probably related to the nocturnal periodicity 

of microfi lariae), weight loss, low-grade fever, adenopathy and pronounced blood 
eosinophilia (>3000 eosinophils/

μ

L). Chest X-rays may be normal but gener-

ally show increased bronchovascular markings; diff use miliary lesions or mottled 
opacities may be present in the middle and lower lung fi elds. Tests of pulmonary 

function show restrictive abnormalities in most cases and obstructive defects in 
half. Total serum IgE levels (10,000 to 100,000 ng/mL) and antifi larial antibody 
titers are characteristically elevated.

Other Manifestations

Lymphatic fi lariasis has been associated with a variety of renal abnormalities 

including hematuria, proteinuria, nephrotic syndrome and glomerulonephritis. 
Circulating immune complexes containing fi larial antigens have been implicated 

in the renal damage. Lymphatic fi lariasis may also present as a mono-arthritis of 
the knee or ankle joint.

Uninfected, but exposed individuals (asymptomatic amicrofi laremia or endemic 

normals): In endemic areas, a proportion of the population remains uninfected 
despite exposure the parasite to the same degree as the rest of the population. Th is 
group has been termed endemic normal. Th e incidence of endemic normals in a 
population ranges from 0% to 50% in diff erent endemic areas.

Diagnosis

Th e traditional method of diagnosing lymphatic fi larial infections has been 

the detection of microfi lariae in the peripheral blood collected during the night 
in areas of nocturnal periodicity and during the day in areas of subperiodic 

lymphatic fi lariae. Th e simplest method is a thick blood fi lm of capillary blood 
stained with Giemsa stain, its disadvantage being poor sensitivity. Th e sensitivity 
of detection can be augmented by the use of concentration techniques such as the 

Knott’s concentration method in which 1 ml of whole blood is added to 9 ml of 
a 2% formalin solution, centrifuged and the sediment examined for microfi lariae. 
Another widely used concentration technique is the membrane fi ltration technique 
whereby 1-5 ml of blood is passed through a 3 or 5 

μ

M polycarbonate membrane 

which retains the microfi lariae.


background image

81

Lymphatic Filariasis

12

Figure 12.3. Chronic manifestations of lymphatic fi lariasis. A) Elephantiasis 

of the lower limb with verrucous and fi brotic skin changes. B) Hydrocele in 

a male patient.

A

B


background image

82

Medical Parasitology

12

For bancroft ian fi lariasis, assays for the detection of circulating parasite anti-

gens have been developed based on one of two well-characterized monoclonal 
antibodies, Og4C3 or AD12. Th e commercial Og4C3 ELISA (Trop Bio Og4C3 

Antigen test, produced by Trop Bio Pty Ltd) has a sensitivity approaching 100% 
and specifi city of 99-100%. Th e ICT fi larial antigen test (Binax) is a rapid format 

card test with a sensitivity of 96-100% and specifi city of 95-100%. It utilizes capil-
lary or venous blood and is simple enough for fi eld use.

Antibody-based assays for diagnosing fi larial infection have typically used 

crude parasite extract and have suff ered from poor specifi city. Improvements 

have been made by the use of detection of antifi larial IgG4 antibodies in that they 
are produced in relative abundance during chronic infection. IgG4 antibodies 
correlate well with the intensity and duration of fi larial exposure and the level 

of microfi laremia; these IgG4 antibodies also have very little cross-reactivity to 
nonfi larial helminths. In addition, IgG4 antibodies are also useful in the diagnosis 
of Brugian infections; indeed a diagnostic dipstick test has been used in areas 

endemic for Brugian fi lariasis based on a recombinant Brugian antigen.

PCR-based methods have been developed for the detection of W. bancroft i 

DNA in blood, plasma, paraffi  n embedded tissue sections, sputum, urine and in 

infected mosquitoes; and for B. malayi DNA in blood and in mosquitoes.

Finally, the examination of scrotum and breast using ultrasonography in con-

junction with pulse wave Doppler techniques can identify motile adult worms 
within the lymphatics. Th e adult worms exhibit a characteristic pattern of move-
ment known as the fi larial dance sign and the location of these adult worm nests 

remains remarkably stable. On rare occasions, living adult worms reside in the 
lymphatics of inguinal crural, axillary and epitrochlear lymph nodes.

Treatment

Diethylcarbamazine (DEC, 6 mg/kg in three divided doses daily for 12 days), 

which has both macro- and microfi laricidal properties, remains the treatment 
of choice for the individual with active lymphatic fi lariasis (microfi laremia, an-
tigen positivity, or adult worms on ultrasound), although albendazole (400 mg 
twice daily for 21 days) and ivermectin (400 

μ

g/kg) also have activity against 

microfi lariae.

In persons with chronic manifestations of lymphatic fi lariasis, treatment regi-

mens that emphasize hygiene, prevention of secondary bacterial infections and 
physiotherapy have gained wide acceptance for morbidity control. Hydroceles can 
be drained repeatedly or managed surgically. In patients with chronic manifesta-

tions of lymphatic fi lariasis, drug treatment should be reserved for individuals with 
evidence of active infection as therapy has been associated with clinical improve-
ment and, in some, reversal of lymphedema.

Th e recommended course of DEC treatment (12 days; total dose, 72 mg/kg) 

has remained standard for many years; however, data indicate that single-dose 
DEC treatment with 6 mg/kg may be equally effi  cacious. Th e 12-day course 
provides more rapid short-term microfi larial suppression. Regimens that utilize 
single-dose DEC or ivermectin or combinations of single doses of albendazole 

and either DEC or ivermectin have all been demonstrated to have a sustained 
microfi laricidal eff ect.


background image

83

Lymphatic Filariasis

12

In the past few years, the use of antibiotics such as doxycycline, which have an 

eff ect on Wolbachia, to treat lymphatic fi lariasis has been investigated. Preliminary 
data suggest that 200 mg of doxycycline for 8 weeks is eff ective in eliminating 

microfi laremia.

Prevention and Control

DEC has the ability of killing developing forms of fi larial parasites and has been 

shown to be useful as a prophylactic agent in humans. Like those integrated control 
programs used for onchocerciasis, long term microfi larial suppression using mass, 

annual distribution of single dose combinations of albendazole with either DEC 
or ivermectin is underway in many parts of the world. Th ese strategies have as their 

basis the microfi larial suppression of >1 year using single dose combinations of 
albendazole/ivermectin or albendazole/DEC. An added benefi t of these combina-

tions is their secondary salutary eff ects on gastrointestinal helminth infections.

Vector control measures such as the use of insecticides, the use of polystyrene 

beads in infested pits, the use of Bacillus sphaericus as a larvicide, the use of larvi-

vorous fi sh and the use of insecticide treated bednets have all been advocated as 
adjunct measure for control of fi lariasis.

Lymphatic filariasis is one of six potentially eradicable diseases (WHO 

International Task Force 1993) and the development of a global program to 
eliminate fi lariasis (GPELF) came about following a resolution by the WHO 

Assembly in 1997. Th e principal aims of the program are to interrupt transmis-
sion of infection and to alleviate and/or prevent disability. Th e recent advances 
in immunology, molecular biology and imaging technology have helped pave the 

way for the realization of the goal to eliminate of lymphatic fi lariasis.

Suggested Reading

  1.  Adebajo AO. Rheumatic manifestations of tropical diseases. Curr Opin Rheumatol 

1996; 8:85-9.

  2.  Amaral F, Dreyer G, Figueredo-Silva J et al. Live adult worms detected by 

ultrasonography in human Bancroft ian fi lariasis. Am J Trop Med Hyg 1994; 

50:753-757.

  3.  Dreyer G, Amaral F, Noroes J et al. Ultrasonographic evidence for stability of 

adult worm location in bancroft ian fi lariasis. Trans R Soc Trop Med Hyg 1994; 

88:558.

  4.  Dreyer G, Medeiros Z, Netto MJ et al. Acute attacks in the extremities of persons 

living in an area endemic for bancroft ian fi lariasis: diff erentiation of two syndromes. 

Trans R Soc Trop Med Hyg 1999a; 93:413-417.

  5.  Dreyer G, Santos A, Noroes J et al. Proposed panel of diagnostic criteria, includ-

ing the use of ultrasound, to refi ne the concept of ‘endemic normals’ in lymphatic 

fi lariasis. Trop Med Int Health 1999b; 4:575-579.

  6.  Eberhard ML, Lammie PJ. Laboratory diagnosis of fi lariasis. Clin Lab Med 1991; 

11:977-1010.

  7.  Horton J, Witt C, Ottesen EA et al. An analysis of the safety of the single dose, two 

drug regimens used in programmes to eliminate lymphatic fi lariasis. Parasitology 

2000; 121 Suppl:S147-160.

  8.  Kazura J, Greenberg J, Perry R et al. Comparison of single-dose diethylcarbamazine 

and ivermectin for treatment of bancroft ian fi lariasis in Papua New Guinea. Am 

J Trop Med Hyg 1993; 49:804-811.


background image

84

Medical Parasitology

12

  9.  Kimura E, Spears GF, Singh KI et al. Long-term effi  cacy of single-dose mass treat-

ment with diethylcarbamazine citrate against diurnally subperiodic Wuchereria 

bancroft i: eight years’ experience in Samoa. Bull World Health Organ 1992; 

70:769-776.

 10.  Lagraulet J. Current status of fi lariasis in the Marquises and diff erent epidemiologi-

cal aspects. Bull Soc Pathol Exot Filiales 1973; 66:311-320.

 11.  Maxwell CA, Mohammed K, Kisumku U et al. Can vector control play a useful 

supplementary role against bancroft ian fi lariasis? Bull World Health Organ 1999; 

77:138-143.

 12.  Melrose WD. Lymphatic fi lariasis: new insights into an old disease. Int J Parasitol 

2002; 32:947-960.

 13.  Michael E, Bundy DA, Grenfell BT. Re-assessing the global prevalence and distri-

bution of lymphatic fi lariasis. Parasitology 1996; 112 (Pt 4):409-428.

 14.  Molyneux DH, Neira M, Liese B et al. Lymphatic fi lariasis: setting the scene for 

elimination. Trans R Soc Trop Med Hyg 2000; 94:589-591.

 15.  More SJ, Copeman DB. A highly specifi c and sensitive monoclonal antibody-based 

ELISA for the detection of circulating antigen in bancroft ian fi lariasis. Trop Med 

Parasitol 1990; 41:403-406.

 16.  Ong RK, Doyle RL. Tropical pulmonary eosinophilia. Chest 1998; 113:1673-1679.

 17.  Ottesen EA, Nutman TB. Tropical pulmonary eosinophilia. Annu Rev Med 1992; 

43:417-424.

 18.  Ottesen EA. Th e global programme to eliminate lymphatic fi lariasis. Trop Med 

Int Health 2000; 5:591-594.

 19.  Pani SP, Krishnamoorthy K, Rao AS et al. Clinical manifestations in malayan 

fi lariasis infection with special reference to lymphoedema grading. Indian J Med 

Res 1990; 91:200-207.

 20.  Pani SP, Srividya A. Clinical manifestations of bancroft ian fi lariasis with special 

reference to lymphoedema grading. Indian J Med Res 1995; 102:114-118.

 21.  Partono F. Th e spectrum of disease in lymphatic fi lariasis. Ciba Found Symp 1987; 

127:15-31.

 22.  Partono F, Dennis DT, Atmosoedjono S et al. Th e microfi laria of Brugia timori: 

morphologic description with comparison to Brugia malayi of Indonesia. J Parasitol 

1977; 63:540-546.

 23.  Rahmah N, Taniawati S, Shenoy RK et al. Specifi city and sensitivity of a rapid 

dipstick test (Brugia Rapid) in the detection of Brugia malayi infection. Trans R 

Soc Trop Med Hyg 2001; 95:601-604.

 24.  Taylor MJ, Hoerauf A. Wolbachia bacteria of fi larial nematodes. Parasitol Today 

1999; 11:437-442.

 25.  Taylor MJ, Makunde WH, McGarry HF et al. Macrofi laricidal activity aft er 

doxycycline treatment of Wuchereria bancroft i: a double-blind, randomised 

placebo-controlled trial. Lancet 2005; 365:2067-2068.

 26.  Vanamail P, Subramaniam S, Das PK et al. Estimation of age-specifi c rates of ac-

quisition and loss of Wuchereria bancroft i infection. Trans R Soc Trop Med Hyg 

1989; 83:689-693.

 27.  Weil GJ, Jain DC, Santhanam S et al. A monoclonal antibody-based enzyme im-

munoassay for detecting parasite antigenemia in bancroft ian fi lariasis. J Infect Dis 

1987; 156:350-355.

 28.  WHO. Lymphatic fi lariasis. World Health Organ Tech Rep Ser 1992; 821:1-71.

 29.  WHO. Lymphatic fi lariasis. Weekly Epidemiological Record 2003; 78:171-179.


background image

S

ECTION

 II

Trematodes


background image

C

HAPTER

 13

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Clonorchiasis and Opisthorchiasis

John Cmar

Background

Causative Agents

The class Trematoda contains 13 species of parasitic flatworms that cause 

biliary tract disease in humans. Residing in the family Opisthorchiidae, the 
three most common are Clonorchis (formerly OpisthorchissinensisOpisthorchis 

felineus and Opisthorchis viverrini. Adults of these species are dorso-ventrally 
flattened lancet-shaped hermaphroditic worms and typically reach 10-25 mm 
in length and 3-5 mm in width (Fig. 13.1). While similar in appearance, these 
species can be distinguished morphologically by the shape and appearance of 
the testes, as well as the arrangement of the vitelline glands. The eggs are 30 

μ

m by 15 

μ

m in size, ovoid and yellowish brown in color, with a well-developed 

operculum. In contrast to the adult forms, it is difficult to distinguish these 
species from each other on the basis of egg morphology.

Humans are among the piscivorous mammals that are the definitive hosts 

in whom the C. sinensis and Opisthorchis species undergo sexual reproduction. 
The flukes reproduce asexually in several species of snails, which are the first 
intermediate hosts. Various freshwater fish and crustaceans serve as the sec-
ond intermediate hosts. The geographic distribution of human clonorchiasis 

is related to both the areas of population of the aforementioned snails and 
marine animals, as well as the local culinary and hygiene habits concerning 
said animals.

Geographical Distribution/Epidemiology

Th e 1994 report of the World Health Organization and the International 

Agency for Research on Cancer estimated the global number of C. sinensis infec-
tions to be 7 million; however, a series of more recent studies places the number 

at closer to 35 million, with over 15 million of those infected living in China. 
In addition, Japan, Taiwan, Hong Kong, Korea and Vietnam are also primary 
endemic countries for this infection. Prevalence rates within endemic regions 
can vary widely with local culinary customs and sanitation; various Chinese 
provinces have described prevalence ranging from <1 to 57 percent.

Th e two Opisthorchis species under consideration have diff erent geographic 

distributions. O. felineus is endemic to Southeast Asia and Central and Eastern 


background image

87

Clonorchiasis and Opisthorchiasis

13

Europe, especially in Siberia and other former territories of the Soviet Union. Over 

16 million people worldwide are thought to be infected, with prevalence rates of 40 
to 95%. O. viverrini occurs primarily in Th ailand, Laos and Kampuchea. Estimates 
of infection are 10 million people worldwide, with 24 to 90 percent prevalence in 
Th ailand and 40 to 80 percent in Laos.

While these organisms may not have a major impact in non-endemic countries, 

clonorchiasis and opisthorchiasis can still occur there by one of several means. 
Travelers to an endemic area may return infected, acquiring the parasite from eat-
ing improperly prepared freshwater fi sh, or via the fecal-oral route in areas of poor 

sanitation. Immigrants from endemic countries to non-endemic countries can bring 
the disease with them; early studies of clinical clonorchiasis in Asian immigrants 
to North America described prevalence rates of up to 28%. Finally, freshwater 
fi sh and shrimp that are improperly pickled, dried, or salted for importation by 
non-endemic countries can harbor living encysted organisms and bring disease to 

those who have never visited an endemic region.

Th e adult fl ukes of C. sinensis and Opisthorchis species have a lifespan of up 

to 30 years in the bile ducts of humans, during which time immunity does not 

Figure 13.1. Adult Clonorchis sinensis, a hepatic fl uke. Reproduced from: 

Nappi AJ, Vass E, eds. Parasites of Medical Importance. Austin: Landes 

Bioscience, 2002:44.


background image

88

Medical Parasitology

13

develop. As such, cumulative infections can occur, resulting in increased intensity 

of infection and greater worm burden. Th us, symptomatology is most common in 
older adults who may be far removed from their initial exposure.

Mode of Transmission

Clonorchiasis and opisthorchiasis are perpetuated in the following cycle 

(Fig. 13.2): Adult fl ukes, residing in the biliary tracts of a defi nitive host, produce 
eggs, which pass with bile into the feces and are ultimately expelled into a fresh-

water environment. Th e eggs hatch into miracidia and infect snails of the Bithynia 

Figure 13.2. Life cycle of Clonorchis sinensis. Reproduced from: Nappi AJ, 

Vass E, eds. Parasites of Medical Importance. Austin: Landes Bioscience, 

2002:45.


background image

89

Clonorchiasis and Opisthorchiasis

13

and Parafossarulus geni, which serve as the fi rst intermediate hosts. Th e miracidia 

multiply in the snail and develop into cercariae.

Aft er 4-6 weeks of gestation, the cercariae are expelled back into the fresh-

water environment, where they infect a second intermediate host. Th ese are 
typically fi sh of the family Cyprinidae, but at least 113 species of freshwater 

fi sh from 13 families have been identifi ed. Th e cercariae penetrate under the 
scales of the second intermediate host, where they then encyst in the muscle 
and form metacercariae. In this stage, the parasite lies dormant until ingested 

by the defi nitive host.

In addition to humans, naturally occurring defi nitive hosts include dogs, pigs, 

cats (both domestic and wild), martens, badgers, minks, weasels and rats. Once 
ingested, the metacercariae excyst in the duodenum or jejunum and migrate 

through the ampulla of Vater to adhere to the common bile duct. Following 
the epithelial lining of the biliary tree, they proceed into the intrahepatic ducts, 
typically the smaller branches in the left  lobe. Other less common sites of 

residence include the gallbladder, pancreatic duct and, very rarely, the stomach. 
Once their fi nal destination is reached, they mature into egg-producing adults 
worms within 4 weeks.

Disease Signs and Symptoms

Symptomatology of active clonorchiasis and opisthorchiasis, whether in an 

acute or chronic stage of infection, is dependent on the burden of adult worms in 
the biliary tree. So-called “light” infections, classifi ed by either <10,000 eggs per 
gram of stool, or <100 adult worms, rarely cause symptoms. “Heavy” infections, 
which are more likely to cause symptoms, occur in only 10% of cases.

While O. felineus is the most likely of the three species under discussion to 

result in symptomatic acute infection, symptomatology in the acute phase is un-
common. Th e onset is usually 1-3 weeks aft er the ingestion of metacercariae and 
can persist for 2-4 weeks prior to resolution. Symptoms include fever, malaise, 

arthralgia/myalgia and anorexia, as well as abdominal pain and urticaria. Clinical 
signs are usually limited to tender hepatomegaly and lymphadenopathy. At this 
stage, peripheral eosinophilia is common and as symptoms resolve, eggs become 
detectible in the stool.

Aft er infection has become established, further symptoms and complications 

can develop by a number of mechanisms. Mechanical obstruction of the biliary 
tract by adult worms results in intermittent but recurring symptoms, especially in 
those with “heavy” infection, including anorexia, weight loss, fatigue, abdominal 

pain, diarrhea and dyspepsia. Additionally, persistent irritation and damage to the 
biliary epithelium results in both intimal desquamation and proliferation, which 
eventually results in fi brotic, as well as hyperplastic and dysplastic, alterations in 
architecture. Immune-mediated tissue damage occurs locally, characterized by 
the periductal infi ltration of lymphocytes and eosinophils. Ductal dilatation and 

stricture formation, pigment stone generation and hepatocellular fi brosis develop 
and the gallbladder becomes distended with stones. Th e ultimate serious sequelae 
of this include recurrent cholangitis, cholangiohepatitis and pancreatitis.

Th e most dire complication of clonorchiasis and opisthorchiasis is cholangiocarcino-

ma. While the specifi c carcinogenic mechanism is uncertain, postulated means include 


background image

90

Medical Parasitology

13

both intrinsic nitrosation and nitric oxide formation, as well as enzymatic activation. 

Weight loss and epigastric pain are the primary complaints, with ascities, jaundice and 
a palpable abdominal mass notable on exam. Overall survival is 6.5 months.

Diagnosis

Laboratory Tests, Microscopy

Classically, the diagnosis of clonorchiasis and opisthorchiasis is made by 

demonstrating eggs in the stool of infected hosts. Th ey are typically not present 
until 4 weeks aft er establishment of infections, and in light infections may require 

specimen concentration to be detected. As the eggs of C. sinensis are diffi  cult 
to distinguish from Opisthorchis spp., diff erentiation of species usually requires 
examination of expired adult fl ukes following therapy.

Biliary or duodenal fl uid, sampled by endoscopic retrograde cholangiopancre-

atography (ERCP) or needle aspiration, can also be found to demonstrate eggs 
or adult worms.

Other Tests

Serum IgE levels may be elevated in liver fl uke infection. Peripheral eosinophilia 

can be observed, but does not typically exceed 10-20% of the total WBC count. 
Alkaline phosphatase levels can be elevated in advanced liver disease, but other liver 
associated enzymes, such as the transaminases, are usually within normal limits.

Radiologic tests demonstrate the hepatic and biliary sequelae of chronic infection. 

Asymptomatic disease is associated with no radiologic abnormalities. Ultrasound can 

demonstrate nonshadowing echogenic foci within bile ducts that represent fl uke ag-
gregates. Other nonspecifi c changes by ultrasound can include hepatomegaly, ductal 
fi brosis and infl ammation, as well as gallbladder irregularities and sludge. However, 

such changes are only seen in 50% of patients with active chronic disease. CT scanning 
is reportedly more sensitive, especially for detecting relapsing cholangitis.

Cholangiography can show multiple fi ndings, depending on the stage of infec-

tion and worm burden. Multiple saccular or cystic dilatations of the intrahepatic 
bile ducts can appear as a “mulberry sign.” Th e “arrow-head sign” is the rapid 

tapering of the intrahepatic bile ducts to the periphery. Portal and periportal 
fi brosis can result in a decrease in the number of intrahepatic radicles visualized. 
Individual adult worms can be seen as fi lamentous, wavy and elliptical fi lling de-

fects. Duct wall irregularities, varying from small indentations—which, in series, 
can give rise to a “scalloped” appearance—to hemispherical fi lling defects.

Molecular Diagnosis

Th ere are no widely available ELISA tests for liver fl ukes currently, although several 

are under investigation. Concerns surrounding one ELISA for O. viverrini include the 
inability of a positive result to distinguish between current and prior infection, as 

well as possible cross-reactivity with other parasitic infections. Another monoclonal 
antibody-based dot-ELISA has been demonstrated to have 100% sensitivity and 
specifi city for O. viverrini, using purifi ed antigen from that organism. An immu-

noblot assay for C. sinensis-specifi c excretory-secretory antigens has been shown 
to have 92% sensitivity in active infection.


background image

91

Clonorchiasis and Opisthorchiasis

13

PCR is also being investigated as a diagnostic modality for O. viverrini in stool. 

It has been described to have a sensitivity correlated with the amount of egg burden 
present, 100% for >1000 eggs per gram to 50% for <200 eggs per gram.

Treatment

Th e treatment of choice is praziquantel, 75 mg/kg divided into three doses 

given for 2 days. Th is has been demonstrated to have a nearly 100% cure rate, 
except for very heavy infections, for which 2 days of therapy can achieve similar 

success. Typically, eggs will disappear from the stool within 1 week aft er treatment, 
although clinical symptoms may take months to resolve due to residual damage to 

the biliary tract from the adult worms.

Side eff ects of treatment can be signifi cant and include nausea, vomiting, head-

ache, dizziness and insomnia. In an attempt to reduce the severity of adverse reactions, 
a lower dose regimen of 25 mg/kg/d for 3 days was investigated, but was found to 
have only an eradication rate of 29%. Similarly, single-dose praziquantel at 40 mg is 

oft en used in the setting of mass therapy for whole communities, both for convenience 
and for reduced side eff ects, but has only a 25% eradication rate.

Albendazole is an alternative to praziquantel therapy and is typically given 10 

mg/kg/d for 7 days. It has been described as having eradication rates from 90-100%. 
While it does have a less severe side eff ect profi le, its signifi cantly longer therapy 

course and higher pill burden can make it less appealing.

With treatment, prognosis is good in light infections. Heavy infections, especially 

those that are long-standing, can occasionally end in death due to complications. 

Surgery is reserved for severe sequelae of clonorchiasis, such as emergent cholecystec-
tomy with cholangitis, or palliative choledochojejunostomy in the setting of obstruc-
tive jaundice. Urgent biliary decompression may be required for acute cholangitis. 
When cholangiocarcinoma is suspected, endoscopic biopsies can be taken. Secondary 
bacterial infections can occur and should be managed with appropriate antibiotics.

Prevention and Prophylaxis

Proper preparation of freshwater fi sh, such as cooking or freezing, destroys 

the metacercariae and prevents infection. As fecal-oral inoculation can occur, 
transmission can also be reduced by strict hygiene measures. Th ere is no role for 
chemoprophylaxis.

Suggested Reading

  1.  Kaewkes S. Taxonomy and biology of liver fl ukes. Acta Tropica 2003; 88:177-86.

  2.  Keiser J, Utzinger J. Emerging foodborne trematodiasis. Emerg Infect Dis 2005; 

11:1507-14.

  3.  Leder K, Weller P. Liver fl ukes: Clonorchiasis and opisthorchiasis. UpToDate.com.

  4.  Lun ZR, Gasser RB, Lai DH et al. Clonorchiasis: A key foodborn zoonosis in 

China. Lancet Infect Dis 2005; 5:31-41.

  5.  Mairiang E, Mairiang P. Clinical manifestation of opisthorchiasis and treatment. 

Acta Tropica 2003; 88:221-7.

  6.  Reddy DN, Kumar YR. Endoscopic diagnosis and management of biliary parasitosis. 

UpToDate.com.

  7.  Rim HJ. Clonorchiasis: An update. J Helminthol 2005; 79:269-81.

  8.  Upatham ES, Viyanant V. Opisthoschis viverrini and opisthorchiasis: A historical 

review and future perspective. Acta Tropica 2003; 88:171-6.


background image

C

HAPTER

 14

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Liver Fluke: Fasciola hepatica

Michelle Paulson

Background

Geographical Distribution/Epidemiology

Fascioliasis, also known as sheep liver fl uke infection, was once primarily 

thought of as a veterinary problem. Now it is emerging as a signifi cant human 
parasitic disease throughout the world. It has been estimated that up to 17 mil-

lion people are infected and that another 180 million are at risk. Th e pathogen 
is widespread, causing infections in Europe, Central and South America, Mexico, 
the Middle East and Asia. Areas with particularly high prevalence include the 
Altiplano region of Bolivia, the Mantaro Valley in Peru, the Abis area along the 
Nile River basis in Egypt and the Gilan province in Iran. Other rural areas may 

also have a high disease burden, but do not have the means to diagnose or report 
it. Contrary to expectation, human disease does not correlate to the areas where 
the most livestock are infected. Rather, it more closely correlates with the popula-

tion of the intermediate host, the Lymnaeidae family of snails. In France, disease 
has primarily been associated with consumption of contaminated watercress. Th e 
United Kingdom has reported fascioliasis from vegetables. It has also been de-
scribed within the United States, although the predominant threat is to livestock, 
rather than humans. Because of increasing commerce between countries, the risk 

of limited outbreaks within the United States exists.

In endemic areas children are most commonly aff ected. In one study of Peruvian 

children, disease was associated with consumption of alfalfa juice. It is also postu-

lated that children are left  to tend to animal herds, thereby increasing their length of 
exposure to infectious sources. Oft en a history of eating potentially contaminated 
vegetables cannot be elicited, suggesting that water contamination is likely.

Causative Agents

Fascioliasis is caused by a leaf-shaped trematode, Fasciola hepatica. Th e adult 

is brown and fl at with average size of 2.5 × 1 cm. Th e eggs are yellow-brown, oval 
and measure 140 × 75 

μ

m.

While termed the sheep liver fl uke, it typically infects sheep, goats and cattle. 

In Bolivia, pigs and donkeys are also effi  cient reservoirs. In Corsica, the fl ukes 

have been isolated from black rats. Snails from the Lymnaeidae family are found 
in many diff erent geographical areas, demonstrating an ability to adapt to a broad 
spectrum of environments, from the Andes Mountains to the French countryside. 
Humans obtain the disease by eating contaminated water plants, in particular 


background image

93

Liver Fluke: Fasciola hepatica

14

watercress (Nasturtium offi  cinale), or by ingestion of contaminated water or foods 

prepared in that water.

Mode of Transmission

Th e human cycle begins when encysted metacercariae adhere to water plants, 

resulting in infection if the vegetation is not washed carefully prior to consump-
tion. Once inside the small bowel, the metacercariae excyst and the larvae emerge. 

Th ey travel through the lumen of the bowel, penetrate into the peritoneum, and 
invade the liver capsule. At this point, the larvae mature into adults, which gradually 

migrate into the biliary tract. Th e hermaphroditic fl ukes dwell in the biliary tree 
and produce eggs that may be passed in the stool. Th e eggs hatch in fresh water 
and the new miracidia infect snails, in particular those of the family Lymnaeidae

which are the intermediate host. Th e miracidia mature within the snails to form 
cercariae. Th ey are released from snails in water, where they can attach to water-

borne plants such as watercress. Th e cycle begins again when the contaminated 
vegetation or water are consumed.

Disease Signs and Symptoms

Fascioliasis occurs in two stages, which diff er in symptoms based on the migra-

tion of F. hepatica through various organs.

Th e fi rst stage, or prepatent or larval period, is marked clinically by abdominal 

pain, fever, weight loss and urticaria. Eosinophilia and elevations in liver trans-
aminase enzymes may occur. A small portion of patients also experience cough 
and chest discomfort. Th is stage corresponds to the ingestion of the organism 

and penetration through the intestinal wall to the liver. Th e fi rst stage can last for 
several months. Egg production during this time is minimal.

Th e second stage, referred to as the patent or biliary period, represents the 

maturation of larvae into adult fl ukes that pass into the biliary ducts. Symptoms 
during this phase are oft en subtle, vague and even asymptomatic. Patients may 
develop intermittent right upper quadrant pain, which can mimic cholecystitis. 
Eosinophilia may still be present. During this phase, ova are released and may be 
found on careful, repeated stool examination. See Figure 14.1.

Complications from chronic disease include anemia, cholangitis and biliary 

obstruction. Subcapsular liver hematomas and hemoperitoneum are also reported. 
Cases of invasion into inguinal lymph nodes have been described. Other ectopic 

sites include subcutaneous skin, brain and eyes. Th ere is no known potential for 
malignancy of the biliary tract associated with chronic infection.

Diagnosis

Fascioliasis should be suspected in patients with abdominal pain and fever, 

in the setting of abnormal biliary tract fi ndings on radiological studies. In the 
acute phase, eosinophilia provides a clue. Later in the disease, symptoms may 

only occur intermittently and are oft en vague, making the diagnosis more dif-
fi cult. Abnormal liver function tests and elevated total bilirubin level may or 
may not be present. Coprologic analysis is limited, especially in the early stages 

of the disease, but is very specifi c when eggs are found. Even in later stages, 
multiple stool examinations may be necessary to increase sensitivity. Indirect 

hemagglutination tests were previously used to determine titers. Th e tests most 


background image

94

Medical Parasitology

14

commonly used to confi rm the diagnosis are ELISAs, which detect various F. 
hepatica
 antigens. Earlier developed ELISAs utilized excretory-secretory antigens 
from adult organisms or coproantigens. One study described a sensitivity of 100% 

for detection of acute infection through use of excretory-secretory antigens. 
In chronic infections, however, the sensitivity was only 70%. Th e antigen tests 
reverted to normal generally within six months. Th e greatest drawback to these 

Figure 14.1. Life cycle of Fasciola hepatica. Reproduced from: Nappi AJ, Vass E, 

eds. Parasites of Medical Importance. Austin: Landes Bioscience, 2002:43.


background image

95

Liver Fluke: Fasciola hepatica

14

tests is cross-reactivity with other parasitic infections. More recently the cathepsin 

L1 (CL1) proteinase was found to react with serum IgG4 and was incorporated 
into an ELISA. Th is improved detection when compared to coprologic testing 

alone. Another ELISA under development uses the purifi ed protein Fas2, which 
is an adult F. hepatica cysteine proteinase.

Radiological studies are useful in aiding diagnosis. Computerized tomography 

and ultrasound can assist in assessing biliary invasion. Common fi ndings include 
thickening of the bile duct wall and biliary dilation. On ultrasound, mobile fl ukes 

may be demonstrated, but the more characteristic lesion is a crescent-shape in the 

biliary tract. A negative ultrasound examination does not exclude the possibility of 
infection. By CT, lesions are characterized as small, multiple hypodensities less than 
10 mm in size. Th ey can project in a tunneled, branching pattern. Larger abscesses 

have also been reported. Endoscopic retrograde cholangiography is not necessary 
for diagnosis in most cases but can be used to extract fl ukes from the bile ducts when 
they cause signifi cant obstruction. Liver biopsy is not routinely indicated but may 

show eosinophils, histiocytes, granulomas and in some cases, even eggs.

Treatment

Triclabendazole, a benzimidazole, is the fi rst line treatment for F. hepatica. It 

has an active sulfoxide metabolite with can inhibit fl uke microtubules and protein 
synthesis. Th erefore, it is a good drug to target both immature and mature forms 
of the trematode. Its primary use stems from treatment of fascioliasis in sheep 
and cattle beginning in 1983. It subsequently was used for human disease in 1989 
during an epidemic in Iran. In 1997 it was offi  cially listed on the World Health 

Organization’s list of essential drugs. Currently, triclabendazole is the drug of 
choice selected by the Center for Disease Control and Prevention. Th e recom-
mended dose is 10 mg/kg as a single dose. For more severe disease, an additional 

dose taken 12 hours later may be necessary. One study of Cuban patients who had 
previously been treated with anthelminthic medications showed that two doses 
of 10 mg/kg taken over 1 day eliminated egg excretion in 71 of 77 patients. Th e 
main side eff ect noted was abdominal discomfort, which was attributed to the 
expulsion of the organism through the bile ducts. Th is occurred 2-7 days aft er 

taking triclabendazole. Other reported side eff ects include dizziness, headache 
and fever. In another study, 134 Egyptian patients with disease, as established by 
egg count, were treated with triclabendazole. An initial dose provided cure in 

86.6% of those infected and a subsequent dose in those who remained positive 
increased the number cured to 93.9%.

Nitazoxanide, an inhibitor of pyruvate:ferredoxin oxidoreductase enzyme, 

has also shown to be eff ective in small trials and case reports. One randomized, 
placebo controlled study demonstrated successful parasite elimination in 18 of 30 

adults (60%) and 14 of 35 children (40%), whereas only 1 of 8 adults and 0 of 8 
children were cured with placebo alone. Th e adult dose used in this trial was 500 
mg taken twice a day with meals for 7 days. Most side eff ects reported were mild 

and included abdominal pain, diarrhea and headaches.

Bithionol, at a dose of 30-50 mg/kg on alternate days for 10-15 doses is an 

alternative choice, but carries signifi cant side eff ects such as nausea, vomiting, 
abdominal pain and urticaria.


background image

96

Medical Parasitology

14

Praziquantel, which is used in other fl uke infections, is not eff ective in fascio-

liasis. Other medications used to treat parasitic infections such as metronidazole 
and albendazole are also not effi  cacious.

Larger therapy trials need to be undertaken to better establish drug effi  cacy of 

current regimens, while development of new antifasciola medications continues. 

Treatment success can be based on several endpoints: lack of further detection 
of fecal eggs, antigen reversion to negative, absence of radiological evidence of 
persistent infection and resolution of symptoms. ELISA testing may take up to a 

year or more to normalize.

Prevention and Prophylaxis

Early detection is one strategy to prevent chronic fascioliasis. Despite its world-

wide prevalence, it is oft en goes unsuspected in nonendemic areas. It is therefore 

important to develop a simple, cost eff ective method for rapid diagnosis. In endemic 
regions public health measures have been instituted to raise awareness of symptoms 
that can aid in earlier detection. Health care workers themselves need to be bet-
ter trained to recognize disease. Other measures have attempted to better defi ne 
the population at risk and not limit disease potential to only persons who report 

consumption of watercress; frequently this history cannot be elicited.

Another approach to disease prevention focuses on improving sanitation. 

Improvement of inspection and transport of vegetation can further help to reduce 

risk. Educating the public on the proper ways of cooking and cleaning vegetation 
also decreases disease. Better sanitation, in particular decreasing outdoor defecation 
and thus shedding of viable eggs, will also be key in limiting fascioliasis.

Governments need to establish guidelines with the assistance of medical 

specialists for routine treatment of livestock. Safe means of controlling snail 

populations also need to be explored. Th e Egyptian Ministry of Health and 
Population launched a program targeting school children from high prevalence 
areas, screening 36,000 children and subsequently treating 1280. Th e prevalence 

of the disease then fell from 5.6 to 1.2%. Similar programs need to be explored 
further to evaluate their feasibility in other endemic regions.

Suggested Reading

  1.  Arjona R, Riancho JA, Aguado JM et al. Fascioliasis in developed countries: a 

review of classic and aberrant forms of the disease. Medicine 1995; 74:13-23.

  2.  Curtale F, Hassanein Y, Savioli L. Control of human fascioliasis by selective chemo-

therapy: design, cost and eff ect of the fi rst public health, school-based intervention 

implemented in endemic areas of the Nile Delta, Egypt. Trans Royal Soc of Trop 

Med Hyg 2005; 99:599-609.

  3.  El-Morshedy H, Farghaly A, Sharaf A et al. Triclabendazole in the treatment 

of human fascioliasis: a community-based study. East Mediterr Health J 1999; 

5:888-94.

  4.  Espino AM, Diaz A, Perez A et al. Dynamics of antigenemia and coproantigens 

during a human Fasciola hepatica outbreak. J Clin Mic 1998; 36:2723-6.

  5.  Espinoza JR, Timoteo O, Herrera-Velit P. Fas-2 ELISA in the detection of human 

infection by Fasciola hepatica. J Helminth 2005; 79:235-40.

  6.  Farag HF. Human fascioliasis in some countries of the Eastern Mediterranean 

Region. East Mediterr Health J 1998; 4:156-60.


background image

97

Liver Fluke: Fasciola hepatica

14

  7.  Favennec L, Jave Ortiz J, Gargala G et al. Double-blind, randomized, placebo-con-

trolled study of nitazoxanide in the treatment of fascioliasis in adults and children 

from northern Peru. Aliment Pharmacol Th er 2003; 17:265-70.

  8.  Graham CS, Brodie SB, Weller PF. Imported Fasciola hepatica infection in the 

United States and treatment with triclabendazole. Clin Inf Dis 2001; 33:1-6.

  9.  Harris NL, McNeely WF, Shepard JO et al. Case 12-2002, Weekly clinicopatho-

logical exercises. NEJM 2002; 346:1232-9.

 10.  Keiser J, Utzinger J. Emerging foodborne trematodiasis. EID 2005; 10:1507-14.

 11.  Mas-Coma MS, Esteban JG, Bargues MD. Epidemiology of human fascioliasis: a 

review and proposed new classifi cation. Bull WHO 1999; 77:340-6.

 12.  Millán JC, Mull R, Freise S et al. Th e effi  cacy and tolerability of triclabendazole 

in Cuban patients with latent and chronic Fasciola hepatica infection. Am J Trop 

Med Hyg 2000; 63:264-9.

 13.  O’Neill SM, Parkinson M, Dowd AJ et al. Short report: immunodiagnosis of 

human fascioliasis using recombinant Fasciola hepatica cathepsin L1 cysteine 

proteinase. Am J Trop Med Hyg 1999; 60:749-51.

14.    Rossignol JF, Abaza H, Friedman H. Successful treatment of human fascioliasis 

with nitazoxanide. Trans Royal Soc of Trop Med Hyg 1998; 92:103-4.

 15.  Saba R, Korkmaz M, Inan D et al. Human fascioliasis. Clin Microbiol Infect 2004; 

10:385-7.

 16.  Sezgin O, Altintas E, Disibeyaz S et al. Hepatobiliary fascioliasis: clinical and 

radiologic features and endoscopic management. J Clin Gastroenterol 2004; 

38:285-91.

 17.  Shehab AY, Hassan EM, Abou Basha LM et al. Detection of circulating E/S an-

tigens in the sera of patients with fascioliasis by IELISA: a tool of serodiagnosis 

and assessment of cure. Trop Med Int Health 1999; 4:686-90.

 18.  Talaie H, Emami H, Yadegarinia D et al. Randomized trial of a single, double and 

triple dose of 10 mg/kg of a human formulation of triclabendazole in patients with 

fascioliasis. Clin Exp Pharm Phys 2004; 31:777-82.

 19.  Trueba G, Guerrero T, Fornasini M et al. Detection of Fasciola hepatica infection 

in a community located in the Ecuadorian Andes. Am J Trop Med Hyg 2000; 

62:518.


background image

C

HAPTER

 15

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Paragonimiasis

Angelike Liappis

Introduction

Paragonimiasis is a parasitic disease acquired when trematodes of the genus 

Paragonimus are accidentally consumed by a human host. Th e adult Paragonimus 
(or lung fl uke) commonly localizes to the bronchioles aft er ingestion. While 
pulmonary involvement is the most common clinical complication of infection, 
the disease is oft en asymptomatic. When manifested by pleuritic chest pain and 
hemoptysis, pulmonary paragonimiasis may mimic the clinical presentation of 
tuberculosis in countries where both diseases are endemic. A careful epidemiologic 

history and a high clinical suspicion for diagnosis are necessary when considering 
paragonimiasis in a patient with suspected pulmonary disease.

Geographic Distribution and Epidemiology

Paragonimus is a parasite of mammalian carnivores and omnivores whose diet 

includes fresh-water crustaceans (crabs, crayfi sh). First described in tigers more 
than a century ago, a variety of wild and domesticated carnivores have been found 

to harbor Paragonimus species worldwide.

With a geographic range which spans most of Asia and parts of Africa, 

Paragonimus westermani is the most commonly identifi ed lung fl uke. Globally, a 
quarter of the more than 50 known species of this parasite have been associated 
with human disease. Regional endemic species causing clinical infection include 

P. mexicanus (Central America), P. skrjabini (China), P. miyazakii ( Japan), P. 
uterobilateralis
 (West Africa) and P. kellicotti (North America).

Humans acquire the parasite from the ingestion of uncooked or insuffi  ciently 

cooked fresh-water crustaceans or, rarely, through the fl esh of mammalian reser-
voirs which harbor immature fl ukes. In experimental models, feeding Paragonimus 
metacercariae to rats results in the development of mature fl ukes in the lung, but 
immature, underdeveloped parasites in the muscles. Clinical human disease has 
been associated with the consumption of undercooked wild boar in Asia.

In North America, P. kellicotti is a rare cause of human infection. Th e majority 

of paragonimiasis diagnosed in the United States is attributable to exposures to 
imported, high risk food items or to those patients traveling from countries where 

the local, endemic Paragonimus species are associated with human disease and have 
had the proper epidemiologic exposure history.

In countries where the parasite is endemic, social customs and regional prepara-

tion techniques have been implicated as factors which increase the risk of human 
infection. Raw crab and/or crayfi sh preparations eaten locally or frozen for export 

are potential sources of exposure. In some cultural settings, the consumption of 


background image

99

Paragonimiasis

15

pickled or raw seafood is a traditional food preparation technique. Infections 

among families and other groups who routinely share meals have been described. 
Clinical paragonimiasis has been linked to several traditional dishes, including a 

raw seafood salad served in the Americas known as seviche and drunken crab (raw 
crabmeat marinated in wine or alcohol) common to several Asian countries.

Th e infection rate of freshwater crabs, collected from regional waterways or 

sold in local markets, are as high as 6 to 12% in Africa and Asia, respectively. 
Paragonimiasis is estimated to infect several million people worldwide, with pro-

jections of those at risk of acquiring disease reaching 200 million.

Pathogenesis

Adult worms (approximately 0.8-1.6 cm in length × 0.4-0.8 cm in width) de-

velop in the pulmonary bronchioles, where they can encapsulate (Fig. 15.1). Aft er 

approximately 6 weeks, dark brown, operculate eggs (80-120 

μ

m × 50-60 

μ

m) are 

produced. Th e parasite eggs pass from stool and respiratory secretions into fresh-
water and develop into miracidia, passing through two intermediate invertebrate 
hosts. Over several weeks to months, the parasite matures in freshwater snails to 
become cercaria which are either eaten or penetrate the secondary, crustacean 
hosts. Th e cercaria mature within the muscles and viscera of a crayfi sh or crab into 

metacercariae over 6-8 weeks. Th e cycle is completed when these infective meta-
cercariae are consumed by the mammalian host and penetrate the intestinal wall, 
migrating through the peritoneum into the lungs and other organs.

Migration and maturation in the lungs of the defi nitive host may take several 

weeks. Th e parasite localizes to the bronchioles where it may cause an acute pneu-
monitis, associated with hemorrhage and an eosinophilic infi ltrate. Adult fl ukes 
mature within the lumen of the bronchioles or may encyst in the lung parenchyma. 
Infection can persist for several years aft er a host leaves an endemic area.

Paragonimus has evolved a number of mechanisms to evade host defense. Th e 

parasites elaborate several excretory-secretory products (ESP) including a number 
of cysteine proteinases and, in a recent report, copper/zinc superoxide dismutase. 

Superoxide dismutase is constitutively expressed during maturation and protects 
the parasite from toxic cellular enzymes elaborated by the host. Paragonimus ESPs 
also modulate other aspects of the host infl ammatory response. ESPs have been 
found to regulate the survival of eosinophils, to play a role in the degradation of 
host antiparasitic immunoglobulin, to regulate migration and tissue penetration, 

to facilitate encystment within the lung and other tissues and to modulate the 
production of chemokines such as interleukin-8.

Clinical Presentation and Diagnostic Evaluation

Paragonimiasis may present with a range of clinical fi ndings. Th e majority of 

patients infected will have few clinical symptoms. Th e most common fi nding may 
be a nonspecifi c elevation of the peripheral eosinophil count. In one report, 80% of 

patients with paragonimiasis had eosinophilia detected on peripheral blood smear.

More severe disease is associated with higher organism burden. Symptomatic 

infection is a manifestation of infl ammatory, oft en hemorrhagic lesions produced 

as the organisms migrate from the bowel, traverse the peritoneal cavity and lodge in 
the lungs and/or other organs. Th e local infl ammatory reaction includes eosinophilic 


background image

100

Medical Parasitology

15

exudates and, in some cases, a granulomatous reaction to the eggs. Examination of 
expectorated sputum under light microscopy should be obtained for the presence of 
the brown, operculate eggs as well as for eosinophils and Charcot-Leyden crystals. 

When secretions are swallowed, eggs may also be found in the stool of infected 
patients. Both sputum and stool should be sent for microscopic evaluation when 
pulmonary paragonimiasis is suspected.

Hemoptysis and cough are the most common clinical symptoms of pulmonary 

paragonimiasis. In countries where both paragonimiasis and tuberculosis are 

Figure 15.1. Life Cycle of Paragonimus westermani. Reproduced from: 

Nappi AJ, Vass E, eds. Parasites of Medical Importance. Austin: Landes 

Bioscience, 2002:47.


background image

101

Paragonimiasis

15

endemic, it is not uncommon for patients to be treated empirically for tubercu-

losis based on their similar clinical presentations. Th e parasitic diagnosis is oft en 
obtained aft er a more thorough inspection of the sputum and/or the stools are 

sent for examination. In addition to mimicking tuberculosis, pulmonary paragoni-
miasis can be mistaken for bronchiectasis or other respiratory diseases that may 

present with increased sputum production and/or pleuritic chest pain. A careful 
epidemiologic history and high clinical suspicion for diagnosis are necessary when 
considering this disease in a patient with pulmonary disease.

Examination of pleural fl uid may also demonstrate eosinophilia and the eggs 

on cytologic examination. Other pleural fl uid indicators mimic bacterial infection 
with low pH, low glucose (<10 mg/dl) and elevated protein and lactate dehy-
drogenase, suggesting an exudative process. Th e parasite and the eggs have been 

identifi ed on microscopic examination of bronchoalveolar lavage and fi ne needle 
aspiration of pulmonary lesions. In rare cases, the adult worms may be seen in the 
sputum or expectorated with coughing aft er the initiation of therapy.

Th e organism’s migration through the peritoneal cavity may lead to intra-

abdominal seeding. Clinical cases of hepatic, omental and retroperitoneal collec-
tions have been described. Eggs reaching the circulation or fl uke migrations outside 

the pulmonary cavity may direct disease to distal sites, leading to ectopic foci of 
infection. Th e immature fl ukes of P. skrjabini, native to China, have been associ-
ated with cutaneous involvement known as trematode larval migrans. Unlike the 
other species of Paragonimus, this particular species is associated with migratory 
subcutaneous nodules and, only rarely, pulmonary disease.

Worldwide, other focal skin infections have been reported, as well as in-

traocular, pericardial or brain involvement with P. westermani and a variety of 
other Paragonimus species. Cerebral involvement is one of the most common 

extrapulmonary sites. When aff ecting the brain, paragonimiasis may present 
as a mass lesion with or without seizure, chronic meningeal irritation or acute 
meningitis; it is associated with a high mortality due to the higher incidence of 
intracranial hemorrhage.

Th e diagnosis of paragonimiasis may be aided by radiologic imaging; however 

the fi ndings are generally nonspecifi c. In a retrospective review of over 70 patients 

with pleuropulmonary paragonimiasis, chest radiographs demonstrated pleural 

lesions in over half of the cases reviewed, with less than 20% showing evidence 
of pleural eff usion. Nonspecifi c fi ndings of the parenchymal lung disease on 

radiographs include air space consolidation, cystic changes and peripheral linear 

densities. Th e radiographically opaque linear densities have been attributed to the 
parasite’s migration tracks through the tissues.

Computed tomography (CT) has been used to aid in the diagnosis of pulmo-

nary and extrapulmonary paragonimiasis. CT is more sensitive in demonstrating 

small pleural eff usions and better depicts the mass lesions seen on radiographs. 
Masses usually consist of one or more peripheral, irregularly shaped densities which 

calcify with time. Characteristically, the mass lesions may display either a low at-

tenuation signal at their center or show evidence of an air-fl uid level, associated with 
ring-like enhancement at the edges. In setting of pulmonary paragonimiasis, these 

lesions have been described as “worm cysts.” Recently, Kuroki et al evaluated eight 
patients with high-resolution CT and were better able to demonstrate bronchial 


background image

102

Medical Parasitology

15

thickening and ground-glass opacities in association with the usual CT fi ndings 

of pulmonary paragonimiasis.

Radiologic imaging studies serve as an important adjunct to the diagnosis of 

paragonimiasis, but defi nitive diagnostic evaluation today requires microbiologic 
and, increasingly, serologic methods. It may take up to 3 weeks for fl ukes to mature 

and produce eggs visible for microscopic diagnosis. To augment microscopic ex-
amination in cases where infection may be early or those samples diffi  cult to access 
(extrapulmonary disease), immunologic tests have been developed.

Th e diagnosis of patients with early pulmonary disease or those with extra-

pulmonary disease has been improved with the development of serologic testing. 
While a simple intradermal test has been developed, the cutaneous reaction cannot 
accurately distinguish between active or past infection despite good sensitivity. 

Enzyme linked immunosorbent assays (ELISA) with greater specifi city and sensi-
tivity for infection have been developed, including an ELISA using the parasite’s 
excretory-secretory antigens. PCR assays are under development and are not yet 

commercially available; however these assays hold the promise of being able to 
diff erentiate among the various Paragonimus species in addition to diagnosing 
infection.

Treatment and Prevention

Th e current treatment of choice for paragonimiasis is praziquantel. It is given 

orally at 25 mg/kg, three times a day for two days for those patients with pulmonary 
disease. Longer treatment courses may be necessary for extrapulmonary infection, 
particularly lesions involving the brain. Surgical resection, combined with medical 
therapy, may be necessary in severe plueropulmonary disease.

Praziquantel is associated with headache and drowsiness, but is generally well 

tolerated. It is highly eff ective against all species of Paragonimus, with a cure rate 
exceeding 95%. Bithionol, which was used in the past, required up to 25 days of 
therapy, but has been largely replaced by praziquantel due to compliance and toxic-

ity issues. Approved only for veterinary use, triclabendazole as a single 10 mg/kg 
dose is also eff ective and is used outside the US in the treatment of pulmonary 
disease.

Th e in vitro eff ect of praziquantel on Paragonimus has been examined by elec-

tron microscopy. Parasites under treatment exhibit severe vacuolization in a variety 

of organs, including the tegument and reproductive system. Th e worms are both 
immobilized and unable to produce eggs aft er praziquantel therapy. Th e partially 
disintegrated or intact, immobilized adults or the eggs may persist in tissues for 

weeks aft er treatment. Resolution by radiologic imaging may be delayed despite 
clinical response. Th e dead and dying parasites and/or eggs create a persistent 
antigenic challenge, decreasing the utility of following posttreatment serologies.

In endemic areas the main risk for human acquisition of disease is food 

preparation technique. Prevention can best be achieved by avoiding undercooked 

freshwater crabs and crayfi sh and in improving the monitoring of imported of 
pickled or frozen raw products imported from endemic countries. Transmission 
to humans can be minimized by targeting treatment of municipal water supplies 

in endemic areas. By reducing fecal contamination, transmission in both animal 
and human hosts can be reduced.


background image

103

Paragonimiasis

15

Suggested Reading

  1.  Blair D, Xu ZB, Agatsuma T. Paragonimiasis and the genus Paragonimus. Adv 

Parasitol 1999; 42:113-222.

  2.  Bunnag D, Cross JH, Bunnag T. Lung Fluke Infections: Paragonimiasis, In: 

Strickland, GT ed. Hunter’s Tropical Medicine and Emerging Infectious Diseases, 

8th Edition. Philadelphia: WB Saunders, 2000:847-51.

  3.  Cho SY, Hong ST, Rho YH et al. Application of micro-ELISA in serodiagnosis 

of Human paragonimiasis. Kisaengchunghak Chapchi 1981; 19:151-6.

  4.  Harinasuta T, Pungpak S, Keystone JS. Trematode infections. Opisthorchiasis, 

clonorchiasis, fascioliasis and paragonimiasis. Infect Dis Clin North Am 1993; 

7:699.

  5.  Im JG, Whang HY, Kim WS et al. Pleuropulmonary paragonimiasis: radiologic 

fi ndings in 71 patients. Am J Roentgenol 1992; 159:39-43.

  6.  Keiser J, Utzinger J. Chemotherapy for major food-borne trematodes: a review. 

Expert Opin Pharmacother 2004; 5:1711-26.

  7.  Kuroki M, Hatabu H, Nakata H et al. High-resolution computed tomography 

fi ndings of P. westermani. J Th orac Imaging 2005; 20:210-3.

  8.  Lee SH, Park HJ, Hong SJ et al. In vitro eff ect of praziquantel on Paragonimus 

westermani by light and scanning electron microscopic observation. 

Kisaengchunghak Chapchi 1987; 25:24-36.

  9.  Li AH, Na BK, Kong Y et al. Molecular cloning and characterization of copper/

zinc-superoxide dismutase of Paragonimus westermani. J Parasitol 2005; 91:293-9.

 10.  Maleewong W. Recent advances in diagnosis of paragonimiasis. Southeast Asian 

J Trop Med Public Health 1997; 28:134-8.

 11.  Min DY, Lee YA, Ryu JS et al. Caspase-3-mediated apoptosis of human eosino-

phils by the tissue-invading helminth Paragonimus westermani. Int Arch Allergy 

Immunol 2004; 133:357-64.

 12.  Moyou-Somo R, Kefi e-Arrey C, Dreyfuss G et al. An epidemiological study of 

pleuropulmonary paragonimiasis among pupils in the peri-urban zone of Kumba 

town, Meme Division, Cameroon. BMC Public Health 2003; 3:40.

  13.  Narain K, Devi KR, Mahanta J. Development of enzyme-linked immunosorbent assay 

for serodiagnosis of human paragonimiasis: Indian J Med Res 2005; 121:739-46.

 14.  Narain K, Rekha Devi K, Mahanta J. A rodent model for pulmonary paragoni-

miasis. Parasitol Res 2003; 91:517-9.

 15.  Park H, Kim SI, Hong KM et al. Characterization and classifi cation of fi ve cysteine 

proteinases expressed by Paragonimus westermani adult worm. Exp Parasitol 2002; 

102:143-9.

 16.  Pezzella AT, Yu HS, Kim JE. Surgical aspects of pulmonary paragonimiasis. 

Cardiovasc Dis 1981; 8:187-94.

 17.  Shin MH, Lee SY. Proteolytic activity of cysteine protease in excretory-secretory 

product of Paragonimus westermani newly excysted metacercariae pivotally regulates 

IL-8 production of human eosinophils. Parasite Immunol 2000; 22:529-33.

  18.  Shin MH, Seoh JY, Park HY et al. Excretory-secretory products secreted by Paragonimus 

westermani delay the spontaneous cell death of human eosinophils through autocrine 

production of GM-CSF. Int Arch Allergy Immunol 2003; 132:48-57.

 19.  Singh TS, Mutum SS, Razaque MA. Pulmonary paragonimiasis: clinical features, 

diagnosis and treatment of 39 cases in Manipur. Trans R Soc Trop Med Hyg 1986; 

80:967-71.

  20.  Spitalny KC, Senft  AW, Meglio FD et al. Treatment of pulmonary paragonimiasis with 

a new broad-spectrum anthelminthic, praziquantel. J Pediatr 1982; 101:144-6.

 21.  Th e Trematodes. In: Markell EK, John DT, Krotoski WA, eds. Medical Parisitology, 

8th Edition. Philadelphia: WB Saunders, 1999:225-31.

 22.  Velez ID, Ortega JE, Velasquez LE. Paragonimiasis: a view from Columbia. Clin 

Chest Med 2002; 23:421-31, ix-x.


background image

C

HAPTER

 16

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2008 Landes Bioscience.

Intestinal Trematode Infections

Sharon H. Wu, Peter J. Hotez and Thaddeus K. Graczyk

Introduction and General Epidemiology

Th e intestinal trematodes are estimated to account for almost 1.3 million 

of the 40-50 million food-borne trematode infections world-wide, particularly 
within endemic foci in Southeast Asia and the Western Pacifi c region where they 
are signifi cant causes of pediatric malnutrition. Rural poverty and inadequate 
sanitation represent major risk factors for this food and waterborne infection, in 
addition to unique cultural traditions of raw food consumption, agricultural use 
of “night soil” (the use of human feces as fertilizer), promiscuous defecation and 

an absence of health education. Transmission occurs focally in endemic areas, 
which are characterized by remote, rural and semi-urban communities that prac-
tice small-scale farming. Infections rarely cause mortality; however, they infl ict 

considerable morbidity, particularly seen in school-aged children with chronic 
infections resulting in malnutrition and stunted growth.

Human intestinal trematodiases are caused by some 70 diff erent species span-

ning 13 families within the Digenea subclass, parasitising all major vertebrate 
groups as defi nitive hosts, gastropods and other mollusk groups as fi rst intermediate 

hosts and humans as second intermediate hosts. Th is discussion focuses on major 
intestinal fl ukes belonging to the families Fasciolidae (e.g., Fascioloposis buski), 
Echinostomatidae (Echinostoma spp.) and Heterophyidae (Heterophyes heterophyes 

and Metagonimus yokogawai), which are responsible for the bulk of intestinal 
trematodiases in humans.

Fasciolidae

Etiology and Defi nitive Hosts

Fasciolopsis buski is the only species within the Fasciolidae family that regularly 

infects humans and it is one of the largest, typically ranging from 8-10 cm in length 
and 1-3 cm wide. Pigs are the most important reservoir though they carry only 

3 to 10 adult fl ukes which produce fewer eggs/adult than in humans, whereas 
up to 800 fl ukes/child has been reported with a mean egg production of 16,000 
eggs/fl uke per day.

Geographical Distribution and Epidemiology

Fasciolopsis buski is endemic in the Far Eastern and Southeast Asian countries 

of mainland China (including Hong Kong), Taiwan, Th ailand, Vietnam, Lao 
DR, Cambodia, Philippines, Singapore, Indonesia and Malaysia, as well as in 

India (Assam, Maharashtra, Tamil Nadu and Uttar Pradesh) and Bangladesh. 


background image

105

Intestinal Trematode Infections

16

Fasciolopsiasis is predominantly a neglected tropical disease of school-aged children 

in rural and remote areas with freshwater habitats and bodies of stagnant water. In 
such areas, endemic foci range in prevalence from 57% of children in China reported 

from as many as 10 diff erent provinces, 25% in Taiwan, 50% in Bangladesh, 60% in 
India and 10% in Th ailand. Two studies have reported a slightly greater predilec-

tion in females than males in Th ailand, the opposite trend reported in Taiwan. Th e 
infection is underreported and the exact global prevalence is unknown. However, an 
estimated 200,000 and 10,000 infections occur in China and Th ailand, respectively. 

Endemic areas are characterized by standing or slow-moving freshwater habitats of 

food plants such as the water caltrop, water chestnut, watercress, water bamboo, 
water lily, gankola, or morning glory, feeding both livestock and humans. Infection 
occurs through ingestion of metacercarial cysts on raw or undercooked water plants, 

drinking contaminated water and the handling or processing of water plants through 
the use of teeth to shuck the outer layers.

Life Cycle and Transmission

Indiscriminate defecation and inadequate sanitation play a large role in continu-

ing the life cycle and transmission of this intestinal fl uke. Humans shed parasite 
eggs through the feces and upon contact with water, eggs hatch aft er a period of 
3-7 weeks, releasing miracidium. Th ese then swim to fi nd their fi rst intermediate 
hosts: snails of the genera Segmentina, Hippeutis and Gyraulus, among others. 
Miracidia attach and penetrate the snails’ mantle, tentacles or feet, with sporocyst 

development occurring within 2 days. Mother radiae develop rapidly inside the 
sporocyst, emerging within 9-10 days aft er miracidial penetration. Th ey then mi-
grate to the ovotestis of the snail, where daughter radiae develop and mature, each 

harboring up to 45 cercariae. Th ese then emerge from the daughter radiae (average 
patency period 21 days postinfection) and the snails begin to shed cercariae in ir-
regular patterns, all snails dying aft er their fi rst heavy shedding of 50 cercariae or 
more. Fasciolopsis buski parasitism of the snail causes physiological and histological 
damage to the ovotestis resulting in castration and death. Cercariae released into 

water then encyst on fresh water plants or on the water surface, surviving from 
64-72 days. Upon ingestion, typically while peeling the plants using one’s teeth, 
the encysted metacercariae exyst in the duodenum and attach to the intestinal wall 

where, aft er about 3 months, they develop into adult worms. Although pigs are a 
potential source of eggs in the environment, the overall contribution of zoonotic 
transmission to humans is unknown.

Human Disease

Th e site of infection occurs mainly in the duodenum and jejunum, though 

heavy infections can aff ect the entire intestinal tract including the stomach.
Clinical symptoms are related to parasite load, with light infections generally 

being asymptomatic or associated with mild bouts of diarrhea, abdominal pain, 
anemia, anorexia, eosinophilia, headache and dizziness. Moderate to heavy 
infections can result in a severe enteritis with extensive intestinal and duodenal 

erosions, ulcerations, hemorrhaging and abscesses. Fasciolopsis enteritis can result 
in severe epigastric and abdominal pain, acute ileus, bowel obstruction, nausea, 

fever, vomiting and marked eosinophilia and leukocytosis. Ascites, general edema 


background image

106

Medical Parasitology

16

and facial edema can result, possibly from elevated immunologic response to 

absorption of toxic and allergic worm metabolites. In very heavy infections, intes-
tinal obstruction can result in death. Fasciolopsiasis has been shown to decrease 

intestinal absorption of vitamin B12, though having no eff ect on carbohydrate, 
fat and protein absorption. Feces are characterized by a yellow-brown or green 

color with pieces of undigested food.

Diagnosis and Treatment

Diagnosis of fasciolopsiasis is done by fecal examination to identify the charac-

teristic large, ellipsoidal, operculate eggs, or expelled adult worms. In some cases, 
patients vomit adult worms, which are subsequently identifi ed. Th e treatment of 

choice for fasciolopsiasis is praziquantel, which induces rapid vacuolisation and 
disintegration of the tegument of the parasite. For children and adults the recom-
mended dose is 75 mg/kg/d in 3 doses given over a period of one day. However, 
some investigators recommend a single praziquantel dose of 15 mg/kg for children 

at bedtime, that being the lowest dose with no side eff ects, and 25 mg/kg for adults. 
In the past, niclosamide has been recommended as an alternative treatment.

Economic Impact

Fasciolopsiasis is considered to be a major cause of malnutrition in children 

in endemic areas of underdeveloped countries. During this particularly crucial 
time of growth and development, improving children’s health could have positive 
economic impact through increasing school attendance, learning and healthy 
behaviors leading to less-parasitized adults. Measures of disease mortality and 
morbidity specifi c for F. buski are not available yet, but like other food-borne 

zoonotic trematodiases, fasciolopsiasis is aggravated by socio-economic factors, 
particularly practices of free-food markets which lack regulatory inspection and 
sanitation. It has also important to consider the eff ect of polyparasitism on child 

growth. In China, soil-transmitted helminthiases and foodborne trematodiases 
are prevalent among children in schistosome-endemic areas.

Control and Prevention

Th e main goal of current control strategies for other helminthiases (e.g., schis-

tosomiasis, soil-transmitted helminthiases) is to prevent disease through large-scale 
treatment programs rather than reducing or eradicating transmission. Control 
of intestinal trematode infections requires a slightly diff erent approach. Since 
morbidity is directly associated with intensity of infection, prevalence is not the 
best indicator of disease morbidity within a population. A reduction in prevalence 

may not refl ect a reduction of infection intensity aft er anthelminthic treatment 
alone, but rather the eff ects of several interventions acting in concert. A decreas-
ing prevalence pattern of intestinal trematodiases observed currently in Southeast 

Asian countries proves to be the result of industrialization of animal production, 
food processing, health education, environmental alteration and changes in solid 
waste management. WHO and FAO have developed a conceptual framework 
for integrated food-borne trematode control comprised of (1) diagnosis through 
routine stool examination, community participation and self-reliance; (2) treat-

ment with anthelminthics to reduce morbidity and human host reservoirs; and 


background image

107

Intestinal Trematode Infections

16

(3) prevention though health education and reduction of risk behavior to break 

the cycle of transmission.

Prevention of food-borne trematode infections involves economic develop-

ment, industrialization, agricultural guidelines, changes in eating behavior, 
changes in defecation behavior and sanitation along with sustained praziquantel 

treatment of existing infections and reinfections. Th e simplest method of pre-
vention is health education to thoroughly cook raw vegetables before ingestion 
and the containment of fecal matter separate from food vegetation. Because 

the disease is most prevalent in school-aged children, aggressive school-based 

education programs have been implemented to target those who may not be as 
entrenched in their eating habits and hygienic customs.

Echinostomatidae

Etiology and Defi nitive Hosts

Human echinostomiasis is caused by up to 20 diff erent species across eight 

genera. It diff ers from other food-borne trematodiases in that its range of defi ni-
tive and intermediate hosts is quite broad, making parasite transmission especially 
diffi  cult to interrupt. Th e reservoir for echinostomes include domesticated and 
wild waterfowl, other birds, mammals and any aquatic organisms that maintain 
the intermediate hosts. Intermediate hosts include snails, bivalves, crustaceans, 

fi sh, amphibians, rats, dogs, humans and a variety of other mammals. Th e adult 
fl ukes are typically 3-10 mm in length, 1-3 mm wide with a large ventral sucker 
and numerous collar spines.

Geographical Distribution and Epidemiology

Echinostomiasis is endemic in China, Taiwan, India, Korea, Malaysia, the 

Philippines and Indonesia, with some foci occurring in Th ailand, Hungary, Italy, 
Romania and Egypt. Prevalence of infection in certain endemic foci is estimated 
to be 5% in China, 65% in Taiwan, 22% in Korea, 44% in the Philippines and 
50% in northern Th ailand, with 150,000 people infected in China and 56,000 
in Korea. Th ree species of echinostomes have been reported in Korea: E. hortense 

with over 100 proven cases and 50,000 estimated cases, E. cinetorchis with four 
proven cases and 1,000 estimated cases and E. japonicus with four proven cases and 
5,000 estimated cases. Infection is associated with consumption of the intermediate 

host, usually raw or inadequately cooked fi sh, snails, shrimp, frogs, tadpoles, clams 
and mussels. Endemic foci are characterized by fresh or brackish water habitats 
containing intermediate hosts that are consumed raw or undercooked and socio-
economic factors that bring populations into contact with aquatic environments 
for food sources.

Life Cycle and Transmission

Humans ingest metacercariae in raw or undercooked intermediate hosts which 

then exyst in the intestinal tract, maturing into adults. Th e adults lay eggs which 
hatch in the environment, releasing miracidia which then infect an intermediate 

host, usually a snail or fi sh. Cercariae develop and are released, encysting in the 
environment for the next host. Humans are accidental intermediate hosts and 
echinostomes demonstrate a sylvatic cycle as well as a human cycle.


background image

108

Medical Parasitology

16

Human Disease

Clinical symptoms associated with light to moderate infections include anemia, 

headache, dizziness, stomachache, gastric pain and loose stools while heavy infec-
tions can cause eosinophilia, abdominal pain, profuse watery diarrhea, anemia, 

edema and anorexia. Th e worms cause pathological changes in the intestinal lumen. 
Erosions, destruction of villi, loss of mucosal integrity and catarrhal infl ammation 

have all been reported.

Diagnosis and Treatment

Diagnosis of echinostomiasis is done by identifying eggs upon fecal examina-

tion. Praziquantel is probably the drug of choice for the treatment of human 
echinostomiasis, although it has been reported that infections can also be treated 
with mebendazole, albendazole, or niclosamide.

Economic Impact

Echinostomiasis is an underreported infection in endemic areas, which tend to be 

remote places where the burden of infection is carried by the rural poor and women 
of child-bearing age. Like fasciolopsiasis, echinostomiasis is a disease of poverty and 
poor sanitation. Education, industrialization, changes in ecology and agricultural 

practices have reduced prevalence of some trematodiases in endemic areas. In Lindu 
Valley, Indonesia, predation of cercaria-infected Corbicula clams by Tilapia mos-
sambica
 fi sh drastically reduced echinostomiasis infection in the region.

Control and Prevention

Th e control of echinostomiasis, like that of fasciolopsiasis, involves interrupting 

the life cycle through diagnosis, treatment and prevention of reinfection. Within 
its endemic boundaries, however, echinostomiasis is diffi  cult to control or eradi-
cate due to the operation of three independent transmission cycles, i.e., human 

(anthroponotic), zoonotic (domesticated livestock) and sylvatic (wildlife). Th us, 
any successful control program involving anthelminthic treatment would have to be 
sustained to cure re-infections in humans as well as animal populations. Treatment 
with broad-spectrum anthelminthics would also cure concurrent helminthiases in 
polyparasitized individuals. Prevention of echinostomiasis follows a similar strategy 

for fasciolopsiasis, relying on health education targeted to school-aged children to 
change people’s eating habits. Industrialization and economic development would 
have the greatest impact on reducing transmission since vector and intermediate 

host control is not possible.

Heterophyidae

Etiology and Defi nitive Hosts

While there are many genera of heterophyids containing species that cause 

human trematodiasis, this discussion focuses on Heterophyes heterophyes and 

Metagonimus yokogawai, the two most prevalent species infecting humans. 
Defi nitive host range for H. heterophyes and M. yokogawai include various 

fi sh-eating mammals such as dogs, cats, foxes, jackals, birds and humans; fi rst in-
termediate hosts are littorine snails; and second intermediate hosts are shore-fi sh 
and brackish water fi shes such as cunners, gudgeon, charr, perch, shad, mullet 


background image

109

Intestinal Trematode Infections

16

and goby. Th ese worms are small (<0.5 mm in length), egg-shaped and possess 

a unique morphological feature of a gonotyl or genital sucker.

Geographical Distribution and Epidemiology

H. heterophyes have been reported in Egypt, Sudan, Iran, Turkey, Tunisia, China, 

Taiwan, the Philippines, Indonesia, Africa and India. In one Egyptian village, the 
highest prevalence of infection, 37%, was found among individuals aged 15-45 

years, greater for females than males, followed by 28% prevalence in children 
under 5 years of age. Over 10,000 people are estimated to be infected in Egypt. H. 

heterophyes in China occurs in approximately 230,000 infected people.

M. yokogawai is mainly distributed in China, Japan, Korea, Taiwan, Indonesia, 

Russia, Israel, the Balkans and Spain. An estimated 500,000 people are infected 

in South Korea, 150,000 in Japan and 12,000 in Russia. Epidemiologic studies 
have compared prevalence of food-borne trematode infections in villages close to 

water bodies and found a relative risk of 5.01 to 7.44 in Republic of Korea for M. 
yokogawai
 infection associated with proximity to fresh water. Twenty-fi ve percent 
of food fi shes like perch and mullet studied from Jinju Bay, Korea, were infected 
with heterophyid metacercaria.

Life Cycle and Transmission

Transmission of heterophyids occurs through consumption of raw, undercooked 

or improperly processed metacercaria-infected fi shes.

Human Disease

H. heterophyes and M. yokogawai invade intestinal mucosa of the small intestine, 

causing infl ammation, ulceration and superfi cial necrosis. Heavy infections are asso-
ciated with diarrhea, mucus-rich feces, pain, dyspepsia, anorexia, nausea and vomit-
ing. Worm eggs may also enter the lymphatic vessels via the crypts of Lieberkühn, 
enter the circulation and may occlude cardiac vessels leading to heart damage and 
fi brosis. Rare cases of egg emboli in the spinal cord and brain have been reported.

Diagnosis and Treatment

Diagnosis is done by fecal examination and treatment is praziquantel admin-

istered in three doses of 25 mg/kg in a single day (75 mg/kg/d in 3 doses × 1 d) 
or as a single dose.

Control and Prevention

Heterophyiases and metagonimiases overlap geographically with other 

food-borne trematodiases, particularly the liver fl ukes that cause clonorchiases and 
opisthorchiases. Control and prevention are similar to those strategies employed for 

fasciolopsiasis and echinostomiasis. In addition, the major soil-transmitted helmint-
hiases and schistosomiases are coendemic and while the number of these infections 
has decreased due to large-scale deworming programs in many areas, overall the 

number of cases of food-borne trematode infections have not decreased signifi cantly. 
Th is could be due to a number of factors, such as the rapidly growing aquaculture 

industry in Asian countries playing a key role in transmission. Prevention would 
then require strict regulation of this expanding sector of food production along with 
praziquantel-based treatment programs.


background image

110

Medical Parasitology

16

Suggested Reading

  1.  Control of foodborne trematode infections. Report of a WHO Study Group.   World 

Health Organ Tech Rep Ser 1995; 849:1-157.

  2.  Abdussalam M, Kaferstein FK, Mott KE. Food safety measures for the control of 

foodborne trematode infections. Food Control 1995; 6:71-79.

  3.  Keiser J, Utzinger J. Emerging foodborne trematodiasis. Emerg Infect Di 2005; 

11:1507-14.

  4.  Mas-Coma S, Valero B. Fascioliasis and other plant-borne trematode zoonoses. Int 

J Parasitol 2005; 35:1255-78.

  5.  Manning GS, Ratanarat C. Fasciolopsis buski (Lankester, 1957) in Th ailand. Amer 

J Trop Med Hyg 1970; 19:613-9.

  6.  Sadun EH, Maiphoom C. Studies on the epidemiology of the human intestinal 

fl uke, Fasciolopsis buski (Lankester) in Central Th ailand. Am J Trop Med Hyg 1953; 

2:1070-84.

  7.  Joint WHO/FAO workshop on food-borne trematode infections in Asia. WHO, 

Regional Offi  ce for the Western Pacifi c 2002.

  8.  Graczyk TK, Alam K, Gilman RH et al. Development of Fasciolopsis buski 

(Trematoda: Fasciolidae) in Hippeutis umbilicalis and Segmentina trochoideus 

(Gastropoda: Pulmonata). Parasitol Res 2000; 86:324-32.

  9.  Lo CT. Life history of the snail, Segmentina hemisphaerula (Benson) and its experi-

mental infection with Fasciolopsis buski (Lankester). J Parasitol 1967; 53:735-8.

 10.  Jaroonvesama N, Charoenlarp K, Areekul S. Intestinal absorption studies in 

Fasciolopsis buski infection. Southeast Asian J Trop Med Public Health 1986; 

17:582-5.

  11.  Le TH, Nguyen VD, Phan BU et al. Case report: unusual presentation of Fasciolopsis 

buski in a Viet Namese child. Trans R Soc Trop Med Hyg 2004; 98:193-4.

  12.  Gupta A, Xess A, Sharma HP et al. Fasciolopsis buski (giant intestinal fl uke)—a case 

report. Indian J Pathol Microbiol 1999; 42:359-60.

 13.  Keiser J, Utzinger J. Chemotherapy for major food-borne trematodes: a review. Exp 

Opin Pharmacother 2004; 5:1711-26.

 14.  Zhou H, Ohtsuka R, He Y et al. Impact of parasitic infections and dietary intake on 

child growth in the Schistosomiasis-endemic Dongting Lake region, China. Am J 

Trop Med Hyg 2005; 72:534-9.

  15.  Graczyk TK, Fried B. Echinostomiasis: a common but forgotten food-borne disease. 

Am J Trop Med Hyg 1998; 58:501-4.

 16.  Chai JY, Lee SH. Intestinal trematodes of humans in Korea: Metagonimus, 

Heterophyids and Echinostomes. Kisaengchunghak Chapchi 1990; 28:103-22. 

 17.  Kim DG, Kim TS, Cho SH et al. Heterphyid metacercarial infections in brackish 

water fi shes from Jinju-man (Bay), Kyongsangnam-do, Korea. Korean J Parasitol 

2006; 44:7-13.

  18.  Abou-Basha LM, Abdel-Fattah M, Orecchia P et al. Epidemiological study of hetero-

phyiasis among humans in an area of Egypt. Eastern Med Health J 2000; 6:932-8.

 19.  Goldsmid JM. Ecological and cultural aspects of human trematodiasis (excluding 

schistosomiasis) in Africa. Cent Afr J Med 1975; 21:49-52.

 20.  Olson PD, Cribb TH, Tkach VV et al. Phylogeny and classifi cation of the Digenea 

(Platyhelminthes: Trematoda). Int J Parasitol 2003; 33:733-55.

 21.  Bhatti HS, Malla N, Mahajan RC et al. Fasciolopsiasis—a re-emerging infection in 

Azamgarh (Uttar Pradesh). Indian J Pathol Microbiol 2000; 43:73-6.

 22.  Th e Medical Letter on Drugs and Th erapeutics. Drugs for Parasitic Infections 2004:4, 

www.medicalletter.org

 23.  Cross JH. Changing patterns of some trematode infections in Asia. 

Arzneimittelforschung 1984; 34:1224-6.

 24.  Brooker S, Whawell S, Kabatereine NB et al. Evaluating the epidemiological impact 

of national control programmes for helminths. Trends Parasitol 2004; 20:537-45.


background image

C

HAPTER

 17

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Schistosomiasis: Schistosoma japonicum

Edsel Maurice T. Salvana and Charles H. King

Background

Schistosoma japonicum, also known as the oriental blood fl uke, is one of the 

causative agents of chronic intestinal schistosomiasis in humans. Th is condition, 
which frequently progresses to liver fi brosis, portal hypertension and splenomegaly, 
is endemic to southeastern and eastern Asia, particularly parts of China, Sulawesi, 
Indonesia, Th ailand, Laos, Cambodia and the Philippines. At one time, it was 
endemic in southern Japan, where Katsurada fi rst described the adult form of the 
S. japonicum parasite. However, transmission of this infection was completely 

eliminated in Japan as of 1977.

In the late 1950s, an estimated 11.6 million people in China were infected with 

S. japonicum. A national control program was launched, with emphasis on inter-

mediate host snail control through environmental management, and this decreased 
the numbers of infected individuals dramatically. Recently between 2000 and 2003, 
there has been an upsurge of cases in China, which suggests a reemergence of the 
disease. More than 1.3 million people in the world are currently infected with S. 
japonicum
; the ∼843,000 in China and over 500,000 in the Philippines make up 

the greater part of present S. japonicum cases.

S. japonicum is a trematode parasite or fl uke that requires a snail of the genus 

Oncomelania as an intermediate host. Compared to S. mansoni and S. hae-

matobiumS. japonicum is associated with more severe disease manifestations. 
Ecologically, it is perhaps the most diffi  cult schistosome species to control, in part 
due to its higher egg production and its ability to infect a wider range of defi nitive 
mammalian hosts, including common domestic animals such as dogs, cats, pigs 
and cows, as well as feral animals such as mice, rabbits and monkeys. Nevertheless, 

nations such as Japan, China and the Philippines have made signifi cant progress 
in S. japonicum control, mostly linked to economic development and focused ef-
forts at improved sanitation. Geographically distinct strains of S. japonicum have 

diff erent preferred hosts and appear to have varying degrees of pathogenicity. 
Moreover, diff erent geographic strains elicit distinct immune responses, which are 
not necessarily cross-protective. Th is phenomenon means that a universal vaccine 
against S. japonicum will be diffi  cult to develop.

Several S. japonicum-like fl ukes have been identifi ed in Th ailand and Malaysia 

that are of uncertain clinical signifi cance for humans. In addition, in 1978, a new 

species of Schistosoma was recognized within the Mekong River basin in Laos to 

Cambodia. Th is new species, S. mekongi, utilizes the snail Neotricula aperta as its 


background image

112

Medical Parasitology

17

intermediate host. In human infection, its clinical manifestations and pathogenesis 
are similar to those of S. japonicum.

Th e S. japonicum life cycle (Fig. 17.1) includes both parasitic and free-living 

stages. Th e infective stage for humans is the cercaria (pl. cercariae), which is 
free-living and free-swimming, but short-lived (24-72 h). Th e S. japonicum cercariae 
gain entry to the host through penetration of skin immersed in water. Th e cercariae 

then transform into larval schistosomula, which penetrate the circulation through 
subcutaneous vessels and reach the pulmonary circulation. In the lungs, the schisto-

somules elongate, break into the pulmonary veins and then travel through the heart 
to the systemic capillary bed. If the schistosomulum reaches the splanchnic vessels, 

Figure 17.1. Life cycle of Schistosoma japonicum. Modifi ed with permission 

from: Belizario VY, de Leon WU, eds. Philippine Textbook of Parasitology, 

2nd Ed. Manila: University of the Philippines, 2004:196.


background image

113

Schistosomiasis: Schistosoma japonicum

17

it moves across the capillary bed to the portal circulation (otherwise, it returns to 

the heart to circulate again). From the mesenteric capillaries, the schistosomulum 
travels to the liver, where it goes into the intrahepatic branches of the portal vein 

and matures into an adult schistosome. Adult S. japonicum are dioecious, i.e., either 
male or female and these migrate back to the mesenteric vessels to pair, mate and 

begin oviposition in the wall of the bowel. Eggs leave the human body in feces 
and when exposed to fresh water, these hatch to release miracidia, which in turn 
infect intermediate host snails, which complete the parasite life cycle by releasing 

cercariae 4-12 weeks aft er infection.

Areas with high rates of S. japonicum infection have habitats that are rich in 

water and provide a favorable breeding ground for snails, as well as opportunities 
for the cercariae to infect defi nitive hosts. Rural areas with rice fi elds and seasonal 

fl ooding are ideal for the parasite to thrive. Control of infection has been attempted 
in the past through eradication of the intermediate snail hosts, and this was done 
successfully in Japan. Lately, the focus has been on mass treatment of aff ected hu-

man populations, especially in areas with high disease prevalence.

Disease Signs and Symptoms

Acute Schistosomiasis

Th e penetration of cercariae into the skin causes localized infl ammation and 

pruritus known as cercarial dermatitis or “swimmer’s itch.” Th is is not unique to 
S. japonicum and characterizes the trematode cercariae across the parasite genus 
and family, including those bird schistosomes such as Trichobilharzia that cause 
zoonotic swimmer’s itch. S. mansoni and S. haematobium are more likely to cause 
dermatitis than S. japonicum.

More commonly, successful cercarial entry to the body and development of 

larvae in the bloodstream brings about a self-limiting febrile illness known as 
“snail fever” or Katayama fever. Th is can be accompanied by arthralgias, myalgias 

and abdominal pain, as well as fi ndings of lymphadenopathy, hepatosplenomegaly 
and eosinophilia.

As the maturing worms migrate through the circulatory system, they may rarely 

end up in aberrant areas such as the brain or spinal cord, where direct occlusion of 
blood vessels may cause transient ischemic attacks, strokes, paraparesis, seizures, 

or hydrocephalus.

Repeated infections can stimulate partial immunity in the host and, due to a 

compensatory immunomodulation of antiparasite immune responses, the derma-

titis and systemic manifestations of acute infection may actually be decreased when 
infected individuals are exposed to subsequent cercarial penetration. A proportion 
of immune patients may spontaneously clear their infections without treatment, 
but the remainder go on to develop chronic schistosomiasis with variable degrees 
of morbidity.

Chronic Schistosomiasis

Schistosoma japonicum causes chronic pathology when the adult worms fi nd 

their way into the portal circulation. A mated pair of worms produces 300 to 
3,000 eggs per day, which are released into the capillaries and portal veins. In 


background image

114

Medical Parasitology

17

order to be expelled through the intestinal wall, an egg must be inserted into a 

terminal vein within the bowel wall and then be ulcerated (via immune-mediated 
infl ammation) through the mucosa into the bowel lumen. Bleeding and polyp 

formation in the bowel wall are thus common complications of egg transfer 
from the venule to the bowel lumen. Th e process of local infl ammation can lead 

to protein loss, iron loss, anemia of chronic disease, diarrhea and in some cases, 
intestinal obstruction.

More than half of the worm eggs become permanently trapped in host tissues, 

where they each evoke an immune-mediated infl ammatory granuloma. Th e signifi -

cant numbers of eggs ultimately deposited in tissues cause widespread fi brosis. Th is 
is especially apparent in the liver, where a classic pattern of periportal “pipestem” 
fi brosis is manifested, which leads to portal hypertension and its sequelae of varix 

formation, ascites and splenomegaly.

As portal hypertension increases, eggs are shunted into the pulmonary circula-

tion, where local fi brosis causes pulmonary hypertension, which may lead to cor 

pulmonale. Eggs reaching the central nervous system lead to local granuloma 
formation, which can cause seizures, hydrocephalus and space occupying lesions.

Pediatric Infection

Infection with S. japonicum has detrimental eff ects on the growth of children in 

endemic areas. A recent study in China noted that height, weight and mid-upper 
arm circumference were all signifi cantly reduced in S. japonicum-infected children 
compared to controls and this eff ect was most severe among girls. Comparable 
studies in the Philippines have shown S. japonicum-infected children to have an 
increased prevalence of nutritional morbidity, as well as poorer performance on 

standardized tests of learning. Because of their chronic, long-term persistence over 
many years, these ‘subtle’ morbidities constitute a signifi cant lifetime burden of 
disease for endemic populations.

Diagnosis

Acute Infection

Acute infection with schistosomiasis is diffi  cult to diagnose defi nitively. Clinical 

symptoms are nonspecifi c. A history of exposure of skin to water in endemic areas 
followed by a suitable clinical syndrome should increase the index of suspicion 
for acute schistosomiasis. Antischistosome serologic tests may be performed at 
this juncture, although a positive result does not distinguish a recent infection 
from a remote one. However, among returning travelers who have no history of 

prior exposure, a negative serology is quite helpful in ruling out the possibility of 
schistosome infection.

Chronic Infection

Direct stool examination using the Kato-Katz technique is the method of choice 

for determining the presence of infection and the associated egg density in aff ected 
humans. S. japonicum eggs have a distinct appearance, which is ovoidal with a small 

knob near one of the poles (Fig. 17.2). Th e typical egg measures around 100 

μ

on the long axis and 60 

μ

m on the short axis.


background image

115

Schistosomiasis: Schistosoma japonicum

17

Concentration techniques are helpful for processing large stool volumes but are 

not completely sensitive for light infections. Common concentration techniques 
include formaldehyde-ether concentration technique, merthiolate-formaldehyde 
concentration technique and merthiolate-iodine-formaldehyde concentration 
technique.

In consideration of cases of very light infection, a rectal biopsy can be useful if 

repeated stool examinations remain negative in the face of a high clinical suspicion 
of infection. An estimation of the viability of any recovered eggs is appropriate, as 
large numbers of eggs can concentrate in the rectal mucosa and remain there even 

if active infection has ceased. Liver biopsy can also demonstrate worm eggs in the 
parenchyma, but this procedure is more invasive, risky and requires specialized 
equipment.

Immunologic diagnosis is available using both S. japonicum egg and adult worm 

extracts, although the World Health Organization recommends that testing be 

performed with crude egg antigens for greater specifi city. Currently available tests 
include the circumoval precipitin test (COPT), indirect hemagglutination test 
and ELISA against soluble schistosome antigens.

Th e COPT tests patient’s serum for reactivity with S. japonicum eggs. Upon 

serum exposure, a precipitate forms on the egg surface that can be visualized 
through the microscope. Like the ELISA for anti-S. japonicum antibodies, the 
COPT does not distinguish an active from a remote infection.

Antigen detection through ELISA is emerging as the most specifi c test for 

detecting active infection. Monoclonal antibodies against specifi c S. japonicum 
antigens are used to detect circulating antigens, including gut-associated antigens 
such as circulating cathodic antigen (CAA). Th e CAA assay is particularly useful 

Figure 17.2. Schistosoma japonicum egg.


background image

116

Medical Parasitology

17

because the antigen can be detected in urine, which should facilitate its use in 

large-scale fi eld studies.

Liver ultrasound and computed tomography can identify a distinctive pattern 

of periportal fi brosis and a “network” pattern in S. japonicum. Th is can be useful 
in distinguishing liver disease secondary to the parasite from other etiologies. 

However, more imaging studies are required to validate these fi ndings.

Treatment

Praziquantel remains the mainstay of therapy for active S. japonicum disease. 

While individuals with acute infection can initially be observed and treated symp-
tomatically, evidence of chronic infection, as manifested by recovery of eggs from 

stool or tissue requires anthelminthic therapy to prevent signifi cant morbidity, as 
well as to prevent further transmission.

For S. japonicum treatment, praziquantel should be given at an oral dose of 60 

mg/kg in two to three divided doses over the period of one day. Th is regimen results 

in an 80-90 % cure rate. Common side-eff ects are mild and include abdominal dis-
comfort, low-grade fevers, nausea, dizziness and diaphoresis. Th ere is evidence that 
treatment of chronic schistosome infection, if given early in the course of the disease, 

can reverse infection-associated morbidity such as hepatosplenomegaly. Among 
patients with extensive fi brosis and obstruction, however, treatment may have little 
eff ect, with only minimal regression of clinical and ultrasound fi ndings.

Alternative drug regimens include niridazole and antimony-based therapy, but 

these drugs are not FDA-approved and are associated with much lower cure rates 

and with signifi cant toxicity. Artemisinin derivatives such as artemether have been 
shown to have antiparasitic activity, particularly against juvenile forms of the worm, 
but they are less active against the mature, adult forms of the parasite. Combination 

treatment with artemether and praziquantel has been more highly eff ective in 
reducing worm burdens in laboratory animals and is believed to have considerable 
potential for interrupting transmission in high-transmission communities.

Recently, calcium-channel blockers have been shown to aff ect the eggshell 

formation in S. mansoni and these agents may hold some promise in reducing 

or interrupting S. japonicum transmission. Several unique schistosomal proteins 
involved in eggshell synthesis have been identifi ed and are currently being studied 
as targets for treatment.

Prevention and Prophylaxis

Th e mainstay of epidemiologic control involves interruption of transmission. In 

areas of high prevalence, mass chemotherapy is the main control strategy. Although 
mass treatment may reduce transmission, it does not assure signifi cant interruption of 
transmission. Environmental control of the Oncomelania host snail is a strategy that 
has been used successfully in Japan and parts of China. Elimination of snails involves 
elimination of breeding sites as well as the use of chemical molluscicides to kill snails 

at transmission sites. Improved sanitation (to prevent S. japonicum eggs in feces from 
reaching fresh water snail habitat) is likewise an important control measure.

No eff ective chemoprophylaxis currently exists for S. japonicum. Some fi eld 

studies involving artemether for prophylaxis have been promising, but results 
from large-scale intervention trials are still pending. Th ere have been studies 


background image

117

Schistosomiasis: Schistosoma japonicum

17

involving chemical repellants to prevent penetration of cercariae but these have 

been largely unsatisfactory. Th erefore, travelers have no protective options and 
should be strongly cautioned against participating in wading or swimming activi-

ties in any unchlorinated fresh water found in S. japonicum-endemic areas.

Vaccine Research

An eff ective vaccine against the diff erent geographic strains of S. japonicum will 

be a major breakthrough in the control of schistosomiasis in Asia. Th is is because 
current chemotherapy does little to interrupt transmission and does nothing to 

prevent reinfection. A number of vaccines based on novel target antigens are in 
development. A transmission-blocking veterinary vaccine that targets infection 

in water buff aloes has completed fi eld trails and may have a major role in inte-
grated schistosomiasis control programs in the future. Recent elucidation of the 

S. japonicum genome is expected to further boost research into fi nding targets for 
drug treatment and vaccine development.

Suggested Reading

  1.  Blas B, Rosales M, Lipayon I et al. Th e schistosomiasis problem in the Philippines: 

a review. Parasitol Int 2004; 53:127-34.

  2.  Bonn D. Schistosomiasis: a new target for calcium channel blockers. Lancet Infect 

Dis 2004; 4:190.

  3.  Coutinho HM, McGarvey ST, Acosta LP et al. Nutritional status and serum cytokine 

profi les in children, adolescents and young adults with Schistosoma japonicum-as-

sociated hepatic fi brosis, in Leyte, Philippines. J Infect Dis 2005; 192:528-36.

  4.  Ezeamama AE, Friedman JF, Acosta LP et al. Helminth infection and cognitive 

impairment among Filipino children. Am J Trop Med Hyg 2005; 72:540-8.

  5.  Garcia EG, Belizario VY Jr. Trematode infections: blood fl ukes. In: Belizario VY, 

de Leon WU, eds. Philippine Textbook of Medical Parasitology, 2nd Edition. 

Manila: Th e Publications Program University of the Philippines, 2004:195-211.

  6.  Hirayama K. Immunogenetic analysis of postschistosomal liver fi brosis. Parasitol 

Int 2004; 53:193-6.

  7.  King CH. Acute and chronic schistosomiasis. Hosp Pract 1991; 26:117-30.

  8.  Li Y, Herter U, Ruppel A. Acute, chronic and late-stage infections with Schistosoma 

japonicum: reactivity of patient sera in indirect immunofl uorescence tests. Ann Trop 

Med Parasitol 2004; 98:49-57.

  9.  McManus DP. Prospects for development of a transmission blocking vaccine against 

Schistosoma japonicum. Parasite Immunol 2005; 27:297-308.

 10.  Ohmae H, Sy OS, Chigusa Y et al. Imaging diagnosis of schistosomiasis japonica—

the use in Japan and application for fi eld study in the present endemic area. Parasitol 

Int 2003; 52:385-93.

 11.  Olveda RM. Disease in schistosomiasis japonica. In: Mahmoud AAF, ed. 

Schistosomiasis. Tropical Medicine: Science and Practice. London: Imperial 

College Press, 2001:361-89.

 12.  Ross AGP, Bartley PB, Sleigh AC et al. Current Concepts: Schistosomiasis. N Engl 

J Med 2002; 346:1212-20.

 13.  Vennervald BJ, Dunne DW. Morbidity in schistosomiasis: an update. Curr Opin 

Infect Dis 2004; 17:439-47.

 14.  Zhou H, Ohtsuka R, He Y et al. Impact of parasitic infections and dietary intake 

on child growth in the schistosomiasis-endemic Dongting Lake Region, China. 

Am J Trop Med Hyg 2005; 72:534-9.

 15.  Zhou XN, Wang LY, Chen MG et al. Th e public health signifi cance and control 

of schistosomiasis in China—then and now. Acta Trop 2005; 96:97-105.


background image

C

HAPTER

 18

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Schistosomiasis: Schistosoma mansoni

Wafa Alnassir and Charles H. King

Background

Archeological evidence in Africa and China indicates that the parasitic trema-

tode infection schistosomiasis has been part of human life for at least four millen-
nia. In 1852, Dr. Th eodore Bilharz, a German physician working in Egypt, fi rst 
described the presence of adult worms in postmortem examinations of aff ected 
patients and since then, the disease is oft en referred to generically as ‘Bilharziasis’. 
It was not until a half-century later (in 1907) that Dr. Patrick Manson defi ned the 
existence of diff erent Schistosoma species and later in 1908, Sambon established 

the distinct species we now call Schistosoma mansoni.

Epidemiology

Internationally, Schistosoma mansoni is the most prevalent of the schistosome 

species that aff ect the intestines and liver. An estimated 62 million persons are 
infected worldwide. S. mansoni is known to occur in 52 countries, including 

sub-Saharan Africa (where around 85% of the global burden is concentrated), 
North African and Eastern Mediterranean countries, South American countries 
(Brazil, Venezuela, Surinam) as well as several Caribbean countries (Saint Lucia, 
Montserrat, Martnique, Guadeloupe, Dominican Republic and Puerto Rico) 
(Fig. 18.1).

Life Cycle

Among all species of human schistosome parasites (S. mansoni, S. haemato-

bium, S. japonicum, S. intercalatum, S. mekongi), the schistosome life cycle is very 
similar, with the exception that diff erent species diff er in the fi nal location where 

the adult worms prefer to reside within the human body. Adults of S. mansoni and 
S. japonicum favor the intestines, whereas S. haematobium prefer the urinary tract. 
Th e adult form of S. mansoni most frequently lives in the mesenteric veins of the 
small and large intestines and its eggs typically pass out of the body in the feces. 
However, in heavy infection S. mansoni will fi nd space in other pelvic abdominal 

organs and S. mansoni eggs can be passed in the urine as well.

Th e life cycle of the schistosome worms involves an adult dioecious (i.e., either 

male or female) sexual stage within the defi nitive human host and an asexual re-

productive stage within an intermediate host snail. When parasite eggs (ova) reach 
fresh water, they hatch and free-swimming miracidial forms are released. Th ese pen-
etrate the bodies of suitable aquatic snails (for S. mansoni, these are Biomphalaria 
species snails (Fig. 18.3)) and for the next 3-5 weeks they multiply asexually to 


background image

119

Schistosomiasis: Schistosoma mansoni

18

form hundreds of fork-tailed cercariae. Th e cercariae leave the snail and swim to a 

human or nonhuman animal, where they penetrate the skin (Fig. 18.2).

Inside the human body, the larval forms, or schistosomula, are transported 

through blood or lymphatics to the right side of the heart, then to the lungs, where 
they mature for a period of 7-10 days. Th ey then break into the pulmonary veins 
and travel through the systemic circulation to reach the portal circulation and the 

liver, where they develop into adult worms (Fig. 18.3). Ultimately, the mature adult 
worms migrate from the liver through the portal veins to the mesentery and the 
wall of the bowel. Th ese adult worms do little damage to the host. Th ey feed on 

circulating erythrocytes and plasma glucose but usually don’t cause symptoms.

Th e time between the fi rst skin penetration by a cercaria to the fi rst ova produc-

tion by an adult worm is around 4-6 weeks. Th e female S. mansoni adult worm 
mates with the male worm and lays around 100-300 ovoid, laterally spined eggs 
each day (Fig. 18.3). Th is morphological appearance of the eggs allows very clear 

diagnostic identifi cation of the infecting species. Th e female worm lives approxi-
mately 3-8 years and, when mated, lays eggs throughout her adult life. About half 
of all eggs reach the lumen of the bowel by a process of infl ammatory ulceration 

through the bowel wall. Th e remainder of schistosome eggs remains trapped 
within the human host’s body and result in acute and chronic granulomatous 
infl ammation (Fig. 18.3).

Th e host immune response to schistosome eggs is the hallmark of disease due to 

schistosomiasis, in that immunological reaction and granuloma formation in the 

tissues is responsible for the morbidity and mortality of chronic schistosomiasis.

In terms of disease risk, no clear-cut racial predilection exists, although diff erent 

populations have been found to have varying risk for fi brotic liver disease. Men oft en 

have a higher incidence of infection and disease than women, most likely because of 
their increased exposure to infested water via bathing, swimming and agricultural 

Figure 18.1. Geographic distribution of Schistosoma mansoni infection. 

Adapted with permission from the Atlas of Medical Parasitology, Carlo 

Denegri Foundation.


background image

120

Medical Parasitology

18

activities. In terms of age-related risk, schistosome exposure can start shortly aft er 

birth, but tends to increase during late childhood, with maximum exposure occurring 
among people aged 10-14 years. Th ere is typically a lower incidence of infection and 
disease among adults, probably due to a combination of acquired partial immunity 
and an age-related decrease in exposure to infected water.

Typical Risk Factors

People who live or travel in areas where schistosomiasis is endemic and who 

are exposed to or swim in standing or running freshwater wherever the appropri-
ate type of Biomphalaria snails are present, are at risk for infection. Transmission 
is intermittent, but under the right circumstances only a brief (<2 min) exposure 
can result in infection.

Disease Signs and Symptoms

Acute Manifestations

Aft er cercarial penetration, there can be localized pruritus lasting for few hours 

(‘swimmers itch’) followed by urticarial rash or papuloerythematous exanthem. 
Most people will be initially asymptomatic aft er this fi rst stage of infection. 

However, for some infected individuals (especially in non-immune individuals), 
symptoms of ‘snail fever’ or Katayama syndrome may develop aft er an incubation 

Figure 18.2. Life cycle of schistosomiasis. Reproduced from: Centers for 

Disease Control and Prevention (CDC) (http://www.dpd.cdc.gov/dpdx).


background image

121

Schistosomiasis: Schistosoma mansoni

18

period of 1-2 months. Th is syndrome is associated with abrupt onset of fever, oft en 

accompanied by headache, shivering, anorexia, myalgia and right upper quadrant 
pain and less commonly with nausea, vomiting, diarrhea, cough and mild broncho-
spasm. Some may also develop hypersensitivity reaction to initial egg deposition, 

in the form of urticaria, generalized pruritus, facial edema, erythematus plaques 
or purpuric lesions.

Signs of chronic systemic infl ammatory illness may persist and weight loss 

is the rule. Clinical signs include hepatosplenomegaly, which may disappear in 
few months. Laboratory fi ndings include leukocytosis up to 50,000 per 

μ

L, with 

pronounced eosinophilia (typically, 20-30% up to 70%), increased serum gamma 
globulins, an increase in the sedimentation rate and possibly interstitial infi ltrates 
on the chest X-ray.

Figure 18.3. Upper left) S. mansoni eggs (reproduced from: Centers for 

Disease Control and Prevention (CDC) (http://www.dpd.cdc.gov/dpdx)). 

Upper right) Biomphalaria snail (reproduced from: WHO/TDR). Lower left) 

Female S. mansoni worm mated and resident in the groove of an adult male, 

(reproduced with permission from Davies Laboratory Uniformed Services 

University, Bethesda, MD). Lower right) S. mansoni pathology in liver tissue 

(reproduced with permission from the Atlas of Medical Parasitology, Carlo 

Denegri Foundation).


background image

122

Medical Parasitology

18

Chronic Manifestations

Intestinal schistosomiasis: Due to chronic egg-mediated infl ammation of the 

bowel wall, patients with intestinal schistosomiasis may present with fatigue, 
vague abdominal pain, diarrhea alternating with constipation and sometimes 

dysentery-like illness with bloody bowel movements. Eggs in the gut wall induce 
infl ammation, hyperplasia, ulceration, microabscess formation and polyposis. 

Detection of occult blood in the stools is common. Intestinal obstruction second-
ary to marked polyposis is a rare complication.

Hepatosplenic schistosomiasis: Th is complication occurs in 4-8% of patients 

with chronic infection and is associated with pronounced host infl ammatory 
response and/or sustained heavy infection. With development of portal hyperten-

sion secondary to egg-mediated periportal fi brosis (Symmers’ pipe-stem fi brosis), 
secondary phenomena such as ascites, pedal edema, hepatosplenomegaly and 
variceal shunting will develop. Th e liver is usually hard with a nodular surface and 

frequently a prominent left  lobe. Hematemesis secondary to esophageal varices is 
frequent and may prove fatal.

Other Manifestations and Complications

1. Cardiopulmonary schistosomiasis: As presinusoidal portal hypertension 

develops (see above) it fosters the development of portosystemtic collateral 
vessels that allow schistosome eggs to embolize into the pulmonary circulation, 
where the eggs can set up an infl ammatory reaction with granuloma forma-

tion, which may block the small pulmonary arterioles. Intractable pulmonary 
hypertension and cor pulmonale may result.

2. CNS schistosomiasis may develop due to aberrant worm migration or egg 

deposition. A presentation with focal or generalized seizures can occur 
with S. mansoni, but transverse myelitis is the most common neurological 

manifestation of infection by this species. Myeloradiculopathy may also 
occur.

3. In high-risk populations, anemia, growth retardation in children and malnu-

trition are associated with S. mansoni infection, probably as a consequence of 
the chronic infl ammation that is associated with infection.

4. Proteinuria can be found in 20-25% of S. mansoni cases with hepatosplenic 

disease. In addition, a distinct form of glomerulopathy is associated with 
chronic S. mansoni infection.

Interaction with Other Infections

Human Immunodefi ciency Virus

HIV infection may exert a deleterious eff ect on the natural course of schisto-

somiasis in diff erent ways: time until reinfection with schistosomiasis is shorter 

in HIV-positive than in HIV-negative individuals. On the other hand, treatment 
and response to praziquantel, a drug requiring a functioning immune system to be 

eff ective, is not impaired in patients with HIV co-infection. Evidence also suggests 
that Schistosoma infection may render the host more susceptible to HIV infection 
by interfering with specifi c immune responses.


background image

123

Schistosomiasis: Schistosoma mansoni

18

Salmonella

Prolonged or refractory septicemic salmonellosis is described in S. mansoni -en-

demic areas. Treatment of schistosomiasis is oft en required to cure the Salmonella 
infection.

HBV Infection

Signifi cant interactions between schistosomiasis and hepatitis B have been 

reported. Th ose people with coinfection are thought to have more severe disease 
and a worse prognosis.

Malaria

Malaria and schistosomiasis are co-endemic in many areas and studies have shown 

that co-infection with malaria may increase the level of morbidity in hepatosplenic 
schistosomiasis and alter the host immune response towards Schistosoma antigens.

Diagnosis

Routine Laboratory Testing

Peripheral eosinophilia is usually present in acute schistosomiasis, but in the 

chronic form, the peripheral eosinophilic counts may be minimal, even though 
pronounced tissue eosinophilia persists.

Th e detection of S. mansoni eggs in standardized fecal smear preparations 

(Kato-Katz method) is the diagnostic method of choice. Th e extent of egg produc-
tion fl uctuates over time, and as many as three separate stool specimens may be 

required for diagnosis in some patients. Th e use of formalin-based techniques for 
sedimentation and concentration may increase the diagnostic yield.

Other Laboratory Testing

Egg viability testing may help to assess the presence or absence of active 

infection, particularly aft er treatment. Testing involves mixing stool samples with 
room temperature distilled water and observing the excreted S. mansoni eggs for 

hatching of live miracidia.

Stool occult blood can be noted in intestinal schistosomiasis, although it is an 

inconstant fi nding and may be due to other disease processes.

Liver function testing is usually within normal limits until the end-stage of 

the disease. If LFTs are abnormal, then one should consider co-infection, e.g., 
viral hepatitis.

Anti-S. mansoni serologyAntibody testing is a useful epidemiological tool, 

but cannot diff erentiate active from past infection and, unlike egg counts, it does 

not allow quantifi cation of infectious burden. Serology may be used to help in the 
diagnosis of patients from nonendemic areas, because negative antibody titers are 
expected and negative testing may help to exclude diagnosis.

Other investigational blood testing involves detection of circulating parasite 

antigens such as CAA and CCA (circulating anodic and cathodic proteoglycan 
antigens); these are thought to indicate active infection and also to quantify the 
intensity of infection. Studies are underway to evaluate the sensitivity and specifi c-
ity of these tests under fi eld conditions.


background image

124

Medical Parasitology

18

Imaging

Ultrasound of the liver and spleen is an early and accurate diagnostic method 

for detecting S. mansoni-associated periportal fi brosis and hepatosplenomegaly 
and also serves to grade or stage the hepatosplenic disease. Portable ultrasound 

machines are becoming relatively inexpensive and scanning may serve as an eff ective 
diagnostic method for S. mansoni-related disease in endemic areas.

Invasive proceduresRectal biopsies and mucosal biopsies of the bowel are 

eff ective in visualizing eggs and helpful when the stool sample testing is negative, 

typically in the case of light infection. It is recommended to obtain multiple biopsy 
samples and to crush them between two slides to increase volume of sampling and to 
increase the likelihood of fi nding the eggs in the tissues. In advanced disease, upper 

gastrointestinal endoscopy may be used to assess and treat esophageal varices.

Treatment

Acute Schistosomiasis

For acute schistosomiasis mansoni, the treatment is usually supportive and 

focused on controlling symptoms. In the case of severe and persistent symptoms, 
specifi c antiparasitic treatment combined with anti-infl ammatory therapy may 
play a role. Prednisone 1 mg/kg a day before antiparasite treatment, for 1 wk, 

starting one day before the antiparasitic treatment, followed by 0.5 mg for the 
second week and 0.25 mg for the third week, may increase the chances of cure 
and improve symptoms.

Chronic Schistosomiasis

Th e aim of chemotherapy in chronic schistosomiasis is two-fold. Th e fi rst goal 

is to cure the disease, or at least minimize its associated morbidity. Th e second goal 
is to limit transmission of the parasite within the endemic area. Praziquantel and 
oxamniquine are commonly used for S. mansoni treatment, but because praziquan-

tel is active against all Schistosoma species, it is, overall, the preferred treatment for 
schistosomiasis. Clinical studies have shown that artemether, which is an eff ective 
antimalarial treatment, is also active against immature forms of all three major 
schistosome parasites. Trials that involve the combination of artemether and prazi-
quantel treatment indicate that combination therapy might have a more benefi cial 

eff ect than monotherapy in terms of cure rate and morbidity reduction.

Praziquantel (Biltricide and generics), is a pyrazinoisoquinolone derivative. It 

is currently the mainstay of treatment of schistosomiasis mansoni, as it is the most 

eff ective and most readily available agent. It plays a critical part of community-based 
schistosomiasis control programs. Treatment is usually well tolerated, although side 
eff ects can include dizziness, drowsiness, headache, nausea, vomiting, abdominal 
pain, pruritus, hives and diarrhea. Such side eff ects are not long lasting and usually 
resolve in less than 2 hours. Praziquantel may provoke signifi cant infl ammatory 

symptoms when given to patients with neurocysticercosis, so that the drug should 
be used with caution in areas where S. mansoni and T. solium are both endemic.

Praziquantel’s mechanism of action is complex. It is thought to damage the 

worm’s outer tegument membrane (the natural covering of the worm body) and 
expose the worm to the body’s immune response, which ultimately results in worm 


background image

125

Schistosomiasis: Schistosoma mansoni

18

death. In treating S. mansoni infection, the praziquantel-mediated cure rate is 

equal to or greater than 85-90%. Among those persons not cured, the worm load 
and associated egg burden are markedly decreased. Th e recommended dose for 

praziquantel treatment is a single treatment of 40 mg/kg as a single dose or divided 
into two doses over 1 day. When possible, rescreening for persistent infection 6-8 

weeks aft er initial therapy, followed by repeat dosing as needed, will provide optimal 
cure rates and morbidity control.

Oxamniquine (Vansil), is a tetrahydroquinoline antischistosomal agent that 

is solely eff ective against S. mansoni. In animal models, the drug is seen to cause 

paralysis of the worm with a consequent shift  of worms into the liver. Th is appears 
to be associated with damage the tegumental surface of male schistosome worms, so 
that the host immune system is able to kill them. It also stops female worms from 

producing eggs, with a subsequently marked reduction in host morbidity. Dosing 
is 15 mg/kg once (in S. America) or twice daily for 2 days (in Africa). Overall cure 
rate is 60-100%. Th is drug is not available in the United States.

Artemisinin derivatives, artemether and artesunate, are sesquiterpene lactones 

derived from the active components of the plant Artemisia annua, and these drugs 
are best known for their antimalarial properties. Th e antischistosomal activities of 

artemisinin derivatives were discovered in the 1980s, with initial interest focusing 
on its eff ects on S. japonicum. Animal studies have since suggested that these drugs 
are also eff ective against S. mansoni and clinical testing of artmether for prevention 
of schistosomiasis mansoni suggests that the artemesinins are safe and eff ective 
drugs for treatment of early stages of infection.

Combination chemotherapy with praziquantel and oxamniquine has been 

tested—initial studies suggest some synergy, but direct comparison against mono-
therapy has not been done and most of the populations studied have had concurrent 

infections with S. haematobium, which is not susceptible to oxamniquine. Further 
studies are warranted.

Initial laboratory and nonrandomized studies of combined praziquantel and 

artemesinin derivatives suggested greater eff ectiveness for the combination therapy. 
A recent randomized, double blind, placebo-controlled trial in Gabon indicated 

that the overall cure rate with combination therapy was not substantially higher 

compared to praziquantel alone, but in terms of the egg count reduction, the 

praziquantel-artemsinin combination had greater benefi cial eff ect.

Emergence of drug resistance or tolerance is a threat to all chemotherapy-based 

control programs. Risk of schistosome resistance to praziquantel has been recently 

reviewed by Cioli who concluded that resistance is likely to exist, but it is currently 
of low-level and its clinical importance is, so far, minimal. Th e conclusion from 

recent studies has been that there is no conclusive evidence of emerging resistance 

of S. mansoni to praziquantel, and the observational studies that previously sug-

gested drug failure may be explained by the specifi c transmission charcteristics. 
Unfortunately, there is no reliable testing available to determine praziquantel 

resistance in vitro.

Resistance to oxamniquine is undisputedly documented in vitro and in vivo, 

but its impact has been limited and it is not yet considered to be a problem for 

control program operations.


background image

126

Medical Parasitology

18

Advanced S. Mansoni-Associated Disease

For patients with late, severe complications of S. mansoni infection such 

as GI bleeding, intestinal obstruction, cardiopulmonary syndromes, or CNS 
disease, in-patient treatment and supportive measures (beyond antiparasite 

therapy) are needed. Endoscopy and variceal sclerosis or surgical treatment 
(portosystemic shunting) are indicated for severe bleeding secondary to portal 

hypertension.

Prognosis aft er Treatment

Response to treatment is evaluated by assessing the amount of decrease in egg 

excretion. In the fi rst two weeks aft er treatment, excreted egg counts may not de-
crease because eggs that were laid before the treatment can require up to 2 weeks 
to be shed. Even with eff ective therapy, some viable eggs can be excreted for up to 

6-8 weeks aft er treatment. Newer tests that measure circulating parasite antigens 
(CCA, CAA), when measured 5-10 days aft er treatment, may better assess acute 
antiworm therapeutic response. Persistent circulating antigen, or the persistent 
excretion of eggs at 6-8 weeks, indicates residual infection. Such patients should 
be retreated as needed to eff ect a cure.

Signifi cant Points about Th erapy

• Early intestinal, hepatic and portal vein disease usually improves with 

treatment.

•  In the absence of other forms of liver disease, hepatosplenic schistosomiasis 

can have a relatively good prognosis because hepatocyte function is preserved. 

Late disease (in which variceal bleeding occurs) may be irreversible and result 
in fatality due to severe hemorrhage and its acute complications. In commu-
nity treatment, approximately 40% of hepatosplenic disease is reversed with 
therapy.

•  S. mansoni-associated cor pulmonale is a form of advanced schistosomiasis and 

usually does not improve signifi cantly with antiparasitic treatment. Adjunctive 
treatment with selective vasodilators (sildenafi l) might prove benefi cial.

• Spinal cord schistosomiasis carries a guarded prognosis. Pharmacologic or 

surgical decompression as appropriate, combined with specifi c antiparasite 
praziquantel treatment, should be administered as soon as possible.

Prevention and Prophylaxis

Over the last two-to-three decades, large-scale national and regional schis-

tosomiasis control programs have been implemented in a number of areas with 
varying levels of success. Th e most important examples of successful schistosomiasis 
control have been reported from Brazil, Venezuela, Cambodia, China, Egypt and 

the Philippines. Given the strong link between environmental factors, poverty and 
schistosomiasis transmission, it is imperative to take full advantage of the renewed 
contemporary international emphasis on the provision of of clean water and 
sanitation, as this represents a fundamental basis for schistosomiasis transmission 
control. A combined transmission reduction strategy would mutually reinforce 

chemotherapy-based morbidity control and provide the optimal preventive strategy 
for resource-poor developing areas.


background image

127

Schistosomiasis: Schistosoma mansoni

18

Programs for controlling Schistosomiasis mansoni within an endemic area should 

consider (and optimally include) all of the following:

• Population-based chemotherapy.
•  Provision of a safe water supply and washing/swimming facilities to reduce 

exposure.

•  Health education that promotes improved sanitation, including means for 

reduction in local water contamination by schistosome egg-containing urine 

or stool.

•  Control of intermediate host snails (Biomphalaria spp.).
•  Instruction to travelers and immigrants to avoid contact with fresh water in 

endemic areas.

•  As local transmission falls, anticipate increased incidence of acute schistoso-

miasis in the setting of any recent freshwater contact. Make early treatment for 
S. mansoni available if diagnostic test results are positive or clinical suspicion 
is high.

•  Consider clinical trials (involving human volunteers) towards development 

of an eff ective vaccine against Schistosomiasis mansoni.

Suggested Reading

  1.  Case records of the Massachusetts General Hospital. Weekly clinicopathological 

exercises. Case 21-2001. A 31-year-old man with an apparent seizure and a mass 

in the right parietal lobe. N Engl J Med 2001; 345:126-31.

  2.  Carod Artal FJ, Vargas AP, Horan TA et al. Schistosoma mansoni myelopathy: 

clinical and pathologic fi ndings. Neurology 2004; 63:388-91.

  3.  Cioli D. Praziquantel: is there real resistance and are there alternatives? Curr Opin 

Infect Dis 2000; 13:659-63.

  4.  Corachan M. Schistosomiasis and international travel. Clin Infect Dis 2002; 

35:446-50.

  5.  Gellido CL, Onesti S, Llena J et al. Spinal schistosomiasis. Neurology 2000; 

54:527.

  6.  Ferrari ML, Coelho PM, Antunes CM et al. Effi  cacy of oxamniquine and prazi-

quantel in the treatment of Schistosoma mansoni infection: a controlled trial. Bull 

World Health Organ 2003; 81:190-6.

Figure 18.4. Left panel) Spray mollusciciding for snail control. Right 

panel) Water contact activities associated with risk for S. mansoni infection. 

Reproduced with permission from the Atlas of Medical Parasitology, Carlo 

Denegri Foundation.


background image

128

Medical Parasitology

18

  7.  King CH. Acute and chronic schistosomiasis. Hosp Pract 1991; 26:117-30.

  8.  Mahmoud AA, ed. Schistosomiasis. London: Imperial College Press, 2001.

  9.  Richter J, Hatz C, Haussinger D. Ultrasound in tropical and parasitic diseases. 

Lancet 2003; 362:900-2.

 10.  Ross AG, Bartley PB, Sleigh AC et al. Schistosomiasis. N Engl J Med 2002; 

346:1212-20.

 11.  Utzinger J, Keiser J, Shuhua X et al. Combination chemotherapy of schistosomiasis 

in laboratory studies and clinical trials. Antimicrob Agents Chemother 2003; 

47:1487-95.

 12.  Utzinger J, N’Goran EK, N’Dri A et al. Oral artemether for prevention of 

Schistosoma mansoni infection: randomised controlled trial. Lancet 2000; 

355:1320-5.

 13.  van Lieshout L, Polderman AM, Deelder AM. Immunodiagnosis of   by determina-

tion of the circulating antigens CAA and CCA, in particular in individuals with 

recent or light infections. Acta Trop 2000; 77:69-80.

 14.  Vennervald BJ, Dunne DW. Morbidity in schistosomiasis: an update. Curr Opin 

Infect Dis 2004; 17:439-47.

 15.  Wynn TA, Th ompson RW, Cheever AW et al. Immunopathogenesis of schistoso-

miasis. Immunol Rev 2004; 201:156-67.


background image

C

HAPTER

 19

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Schistosomiasis: Schistosoma haematobium

Vijay Khiani and Charles H. King

Background

Schistosoma haematobium is a parasitic trematode that infects over 111 mil-

lion people, mostly in Africa and the Middle East. It is the most common cause 
of urinary schistosomiasis, which is caused by antiparasite infl ammation in the 
wall of the human host’s bladder, ureters, or kidneys. Because the syndrome is 
unfamiliar to most physicians in the United States, they may oft en overlook 
the diagnosis of S. haematobium infection and its associated disease when pre-
sented with ‘occult’ cases of hematuria, hematospermia, pelvic infl ammation, or 

infertility. While the typical returning traveler or immigrant is more likely to 
be infected with hepatitis, malaria, or intestinal helminths, it should be noted 
that schistosome infection is not uncommon aft er either short- or long-term 

travel to endemic areas.

S. haematobium infection is prevalent in areas that have a reservoir of human 

infection, the presence of an intermediate Bulinus species snail host and the poor 
socioeconomic conditions or poor sanitation that allow urinary contamination 
of local freshwater. Th ese factors are all essential components of the parasitic 

trematode life cycle, which requires transmission from a defi nitive human host 
(in which adult worms undergo sexual reproduction) to an intermediate snail host 
(in which asexual multiplication of larvae occurs) and then the reverse process of 

snail-to-human transmission.

The mode of transmission of S. haematobium to humans begins with 

exposure to fresh water that contains infected snail intermediate hosts (Fig. 
19.1). Of note, the transmission of schistosomiasis is NOT person-to-person. 
Infected snails release free-swimming cercariae, which seek and penetrate human 

skin. The cercariae are typically 2 mm in length and have acetabular and head 
glands to aid in attachment and penetration of the skin. Upon penetrating the 
epidermal layer, the cercariae reach the dermis and transform into immature 

larval forms called schistosomula. Over a period of two months, these schis-
tosomula migrate first to the lungs (through venous circulation) and then to 
the left heart and into the systemic circulation. The schistosomula proceed 
to the liver, where they mature into either male or female adult worms. The 
S. haematobium worms, now 1 to 2 cm in length, migrate to the veins of the 

bladder (or, less frequently, the bowel), where the worms lie together in pairs 

and the female worms lay their eggs in the wall of the nearby urinary collect-

ing system. The mature female worms deposit several hundred eggs each day. 
Approximately 50% of these eggs will become inadvertently trapped in host 


background image

130

Medical Parasitology

19

tissues, while the other half manage (via local inflammation and ulceration) to 

penetrate through to the lumen of the ureter or bladder. From there, the eggs 
pass in the urine into the environment to reach bodies of fresh water. These 
eggs hatch and release motile ciliated forms called miracidia into the water, 
which seek out and infect the intermediate Bulinus species snail hosts by direct 
penetration. In the snail, the miracidia develop into sporocysts, which complete 

the life-cycle by a process of asexual reproduction that yields multiple infectious 
cercariae after a period of 1-2 months.

Most infected humans (50 to 75%) carry light infection with relatively low 

worm burdens, while a minority (1 to 5%) carry very heavy infection (defi ned as 
excreting > 400 eggs/10 mL urine), which results in the production of thousands 
of eggs daily. As a consequence, heavily infected hosts are most prone to the pro-
gressive disease sequelae of S. haematobium, including severe hematuria, fi brosis, 
ureteral stricture and calcifi cation of the urinary tract. However, any level of infec-

tion can cause disease, as a function of the relative intensity of the aff ected host’s 
anti-egg immune response. In some endemic areas, there is a defi nite link between 
S. haematobium and squamous cell carcinoma of the bladder and S. haematobium 

has been formally listed as a carcinogen by the WHO. Genetic variation of the 
parasite and host are also likely factors in determining the pathogenesis and clinical 
outcomes of infection and disease.

Figure 19.1. Transmission and life cycle of human schistosomes. Reproduced 

from: Centers for Disease Control and Prevention (CDC), Atlanta, GA (http://

www.dpd.cdc.gov/dpdx).


background image

131

Schistosomiasis: Schistosoma haematobium

19

Disease Signs and Symptoms

Immediate Manifestations

Th e earliest form of infection-associated disease for patients aff ected by S. hae-

matobium is cercarial dermatitis (Fig. 19.2), which is, in essence, a maculopapular, 

blistering eruption in the area of skin exposed to parasite penetration. Th is presenta-
tion, which can be due either to an immediate or delayed hypersensitivity, usually 
begins 1-2 days aft er exposure, lasts for a few days and is self-limited.

Acute Schistosomiasis

Acute schistosomiasis, also known as Katayama fever or snail fever, is most 

oft en seen in travelers who visit endemic areas for the fi rst time, contract a 

schistosome infection and then present with signs of fever, lymphadenopathy, 
hepatosplenomegaly and blood eosinophilia some 4-6 weeks later. Th is process is 
usually triggered during the early egg deposition period of the parasite’s life cycle 
and tends to aff ect the adolescent or young adult patient most frequently.

Th is acute process is related to an initial allergic hypersensitivity to the parasite, 

as well as subsequent formation of soluble immune complexes that can cause a 
serum-sickness type of illness. Acute schistosomiasis is usually a self-limited process, 
but can become quite severe and debilitating. In some cases, because the process 

of infl ammation is antigen driven, acute schistosomiasis may even worsen with 
antiparasitic therapy. In such cases, it is recommended to start with symptomatic 
therapy to eff ect control of the process of infl ammation, a step which usually 
requires the use of corticosteroids. Th is is then followed by specifi c antiparasitic 
therapy (praziquantel) to eliminate the causative infecting worms.

Figure 19.2. Cercarial dermatitis cause by exposure to schistosome-infested 

water. Reproduced from: Centers for Disease Control and Prevention (CDC) 

(http://phil.cdc.gov/phil/details.asp).


background image

132

Medical Parasitology

19

Chronic Schistosomiasis

Chronic schistosomiasis in humans is a consequence of prolonged (multi-year) 

and repeated infection with schistosome parasites. In endemic areas, chronic 
schistosomiasis is oft en established by age fi ve, but as a consequence of repeated 

exposure, the intensity of worm burden increases over time, with a peak, maximum 
burden of infection experienced at ∼13 years of age. Th e chronic form of disease 

develops as many S. haematobium eggs remain trapped in the host tissues and 
become surrounded by delayed-type hypersensitivity granulomatous infl amma-

tion (Fig. 19.3). Th is infl ammation is formed by host lymphocytes, eosinophils 
and macrophages and ultimately kills and destroys the parasite eggs. However, 
the resolution of the infl ammation is associated with collagen deposition and scar 

formation. Gradual accumulation of this scar tissue within bladder and ureters 
can lead to deformity, contractile incoordination and obstruction, resulting in 
hydroureter, hydronephrosis and ascending bacterial infection due to urinary 

refl ux. Infl ammation can result in local ulceration and signifi cant blood loss in 
the urine and/or feces. Additionally, the chronic presence of infl ammation may 
be associated with dyserythropoesis (anemia of chronic disease) and signs of iron 

and/or protein-calorie malnutrition.

Th e severity of the manifestations associated with chronic schistosomiasis 

is related both to the extent of exposure to the infection and to the intensity 
of host immune response. For those with less intense exposure, the early signs 
and symptoms include dysuria, proteinuria and bladder polyps. Later signs and 

Figure 19.3. S. haematobium eggs surrounded by host infl ammation in bladder 

wall. Reproduced from: http://webpathology.com/image.cfm?case=51&n=6, 

with kind permission of Dharam M. Ramnani, MD.


background image

133

Schistosomiasis: Schistosoma haematobium

19

symptoms include hydronephrosis, hydroureter, bladder calcifi cation, increased 

risk of urinary tract infections and ultimately squamous cell carcinoma of the 
bladder. For hosts with eggs in the bladder or lower ureters, over 50% of the 

patients have symptoms of dysuria, frequency and terminal hematuria. Cor 
pulmonale can result via direct passage of eggs through the ureteral veins to 

the systemic veins, resulting in egg transport to the pulmonary circulation and 
trapping in the lung tissues. Central nervous system disorders can result from 
eggs passing into the brain, spinal cord, meninges, or ventricles, or from aberrant 

migration of worms into CNS tissues. Th e resulting infl ammation can lead to 

seizures, spinal cord compression, or hydrocephalus.

Diagnosis

Th e most important aspect of making the diagnosis of S. haematobium is to 

appreciate risk of exposure. Possible urinary schistosomiasis can be established by 
means of a thorough history and physical examination. Specifi cally, the history 
should focus on specifi cs of travel history, including the geographic areas visited 
and known or possible exposures to freshwater bodies while abroad. Upon comple-
tion of the history and examination, one may begin to pursue tests and studies to 

arrive at the fi nal diagnosis.

Th e majority of cases of S. haematobium are diagnosed by the fi nding of 

parasite eggs in urine or feces. Concentration methods are helpful in increasing 

the sensitivity of urine testing. Sedimentation or membrane fi ltration techniques 
are oft en used when analyzing the urine for S. haematobium. Cystoscopy is rarely 
required, but may be helpful in recovering parasite eggs in cases of light infection 
with signifi cant pathology. S. haematobium eggs are spindle shaped, usually around 
140-150 by 60 micrometers (Fig. 19.4). Th e eggs have a terminal spine, which is 

similar to the appearance of another, less common human parasite, S. intercalatum
Th e two species can be diff erentiated by the Ziehl-Nielsen test, which is negative 
for eggs of S. haematobium.

Figure 19.4. S. haematobium egg in urine sediment. Note characteristic 

terminal spine at right. Reproduced from: Centers for Disease Control and 

Prevention (CDC), Atlanta, GA (http://www.dpd.cdc.gov/dpdx).


background image

134

Medical Parasitology

19

Parasite eggs may persist in human tissues for a number of years, even fol-

lowing eff ective therapy. Because of this, egg viability testing (by vital staining or 
miracidial hatching) may be necessary to establish the presence of active infection. 

Serologic testing for S. haematobium is sensitive, but not very specifi c due to the 
fact that antiparasite antibodies persist aft er infection resolves. In consequence, the 

specifi city is too low to be used as a diagnostic tool for patients in endemic areas. 
Radiologic testing remains yet another option that can provide useful diagnostic 
information. For example, an ultrasound may demonstrate evidence of obstructive 

uropathy with fi ndings of bladder wall thickening and characteristic granulomas, 

calcifi cation, hydroureter and hydronephrosis.

Treatment

For patients with S. haematobium infection who present with cercarial derma-

titis, this initial presentation is usually self-limited and responds to local topical 
care. Treatment of acute schistosomiasis, as described earlier, focuses on control 
of infl ammation fi rst, followed by specifi c antiparasite therapy. It is important to 
note that immature schistosome parasites are relatively resistant to the eff ects of 
the standard antischistosomal drug, praziquantel. To fully eradicate infection, it 

may be necessary to provide retreatment of patients with acute schistosomiasis at 
a point 2-3 months aft er last exposure.

For chronic schistosomiasis haematobia, the treatment of choice is praziqu-

antel, 40 mg/kg, as a single oral dose or in two divided doses. Praziquantel is 
formulated as scored, breakable 600 mg pills, so that dose can be appropriately 
adjusted to body weight (see Table 19.1).

A single treatment is 80-90% eff ective with limited side eff ects. Praziquantel side 

eff ects include sedation, malaise, headache, dizziness, abdominal discomfort and 

nausea. Th e minority of patients who fail to clear their S. haematobium infection 
aft er praziquantel therapy nevertheless typically have a >95% decrease in their egg 
burden, which indicates signifi cant reduction of infection. If egg excretion persists 

for more than one month, an additional round of praziquantel therapy (40 mg/kg, 
PO, once) should be given. Th ere are some patients that have an acute exacerbation 
of symptoms during praziquantel treatment and these individuals may need a short 
course of anti-infl ammatory medications such as antihistamines or corticosteroids. 
Metrifonate is an alternative treatment of choice for patients with S. haematobium 

infection, but may not be commercially available.

Table 19.1. Praziquantel doses to treat schistosomiasis

 

 

No. of Praziquantel Tablets 

Body Weight (kg) 

Height 

(600 mg tablet)

10.0-14.9 (94-110 

cm) 1

15.0-22.4 (110-125 

cm) 1½

22.5-29.9 (125-138 

cm) 2

30.0-37.4 (138-150 

cm) 2½

37.5-44.9 (150-160 

cm) 3

45.0-59.9 (160-178 

cm) 4

60.0-75.0 (>178 

cm)  5


background image

135

Schistosomiasis: Schistosoma haematobium

19

Prevention and Control

Disease due to S. haematobium infection remains the most prevalent form 

of urinary schistosomiasis in sub-Saharan Africa. Th e WHO has established the 
goal to treat 75% of school-age children with infection and at risk of morbidity by 

2010. Morbidity is particularly associated with cases with S. haematobium infection 
who develop immunopathological sequelae, such as hepatosplenomegaly, bladder 

deformity and hydronephrosis. Endoscopic/surgical interventions may be needed 
for hematuria, urinary obstruction, bladder cancer and CNS disease. For persons 

living in high transmission areas, regular treatment may prevent S. haematobium 
infection from developing into serious disease.

Even though an estimated 150,000 individuals die from schistosomiasis infec-

tion on a yearly basis, there is still no form of prophylaxis for patients with risk of 
exposure. However, there are many important ways to improve upon current risk for 
transmission. It is vital to avoid fresh immersion in any freshwater in contaminated 

areas. Because transmission is highly focal and sporadic, one should avoid cutane-
ous exposure to all ponds, lakes, rivers and streams in endemic areas. Bath water 
should be heated for at least 5 minutes at 150 degrees F, or let stand in a cistern or 

container (known to be completely free of snails) for 3 days.

For residents of endemic areas, sanitation, socioeconomic development and 

health education are key components.

Suggested Reading

  1.  Brouwer KC, Ndhlovu PD, Wagatsuma Y et al. Urinary tract pathology attributed 

to Schistosoma haematobium: does parasite genetics play a role? Am J Trop Med 

Hyg 2003; 68:456-62.

  2.  Centers for Disease Control. Schistosomiasis among river raft ers—Ethiopia. 

MMWR 1983; 32:585-6.

  3.  Gonzalez E. Schistosomiasis, cercarial dermatitis and marine dermatitis. Dermatol 

Clin 1989; 7:291-300.

  4.  King CH, Mahmoud AA. Drugs fi ve years later: praziquantel. Ann Intern Med 

1989; 110:290-6.

  5.  King CH. Disease in Schistosomiasis Haematobia. In: Mahmoud AAF, ed. 

Schistosomiasis. London: Imperial College Press, 2001:265-96.

  6.  King CH. Ultrasound monitoring of structural urinary tract disease in S. haematobium 

infection. Memorias do Instituto Oswaldo Cruz 2002; 97:149-52.

  7.  King CL. Initiation and regulation of disease in schistosomiasis. In: Mahmoud 

AAF, ed. Schistosomiasis. London: Imperial College Press, 2001:213-64. 

  8.  Smith JH, Christie JD. Th e pathobiology of Schistosoma haematobium infection 

in humans. Hum Pathol 1986; 17:333-45.

  9.  Peters PAS, Kazura JW. Update on diagnostic methods for schistosomiasis. In: 

Mahmoud AAF, ed. Balliere’s Clinical Tropical Medicine and Communicable 

Diseases, Schistosomiasis, Vol. 2. London: Bailliere Tindall, 1987:419-33.

  9.  van der Werf MJ, de Vlas SJ, Brooker S et al. Q uantifi cation of clinical morbidity associ-

ated with schistosome infection in sub-Saharan Africa. Acta Trop 2003; 86:125-39.

 10.  Visser LG, Polderman AM, Stuiver PC. Outbreak of schistosomiasis among 

travelers returning from Mali, West Africa. Clin Infect Dis 1995; 20:280-5.

 11.  World Health Organization. IARC Monographs on the Evaluation of 

Carcinogenic Risks to Humans. Schistosomes, Liver Flukes and Helicobacter 

pylori. Vol. 61 Geneva: World Health Organization, 1994.

 12.  World Health Organization. Prevention and control of schistosomiasis and 

soil-transmitted helminthiasis: Report of a WHO expert committee. Technical 

Report Series 912 2002. Report No. 912.


background image

background image

S

ECTION

 III

Cestodes


background image

C

HAPTER

 20

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Taeniasis and Cyticercosis

Hannah Cummings, Luis I. Terrazas and Abhay R. Satoskar

Background

Taeniasis and cysticercosis are diseases resulting from infection with parasitic 

tapeworms belonging to Taenia species. Approximately 45 species of Taenia have 
been identifi ed; however, the two most commonly responsible for human infec-
tion are the pork tapeworm Taenia solium and the beef tapeworm Taenia saginata
Parasitic tapeworm infections occur worldwide, causing sickness, malnutrition and 
oft en resulting in the death of their host. Infection with adult tapeworms of either 
T. solium or T. saginata cause taeniasis in humans. Th e metacestode, or larval stage, 

of Taenia solium causes the tissue infection, cysticercosis. Clinical manifestations 
associated with the tapeworm infection can vary greatly and may range from mild 
forms where patients exhibit little to no symptoms, to severe life-threatening forms 

which are oft en fatal.

Geographic Distribution and Transmission

Taenia infections are estimated to aff ect 100 million people worldwide, with 

major endemic areas located primarily in the developing countries of South 
America, Africa, India, China and Southeast Asia. Th e ingestion of cysticerci 

from raw or undercooked meat facilitates the transmission of T. solium from 
pigs to humans and is presumably responsible for the high prevalence of hu-
man cysticerosis in these regions. It is estimated that anywhere between 5-40% 
of individuals carrying the adult tapeworm will develop cysticercosis. Taenia 
infections are less common in North America; however neurocysticercosis has 

been recognized as an important health problem in California. Although this 
disease is mainly seen in migrant workers from Latin American, it has also been 
reported in US residents who have not traveled to endemic countries.

Life-Cycle

Th e complete life-cycle of Taenia solium involves two hosts: the pig and 

the human, whereas that of Taenia saginata involves the cow and the human 
(Fig. 20.1). Humans act as the defi nitive host and harbor the adult tapeworm in 

the small intestine. Infection is acquired either through the accidental ingestion 
of embryonated eggs passed in the feces of an individual infected with the adult 
tapeworm, or through the consumption of raw or poorly cooked meat containing 
cysticerci. Th e cysticerca develops into an adult worm in the gut; these worms 
can survive up to 25 years. Depending on the species of Taenia, an adult worm 

can reach lengths between 2-25 meters and may produce as many as 300,000 eggs 


background image

139

Taeniasis and Cyticercosis

20

per day. Th e morphology of the adult worm consists of a scolex and a strombila. 

Th e scolex acts as the organ of attachment and consists of four suckers equipped 
with hooklets. Th e strombila consists of several segments (proglottids) with the 
gravid or egg-carrying proglottids located toward the posterior end of the worm 
(Fig. 20.2). Individual proglottids may contain as many as 40,000 eggs in T. solium 
or as many as 100,000 eggs in T. saginata.

Both the proglottids and the eggs are released with the feces of infected 

individuals and serve as a source of infection for pigs and cattle, which act as 
intermediate hosts for these parasites. Following the ingestion of eggs, mature 

larvae (onchospheres) are released in the gut. Th ese onchospheres enter the blood 
stream by penetrating the small intestine and migrate to skeletal and cardiac 
muscles where they develop into cysticerci. Cysticerci may survive in the host 
tissues for several years causing cysticercosis (Fig. 20.3). Th e consumption of 
raw or undercooked meat containing cysticerci facilitates the spread of infec-

tion from pigs to humans. In humans, cysticerci transform into adult tapeworms 
which persist in the small intestines for years causing taeniasis. Th e time between 
initial infection and the development of the adult worm occurs over a period of 

approximately 2 months. In some instances, an infected individual harboring 
the adult worm can become auto-infected through the accidental ingestion of 
eggs released in the feces.

Figure 20.1. Life cycles of the beef tapeworm, Taenia saginata and the pork 

tapeworm, T. solium. Reproduced from: Nappi AJ, Vass E, eds. Parasites of 

Medical Importance. Austin: Landes Bioscience, 2002:61.


background image

140

Medical Parasitology

20

Immunobiology

Infection with the adult tapeworm occurs in the small intestine of the human 

host and has been shown to induce a Th 2-type immune response characterized 
by high levels of IL-4 and IL-10 expression and an increase in immunoglobulin 
production, primarily IgG. Antibodies produced in response to parasite antigens 

appear to be somewhat eff ective in the destruction of the early larval form, but 
off er little to no protection against cysticerci present within the tissues.

Viable cysticerci produce little to no infl ammation within the surrounding 

tissues and their ability to suppress the host infl ammatory response undoubt-
edly plays a major role in their ability to survive within the host for extended 

periods of time. In contrast, the death or destruction of cysticerci within host 
tissues has been shown to induce a strong Th 1-type cell-mediated infl ammatory 
response, characterized by high levels of interferon-gamma and the formation 

of granulomas containing lymphocytes, eosinophils, granulocytes and plasma 
cells. Experimental data using a mouse model suggest that the development of 
a Th 1 cell-mediated infl ammatory response controls parasite growth, whereas a 
Th 2-type response increases levels of susceptibility to chronic infection.

Th ese parasites have developed numerous methods for evading the host immune 

response. Although the ingested oncospheres which are capable of penetrating the 
intestinal mucosa are susceptible to destruction by host compliment and antibody 
responses, the time required to generate these antibodies allows the oncosphere 

to transform into the highly resistant metacestode form. Th e metacestode form, 
resistant to complement-mediated destruction, produces a variety of molecules 
eff ective in evading the host immune response. Th e serine-threonine protease 

Figure 20.2. Morphology of Taenia saginata and T. solium. Reproduced 

from: Nappi AJ, Vass E, eds. Parasites of Medical Importance. Austin: Landes 

Bioscience, 2002:62.


background image

141

Taeniasis and Cyticercosis

20

inhibitor, Taeniastatin, inhibits complement activation, blocks cytokine produc-
tion and interferes with neutrophil function. Paramyosin renders parasite killing 
by the host complement cascade ineff ective, primarily through inhibiting the 

activity of C1q. Activated complement is directed away from the parasite by the 
production of sulfated polysaccharides. Antibodies produced by the host bind the 
metacestode form through Fc receptors and are degraded, possibly functioning as 

Figure 20.3. Development of cysticercosis in humans. Reproduced from: 

Nappi AJ, Vass E, eds. Parasites of Medical Importance. Austin: Landes 

Bioscience, 2002:63.


background image

142

Medical Parasitology

20

a source of amino acids for the parasite. Glutathione S-transferase and other small 

molecules produced by the cyst form are involved in the detoxifi cation of toxic 
oxygen intermediates and the suppression of host infl ammation.

Signs and Symptoms

Taeniasis

Taeniasis is an infection with the adult tapeworm which usually remains con-

fi ned to the small intestine. Most oft en, such infection results in minor gastroin-
testinal irritation and is frequently accompanied by nausea, diarrhea, constipation, 

hunger pains, chronic indigestion and passage of proglottids in the feces. Although 
these symptoms are usually milder when the infection is caused by T. solium, the 
risk of developing cysticercosis remains high.

Cysticercosis

Cysticercosis refers to the tissue infection caused by the metacestode, or 

larval stage, of Taenia solium and is acquired by the accidental ingestion of eggs. 
Th e clinical manifestations associated with cysticercosis are a direct result of 
the infl ammatory response induced to control parasite growth and may occur 
months to years aft er initial infection. Manifestations of disease are dependent 
upon a variety of factors including the site of infection as well as the number of 

cysticerci present within the tissues, which most oft en localize to sites within the 
eyes, skeletal muscles and brain. Cysticercosis is the most common intra-orbital 
parasitic infection and is observed in 13-46% of infected individuals. Infection 

may involve the sub-retinal space (intra-ocular) or the extraocular muscles, eyelid 
and/or lachrymal glands (extra-ocular) surrounding the eye(s). Patients suff ering 
from ocular infection frequently experience pain in the eyes accompanied by blur-
riness and partial or complete loss of vision. In extreme cases, infection may cause 
complete detachment of the retina.

Patients infected with cysticerci in the skeletal muscles and/or subcutaneous 

tissues are usually asymptomatic. In most cases, multiple cysts are present within 
the tissues, although solitary cysts may also be detected. Cysts range from 10-15 

mm in length and arrange themselves in the same orientation as the muscle fi bers. 
Leakage of fl uid into the tissues, or death of the parasite, can trigger a strong 
infl ammatory response, resulting in sterile abscess formation accompanied by 
localized pain and swelling.

Neurocysticercosis

Neurocysticercosis is the most common parasitic infection of the human 

central nervous system and is observed in 60-90% of infected patients. Cysts 
localized within the brain may range anywhere from 4-20 mm in length, but most 

commonly average between 8-10 mm. As with cysts localized in skeletal muscles 
and subcutaneous tissues, the destruction of parasites induces an infl ammatory 
response, granulomas and fi brosis which may result in a subacute encephalitis.

Seizures are the most common symptom reported in patients with neu-

rocysticercosis and occur in 70-90% of infected patients. Other commonly 

associated clinical manifestations include headache, dizziness, involuntary 
muscle movement, intercranial hypertension and dementia. Not all patients 


background image

143

Taeniasis and Cyticercosis

20

with neurocysticercosis are symptomatic; a certain percentage of patients with 

neurocysticercosis never develop any symptoms and these infections are oft en 
self-resolving.

Diagnosis

Diagnosis is oft en diffi  cult due to the nonspecifi c nature of symptoms associated 

with cysticercosis. Th erefore, proper diagnosis of the diseases is most oft en based 
on a combination of clinical, serological and epidemiological data.

MRI and CAT scans are considered to be the most sensitive methods of detec-

tion of neurocysticercosis and are useful in establishing diagnosis. However, the 

high costs associated with these radiologic methods greatly restrict the availability 
and/or accessibility of these tests in most underdeveloped countries where the 

disease is endemic.

Serological methods of detection most often include the ELISA (en-

zyme-linked immunoassays) and the EITB (enzyme-linked immunoelectrotrans-

fer blot) and involve the detection of antibodies against cysticerci. EITB is 
highly sensitive and is considered to be the best immunological diagnostic test 
available. However, EITB is not eff ective in the detection of antibodies when only 
one cyst is present. Th e ELISA, while not as sensitive, is technically simpler and 
is therefore used extensively in clinical settings. It should be noted, however, that 

detection of anticysticercal antibodies may simply indicate previous exposure or 
infection and is not an exclusive indication of a current, active infection within 
the host. Other methods of detection include compliment fi xation and indirect 

haemagglutination assays.

Treatment

Praziquantel and albendazole are the two anticysticercal drugs used to treat pa-

tients diagnosed with cysticercosis in the brain and skeletal muscles. Treatment with 
praziqauntel (50-100 mg/kg/d × 30 d) and albendazole (400 mg bid for 8-30 d) 
has been shown to completely eliminate cysts in 80% of treated patients, with an 
additional 10% of patients experiencing a signifi cant reduction in the number of 
cysts present. Some investigators recommend 100 mg/kg/d in three divided doses 
× 

1 day and then 50 mg/kg/d in 3 doses for 29 days of praziquantel. Neither drug 

is toxic; however, a percentage of patients undergoing therapy experience adverse 
side eff ects such as headache, nausea, vomiting, dizziness and increased pressure 

on the brain. Th ese eff ects are most likely a result of the host immune response 
resulting from the massive destruction of parasites and therefore, treatment with 
either praziquantel or albendazole is oft en administered concomitantly with corti-
costeroids in order to prevent excessive infl ammation. Dexamethasone is the steroid 
most oft en administered in conjunction with either praziquantel or albendazole. 

Prednisone may be used as a replacement in patients when long-term therapy is 
required. Antiepileptic drugs may be necessary adjuncts for treatment of seizures 
in patients being treated for neurocysticercosis.

Surgical removal of cysts from infected tissues is possible and, prior to the de-

velopment of anticysticercal drugs, was the primary means of treatment. However, 
the invasiveness and high risk of complications associated with surgery makes this 
method less favorable to treatment with chemotherapeutic agents.


background image

144

Medical Parasitology

20

Prevention and Prophylaxis

Th e most eff ective means of preventing infection is to ensure that meats are cooked 

thoroughly prior to consumption. Good hygiene and sanitation are highly eff ective 
in decreasing the risk of infection associated with fecal-oral transmission.

Th e costs associated with chemotherapy and other medical resources, as well as 

losses in production, are enormous and eff orts to prevent and/or eliminate disease 

have been a primary concern for public health systems in endemic countries for 
a long time. More recently, an increase in the number of imported cysticercoses 

in developed countries has made the eradication of the diseases a primary health 
concern worldwide.

Improvements in sanitation and public health care are essential for preventing the 

further spread of disease. Altering the infrastructure to keep pigs from roaming freely 
and contacting human feces will help reduce human-to-pig transmission. Eff ective 
measures to control and regulate meat inspection at slaughterhouses has been ex-

tremely eff ective in Europe and North America; however, programs to ensure proper 
compensation for the loss of infected livestock must be developed in order to discour-
age the underground traffi  cking of livestock by local farmers in endemic regions.

Vaccines aimed at preventing infection in pigs may play a role in eff orts to con-

trol the spread of disease. Due to their typically short-life span (approximately one 
year), pigs do not require long-term immunity; therefore, vaccines which provide 
only short term resistance may be suffi  cient to prevent the spread of infection to 
humans. Additionally, the vaccination, rather than the confi scation, of pigs is oft en 

a more favorable alternative to local farmers.

To date, the most eff ective vaccines have involved the expression of recombi-

nant oncosphere antigens TSOL18 and TSOL45 in E. coli. TSOL18 appears to 

be more eff ective, inducing greater than 99% protection in the fi ve vaccine trials 
undertaken thus far. Current eff orts are focused on developing the methods neces-
sary to make the vaccine widely available and successful on a practical scale. Th e use 
of recombinant vaccines in pigs, combined with anticysticercal chemotherapy in 
humans, seems to be the most eff ective approach in the battle against cysticercosis 

and appears to have potential to control and/or eradicate the disease.

Concluding Remarks

Cysticercosis and taeniasis resulting from tapeworm infections currently 

aff ect millions of people worldwide and continue to exert increasing pressure 
on public health care systems in endemic countries and non-endemic coun-
tries alike. Th e high prevalence of the diseases in endemic countries as well as 

increasing incidences of these diseases in non-endemic regions has grabbed 
the attention of health offi  cials worldwide. Further research to elucidate the 
mechanisms of the host immune response to parasitic infection, including the 
mechanisms by which parasites are able to evade destruction by the host, will 
likely facilitate the development of eff ective vaccines to control the further 

spread of disease. Successful programs to eradicate the diseases will require 
the combined eff orts of scientists and physicians as well as the development of 
social and economic programs geared towards improving public education and 

the quality of life in many impoverished, underdeveloped countries in which 
Taenia infections are endemic.


background image

145

Taeniasis and Cyticercosis

20

Suggested Reading

  1.  Carpio A. Neurocysticercosis: an update. Th e Lancet Infectious Diseases 2002; 

2:751-62.

  2.  Hoberg EP. Phylogeny of Taenia: species defi nitions and origins of human parasites. 

Parasitol Int 2006; 50::S23-30.

  3.  Singh G, Prabhakar S. Taenia solium Cysticercosis: From Basic to Clinical Science. 

New York: CABI Publishing, 2002.

  4.  Becker H. Out of Africa: Th e origins of the tapeworms. Agricultural Research 

2001; 49:16-8.

  5.  Sciutto E, Fragoso G, Fleury A et al. Taenia solium disease in humans and pigs: an 

ancient parasitosis disease rooted in developing countries and emerging as a major 

health problem of global dimensions. Microbes and Infection 2000; 2:1875-90.

  5.  Wandra T, Ito A, Yamasaki H et al. Taenia solium Cysticercosis, Irian Jaya, 

Indonesia. Emerg Infect Dis 2003; 9:884-5.

  6.  White AC Jr, Robinson P, Kuhn RE. Taenia solium cysticercosis: host-parasite 

interactions and the immune response. Chem Immunol 1997; 66:209-30.

  7.  Rahalkar MD, Shetty DD, Kelkar AB et al. Th e Many Faces of Cysticercosis. Clin 

Radiol 2000; 55:668-74.

  8.  Sloan L, Schneider S, Rosenblatt J. Evaluation of Enzyme-Linked Immunoassay 

for Serological Diagnosis of Cysticercosis. J Clin Microbiol 1995; 33:3124-8.

  9.  Garcia H, Evans C, Nash TE et al. Current Consensus Guidelines for Treatment 

of Neurocysticercosis. Clin Microbiol Rev 2002; 15:747-56.

 10.  Garg RK. Drug treatment of neurocysticercosis. Natl Med J India 1997; 

10:173-77.

 11.  Th e Medical Letter (Drugs for Parasitic Infections) 2004; 46:e1-e12.


background image

C

HAPTER

 21

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Hydatid Disease

Hannah Cummings, Miriam Rodriguez-Sosa 

and Abhay R. Satoskar

Background

Hydatid disease, also called hydatidosis or echinococcosis, is a cyst-forming 

disease resulting from an infection with the metacestode, or larval form, of parasitic 

dog tapeworms from the genus Echinococcus. To date, fi ve species of Echinococcus 
have been characterized. Th e vast majority of human diseases are from Echinococcus 
granulosus
 and Echinococcus multioccularis which cause cystic echinococcosis and 
alveolar echinococcosis, respectively. Millions of people worldwide are aff ected 
by human hydatid disease and as a result, the diagnosis, treatment and prevention 

of the disease has become a serious concern for public health care systems around 
the world.

Geographic Distribution

Echinococcus infections are estimated to aff ect between 2-3 million people 

worldwide with endemics located primarily in regions of North and South 
America, Europe, Africa and Asia associated with the widespread raising of sheep 

and other livestock.

Life Cycle

Hydatid disease is caused by infection with the larval form of E. granulosus (and/

or E. multiocularis) and results in the formation of cysts within various host tissues. 
Th e complete life cycle of Echinococcus granulosus requires two hosts (Fig. 21.1). 

Domestic dogs act as the primary defi nitive host of the mature adult worms and a 
single infected dog may harbor millions of adult worms within its intestines. Other 
canines such as wild dogs, wolves, coyotes, foxes and jackals may also act as a defi ni-
tive host harboring the adult tapeworms. Intermediate hosts become infected with 
the larval form of the parasite and include a wide range of herbivorous animals, 

primarily sheep, cattle, pigs, goats and horses. Th e life cycle is completed by the 
ingestion of one or more cysts and its contents by the canine host through the 
consumption of infected viscera of sheep and and/or other livestock. Protoscoleces 

released in the small intestine attach to the intestinal wall through the action of 
four suckers and a row of hooks and within two months mature into adult worms 
capable of producing infective eggs.

Humans may become infected though the ingestion of food and/or water 

contaminated with infective eggs released in the feces of dogs harboring the adult 


background image

147

Hydatid Disease

21

tapeworm(s). Once ingested, the eggs release oncospheres capable of actively 
penetrating the intestinal mucosa. Th ese oncospheres gain access to the blood 
stream via the hepatic portal vein and migrate to various internal organs where 

they develop into cysts. Hydatid cysts most oft en localize within the liver and the 
lungs; however, cysts may also form in the bones, brain, skeletal muscles, kidney 
and spleen. Th e clinical manifestations of hydatid disease vary depending on a 
variety of factors including the location, size and number of cysts present within 
the infected tissues.

Figure 21.1. Life cycle of Echinococcus. Reproduced from: Nappi AJ, Vass E, 

eds. Parasites of Medical Importance. Austin: Landes Bioscience, 2002:65.


background image

148

Medical Parasitology

21

Similar to E. granulosus, the complete life cycle of E. multiocularis also requires 

two hosts. Th e primary defi nitive host for E. multiocularis is the fox, although the 
parasite may also infect wild and domesticated dogs and occasionally cats. Rodents 

such as fi eld mice, voles and ground squirrels act as natural intermediate hosts and 
acquire infection by ingesting infective eggs released into the environment.

Immunobiology

Th e development of an immune response to infection with the larval form of the 

parasite is generally divided into two broad phases: the preencystment phase and 
the postencystment phase. Both cellular and humoral immunity are induced during 

each phase; however, neither response is suffi  cient to eliminate the parasite.

Early stages of a primary infection with E. granulosus are characterized by the 

substantial activation of a cell-mediated type immune reaction against the parasite. 
Th e release of oncospheres promotes an increase in leukocytosis, primarily by eo-

sinophils, lymphocytes and macrophages. Host complement pathways contribute 
to the host infl ammatory response and are activated by both living organisms as 
well as by material derived from dead parasites. Intense, dense granulomas form 

around the cyst and are responsible for much of the tissue destruction and subse-
quent clinical pathology associated with the disease.

Parasite-specifi c antibodies can be detected in the sera of patients shortly aft er 

infection and include IgG, IgA and IgM. Studies suggest that early oncospheres 
may be killed through antibody-dependent cell-mediated cytotoxicity reactions 

involving neutrophils. A certain percentage of patients develop an immediate-type 
hypersensitivity reaction to larval antigens, characterized by the nonspecifi c de-
granulation of basophils and increased levels of circulating IgE. Anaphylaxis-type 

reactions may occur and are oft en induced by the rupture of a cyst or the leakage 
of hydatid cyst fl uid within the tissues.

Th e postencystment phase of infection is marked by an increase in the levels of 

IgG, IgM and IgE. Th e infi ltration of eosinophils, neutrophils, macrophages and 
fi brocytes initiated early in infection persists throughout the later phases of cyst 

development; however, the presence of mature cysts within the tissues does not 
result in an intense infl ammatory response.

Cytokine profi les of infected patients suggest the development of both a Th 1- 

and Th 2-type immune response to infection. Live parasites have been shown to 
actively induce Th 1 cytokines, suggesting that the development of a Th 2-type 
response is involved in host susceptibility to infection. In addition, Th 2 cyto-
kines are the predominant cytokines detected in sera from patients with active or 
transitional cysts. In contrast, patients with inactive cysts or undergoing eff ective 

chemotherapy exhibit a strong Th 1-type response. Th is Th 1 response dominates 

the Th 2 response and suggests that a predominant Th 1 response induced late in 

infection may be responsible for the successful resolution of infection.

Signs and Symptoms

Echinococcus granulosus and Echinococcus multiocularis are the two species 

most oft en identifi ed in human hydatid disease. Cystic echinococcosis, caused 
by E. granulosus, is the most common and accounts for approximately 95% of all 


background image

149

Hydatid Disease

21

global cases. Cystic echinococcosis may aff ect people of all ages, but hydatid cysts 

are most oft en present in patients between 15-35 years of age.

Infection with E. granulosus results in the rapid growth of large, uniocular cysts 

fi lled with fl uid (Fig. 21.2). Most cysts develop within the tissues of the liver and lung, 
with 55-75% of cysts found in the liver and 10-30% of cysts found in the lungs. Cysts 
may survive in the liver for several years and oft en do not cause any symptoms in the 

infected host. Symptoms arise when the cysts become large enough to be palpable 
and/or cause visual abdominal swelling and pressure. Patients frequently experience 
abdominal pain in the right upper quadrant, oft en accompanied by nausea and vomit-

ing. Th e rupture or leakage of cysts within the tissue can result in anaphylactic shock 
and facilitate the spread of secondary cysts through the release and dissemination of 
germinal elements. Biliary tract disease and portal hypertension may complicate liver 
involvement and postobstructive infection due to erosion of cysts into the biliary tract 
may further complicate echinococcal infection. Pulmonary cystic echinococcosis is 

acquired early during childhood, but the clinical manifestations associated with the 
disease do not typically appear until the third or fourth decade of life.

Cysts residing within the lung tissue oft en remain silent producing little to 

no symptoms. Problems arise when cysts grow large enough to obstruct or erode 
a bronchus, oft en causing the rupture of cysts and the dissemination of cystic 
fl uids. Patients infected with pulmonary cysts frequently experience chronic dry 
cough, chest pain and hemoptysis oft en accompanied by headache, sweating, 
fever and malaise.

Figure 21.2. Photomicrograph of a hydatid cyst from the liver. Note the 

hyaline membrane (black arrow) and the protoscolex in the brood capsules 

(gray arrow).


background image

150

Medical Parasitology

21

Alveolar echinococcosis aff ects between 0.3-0.5 million people and is usu-

ally caused by Echinococcus multiocularis. It is characterized by the formation of 
multiocular hydatid cysts which contain little to no fl uid. Th ese cysts lack both 

the hyaline membrane and the brood capsules which facilitate the widespread 
metastasis of larvae into the surrounding tissues. Th ese larvae invade adjacent tis-

sues and proliferate indefi nitely causing extensive and progressive tissue necrosis 
and eventual death in 70% of infected patients.

Hydatid disease can aff ect a wide range of organs including the bones, central 

nervous system, heart, spleen, kidneys, muscles and eyes. Patients diagnosed with 

the disease should be screened for the presence of multiple cysts in various tissues.

Diagnosis

Proper diagnosis and treatment of hydatid disease is diffi  cult. Individuals oft en 

remain asymptomatic for several years aft er initial infection, allowing time for the 
growth of large, debilitating cysts. Various imaging techniques are used to visually 
detect cysts present within host tissues. CT scans and MRIs are used extensively 
in clinical settings and are useful in the detection of developing, dying or dead 
cysts. Typical features include thick cyst walls, detached germinal membranes, 

internal septae and/or the presence of daughter cysts. X-ray, ultrasound and scin-
tillography may also be useful in the detection of hydatid cysts and in diagnosis 
of the disease.

Numerous serological assays are currently available and are useful in the detec-

tion and diagnosis of hydatid disease. Common detection methods include indirect 
hemagglutination assays (IHA), indirect immunofl uorescence, counter-current 
immunoelectrophoresis (CIEP), enzyme-linked immunoassays (ELISA) and 
enzyme-linked immunotransfer blots (EITB). Most serological assays involve the 

detection of specifi c serum antibodies, primarily the detection of IgG to hydatid 
cyst fl uid-derived or recombinant antigen B subunits. Although high levels of sen-
sitivity have been achieved (92.2%), complications may arise due to cross-reactivity 

between hydatid disease and cysticercosis.

Detection of mitochondrial DNA using molecular techniques like PCR is 

extremely useful and is oft en used to analyze genotypic variations between species 
and/or strains.

Treatment

Surgery remains the treatment of choice for the removal of cysts. Patients 

diagnosed with multiple cysts often require numerous staged operations. 
Complete excision of the cysts is diffi  cult: surgical removal may cause the rup-
ture or leakage of cysts/cystic fl uid resulting in the release and dissemination 
of infective protoscoleces.

Albendazole is frequently used to treat patients with hydatid disease. Patients 

typically receive 10 mg/kg/d or 400 mg orally twice per day for 1-6 months. 
Although neither regimen has been proven to be eff ective in resolving the disease 
alone, the use of drug therapy in conjunction with surgical treatment has shown 

to greatly reduce the risk of development of new cysts and is currently the therapy 
of choice.


background image

151

Hydatid Disease

21

PAIR, or percutaneous aspiration, followed by injection of 95% ethanol or 

another scolicidal agent and then reaspiration, may sometimes be used as an alter-
native to therapy, especially for the treatment of inoperable cysts.

Prevention and Prophylaxis

Th e most eff ective means to control hydatid disease in humans and eliminate 

the consequences of Echinococcus infections in livestock is through the broad- range 
education of people living in endemic regions. Education to prevent the feeding 

of infected viscera to dogs is essential for controlling the spread of infection from 
livestock to dogs. Most human infections are due to close contact with infected 

dogs. Deliberate actions aimed at reducing the rate of dog infection in endemic 
regions will undoubtedly reduce the number of human infections. In addition, the 

reduction and removal of stray and unwanted dogs, as well as the regular treatment 
of dogs with anthelminthic drugs, will facilitate the widespread eff orts geared 
towards controlling disease transmission.

Th e development of vaccines designed to prevent infection of either or both 

the defi nitive and intermediate host(s) off ers the greatest possibility of success in 
the control and eradication of hydatid disease in both the livestock and human 
populations. EG95 is a 16.5 kDa recombinant GST fusion protein derived from 
E. granulosus oncospheres and functions as a highly eff ective vaccine for grazing 

livestock. EG95, which induces immunity through complement-fi xing antibodies, 
has been shown to induce high levels of protection (96-98%) against the develop-
ment of hydatid cysts.

Concluding Remarks

Human hydatid disease aff ects millions of people and has attracted the attention 

of health professionals around the world. Th e treatment of echinococcus infections 
within the domestic animal population would likely result in a reduction in the 
number of human cases of hydatid disease and, therefore, has become the focus of 
many studies aimed at the development of eff ective vaccines to control the spread 
of disease. Although vaccines are an invaluable tool for the control and eradication 

of disease, increasing public education and awareness of the eff ects of infection and 
the mode of transmission will be essential for control within remote areas where 
the disease is endemic.

Suggested Reading

 1. Th ompson RCA. Th e Biology of Echinococcus and Hydatid Disease. London: 

George Allen & Unwin Ltd, 1986:85.

  2.  Zhang W, Li J, McManus DP. Concepts in immunology and diagnosis of hydatid 

disease. Clin Microbiol Rev 2003; 16:18-36.

  3.  Craig PS, McManus DP, Lightlowlers MW et al. Prevention and control of cystic 

echinococcosis. Lancet Infect Dis 2007; 7:385-94.

  4.  Sturton SD. Geographic distribution of hydatid disease. Chest 1968; 54:78.

  5.  Ceran S, Sunam GS, Gormus N et al. Cost-eff ective and time-saving surgical treat-

ment of pulmonary hydatid cysts with multiple localization. Surg Today 2002; 

32:573-6.

  6.  Jenkins DJ, Power K. Human hydatidosis in New South Wales and the Australian 

Capital Territory, 1987-1992. Med J Aust 1996; 164:14-7.


background image

152

Medical Parasitology

21

  7.  Goldsmith RS. 35 Infectious diseases: protozoal and helminthic. Current Medical 

Diagnosis and Treatment 2007; 46:

  8.  Dickson DD, Gwadz RW, Hotez PJ. Parasitic Diseases, 3rd Edition. New York: 

Springer-Verlag, 1995:93-8.

  9.  Parija SC. Text Book of Medical Parasitology: Protozoology and Helminthology. 

Chennai: All India Publishers & Distributors, 2001: 214-9.

 10.  Arora DR, Arora B. Medical Parasitology. New Delhi: CBS Publishers and 

Distributors, 2002:120-3.

 11.  Moro P, Schantz PM. Cystic echinococcosis in the Americas. Parasitol Internat 

2005; 55:S181-6.

 12.  Magambo J, Njoroge E, Zeyhle E. Epidemiology and control of echinococcosis in 

sub-Sahara Africa. Parasitol Internat 2006; 55:S193-5.

 13.  Torgerson PR, Oguljahan B, Muminov AE et al. Present situation of cystic echi-

nococcosis in Central Asia. Parasitol Internat 2006; 55:S207-12.

 14.  Shaikenov BS, Vaganov TF, Torgerson PR. Cystic Echinococcosis in Kazakhstan: 

An emerging disease since independence from the Soviet Union. Parasitol Today 

1999; 15:173-4.

 15.  Romig T, Dinkel A. Mackenstedt. Th e present situation of echinococcosis in 

Europe. Parasitol Internat 2006; 55:S187-91.

 16.  Baz A, Ettlin GM, Dematteis S. Complexity and function of cytokine responses 

in experimental infection by Echinococcus granulosus. Immunobiology 2006; 

211:3-9.

 17.  Warren KS. Immunology and Molecular Biology of Parasitic Infections, 3rd 

Edition. Chelsea: Blackwell Scientifi c Publications, 1993:438-48.

 18.  Ferreira M, Irigoin F, Breijo M et al. How echinococcus granulosus deals with 

compliment. Parasitol Today 2000; 16:168-72.

 19.  Zhang W, You H, Zhang Z et al. Further studies on an intermediate host murine 

model showing that a primary Echinococcus granulosus infection is protective 

against subsequent oncospheral challenge. Parasitol Internat 2001; 50:279-83.

 20.  Rosenzvit M, Camicia F, Kamenetzky L et al. Identifi cation and intra-specifi c 

variability analysis of secreted and membrane-bound proteins from Echinococcus 

granulosus. Parasitol Internat 2006; 55:S63-7.

 21.  Kizaki T, Kobayashi S, Ogasawara K et al. Immune Suppression Induced by 

Protoscoleces of Echinococcus multiocularis in Mice: Evidence for the Presence 

of CD8

+

 dull Suppressor Cells in Spleens of Mice Intraperitoneally Infected with 

E. multiocularis. J Immunol 1991; 147:1659-66.

 22.  Markel EK, John DT, Krotoski WA. Markell and Voge’s Medical Parasitology, 8th 

Edition. Philadelphia: W.B. Saunders Company, 1999:254-60.

 23.  Tor M, Atasalihi, Altuntas N et al. Review of cases with cystic hydatid lung dis-

ease in a tertiary referral hospital in an endemic region: a 10 Years’ experience. 

Respiration 2000; 67:539-42.

 24.  Elton C, Lewis M, Jourdan MH. Unusual site of hydatid disease. Lancet 2000; 

355:2132.

 25.  Bahloul K, Ghorbel M, Boudouara MZ et al. Primary vertebral echinococcosis: 

four case reports and review of literature. Br J Neurosurg 2006; 20:320-3.

 26.  Todorov T, Mechkov G, Vutova K et al. Benzimidazoles in the treatment of 

abdominal hydatid disease: a comparative evaluation. Parasitol Internat 1998; 

47:105-31.

 27.  Heath D, Yang W, Tiaoying L et al. Control of hydatidosis. Parasitol Internat 2006; 

55:S247-52.

 28.  Parija SC. A review of some simple immunoassays in the serodiagnosis of cystic 

hydatid disease. Acta Tropica 1998; 70:17-24.


background image

S

ECTION

 IV

Protozoans


background image

C

HAPTER

 22

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

American Trypanosomiasis 

(Chagas Disease)

Bradford S. McGwire and David M. Engman

Introduction

American trypanosomiasis is a vector-borne infection caused by the protozoan 

parasite Trypanosoma cruzi. Also called Chagas disease, named aft er the Brazilian 
physician Carlos Chagas who described the infection in 1909, it is found only 

on the American continent. Th e parasite alternately infects triatomine insects 
(reduviid, assassin or “kissing” bugs) and a wide range of vertebrate hosts in a 
complex lifecycle. Human infection results in a myriad clinical syndromes result-
ing from localized and disseminated infection arising from the initial deposition 
of infective parasites during feeding of the blood sucking triatomine. Chagas 

disease is an important public health concern, being widespread in Central and 
South America and chronic infection is the leading cause of heart failure in these 
regions. Transmission via transfusion of blood products and organ transplantation 

is a matter of concern, even in North America. Th is review will cover the lifecycle 
and epidemiology, pathogenesis, clinical diagnosis, management and prevention 
of T. cruzi infection.

Epidemiology of T. cruzi Infection

Th e triatomine insects that transmit T. cruzi are present throughout the 

Americas, spanning vast regions from the central United States throughout 
Central and South America, extending to the south-central portions of Chile and 

Argentina. T. cruzi infection is primarily a zoonosis and humans are only incidental 
hosts; thus, natural transmission occurs primarily in rural areas where insects are 
abundant. Th e incidence of human infection is increasing in these regions due to 
deforestation for farming, which has caused the insects to migrate to the rudi-
mentary human dwellings made of mud and thatch, wood or stone. Despite the 

presence of T. cruzi-infected insects in the United States, the low incidence of acute 
Chagas disease in this country is thought to be due to the relatively high quality 
of housing. Th e World Health Organization currently estimates that 13 million 

people are infected with T. cruzi, with 200,000 new infections occurring annually 
in 15 countries. In addition to insect-borne disease, T. cruzi can also be transmitted 
congenitally or by blood transfusion or organ transplantation. Transmission of T. 
cruzi
 infection by blood transfusion is increasing in the US due to the increasing 
infl ux of infected immigrants who donate blood. Th us, there is a pressing need to 

implement widespread screening of blood products for the presence of T. cruzi.


background image

155

American Trypanosomiasis (Chagas Disease)

22

Figure 22.1. Cellular features of a Trypanosoma cruzi trypomastigote. 

Trypanosoma cruzi is a protozoan parasite, possessing the organelles of 

all eukaryotes including a membrane bound nucleus and mitochondrion. A 

single membrane-bound fl agellum emerges from the trypanosome’s fl agellar 

pocket and runs the length of the cell, attached to the cell body membrane 

via a desmosome-like adhesive junction. At its origin, the fl agellum is physi-

cally connected to the mitochondrial DNA, which resides in a specialized 

region of the mitochondrion termed the kinetoplast.

T. cruzi Life Cycle and Transmission

Trypanosoma cruzi is a eukaryote possessing a membrane bound nucleus 

and mitochondrion. Th e mitochondrial DNA is a complex structure which 
resides in a specialized region (kinetoplast) adjacent to the base of the fl agel-

lum (Fig. 22.1). T. cruzi has four distinct life cycle stages (Fig. 22.2). Within the 
midgut of the reduviid bug, parasites replicate as fl agellated epimastigotes (epi). 

As epis replicate and increase in number they migrate to the hindgut of the bug 
where they diff erentiate into infective metacyclic trypomastigotes (meta). Metas 

are discharged in the feces of the bug as they take a blood meal. Infection results 
from the contamination of the insect bite or open wounds, mucous membranes 
or conjunctiva with parasite laden bug feces. Once in the vertebrate host, the 

meta, which is unable to replicate, must invade host cell within which it can 
diff erentiate into the replicating amastigote (ama). During invasion the meta is 
initially present within a membrane bound vacuole, but it escapes this vacuole 

and diff erentiates into the afl agellated ama, which divides in the cytoplasm. Aft er 
a number of rounds of replication, the amas fi ll the cytoplasm and diff erentiate 
into motile trypomastigotes (tryp), which lyse the infected cell and escape to 

infect adjacent cells or disseminate throughout the body via the bloodstream 
and lymphatics. Tryps, like metas, cannot replicate and must invade host cells 
and diff erentiate into amas to survive. Alternatively, they may be taken up by a 
triatomine insect during a blood meal and diff erentiate into epis in the insect 
midgut, thereby completing the life cycle. Within the vertebrate host, parasites 

can infect any nucleated cell, but have a predilection for muscle, particularly of 
the heart and gastrointestinal tract. Th is tissue tropism ultimately leads to the 
two predominant clinical forms of chronic T. cruzi infection: cardiomyopathy 

and megacolon/megaesophagus.


background image

156

Medical Parasitology

22

Pathogenesis of Chagas Disease

Acute  T. cruzi infection results from the contamination of wounds or 

mucous membranes with insect feces containing expelled infective parasites. 
Locally deposited parasites bind to and invade host tissue and transform into 
and replicate as intracellular amastigotes. Infection leads to the formation of 

parasite “pseudocysts,” so named because the amastigote nests are intracellular. 
Th is stimulates a localized infl ammatory response mediated predominantly by 
lymphocytes and macrophages. Lymphatic drainage of the infected area into 
regional lymph nodes results in activation and proliferation of cells, resulting 
in regional lymphadenopathy. As the process continues, the amas transform 

into trypomastigotes, escape host cells and disseminate throughout the body. 
Infection and lysis of liver cells results in transient increases in serum liver 
enzyme levels. In chronic infection, tissue parasites are diffi  cult to detect but 

signifi cant interstitial fi brosis occurs, damaging the aff ected tissue. Th e molecular 

Figure 22.2. Life cycle of Trypanosoma cruzi. T. cruzi possesses four basic 

life cycle stages. In the insect, noninfectious epimastigotes replicate (R) in the 

midgut and differentiate into infectious but nonreplicating (NR) metacyclics 

as they migrate to hindgut. The fecal material of the insect, which contains 

metacyclics is deposited on the skin during a bloodmeal and infection occurs 

when this material contaminates the insect bite or a mucous membrane, which 

the trypomastigotes can penetrate. Within the human host, metacyclics invade 

host cells and differentiate into amastigotes, which replicate, burst out of the 

cell and either invade other cells or are taken up by another insect. Within 

the insect gut, the trypomastigotes differentiate into replicating epimastigotes, 

thus completing the cycle.


background image

157

American Trypanosomiasis (Chagas Disease)

22

pathogenesis of Chagas disease is not completely understood, but likely results 

from (i) parasite-mediated tissue destruction, (ii) infl ammation and fi brosis 
resulting from immune responses generated to parasites and residual parasite 

antigen, (iii) parasite-induced microvascular spasm and ischemic damage and/
or (iv) autoimmune responses triggered by release of self-antigen during parasite 

lysis of host cells. Because there are many outcomes of chronic T. cruzi infec-
tion (see below), it is likely that each of these mechanisms occurs in isolation 
or in combination in a given individual, depending on the specifi c pathogenic 

potential of the strain of parasite (tissue tropism, replication rate, etc.) and the 

immunogenetic susceptibility of the infected individual.

Clinical Syndromes of Chagas Disease

Acute infection by T. cruzi is marked by the development of localized swelling 

and erythema at the site of the insect bite, which is termed a chagoma. Th is is a 
result of the local replication of parasites and the infl ux of fl uid and infl amma-
tory cells into the infected area. Infection through the conjunctiva can result in 
periorbital swelling, termed Romaña’s sign (Fig. 22.3D). As parasites disseminate 
patients experience nonspecifi c symptoms such as fever, malaise and anorexia. 

Parasite infestation of peripheral tissues can give rise to hepatosplenomegaly and, 
in some cases, meningeal signs. Initial infection of heart tissue can lead to acute 
myocarditis and cardiac sudden death due to parasitization of the cardiac conduc-

tion system. Th e signs and symptoms of acute T. cruzi infection can last from days 
to weeks but are oft en unrecognized due to their nonspecifi c nature. Th e disease 
then proceeds to a quiescent phase lasting months to years and oft en decades, 
prior to the onset of chronic disease. It should be noted that the majority of T. 
cruzi
-infected individuals do not develop any parasite-related disease and simply 

harbor low levels of parasites for life. Less than one-third of infected people develop 
chronic Chagas disease. Th e two hallmarks, usually mutually exclusive, disorders 
that occur in chronically infected patients are cardiomyopathy and megaorgan 

syndromes (Fig. 22.3E and G. respectively).

Cardiac involvement is heralded by the development of fi brosis within the 

heart muscle (Fig. 22.3F) and conduction system which leads to arrhythmias 
and heart failure, that latter being predominantly right-sided. Loss of ventricular 
muscle leads to wall thinning which can be associated with the development of 

apical aneurysms and subsequent formation of thrombi, which may have seri-
ous thromboembolic consequences (Fig. 22.3E). In the gastrointestinal tract, 
chronic infection leads to parasympathetic denervation, resulting in massive 

dilatation of the esophagus and/or colon. Esophageal involvement results in 
achalasia, associated odynophagia, dysphagia and esophageal dysmotility, oft en 
resulting in aspiration pneumonia. Colonic involvement results in abdominal 
pain, constipation, obstruction with perforation and secondary intrabdominal 
infection. Immunosuppression of patients with chronic Chagas disease, regard-

less of the mechanism (HIV infection, usage of immunosuppressive drugs in 

organ transplantation) can lead to recrudescence of parasite replication, massive 
parasitosis and death. Clinical disease in this setting is oft en fulminant with more 

extensive involvement of the central nervous system.


background image

158

Medical Parasitology

22

Figure 22.3. Various aspects of Trypanosoma cruzi biology and Chagas disease. A) T. cruzi trypomastigotes stained with Giemsa 

(bar = 5 

μ

m). Note the prominent darkly-stained kinetoplast DNA. B) Reduviid bug. C) Nests of amastigotes in heart tissue, often termed 

“pseudocysts” since they are intracellular collections of parasites. The inset shows an amastigote with clearly visible nucleus (round 

structure) and kinetoplast (bar-like structure). D) Romaña’s sign. E) Apical aneurysm (illuminated by light bulb) can occur after chronic 

fi brosis and weakening of the apical wall of left ventricle. F) Histopathology of Chagas heart disease: myofi brillar swelling and degen-

eration, mononuclear cell infi ltration, fi brosis and edema in the absence of parasites are typical. G) Megacolon: a serious sequela of 

infection that is poorly understood. Photographs are courtesy of Cheryl Olson (A,C,F), Dr. Chris Beard (B), Dr. Michael Miles (D), Prof. 

F. Köberle (E,F,G).


background image

159

American Trypanosomiasis (Chagas Disease)

22

Diagnosis of T. cruzi Infection

Th e diagnosis of T. cruzi infection initially requires a high degree of clinical 

suspicion. History of potential exposure to T. cruzi is important to document. 
Patients with a history of travel to or having had blood transfusion within endemic 

areas are at increased risk of T. cruzi infection. Th e presence of, or recent history 
of a chagoma or Romaña’s sign are indicators of recent infection. Th e mainstay 

of diagnosis is detection of trypomastigotes in the blood or the presence of T. 
cruzi
-specifi c antibodies in serum to indicate acute or chronic infection, respec-

tively. Direct detection of parasites in blood is easier in immunocompromised 
patients in whom the immunologic control of parasites is not as effi  cient. Heavy 
parasite burdens in the tissues of such patients can permit diagnosis via direct 

examination of tissue (lymph nodes, or bone marrow) or fl uids (cerebrospinal or 
pericardial fl uid). In addition these specimens can be cultured in vitro in liquid 
medium or by growth within uninfected insect vectors (xenodiagnosis). During 

chronic infection parasites are frequently not detectable in the blood, and the 
presence of T. cruzi IgG, using commercial immunoassays, ELISA, complement 
fi xation, or hemagglutination based tests, establishes the diagnosis. Direct detec-

tion of parasites using PCR based testing has been demonstrated but is not yet 
available for routine laboratory diagnosis. Potential blood donors throughout 
the Americas are asked questions related to risk factors of T. cruzi infection, but 
transfusion-associated disease remains a serious problem. As a result, the blood 
in much of South and Central America is screened for T. cruzi-specifi c antibod-

ies, and many feel that the United States blood supply will be screened beginning 
within a few years.

Treatment of T. cruzi Infection

Benznidazole, an imidazole (trade name Rochagan, produced by Roche in 

Brazil) and Nifurtimox, a nitrofuran (trade name Lampit, produced by Bayer 
in Germany), are the two agents approved for treatment of Chagas disease and 
are available in the United States through contact with the Centers for Disease 

Control in Atlanta, Georgia. Th ese agents have similar effi  cacy but have many 
adverse eff ects. Benznidazole is given orally for 1-3 months at a dose of 5-7 
mg/kg/d in two divided doses. Th e side eff ects of this medication include rash and 
peripheral neuropathy but can also include bone marrow suppression. In adults, 
Nifurtimox is given for 120 days at a dose of 8-10 mg/kg/d in four divided doses. 

In children the drug is given for 90 days in four divided doses but the amount 
is based on age: 11-16 years (12.5-15 mg/kg/d); and under 11 years (15-20 
mg/kg/d). Gastrointestinal maladies (nausea, vomiting, abdominal pain) are the 

predominant side eff ects of this medication but up to 30% of patients can also 
experience central nervous system eff ects such as polyneuritis, confusion or focal 
or generalized seizures. Skin rash can also develop in some patients. Individuals 
with glucose-6-phosphate dehydrogenase defi ciency can experience drug-induced 
hemolytic anemia. Treatment is undertaken in cases of acute or congenital infection 

natural infection or in cases of accidental laboratory inoculation. Recent systematic 
reviews of clinical trials of trypanocidal therapy in patients with chronic T. cruzi 
infection suggest that treatment of asymptomatic immunocompetent patients may 

result in a reduction of progression to chronic disease (development of megaorgan 


background image

160

Medical Parasitology

22

syndromes, cardiomyopathy and arrhythmia). In contrast, there is no convincing 

data that support the use of trypanocidal therapy in patients who have already 
manifested end-organ damage as a result of chronic T. cruzi infection. It is clear 

that randomized controlled trials are necessary to truly understand the clinical 
benefi t of trypanocidal therapy in chronic Chagas disease. Th e management of T. 

cruzi induced cardiac failure, achalasia and megacolon are approached in the same 
way that these end-organ problems are approached due to other causes.

Prevention of T. cruzi Infection

Limiting exposure to T. cruzi infected insects and blood is the mainstay of 

the prevention of Chagas disease. Persons living in or traveling to areas endemic 
for T. cruzi should avoid residing in substandard housing frequented by reduviid 
bugs. Th e use of bed nets and insect repellent are also recommended for this pur-
pose. Barrier protection for those working with T. cruzi in the laboratory setting, 
such as protective clothing, gloves and eyewear is a must. Since the incidence of 
transfusion- and transplantation-associated T. cruzi infection is increasing in the 

Americas, serologic screening of donated blood seems advisable. Such is the practice 
in endemic countries within South America. As the number of potentially-infected 
immigrants to the United States increases, this will likely increase the number 

of transfusion-associated T. cruzi infections despite the presence of blood bank 
questionnaires.

Suggested Reading

  1.  Engman DM, Leon JS. Pathogenesis of Chagas heart disease: role of autoimmunity. 

Acta Trop 2002; 81:123-32.

  2.  Kirchhoff LV. Trypanosoma Species (American Trypanosomiasis, Chagas 

Disease): Biology of Trypanosomes. In: Mandell GL, Douglas RG, Bennett 

JE, eds. Principles and Practice of Infectious Diseases, 6th Edition. New York: 

Churchill Livingstone, 2005:

  3.  Mascola L, Kubak B, Radhakrishna S et al. Chagas disease aft er organ trans-

plantation—Los Angeles, California. MMWR Morb Mortal Wkly Rep 2006; 

55:789-800.

  4.  Villar JC, Marin-Neto JA, Ebrahim S et al. Trypanocidal drugs for chronic 

asymptomatic Trypanosoma cruzi infection. Cochrane Database Syst Rev 2002; 

CD003463.

  5.  Tyler KM, Miles MA. American Trypanosomiasis. Norwell: Kluwer Academic 

Publishers, 2003.


background image

African Trypanosomiasis

Guy Caljon, Patrick De Baetselier and Stefan Magez

Abstract

African trypanosomiasis is a vector-born disease that severely aff ects a broad 

range of vertebrate hosts, including humans, on the sub-Saharan African continent. 
Th e infection is caused by fl agellated unicellular parasites (Trypanosoma sp.) and is 
lethal without treatment. Disease manifestations are pleotropic and are dependent 
on the host and infection-stage. Currently available diagnostic tests are adapted 
for fi eld usage but have a low specifi city, while an accurate diff erential diagnosis 
of human pathogenic Trypanosoma subspecies and correct determination of the 

infection stage is essential for appropriate treatment. For treatment of human 
African trypanosomiasis (HAT), four drugs with signifi cant side-eff ects are cur-
rently available, with only one of them being registered in the last 50 years. Th is 

chapter will introduce the disease, its diagnosis, treatment and prospects for new 
therapeutic approaches.

Introduction

African trypanosomes are extracellular protozoan parasites that cause lethal 

infections in humans and livestock in large parts of sub-Saharan Africa. Th e re-
sponsible fl agellated parasite (Trypanosoma sp.) is approximately twice the size of 

erythrocytes (15-30 

μ

m, Fig. 23.1A) and relies on tsetse fl ies for its transmission 

(Fig. 23.1B). Th ese arthropods are obligate bloodsucking insects (genus Glossina), 
that get infected through feeding on a parasitized host and accommodate the 

trypanosome during their entire lifespan. Engorged trypanosomes colonize the 
midgut, proliferate and undergo diff erentiation while directionally migrating 
towards the insect salivary glands. Th e vertebrate-infective metacyclic form of the 
parasite resides in the salivary glands or mouthparts of the fl y, using the bloodfeed-
ing behaviour for its transmission to a new host. Upon transmission to the verte-

brate host, trypanosomes will transform into actively proliferating (long slender) 
forms to allow a systemic colonization of the host. Eventually, trypanosomes in 
the bloodstream become quiescent (short stumpy) and pre-adapt to uptake and 

subsequent survival in the tsetse fl y. During the complex life cycle (Fig. 23.1C) 
of the parasite in the insect and vertebrate host, trypanosomes undergo several 
metabolic changes for the acquisition of free-energy from diff erent available sources 
and modify mechanisms for the uptake of host nutrients, such as iron complexed 
with transferrin. In the fl y, trypanosomes utilize amino acids (e.g., proline) as 

primary energy sources while trypanosomes in the vertebrate hosts metabolize 
glucose via glycolysis in a unique organelle, the glycosome. Only two subspecies, 

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

C

HAPTER

 23


background image

Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense, have the ad-

ditional feature of resistance to normal human serum (NHS) that is trypanolytic 
for strictly livestock-threatening trypanosomes. Although both subspecies are 
pathogenic to human, they diff er signifi cantly in virulence and geographical oc-
currence (Fig. 23.2). T. b. gambiense causes chronic infections in West and Central 
Africa which can persist up to 10 years while T. b. rhodesiense is more prevalent 

in Eastern Africa and mostly results in acute human infections that can be lethal 
within a few months. Th e diseases caused by both subspecies are categorized 
under human African trypanosomiasis, better known as sleeping sickness and are 

responsible for an estimated 50,000 deaths a year. In contrast, T. congolense, T. vivax 
and T. brucei brucei are trypanosomes species that cause the majority of livestock 
infections with an estimated loss in agriculture of more than 1 billion $ per annum. 
Although sleeping sickness was largely controlled by the early 1960s, the disrup-
tion of health infrastructures and population displacement, as well as the lack of 

human and fi nancial resources for disease control, led to a current epidemic scale 
of the disease in specifi c regions of Africa. Moreover, the development of protec-

Figure 23.1. The trypanosome’s lifecycle: A) a microscopic image (obtained 

with permission from Dr. David Pérez-Morga) of the causative agent of HAT, 

the trypanosome; B) a photograph of the vector of the disease, the tsetse fl y 

(Glossina morsitans) (obtained with permission from Jan Van Den Abbeele); 

C) the lifecycle in the mammalian and insect host, indicating a proliferative 

stage for host colonization and a quiescent form, pre-adapted to survival in 

a new host (obtained with permission from Guy Caljon).

162

Medical Parasitology

23


background image

tive vaccines has been unsuccessful until now, mainly due to the ability of African 

trypanosomes to escape adaptive immune responses by antigenic variation of the 
most abundant surface glycoprotein VSG (variant-specifi c surface glycoprotein). 
Th ese VSG molecules form a densely packed coat of up to 10

7

 identical copies per 

cell, making invariant epitopes as potential immune targets inaccessible to conven-
tional antibodies. Th ere are about 1,000 genes present in the trypanosome genome 
that encode for these VSGs, but, due to a strictly controlled gene expression, only 

one gene at a time is translated to construct the actual outer protein coat. As the 
vertebrate host mounts an effi  cient antibody response against the VSG leading to 
partial parasite clearance of the major variant antigenic type (VAT), a minor part 

Figure 23.2. Distribution of HAT in sub-Sahara Africa: predominant occur-

rence of T. b. gambiense in Central and West Africa and T. b. rhodesiense 

in East Africa. The colour-scale indicates the incidence of HAT in the different 

countries. This fi gure was reproduced with permission from the World Health 

Organization (http://www.who.int/en/).

163

African Trypanosomiasis

23


background image

of the parasite population will initiate transcription from another VSG gene or 

undergo genetic rearrangements, resulting in the expression of a new VSG type. 
As such, a new wave of trypanosomes will emerge, expressing a VSG that is not 
recognized by the raised anti-VSG immune response (Fig. 23.3). Together with 
the modulation of functions of antigen presenting cells (e.g., macrophages) and 
T-lymphocytes, the trypanosome is able to avoid elimination by the immune system 

and to maintain a well controlled growth in a broad range of hosts.

Pathology

African trypanosomiasis is lethal unless the parasite is completely eliminated 

from the body of the infected individual by drug treatment. However, death 
in infected hosts is rarely due to an uncontrolled parasite expansion. In human 
infections, mortality results from neurological complications after penetra-
tion of the parasite into the central nervous system, while cattle succumb from 
infection-induced severe anemia or complications associated with secondary 

opportunistic infections.

Human African trypanosomiasis (HAT) is characterized by two disease stages. 

During the fi rst (haemolymphatic) stage of the infection, parasites will proliferate in 

the blood and the lymphatic circulation. Symptoms at this stage are pleotropic and 
nonspecifi c and include fever, lymphadenopathies, splenomegaly and endrocrine 
disorders. Systemic infl ammation fi nally leads to increased blood-brain barrier 
(BBB) permeability allowing parasites to penetrate the central nervous system 
and cerebrospinal fl uid, ushering in the second (encephalitic) stage of HAT. Th e 

symptoms of this stage include sensory, motoric and psychic disturbances, neu-
roendocrine abnormalities and disturbed circardian rhythms, eventually resulting 
in coma and death. Th e disturbed day-night cycles in the late stage of infection are 

characteristic for “sleeping sickness”.

Figure 23.3. Antigenic variation of VSG: illustration of the escape of the 

trypanosome from specifi c host antibody responses. Each parasitemia wave 

represents a population that expresses another VSG-molecule or variant 

antigenic type (VAT) that escaped the host antiparasite immunity. Obtained 

with permission from Guy Caljon.

164

Medical Parasitology

23


background image

Experimental models for trypanosomiasis indicated that the transition from the 

fi rst to second stage of HAT is dependent on infl ammatory cytokine secretion by 
macrophages and microglial cells, which in turn can activate matrix metalloprotei-

nases that selectively cleave basement membrane components from BBB endothelial 
cells. Th is could facilitate the migration of leukocytes and trypanosomes across the 

BBB. Tumor necrosis factor (TNF) seems to be especially involved in all stages of 
the infl ammatory pathology of trypanosomiasis. In this context, TNF was fi rst 
identifi ed as cachexin, the causative agent of the tremendous weight loss (cachexia) 

observed during cattle trypanosomiasis. Circulating serum TNF concentrations and 

disease severity are correlated for HAT, cattle trypanosomiasis and experimental 
mouse infections. Interestingly, TNF was also demonstrated to exert an eff ector 
function in parasitemia control, attributed to a direct trypanolytic eff ect of this 

cytokine. A TNF

–/– 

mouse model confi rmed the involvement of TNF in both 

parasite control and immune pathology, as knockout mice show signifi cantly less 
signs of morbidity as compared to wildtype mice although having 20-fold higher 
parasite concentrations in the blood (10

9

/ml versus 5 × 10

7

/ml).

Another aspect of trypanosomiasis-associated pathology, causing extensive 

morbidity during animal trypanosomiasis, is anemia. Th e mechanism underly-
ing trypanosomiasis-elicited anemia was proposed to rely on (i) the release of 
trypanosome components lytic to red blood cells (RBCs), (ii) antibody-mediated 
lysis and/or phagocytosis of opsonized erythrocytes and (iii) suppression of 

RBC replenishment by erythropoiesis. Detailed analysis of anemia has recently 
uncovered a major role of T-cells, found to be a major source of IFNγ during 
infection, and responsible for excessive macrophage activation and TNF produc-

tion. As such, activated macrophages and TNF are proposed to play key roles in 
both the induction of pathology and the control of parasitemia.

Beside the pathology occurring during infection, treatment with a trypanocidal 

drug during second stage HAT can prove fatal due to several complications includ-
ing cardiomyopathy, hepatitis and especially posttreatment reactive encephalopathy 

(PTRE). To study PTRE, several mouse models were generated mainly relying on 
sub-curative drug treatment. Th is treatment clears parasites from the circulation, 
but not from the central nervous system, eventually leading to encephalitic shock. 

Immunological analysis revealed that severe PTRE was associated with astrocyte 
activation and increased IL (interleukin)-1

α

, -4, -6, MIP-1 (macrophage infl am-

matory protein-1) and TNF mRNA levels in the brain. Th is indicates that infl am-
matory responses in the central nervous system are associated with the occurrence 
of encephalopathy aft er treatment. A profound continued analysis of PTRE is 
mandatory in order to develop appropriate treatment protocols that will reduce 
fatalities during HAT treatment.

Diagnosis

Th e main bottlenecks in HAT diagnosis are the identifi cation of the infecting 

trypanosome subspecies as well as the determination of the disease stage. Correct 
diff erential diagnosis of T. b. gambiense and T. b. rhodesiense infections will deter-

mine the applied treatment, as T. b. rhodesiense is acute and refractory to two of the 
four trypanocidal drugs. Th e disease stage will determine whether BBB-crossing 
drugs that are generally more toxic, should be administered. To date, diagnosis of 

165

African Trypanosomiasis

23


background image

fi rst stage HAT mainly relies on microscopic detection of trypanosomes in blood 

smears and lymph node aspirates. Second stage HAT diagnosis is based on para-
site detection or lymphocyte counting in the cerebrospinal fl uid (CSF) taken by 

lumbar puncture. So far, molecular and serological tools cannot substitute for the 
classical parasitological procedures. For fi eld conditions, the card agglutination 

test for trypanosomiasis (CATT) is the preferred fi rst-line serological detection 
method for T. b. gambiense, but must be followed by parasitological confi rmation 
and stage determination. Th e assay relies on the detection of anti-VSG antibodies 

in an agglutination reaction. However, since this diagnostic test is based on the 

recognition of one variable antigen type (VAT), LiTat 1.3, antigenic variation 
of the parasite population in a given foci can result in the disappearance of this 
VAT and false negative CATT assay results. In addition, a variable percentage of 

CATT seropositive individuals shows no clinical signs of infection and cannot be 
confi rmed by parasitological detection. In order to complement the CATT assay, 
T. b. gambiense specifi c polymerase chain reaction (PCR) was recently developed, 

based on the presence of a T. b. gambiense-specifi c gene, i.e., tgsGP. Th is PCR 
was proven to be unaff ected by antigenic variation of the VSG and able to detect 
infections in individuals that scored negative in the antibody-based CATT test. 

In addition, false positive CATT results could be excluded by this PCR-based 
technique. Finally, since trypanosome-specifi c antibodies remain in the circula-
tion aft er curative HAT treatment, the serological CATT assay cannot be used to 
detect relapses or re-infection. Here, the further development of a TgsGP reversed 
transcription PCR (RT-PCR) for the detection of mRNA from living parasites 

could provide a discriminative diagnosis in previously infected individuals.

For T. b. rhodesiense, infections can only be diagnosed by microscopic analysis 

as no serological fi eld test is available. Based on advances in molecular parasitology, 

a new T. b. rhodesiense diagnostic PCR method has been developed based on the 
restricted presence of the serum resistance antigen (SRA) gene. Th e SRA-based 
PCR could be appropriate for diagnosis and to delineate the distribution pattern 
of T. b. rhodesiense in livestock, an issue that will become crucial for correct HAT 
management.

In addition to PCR diagnostics, rapid and low cost diagnostic approaches 

are developed and validated with a focus on increased sensitivity and specifi city 

(overview Fig. 23.4). As an alternative for PCR, a new DNA amplifi cation method 
under isothermal conditions, the loop-mediated isothermal amplifi cation (LAMP) 

for the detection of African trypanosomes has been developed for easier fi eld use. 

As alternative serological tests, the immunofl uorescent antibody test (IFAT) and 
enzyme-linked immunosorbent assay (ELISA) methods have been proposed. 

However, due to the simplicity and rapidity of the CATT, it remains the most 

effi  cient fi eld serological test. As an alternative for the CATT, the LATEX/T. b. 

gambiense has been developed. Th is test is, similarly to the CATT test, based on 
an agglutination reaction, using latex particles coated with three purifi ed vari-

able surface antigens, LiTat 1.3, 1.5 and 1.6. In recent fi eld studies conducted in 

several West and Central African countries, LATEX/T. b. gambiense showed a 
higher specifi city (96 to 99%) but a lower or similar sensitivity (71 to 100%) as 

compared to the CATT. Further evaluation of this test is ongoing before it can be 
recommended for routine fi eld use.

166

Medical Parasitology

23


background image

Another approach is to improve the microscopic detection of trypanosomes 

by including a parasite concentration step. Th ree techniques have been proposed 
for this purpose: (i) the microhematocrit centrifugation technique (mHCT), (ii) 

the quantitative buff y coat (QBC) and (iii) the mini-anion-exchange centrifuga-
tion technique (mAECT). Th e mHCT and QBC techniques are based on the 
concentration of parasites in the white blood cell fraction of total blood by high 
speed centrifugation in capillary tubes. Both techniques enhance the detection 
limit signifi cantly (<100-500 trypanosomes/ml), but remain quite labor inten-

sive. Th e mAECT allows the separation of trypanosomes from blood cells, based 
on the diff erences in surface electrical charge. Validation of a newly produced 
mAECT version for fi eld usage is ongoing. Recently, spotting and methanol-fi xing 

of blood samples aft er erythrocyte lysis on microscopy slides followed by specifi c 
trypanosome-detection by fl uorescence in situ hybridization (FISH) with peptide 
nucleic acid (PNA) probes was proposed as alternative approach with improved 
detection limits (5 trypanosomes/ml). PNA probes are pseudopeptides that are 
resistant to nucleases and proteases and hybridize specifi cally to a complementary 

nucleic acid target (DNA or RNA). Using Trypanozoon 18S ribosomal DNA 
sequences that are not aff ected by the mechanisms of antigenic variation, specifi c 
probes were generated for batch hybridization assays. Together, detection limits 

of microscopic diagnosis can be improved by several techniques but make the 
procedure more labor intensive and require mobile teams to be equipped with 
additional apparatus for fi eld diagnosis.

Treatment

In T. b. gambiense infections, the human reservoir is the primary source for new 

HAT cases as the disease is chronic and might take years to result in fatal outcome. 

Treatment relies on suramine, pentamidine, melarsoprol and efl ornitine. Suramine 
is a polysulphonated symmetrical naphthalene derivative fi rst used to treat HAT 
in 1922. Th e drug is administered through slow intravenous injection, typically 

Figure 23.4. Overview of the major diagnostic tests based on microscopy, 

serology and molecular techniques for fi eld diagnosis of T. b. rhodesiense and 

T. b. gambiense infections. Obtained with permission from Guy Caljon.

167

African Trypanosomiasis

23


background image

100-200 mg (test dose), then 1 g IV on days 1, 3, 7, 14 and 21. Severe side eff ects 

have oft en been reported, including anaphylactic shock, severe cutaneous reac-
tions, neurotoxic signs and renal failure. Th e exact trypanocidal mode of action of 

suramine remains to be elucidated. However, as suramine does not cross the BBB, 
its application is limited to the treatment of the haemolymphatic stage HAT.

Compared to suramine, pentamidine is better tolerated and has been in use 

since 1940. It is an aromatic diamidine that exerts a direct trypanocidal activity 
but also does not cross the BBB. Th e typical administration protocol is a regime of 

seven intramuscular doses of 4 mg/kg per injection given daily or every alternate 

day. Hypotension and hypoglycemia are the most common side eff ects. As a polyca-
tion, pentamidine interacts with polyamines and circular DNA molecules in the 
mitochondrion upon uptake into the parasite by a specifi c receptor/transporter 

(P2 amino-purine transporter). As such, specifi c point-mutations or loss of expres-
sion of this transporter can render parasites resistant to pentamidine treatment. 
Interestingly, loss of this transporter function also renders trypanosomes resistant 

to melarsoprol, the main drug for treatment of second stage HAT.

Th e melaminophenyl arsenical melarsoprol is a trivalent organo-arsenical com-

pound that was fi rst used in HAT treatment in 1949. Th e drug is water-insoluble 

and is dissolved in 3.6% propylene glycol. Generally, melarsoprol treatment is 
preceded by one or two injections with suramine or pentamidine to clear the 
parasites from the bloodstream. Th e most common treatment protocol consists 
of 3 to 4 series of intravenous injections separated by rest periods of at least 1 week 
(8-10 days), as melarsoprol is a highly toxic drug that penetrates the central nervous 

system. Each series consists of one intravenous injection of 2-3.6 mg/kg/d on 3 
consecutive days. Although this arsenical derivate very effi  ciently lyses trypano-
somes, posttreatment reactive encephalopathy occurs as an adverse drug reaction 

in up to 12% of the cases. A potential target of melarsoprol is trypanothione 
(N

1

,N

8

-bis-glutathionylspermidine), a low molecular weight thiol comprising 

two glutathione molecules conjugated with spermidine. In trypanosomatids, try-
panothione fulfi lls most of the roles carried out by glutathione as the major redox 
reactive metabolite in mammalian cells. As arsenic is documented to interact very 
stably with thiols, complexation with trypanothione could account for a complete 
disturbance of the redox balance and a rapid trypanotoxic eff ect.

Th e fourth drug used to treat T. b. gambiense is efl ornithine (DFMO or 

dl-alpha-difl uoromethylornithine). Th is is the only new molecule registered for 
HAT treatment in the last 50 years and was fi rst used in 1981. DFMO is diffi  cult to 

administer as it requires to be given at 400 mg/kg/d in 4 doses for 14 days. While it 
is better tolerated than melarsoprol for the treatment of second stage HAT, it still 
can cause pancytopenia, diarrhea, convulsions and hallucinations. DFMO is an 
analogue of ornithine, which acts as a specifi c inhibitor of ornithine decarboxylase 
(ODC) resulting in a suppression of the trypanothione and polyamine biosynthe-

sis. Specifi city for parasite killing results from a several orders of magnitude faster 
turnover of ODC in mammalian cells as compared to trypanosomes.

In contrast to T. b. gambienseT. b. rhodesiense is a zoonotic parasite that mainly 

infects livestock and wild animals. Infections in humans are acute and require a 
fast and accurate diagnosis to initiate an appropriate treatment. Treatment relies 

168

Medical Parasitology

23


background image

only on suramine (fi rst stage) and melarsoprol (second stage) as T. b. rhodesiense 

is refractory to pentamidine and DFMO.

In the context of novel chemotherapies against HAT, ongoing preclinical 

and clinical trials are focusing on combinational treatment strategies in order 
to increase cure rates by lower dosages and milder treatment schedules. An 

example of such approach is the combination of efl ornitine with nifurtimox 
(5-nitrofuran), an orally administered drug that is used for the treatment of 
Chagas disease and sometimes for the encephalitic stage of T. b. gambiense HAT 

if efl ornitine or melarsoprol are ineff ective. Combination of efl ornitine (DFMO) 

and suramine is also in trial for treatment of second stage T. b. rhodesiense 
infection. Other compounds are being tested for targeting several biochemi-
cal pathways in the trypanosome including, e.g., the polyamine biosynthesis, 

trypanothione reductase and glycolytic enzymes. In that context, DB289, an 
aromatic diamidine (pentamidine analog) and prodrug of the active metabolite 
diphenyl furan diamidine (DB75), is currently in Phase III clinical trials as a new 

orally administered candidate drug to treat 1st stage HAT.

A novel immunotherapeutic approach in the preclinical phase is based on the 

generation of a 15 kD VSG-recognizing molecule derived from nonconventional 

heavy chain camel antibodies. In contrast to most other mammals, camelids have 
a separate class of single chain antibodies that enable the engineering of small 
antigen-specifi c moieties (nanobodies) through a relatively simple procedure of 
cloning and affi  nity panning. Th e generated nanobody was shown to be a promising 
tool for targeting eff ector molecules to the trypanosome membrane as it is able to 

penetrate into the VSG coat and bind to conserved trypanosome surface epitopes 
that are inaccessible to lager conventional antibodies. In the further development 
of immunotoxins for trypanosomiasis therapy, trypanosome-specifi c nanobodies 

might be coupled to conventional drugs or new trypanocidal molecules. Recently, 
a toxin was generated from apolipoprotein L-1 (ApoL-1), a naturally occurring 
trypanolytic component in normal human serum and coupled to a VSG recogniz-
ing nanobody for in vivo use.

Conclusion

African trypanosomiasis is a devastating disease that is making a fast comeback 

in sub-Saharan Africa. Limited local resources for trypanosomiasis prevention 
and control have made this disease a major humanitarian and economic disaster 
aff ecting more than 10 million Km

2

 of the African continent. Currently, no 

serological fi eld test for T. b. rhodesiense is available, while diff erential diagnosis 
of the two human-pathogenic subspecies relies on relatively sophisticated molec-
ular-based (PCR) tests. Moreover, available trypanocidal drugs have considerable 
levels of toxicity and are generally used for a specifi c disease stage. Combined 
eff orts for new drug design approaches will be needed to combat this disease 

in the future. Beside toxicity, the rise of drug-resistance in trypanosomes is an 
important issue to be taken into account, urging that mechanisms of resistance 
need to be elucidated. One of those mechanisms is dependent on the reduced 

uptake of drugs through the P2 amino-purine transporter leading to resistance 
of trypanosomes to pentamidine, melaminophenyl arsenicals and potentially all 

169

African Trypanosomiasis

23


background image

new drug variants derived hereof. While preclinical and clinical studies on new 

chemotherapeutic and immunotherapeutic approaches seem to off er alternative 
approaches, further research is needed to evaluate pharmacological properties and 

applicability in the fi eld. Other lines of research that might lead to the discovery 
of new low-toxicity antitrypanosomal agents will probably emerge through 

unraveling unique biochemical pathways utilized by the parasite. For instance, 
the specifi c compartmentalization of the glycolysis in glycosomes or unique 
metabolic features of the trypanosome could yield new antiparasite drug-targets. 

In this context, the full sequencing of the trypanosome genome will probably 

also contribute to the identifi cation of new potential drug targets.

Suggested Reading

  1.  Vanhamme L, Lecordier L, Pays E. Control and function of the bloodstream variant 

surface glycoprotein expression sites in Trypanosoma brucei. Int J Parasitol 2001; 

31:523-31.

  2.  Magez S, Radwanska M, Beschin A et al. Tumor necrosis factor alpha is a key 

mediator in the regulation of experimental Trypanosoma brucei infections. Infect 

Immun 1999; 67:3128-32.

  3.  De Baetselier P, Namangala B, Noel W et al. Alternative versus classical macrophage 

activation during experimental African trypanosomosis. Int J Parasitol 2001; 

31:575-87.

  4.  Pays E, Vanhollebeke B, Vanhamme L et al. Th e trypanolytic factor of human 

serum. Nat Rev Microbiol 2006; 4:477-86.

  5.  Chappuis F, Loutan L, Simarro P et al. Options for fi eld diagnosis of human African 

trypanosomiasis. Clin Microbiol Rev 2005; 18:133-46.

  6.  Fairlamb AH. Chemotherapy of human African trypanosomiasis: current and 

future prospects. Trends Parasitol 2003; 19:488-94.

170

Medical Parasitology

23


background image

C

HAPTER

 24

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Visceral Leishmaniasis (Kala-Azar)

Ambar Haleem and Mary E. Wilson

Abstract

Amongst the many clinical forms taken by leishmaniasis, visceral leishmani-

asis is the form that most oft en leads to a fatal outcome. Ninety percent of cases 
world-wide occur in three regions: northeast India/Bangladesh/Nepal, the Sudan 
and northeast Brazil. Th e disease is most oft en caused by L. donovani or L. infan-
tum
 in the Old World, or by L. chagasi in the New World. Th e clinical presenta-
tion diff ers somewhat in diff erent geographic regions, with humans serving as a 
main reservoir of infection in India due to the high incidence of PKDL, but dogs 

serving as a major reservoir in Brazil and around the Mediterranean. Treatment 
of visceral leishmaniasis is complicated by a need to administer standard therapy 
parenterally, toxicity of therapeutic agents and emerging parasite resistance to 

standard medications.

Introduction

Leishmaniasis is a vector-borne disease caused by obligate, intracellular protozoa 

belonging to the genus Leishmania; 21 out of the 30 mammalian-infecting species 
of Leishmania cause disease in humans.

5,13,14

 Th e etiologic parasite was discovered 

in 1903, when Leishman and Donovan separately described the protozoan now 
called Leishmania donovani in splenic tissue from patients in India. Th ey correctly 

identifi ed this as the causative agent of the life threatening disease visceral leish-
maniasis.

5

 Th e insect vector is a female phlebotomine sand fl y which acquires the 

parasite while feeding on an infected mammalian host. A total of about 30 sand 
fl y species have been identifi ed as vectors transmitting the diff erent Leishmania 

species, although not all sand fl ies are capable of hosting all Leishmania species.

5

 

Th e disease leishmaniasis refers to several clinical syndromes. Th e most common 
are visceral (VL), cutaneous (CL) and mucocutaneous (MCL) leishmaniasis, 

which result from pathological changes in the reticuloendothelial organs, dermis 
and naso-oropharynx, respectively. Th e following chapter will include a discussion 
of the epidemiology, pathogenesis, clinical features and diagnostic and therapeutic 
approaches employed in visceral leishmaniasis.

Leishmaniasis is caused by a large number of Leishmania species that lead to 

characteristic clinical syndromes, with some overlap between species. Th e distri-
bution of the diff erent Leishmania infections is very regional and treatment is 
challenging. With the spread of AIDS, visceral leishmaniasis (VL) has become 

recognized as an opportunistic co-infection in HIV-infected people particularly 
in the Iberian Peninsula. Th e high morbidity and mortality associated with visceral 


background image

172

Medical Parasitology

24

leishmaniasis, lack of available and aff ordable diagnostic and therapeutic modali-

ties and increasing drug resistance in the developing world continue to pose major 
challenges in eradication of this infection.

Epidemiology

Leishmania donovani and Leishmania infantum in the Old World (particu-

larly India, Nepal, Bangladesh and Sudan) and Leishmania chagasi in the New 
World (Latin America) are responsible for most of the cases of visceral leishmani-

asis worldwide. Some of the Leishmania spp. that are commonly associated with 
CL (L. amazonensis in Latin America and L. tropica in Middle East and Africa) 

are on occasion, also isolated from patients with visceral disease.

5,13,14

 Molecular 

techniques have revealed that most likely L. chagasi and L. infantum are the same 
organism causing disease in diverse geographic locations.

7

Leishmaniasis has been reported from 88 countries around the world. 

Approximately 90% of the estimated 500,000 new annual cases of visceral disease 
occur in rural areas of India, Nepal, Bangladesh, Sudan and Brazil. (http://www.
cdc.gov/ncidod/dpd/parasites/leishmania/). Disease is transmitted primarily 
through the bite of a sand fl y, although rarely disease is transmitted by the con-gen-
ital route, blood transfusions, accidental needle stick injuries in the laboratory or 

by sharing of leishmania-contaminated needles by intravenous drug users.

13

Visceral leishmaniasis encompasses a broad range of clinical manifestations. 

Infection can assume an asymptomatic/subclinical and self-resolving form, or 
follow an aggressive, systemic course of illness (classic kala-azar or black fever). 
Th e disseminated form of infection is fatal if untreated and has resulted in mass 
epidemics in India and Sudan.

Most leishmania infections are zoonotic, with dogs or rodents as reservoir hosts. 

Only two species can maintain an anthroponotic cycle (human reservoir).

14

 Th ese 

two species are L. donovani, responsible for VL in the Indian subcontinent (par-
ticularly Bihar and Assam states) and East Africa, as well as L. tropica that causes 
CL in the Old World. Particularly in East Africa, people aff ected by post-kala-azar 
dermal leishmaniasis (PKDL) may serve as a reservoir for visceral disease.

13

Pathogenesis

Leishmania spp. parasites exist in two stages, the promastigote and the amas-

tigote. Th e promastigote is a15-20 

μ

m × 1.5-3.5 

μ

m fl agellated form found in the 

gut of sand fl ies. Th e amastigote is a nonfl agellated, intracellular form measuring 
2-4 

μ

m in diameter that replicates in macrophage phagosomes. Amastigotes are 

the only form present in mammalian hosts.

Aft er inoculation into skin by a sand fl y, promastigotes are phagocytosed by 

dermal macrophages, where they convert to amastigotes and multiply within acidic 
parasitophorous vacuoles. Additional mononuclear phagocytes are attracted to the 
site of the initial lesion and become infected (Fig. 24.1). Amastigotes then dissemi-

nate through regional lymphatics and the vascular system to infect mononuclear 
phagocytes throughout the reticuloendothelial system (Fig. 24.1). Progressive 
recruitment of amastigote-infected mononuclear phagocytes and infl ammatory 

cells within organs results in distortion of the native tissue architecture and oft en, 
massive hepatosplenic enlargement. Parasitized reticuloendothelial cells can be 
found in bone marrow, lymph nodes, skin and other organs.


background image

173

Visceral Leishmaniasis (Kala-Azar)

24

Why the infection follows a self-resolving course in certain human hosts and 

progresses to overwhelming, life-threatening disease in others remains an area of 

intense research. Mice self-cure infection and thus are a better model of asymptom-
atic infection than disease. Although murine models cannot completely explain the 
unique milieu present during human infection, murine models have illuminated the 
cytokines and chemokines that play key roles in determining whether the parasite 
replicates within quiescent macrophages or is killed by activated macrophages. 

Some mouse strains are inherently susceptible or resistant to Leishmania spp. 
infections. Similarly, genetically determined human immune responses infl uence 
the manifestations of leishmania infection in the human host.

5,12,20

Early in infection of genetically resistant mouse strains, expansion of leishma-

nia-specifi c CD4

+

 T-cells of the Th 1 type that secrete interferon gamma (IFN-

γ

and interleukin 2 (IL-2) confers resistance to disease progression.

20

 In contrast, 

expansion of Th 2-type CD4

+

 cells producing IL-4, IL-10 and IL-13 leads to 

progression of infection caused by L. major or other species inducing CL in mice. 

Transforming growth factor 

β

 (TGF-

β

) in the absence of a Th 2 response promotes 

progressive murine infection due to the visceralizing Leishmania species. IL-2 

enables diff erentiation of Th 1 cells and production of IFN-

γ

, which then activates 

murine macrophages to kill amastigotes largely through nitric-oxide dependent 

mechanisms.

20

Similar to mice, humans who have either had self-limiting infection with L. 

donovani or L. infantum/L. chagasi, or who have been successfully treated for 

symptomatic VL, develop protective Type 1 immunity against the same parasite. 
Leishmania-specifi c Type 1 responses are lacking in human hosts during progressive 
VL, although there is not oft en a clear expansion of Type 2 or TGF-

β

 response during 

progressive infection.

20

 Nonetheless, antileishmanial antibodies from polyconal B-cell 

Figure 24.1. Bone marrow aspirate from a patient suffering from VL showing 

amastigotes in the macrophages. Photo kindly provided by Selma Jeronimo, 

MD, PhD, Universidade Federal do Rio Grande do Norte, Natal RN Brazil.


background image

174

Medical Parasitology

24

activation are produced in high titer during progressive VL, but are not protective, 

similar to the murine Th 2 response. Humans can develop reactivation of disease in 
the setting of immune suppression such as occurs during HIV-1 co-infection.

Clinical Manifestations of Kala Azar

Infection with the Leishmania species causing visceral leishmaniasis can mani-

fest as a progressive fatal disease or as an asymptomatic form. Th e incubation period 
typically varies from 3 to 8 months, but can be weeks or years. Typical, symptomatic 

VL is associated with heavily infected mononuclear phagocytes throughout the 
reticuloendothelial system and suppressed cellular immune responses. VL can be 

fatal if left  untreated.

Th e onset of disease is insidious in most cases and marked by the progressive 

development of fever, weakness, anorexia, weight loss and abdominal enlargement 
from hepatosplenomegaly. Fever, accompanied by chills is usually intermittent or 
remittent with twice-daily temperature spikes. During the less common acute cases, 

fever can be of abrupt onset and have a periodicity similar to that of malaria.

Progressive and massive hepatosplenomegaly is characteristic of VL. Infected 

individuals in the Sudan oft en also develop lymphadenopathy (Fig. 24.2) and in 
India patients with VL commonly develop hyperpigmentation of extremities, 
face and abdomen. Hemorrhage can occur from various sites. Severe cachexia is 

a prominent feature of VL, driven in part by high levels of TNF-

α

. Death from 

VL occurs either from the primary, multisystem disease causing malnutrition and 
bone marrow suppression and/or from secondary bacterial infections such as 
tuberculosis, dysentery, pneumonia and measles.

13

Important laboratory fi ndings in advanced visceral disease include profound 

pancytopenia, eosinopenia, hypoalbuminemia and hypergammaglobulinemia 
(mainly IgG). Th e erythrocyte sedimentation rate is usually elevated. Kidneys may 
show evidence of immune complex deposition, but renal failure is rare.

Several infectious and hematologic diseases can mimic visceral leishmaniasis. 

Th ese include malaria, schistosomiasis, miliary tuberculosis, African trypanoso-

miasis, typhoid fever, brucellosis, histoplasmosis, bacterial endocarditis, lymphoma 
and leukemia.

Coinfection with HIV-1

Reactivation (or newly acquired) visceral leishmaniasis is a recognized oppor-

tunistic infection in T-cell impaired/defi cient persons. Examples include individu-
als with HIV-1 infection, neoplasm, or receiving steroids, cancer chemotherapy 
or antirejection agents in organ transplantation. Th e leishmania parasite may be 
a cofactor in the pathogenesis of HIV infection. A major surface molecule, the 
lipophosphoglycan of L. donovani, induces transcription of HIV in CD4

+

 cells.

4

Most of the data on HIV co-infected persons with VL is derived from three 

countries in southern Europe, in particular from Spanish patient cohorts. Based on 
these studies, it appears that most HIV-infected patients manifest VL late in the 

course of HIV infection (CD4 cell count <200 cells/mm

3

 in 90% of patients). Th e 

clinical presentation can be atypical.

1,5,6,13

 Splenomegaly may be absent, whereas the 

gastrointestinal tract and oro-mucosal surfaces are commonly involved. Visceral 
leishmaniasis usually follows a chronic and relapsing course in HIV-positive 


background image

175

Visceral Leishmaniasis (Kala-Azar)

24

patients. Initial responses to traditional VL therapy are lower in these hosts and 

adverse drug reactions are frequent. 50-70% of HIV-infected patients relapse within 
12 months aft er discontinuing treatment.

10,13

Post-Kala-Azar Dermal Leishmaniasis

PKDL is a syndrome encountered aft er completion or premature cessation of 

treatment for visceral leishmaniasis due to L. donovani. PKDL occurs in 5-10% of 
persons with VL in India and approximately 50% of those in Sudan.

13

 PKDL may 

also occur in some HIV-coinfected people. Th e clinical presentation of PKDL in 
India and Sudan is similar, although the onset and duration of skin lesions diff ers 

between these two patient populations. In India, skin lesions typically appear 1 
to 2 years aft er therapy and can persist for as long as 20 years, whereas the timing 
of appearance and persistence of lesions is much shorter in Sudan. PKDL lesions 

presumably serve as a source of leishmania infection for sand fl ies and the long 
duration of PKDL in Indian patients helps explain the fact that humans serve as 

the major reservoir of disease in this country.

Figure 24.2. Hepatosplenomegaly in patients suffering from VL. Photo kindly 

provided by Dr. John David, Harvard School of Public Health, Boston.


background image

176

Medical Parasitology

24

PKDL is generally asymptomatic other than widespread skin lesions on the face, 

trunk, extremities, oral mucosa or genitalia. Th ese can vary from hyperpigmented 
macules to overt nodules. Lesions may resemble the lesions of leprosy clinically 

and pathologically.

Diagnosis

Th e clinical features of visceral leishmaniasis are highly suggestive of, but not 

specifi c for this disease. Particularly in developing countries the diff erential is wide, 
including leukemia and a variety of tropical infections such as malaria, schistoso-

miasis and tuberculosis amongst others. Moreover, people from non-endemic areas 
or those with HIV co-infection can manifest atypical manifestations of VL. Hence, 

diagnosis must be confi rmed by demonstration of the parasite in tissues.

5

Tissue Diagnosis

Reliable diagnostic methods for leishmaniasis primarily involve invasive 

procedures with visualization of amastigotes in Wright-Giemsa stained smears 
of tissues, or by culture of promastigotes from human samples.

5,14

 Splenic, liver 

or bone marrow biopsy, lymph node aspirates (particularly in Sudan) or buff y 
coat of peripheral blood can be utilized to look for the parasite microscopically. 
Splenic aspiration, although incurring a risk of hemorrhage, is the most sensitive 
means (95%) for diagnosing leishmaniasis.

5,14 

Bone marrow biopsy demonstrates 

amastigotes in approximately two-thirds of patients. Liver biopsy is less sensitive 
than either splenic or bone marrow specimens.

13

Syndromes such as VL or PKDL are characterized by many parasites in tissues, 

whereas lesions of mucosal leishmaniasis characteristically exhibit an exuberant 
infl ammatory infi ltrate with few parasites present. Logically, the abundance of 
parasites in tissues of the reticuloendothelial system during visceral leishmaniasis 
enables relatively easy demonstration of parasites from tissue smears as compared 
to diagnosis in cutaneous and mucosal syndromes of leishmaniasis. Furthermore, 

in HIV co-infected individuals parasites may be isolated and cultured from 
a multitude of sites, oft en atypical. Th ese include bronchoalveolar lavage and 
pleural fl uid, biopsies of the gastrointestinal tract or peripheral blood smears. Th e 

Giemsa-stained peripheral blood smear has a sensitivity of about 50% and parasite 
culture of a buff y coat preparation, about 70% for diagnosis of  VL in HIV-positive 
patients.

5,13

 In post-kala-azar dermal leishmaniasis syndrome, diagnosis is primarily 

clinical although amastigotes can be readily visualized in dermal macrophages in 
80% of Sudanese patients.

In order to make an accurate diagnosis of leishmaniasis, amastigotes should be 

visualized by light microscopy under oil immersion. Identifying features are the 
parasite size (2-4 

μ

m in diameter), shape (round to oval) and morphologic charac-

teristics (nucleus and kinetoplast).

5

 Th e kinetoplast is a rod-shaped mitochondrial 

structure that contains the extranuclear mitochondrial DNA.

14

In vitro culture of promastigotes from tissue aspirates should be performed 

in concert with microscopic demonstration of amastigotes. However, it can take 
several weeks to achieve a detectable concentration of parasites in culture. Th e 

standard method for Leishmania species identifi cation is by isoenzyme analysis 
of cultured promastigotes. Various molecular methods are promising tools but 


background image

177

Visceral Leishmaniasis (Kala-Azar)

24

require further assessment for fi eld application. Th ese can employ polymerase chain 

reaction (PCR) to detect leishmanial DNA and RNA targets.

14

Serology

Serological assays are sensitive tools for the diagnosis of  VL in immuncompetent 

persons. Leishmania parasite-specifi c antibody responses peak during active VL and 
decline aft er treatment or spontaneous resolution of infection, although a period of 

seropositivity aft er recovery can confound the interpretation of a positive response. 
Antibodies do not correlate with protective immunity and do not remain posi-

tive for life and as such they cannot be used for studies of prevalence or presumed 
immunity to reinfection. Th ey are, however, extremely useful for the diagnosis of 
VL. Factors that preclude widespread use of serological and immunodiagnostic 

methods are test costs, availability of a full-equipped laboratory, adaptability to 
fi eld/rural conditions in developing countries and confl icting results in immu-

nocompromised patients. Antibodies produced during several other infections 
(leprosy, cutaneous leishmaniasis, Chagas disease) can yield false-positive results 
on tests for VL, whereas patients with AIDS may have false-negative results owing 
to absence of an antileishmanial humoral response.

Recent advances that have increased the feasibility of serodiagnosis include the 

discovery that humoral responses to recombinant K39 antigen of L. chagasi/L. infan-
tum
 are highly correlated with acute disease and the development of an rK39 dipstick 
test for use in the fi eld. Nonetheless, it is sometimes diffi  cult to distinguish between 

remote and recent infection. Th ere is no one diagnostic method that is perfect.

5,13,14

Commonly employed antigen-based tests are the enzyme linked immunosor-

bent assay (ELISA) using whole parasite lysate, the rK39 ELISA and the direct 
agglutination test (DAT). Indirect fl uorescent antibody detection test (IFAT) is 
the only one that has been used on a limited scale.

14

 Th e DAT entails agglutination 

of Coomassie blue-stained promastigotes in serum dilutions and is simple and reli-
able for fi eld use. Th e ELISA assay is highly sensitive (80-100%) but the specifi city 
varies with the antigen used, from 80-94% with whole parasite lysate to or 100% 
with rK39. Studies have found that dipstick tests using a recombinant kinesin-like 
antigen, rK39 from L. infantum/L. chagasi have 100% sensitivity and specifi city 

for diagnosis of  VL and that the test has good predictive value in detecting VL in 
immunocompromised patients.

5,13,14

Antigen-impregnated nitrocellulose paper strips with rK39 antigen are being 

used successfully on the fi eld for VL diagnosis. Th e DAT assay has been found to 
be 91-100% sensitive and 72-100% specifi c in various studies.

Skin Testing

It should be mentioned that the delayed-type hypersensitivity (DTH) leish-

mania antigen skin test (Montenegro test) is generally negative during active VL 
and may be negative during post-kala-azar dermal leishmaniasis. Th e test becomes 

positive in the majority of people in whom infection spontaneously resolves or who 
have undergone successful therapy. However, the lag between clinical recovery and 
DTH development can be months or longer. DTH testing is very useful in the 

diagnosis of cutaneous leishmaniasis. It is utilized primarily as an epidemiological 
tool and has little role in establishment of a diagnosis of acute VL.

13


background image

178

Medical Parasitology

24

Treatment

Th e decision to treat leishmaniasis depends on the clinical syndrome, the infect-

ing Leishmania spp., the immunologic status of the host and drug availability and 
cost. Th e goal of antileishmanial therapy is to prevent death from visceral disease 

and limit morbidity from cutaneous and mucocutaneous syndromes.

Th erapeutic strategies for treatment of VL have evolved since 1912 when the 

fi rst drugs against Leishmania species, the organic pentavalent antimonials were 
developed. Two commonly used pentavalent antimony preparations are stiboglu-

conate sodium and meglumine antimoniate. However, the recent emergence of 
parasite strains resistant to pentavalent antimony (Sb) preparations has limited the 
utility of this mainstay of thereapy, primarily in the Indian subcontinent which 

harbors the bulk of VL cases globally. In the early 1990s, failure rates of Sb reached 
65% in the endemic Indian state of Bihar. In spite of treatment advances in VL, all 
currently approved drugs are parenteral, toxic and must be administered for long 

durations. Th e high cost of alternative medications has been a major drawback to 
the use and development of newer agents in developing countries. Furthermore, 
for HIV co-infected patients where relapse of visceral disease is common aft er 

therapy there are few, good treatment options.

Outside of India, pentavalent antimonials are still the mainstay of therapy for 

visceral disease in both children and adults. Th e recommended dosage is 20 mg/
kg/d for 28-30 days with usual cure rates of ∼90%.

10

 Inadequate response to the 

initial course of therapy or infection relapse may require a second course of treat-
ment with the same agent. Common side eff ects are mainly gastrointestinal and 
include abdominal pain, nausea, vomiting and anorexia. Chemical hepatitis, chemi-

cal pancreatitis, arthralgias and myalgias can also occur. Th ese drugs should be used 
cautiously in the elderly and in persons with heart disease, since dose-dependent 
arrhythmias and sudden death have been reported. Th is is a particular risk with 
doses >20 mg of Sb/kg/d. Renal failure can rarely occur.

Over the past 10 years practitioners in Sb-resistant areas of India have turned to 

amphotericin B for fi rst-line therapy. Th e target of amphotericin B is ergosterol-like 
sterols, the major membrane sterols of Leishmania spp., leading to parasite kill-
ing through the creation of membrane pores. At a dose of 0.75-1 mg/kg for 15 

infusions on alternate days, the drug cures ∼95-97% of patients.

8,10,19

 Occasional 

relapses (∼1%) with amphotericin B can be successfully treated with the same 
drug.

14

 Limitations to the use of amphotercin B in developing countries include 

the need for parenteral administration, cost and serious adverse eff ects such as 
nephrotoxicity.

Lipid formulations of amphotericin B are eff ective and less toxic than ampho-

tericin B deoxycholate. In these preparations, various liposomes or other lipid com-
ponents have been used to replace the usual carrier deoxycholate. Liposomes target 
the drug toward macrophages of the reticuloendothelial system and thus are ideal 
for treatment of VL in which the parasite resides in these same cells. Renal toxicity 
is a less frequent complication compared to conventional amphotercin B because 

lipid drug formulations are specifi cally targeted toward macrophage-rich organs 
and not to the kidney. Th is also allows for higher daily doses and shorter courses 
of amphotercin therapy to be delivered.

2,15

 Lipid formulations of amphotericin B 


background image

179

Visceral Leishmaniasis (Kala-Azar)

24

include liposomal amphotericin B (L-Amb: Ambisome), amphotericin B colloidal 

dispersion (ABCD: Amphocil) and amphotericin B lipid complex (ABL: Abelecet). 
Th e US Food and Drug Administration licensed liposomal amphotericin B in 1999 

for treatment of VL and has recommended treating immunocompetent persons 
with 3 mg/kg daily on days 1-5,14 and 21 (total 21 mg/kg) and immunosuppressed 

patients with 4 mg/kg daily on days 1-5, 10, 17, 24, 31 and 38 (total 40 mg/kg).

3

 An 

alternative recommendation for immunocompetent persons is treatment on days 1-5 
and day 10 with 3-4 mg/kg daily in Europe and Brazil, 3 mg/kg daily in Africa and 

2-3 mg/kg daily in India.

3

 Although the reason is not known, the continent-specifi c 

therapeutic requirements could refl ect diff erent causative Leishmania species and/
or diff erences in the susceptible populations. Ambisome seems best-suited phar-

macologically for ultra-short-course of therapy. Indeed, a trial in India showed the 
treatment duration can be compressed to a single day in India in adults and children 
(one infusion of 5 or 7.5 mg/kg)

17

 and to two days in children in Greece (two 

infusions of 10 mg/kg each)

18

 with some loss of cure rate but much improved cost 

and compliance. Relapses can occur aft er treatment with the lipid formulations in 
persons with AIDS and repeat courses may be necessary. However, the high cost, 
even with lower total doses and short courses of therapy, oft en proves prohibitive 
for use outside the developed world.

Another approved agent for treatment of visceral leishmaniasis is parenteral 

pentamidine. Promising investigational treatment agents include parenteral paro-
momycin and the only oral drug, Miltefosine, which has proven eff ective for 
Indian VL but is under investigation in other countries. Pentamidine has consider-

able toxicity and is not eff ective for Indian VL. Paromomycin is an inexpensive 
aminoglycoside that has appeared promising in limited studies. Miltefosine is an 
exciting oral option for therapy for VL in naive and Sb-refractory patients across 
the world. It was registered for use in India for both children and adults in 2002

10

 

at a dose of 50-100 mg (∼2.5 mg/kg) for 4 weeks.

16 

Th e drug is still undergoing 

trials for therapy of VL in other regions of the world. Major limitations to the use 
of miltefosine include its potential for teratogenicity and its long median half-life 
of 154 hrs, which could encourage emergence of drug resistance.

14

 Transient, 

minor side eff ects are anorexia, diarrhea and nausea.

Th e imidazoles, ketoconazole and itraconazole, have been used successfully 

in some cases of cutaneous leishmaniasis, but primary failures occur in visceral 
leishmaniasis and they are not recommended for general use. Combination drug 
therapy can be an attractive approach for enabling cure of VL. At present, the only 

potential combination therapy is miltefosine and paromomycin but adequate 
clinical trials are lacking in this area.

Persons co-infected with HIV-1 pose a major challenge to eff ective therapy 

because of frequent relapses and reduced treatment responses. Most HIV-positive 
patients are given one of the standard regimens for VL. Concomitant HAART 
therapy and resulting increase in CD4 count >200 cells/mm

3

 would be expected 

to enhance the effi  cacy of antileishmanial therapy and reduce relapse rates, but no 
randomized controlled trials have been conducted to investigate this hypothesis. 

Moreover, there is no general consensus about long-term maintenance therapy for 
VL in HIV-coinfected patients.

9


background image

180

Medical Parasitology

24

Antileishmanial treatment is indicated in Indian PKDL, and treatment 

duration oft en spans 4 months. Most PKDL lesions of the Sudanese form 
self-resolve. When therapy is necessary, stibogluconate sodium 20 mg/kg/d for 

2 months is given.

Most patients with visceral leishmaniasis become afebrile during the fi rst week 

of treatment.

5

 Splenomegaly and biochemical abnormalities oft en take weeks to 

resolve. Freedom from clinical relapse for at least 6 months is usually indicative of 
cure.

5

 Even aft er symptomatic cure, parasites can remain in tissues indefi nitely and 

do not necessarily represent an indication for retreatment. However, if symptoms 
relapse or do not resolve, a re-evaluation of the diagnosis is warranted followed 

sometimes by retreatment. Relapses usually occur within 6 months of therapy and 
are more common in persons with AIDS than in immunocompetent persons.

References

  1.  Albrecht H, Sobottka I, Emminger C et al. Visceral leishmaniasis emerging as an 

important opportunistic infection in HIV-infected persons living in areas nonen-

demic for Leishmania donovani. Arch Pathol Lab Med 1996; 120:189-98.

  2.  Berman JD. Human leishmaniasis:clinical, diagnostic and chemotherapeutic 

developments in the last 10 years. Clin Infect Dis 1997; 24:684-703.

  3.  Berman JD. US Food and Drug Administration approval of AmBisome (liposomal am-

photericin B) for treatment of visceral leishmaniasis. Clin Infect Dis 1999; 28:49-51.

  4.  Bernier R, Barbeau B, Tremblay MJ et al. Th e lipophosphoglycan of Leishmania 

donovani up-regulates HIV-1 transcription in T-cells through the nuclear 

factor-kappaB elements. J Immunol 1998; 160:2881-8.

  5.  Herwaldt BL. Leishmaniasis. Lancet 1999; 354:1191-9.

  6.  Lopez-Velez R. Th e impact of highly active antiretroviral therapy (HAART) on 

visceral leishmaniasis in Spanish patients who are co-infected with HIV. Ann Trop 

Med Parasitol 2003; 97:143-7.

  7.  Maurício IL, Stothard JR, Miles MA. Th e strange case of Leishmania chagasi. 

Parasitol Today 2000; 16:188-9.

  8.  Mishra M, Biswas UK, Jha DN et al. Amphotericin versus pentamidine in antimony-

unresponsive kala-azar. Lancet 1992; 340:1256-7.

  9.  Murray HW. Kala-azar—progress against a neglected disease. N Engl J Med 2002; 

347:1793-4.

 10.  Murray HW. Progress in the treatment of a neglected infectious disease:visceral 

leishmaniasis. Expert Rev Anti Infect Th er 2004; 2:279-92.

 11.  Murray HW. Treatment of visceral leishmaniasis in 2004. Am J Trop Med Hyg 

2004; 71:787-94.

 12.  Reed SG, Scott P. T-cell and cytokine responses in leishmaniasis. Curr Opin 

Immunol 1993; 5:524-31.

 13.  Selma MB, Jeronimo AD, Richard QS et al. Leishmania species: Visceral 

(Kala-Azar), cutaneous and mucocutaneous leishmaniasis. In: Mandell GL, 

Bennett JE, Dolin R, eds. Principles and Practice of Infectious Diseases. London: 

Churchill Livingstone, 2004.

 14.  Singh RK, Pandey HP, Sundar S. Visceral leishmaniasis (kala-azar): challenges 

ahead. Indian J Med Res 2006; 123:331-44.

 15.  Sundar S, Goyal AK, More DK et al. Treatment of antimony-unresponsive Indian 

visceral leishmaniasis with ultra-short courses of amphotericin-B-lipid complex. 

Ann Trop Med Parasitol 1998; 92:755-64.

 16.  Sundar S, Jha TK, Th akur CP et al. Oral miltefosine for Indian visceral leishmani-

asis. N Engl J Med 2002; 347:1739-46.


background image

181

Visceral Leishmaniasis (Kala-Azar)

24

 17.  Sundar S, Jha TK, Th akur CP et al. Single-dose liposomal amphotericin B in the 

treatment of visceral leishmaniasis in India: a multicenter study. Clin Infect Dis 

2003; 37:800-4.

 18.  Syriopoulou V, Daikos GL, Th eodoridou M et al. Two doses of a lipid formulation 

of amphotericin B for the treatment of Mediterranean visceral leishmaniasis. Clin 

Infect Dis 2003; 36:560-6.

 19.  Th akur CP, Kumar M, Pandey AK. Comparison of regimes of treatment of 

antimony-resistant kala-azar patients: a randomized study. Am J Trop Med Hyg 

1991; 45:435-41.

 20.  Wilson ME, Jeronimo SM, Pearson RD. Immunopathogenesis of infection with 

the visceralizing Leishmania species. Microb Pathog 2005; 38:147-60.


background image

Cutaneous Leishmaniasis

Claudio M. Lezama-Davila, John R. David 

and Abhay R. Satoskar

Background

Th e leishmaniases comprise several diseases that are caused by Leishmania 

species, intracellular protozoan parasites which lead to a wide spectrum of clinical 

manifestations. Over 12 million people currently are infected with Leishmania and 
approximately 2 million are infected annually, making it a major health problem 
in parts of Asia, Africa, the Middle East, Southern Europe and Latin America. 
Th e clinical manifestations depend on the parasite species. Visceral leishmaniasis 
(VL or kala-azar) is caused by Leishmania donovani or Leishmania infantum (the 

latter called chagasi in Latin America). Cutaneous leishmaniasis (CL) is caused by 
Leishmania mexicana and Leishmania brasiliensis complexes in the New World and 
by Leishmania major, Leishmania tropica and L. aethiopica complexes in the Old 

World. Leishmania parasites are transmitted by about 50 diff erent species of new 
(Lutzomia) and old (Phlebotomus) world sand fl ies. Most cases of human CL are 
due to a zoonotic mode of transmission (animal to man), but L. tropica infections 
are due to an anthroponotic mode of transmission (human to human).

Life Cycle

Th e female sand fl ies inoculate infective Leishmania metacyclic promastig-

otes during blood meals taken for egg production. Macrophages migrate to the 
inoculation site and phagocytose parasites which then transform into amastigotes. 

Amastigotes multiply in infected cells and skin and depending in part on the 
Leishmania species, migrate to other organs. Th is is the basis of the diverse clinical 
manifestations of leishmaniasis. Th en, more sand fl ies become infected when they 
ingest infected macrophages full of amastigotes while taking blood meals. In the 
sand fl y’s midgut, amastigotes diff erentiate into promastigotes, which multiply and 

migrate to the proboscis transforming into the infective metacyclic stage. For life 
cycle details, see Figure 25.1.

Geographical Distribution

Th e disease is found in 88 tropical and subtropical countries around the world. 

Approximately 350 million people live in these areas. Each year, an estimated 
1-1.5 million children and adults develop symptomatic cutaneous leishmaniasis.

Th e settings in which cutaneous leishmaniasis is found range from rain forest and 
other vegetative sites in Mexico, Central and South America to desert-like areas 
in West Asia and Africa.

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

C

HAPTER

 25


background image

New World cutaneous leishmaniasis in the Americas spreads from Northern 

Argentina to Southern Texas, although most aff ected places are in Mexico, Central 
America (Belize, Guatemala, Nicaragua, Honduras, El Salvador and Panama) and 
South America (Guyana, Brazil, Colombia, Venezuela, Bolivia, Peru, Ecuador and 
Argentina. Th e United States of America presents some endemic foci in Texas. 
Old World cutaneous leishmaniasis in Africa spreads more abundantly in East and 

North Africa, with some cases elsewhere. In Asia and the Middle East the aff ected 
countries include Afghanistan, Pakistan, India, Iran, Iraq, Saudi Arabia, Palestine 
and Israel. More than 90% of the world’s cases of cutaneous leishmaniasis occur in 

Afghanistan, Algeria, Brazil, Iran, Iraq, Peru, Saudi Arabia and Syria.

Immunobiology

Macrophages and other monocytic lineage cells are the primary target cells 

for Leishmania, but they are also the principle eff ector cells that kill intracellular 
parasites via nitric oxide (NO)-dependent and-independent mechanisms when 
activated by the cytokines IFN-

γ

, MIF and TNF-

α

. Activated macrophages also 

function as antigen presenting cells (APCs) and secrete cytokines such as IL-12, 
IL-18 and TNF-

α

, all of which regulate innate and acquired immunity during CL. 

Th e dendritic cells (DCs) also play a critical role in induction of acquired immunity 
against CL. Th e disease protective role of DCs has been attributed to their ability 

to present parasite antigens to CD4

+

 T-cells, as well as produce cytokines such as 

IL-12, which is required for NK cell activation and subsequent diff erentiation of 
CD4

+

 T-cells into a Th 1 subset. Th ese lymphocytes produce IFN-

γ

, which not 

only activates macrophages to kill Leishmania but also facilitates Th 1 diff erentia-
tion of CD4

+

 T-cells by signaling via the STAT1-mediated pathway. In contrast, 

CD4

+

 Th 2 cells, which produce IL-4, IL-10 and IL-13, are believed to play a role 

in disease exacerbation in CL. Genetic factors also infl uence outcomes of CL. It 
is important to note that particular alleles at the TNF-

α

 and TNF-

β

 genetic loci 

183

Cutaneous Leishmaniasis

25

Figure 25.1. Life cycle of Leishmania.


background image

and overproduction of TNF-

α

 are associated with a higher risk of CL in studies 

with Venezuelan, Brazilian and Mexican patients. However, the overall group of 
genes associated with resistance or susceptibility of diff erent forms of cutaneous 

leishmaniasis remains to be defi ned.

Signs and Symptoms

Skin-lesions appear within weeks or months aft er the sand fl y bite. Lesions 

are normally painless clean ulcers, but can be nodular or plaque-like. Lesions may 
self heal, but may take months or even years to resolve without treatment. Th ey 

frequently can become secondarily infected. Some lesions may also grow and leave 
disfi guring scars. Th ey rarely spread to the mouth or nose unless they are caused 

by L. brasiliensis or L. aethiopica.

Localized Cutaneous Leishmaniasis (LCL)

Th is disease is caused by L. tropica, L. major and L. aethiopica in the Old World 

and by L. (V) brasiliensis, L. (V) guyanensis, L. (V) panamensis, L. (V) peruviana, 
L. (L) mexicana, L. (L) amazonensis
 and L. (L) garhani in the New World. Th e 
incubation period of the disease varies between 1 week to 3 months, depending on 
the size of the inoculum and parasite species, but it may be shorter in travelers from 
non-endemic countries who are infected in endemic regions. Th e infection caused 

by most of these Leishmania species commonly manifests as painless ulcerative 
skin lesion(s) at the site of parasite inoculation, which resolve aft er antimonial 
treatment in most patients or self-heal (Fig. 25.2). However, L. tropica infection 

can produce disfi guring scars on the face in some patients and L. aethiopica and 
L. amazonensis can disseminate to other skin sites.

Figure 25.2. A typical ulcerating skin lesion in a patient suffering from local-

ized cutaneous leishmaniasis (LCL). Courtesy Dr. J.R. David.

184

Medical Parasitology

25


background image

Lesions that resolve within a year are considered acute cutaneous leishmaniasis 

patients. On the other hand, patients with persistent lesions for more than a year 
(1-2 years) are considered chronic CL patients. Th ese patients present a higher 

morbidity since they develop chronic, large lesions which may be diffi  cult to 
diagnose because they contain few or undetectable parasites.

Mucocutaneous Leishmaniasis (MCL)

Th is disease is caused most commonly by L. (V) brasiliensis, but occasionally 

by L. (V) panamensis and L. (V) guayanensis. It begins as a single lesion that dis-
seminates and produces new metastases aff ecting the mucosa, mouth, palate and 

nose (Fig. 25.3). Th e extensive mucocutaneous damage associated with MCL is 
mediated by an exaggerated host immune response against the parasite. MCL 
can be highly disfi guring if not promptly treated and is diffi  cult to treat in some 
patients. Severe MCL can diminish the ability to eat and can be fatal.

Disseminated Cutaneous Leishmaniasis (DCL)

Th is form of the disease is normally produced by L. aethiopica and L. amazonensis

although some cases of disseminated cutaneous leishmaniasis have been reported 
where the causative agent is L. major or L. mexicana and is characterized by an ini-
tial lesion that disseminates throughout the skin (Fig. 25.4). Th is disease is usually 
associated with the failure of the host to mount an antigen-specifi c T-cell-response 
against the parasite. Lesions in patients with DCL present as nodules and ery-

thematous plaques with variable degrees of verrucous changes, scaling and scarring. 
Microscopically, these lesions show abundance of parasites with minimal infl amma-
tion. DCL has been described in patients co-infected by L. braziliensis and HIV.

Leishmaniasis Recidiva Cutis (also known as Lupoid
Leishmaniasis and Leishmaniasis recidivans)

Th is clinical form of the disease is rare and peculiar form provoked by L. tropica 

in the Old World and L. (V) brasiliensis in the New World. Th e disease is associ-
ated with the development of new lesions within the scar of a healed acute lesion, 
mimicking lupus vulgaris. Lesions appear as scaly erythematous papules that may 
evolve before the classic ulcer has healed or develop aft erwards.

Post-Kala-Azar Dermal Leishmaniasis

Th is is a manifestation that happens in 5 and 20% of patients recovering from 

visceral leishmaniasis in Africa and India, respectively. It is less prevalent in the New 
World. Th e eruption is papular and lasts for months in African patients, whereas 
in India the lesions usually start as erythematous and hypopigmented macules 
that enlarge into patches. Later these asymptomatic patches become nonulcerative 
erythematous nodules that are particularly disfi guring.

Cutaneous Leishmaniasis and Immunodefi ciency Virus (HIV) 
Co-Infection

With the increased transmission of human immunodefi ciency virus infection 

(HIV) from urban and peri-urban locations to rural areas where leishmaniasis is en-
demic, incidence of CL as a co-infection in patients infected with HIV is increasing. 

Most cases (90%) of coinfections have been described in Southern Europe (Spain, 

185

Cutaneous Leishmaniasis

25


background image

France and Italy) and it is suspected that the mode of transmission of parasites is by 
shared contaminated needles among intravenous drug abusers. It has been described 
in Brazil in patients co-infected with L. braziliensis and HIV. Clinically, cutaneous 

lesions in these patients manifest as papulonodular, ulcerative, diff use, kaposi-like 
and psoriasis-like forms, with spread to the mucosa in some patients.

Diagnosis and Treatment

Microscopic examination of Giemsa-stained imprint smears, hematoxylin 

eosin-stained punch biopsy specimens, or needle aspirations from suspected le-
sions are the most commonly used techniques for detecting amastigote forms of 

the parasites. Additionally, parasites can also be isolated from the ulcer by cultur-
ing a lesion biopsy or aspirate in tissue culture media (e.g., Schneider’s medium, 
RPMI-1640, M199 medium) supplemented with 20% fetal bovine serum and 
penicillin/streptomycin or by inoculation into laboratory animals such as hamsters. 
Th is method not only allows parasitologic confi rmation of the diagnosis, but also 

Figure 25.3. Clinical manifestations in a patient suffering from mucocutaneous 

leishmaniasis caused by L. brasiliensis. Courtesy Dr. P. Marsden.

186

Medical Parasitology

25


background image

provides suffi  cient number of promastigotes for further investigations (e.g., identi-
fi cation of Leishmania species by isoenzyme analysis). Other diagnostic techniques 
exist that allow parasite detection and/or species identifi cation using immunologic 

(monoclonal antibodies and immunoassays) and molecular (PCR) approaches. 
Such techniques, however, are expensive and may not be readily available in general 
diagnostic laboratories in some developing countries or in the fi eld.

Pentavalent antimony (Sb

v

) drugs such as sodium stibogluconate (Pentostam™) 

or meglumine antimoniate (Glucantime™) have been used for more than 50 years to 
treat cutaneous leishmaniasis. Both these drugs are required to be administered daily 

via intravenous or intramuscular route for 20 days and sometimes several (20 mg/
kg/d) courses are needed. Th ese drugs, however, are not approved by the Food and 
Drug Administration, although they are approved and produced in Great Britain 

(Pentostam™) and France, (Glucantime™). Th ey must be administered under an 
Investigational New Drug (IND) protocol. Pentostam™ is available under an IND 
protocol from the CDC Drug Service to physicians. Paramomycin can also be used 
topically for the treatment of CL caused by Leishmania species that have low potential 
to spread to mucosa and Imiquimod in combination with Glucantime™ has been used 

to treat CL patients in the New World that are refractory to Glucantime™ alone.

Drugs of choice for treating MCL are Pentostam™, Glucantime™ or Amphotericin 

B. Both Pentostam™ and Glucantime™ can be administered (20 mg/kg IV or IM) daily 

for 28 days whereas as Amphotericin B (0.5-1 mg/kg) is administered IV daily or 
every second day for up to 8 wks. New formulations of Amphotericin B encapsulated 
into liposomes are being investigated. Oral Miltefosine (2.5 mg/kg/d oral) × 28 d was 

Figure 25.4. Disseminated cutaneous leishmaniasis (DCL) caused by L. 

amazonensis. This infection clinically manifests as multiple skin lesions. 

Courtesy of Dr. J.R. David.

187

Cutaneous Leishmaniasis

25


background image

also found to be eff ective in treatment of L. panamensis, but not L. brazilliensis or L. 

mexicana. Physicians may consult the CDC to obtain information on how to treat 
leishmaniasis. Walter Reed Army Medical Center (WRAMC) in Washington and 

Brooke Army Medical Centre Medical at Fort Sam Houston, Texas off er treatment 
to military benefi ciaries, including reservists no longer on active duty. An alterna-

tive treatment for CL is radiowave-induced heat by a small portable battery-driven 
instrument. Th e lesions are anesthetized and a small applicator producing heat to 
50˚C is applied for 30 seconds across the lesions. One treatment lasting less than 5 

minutes is usually suffi  cient. Cryotherapy using liquid nitrogen has also been used 

but this requires numerous applications. For L. major infections it is suggested that 
fl uconazole may decrease the time of healing and, once the parasite species has been 
determined as the causative agent, a course of 6 weeks treatment is advised only for 

the clinical form associated to this particular species. Also under investigation are 
extracts from certain plants that have been used successfully for the treatment of 
CL in Mexico.

Prevention and Prophylaxis

Th e best prevention for leishmaniasis is to avoid sand fl ies bites. Some useful 

measures are as follows:

a. Stay in air-conditioned rooms from dusk to dawn or at least in a properly 

inspected closed tents free of sand fl ies.

b. Wear long sleeved shirts, long pants and socks when going outside. Tuck under-

shirts into pants and pants into socks. Insect repellent should be used liberally 

on the face, under the ends of the sleeves and pant legs. Clothing should be 
treated with permethrine in aerosol spray and retreated every six washes.

c. People not having access to air-conditioned rooms or screened tents should 

use thin mess nets with at least 18 holes per inch and cover and tuck it into the 
mattress. Th e bed and the mattress should be treated with permethrin, since 
sometimes sand fl ies can fl y through the mesh.

d. Domestic pets such as dogs and rodents should be avoided near the sleeping 

area.

Presently, there are no commercial vaccines that protect humans against 

any type of leishmaniasis. Several experimental vaccines, however, are currently 
under investigation. One of them under study in human populations contains 

a mixture of parasite antigens and is known as Leish 111f. Another strategy is 
the use of immunotherapy-based vaccines in humans that include BCG (Bacille 
Calmette-Guerin) and a mixture of killed parasites. Th is preparation is useful to 
improve chemotherapy, thus reducing eff ective doses of antimonial treatments.

Concluding Remarks

Although each of the Leishmania species may have its own manifestations 

and areas of endemicity, none of the clinical forms of this disease are unique to 
a particular species because of considerable clinical diversity and overlap. Th us, 

the clinical picture is dependent on determinants associated with parasite and 
host interactions, such as parasites-virulence, genetic susceptibility and immune 
responses. New chemotherapeutic contributions, such as development of liposomal 

amphotericin B and miltefosine to treat resistant visceral leishmaniasis and the 

188

Medical Parasitology

25


background image

development of new vaccines for human application are needed to establish better 

control of this disease in endemic areas around the world.

Suggested Reading

  1.  Murray WH, Berman JD, Davis CR et al. Advances in leishmaniasis. Lancet 2005; 

366:1561-77.

  2.  Mott KE, Nuttalli I, Desjeux P et al. New geographical approaches to control of 

some parasitic zoonoses. Bull World Health Organ 1995; 73:247-57.

  3.  Alexander J, Bryson K. T helper (h)1/Th 2 and Leishmania: paradox rather than 

paradigm. Immunol Lett 2005; 99:17-23.

  4.  Berman JD. Human leishmaniasis: clinical, diagnostic and chemotherapeutic 

developments in the last 10 years. Clin Infect Dis 1997; 24:684-703.

  5.  Malla N, Nahajan RC. Pathophysiology of visceral leishmaniasis—some recent 

concepts. Indian J Med Res 2006; 123:267-74.

  6.  Schwartz E, Hatz C, Blum J. New World cutaneous leishmaniasis in travellers. 

Lancet Infect Dis 2006; 6:342-9.

  7.  Zijlstra EE, Musa AM, Khalil EAG et al. Post-kala-azar dermal leishmaniasis.  

Lancet Infect Dis 2003; 3:87-98.

  8.  Singh S. New developments in diagnosis of leishmaniasis. Indian J Med Res 2006; 

123:311-30.

  9.  Roscoe M. Leishmaniasis: early diagnosis is key. JAAPA 2005; 18:47-50,53-4.

 10.  Vega-Lopez F. Diagnosis of cutaneous leishmaniasis. Curr Opin Infect Dis 2003; 

16:97-101.

 11.  Blum J, Desjeux P, Schwartz E et al. Treatment of cutaneous leishmaniasis among 

travellers. J Antimicrob Chemother 2004; 53:158-66.

 12.  Croft  SL, Coombs GH. Leishmaniasis—current chemotherapy and recent 

advances in the search for novel drugs. Trends Parasitol 2003; 19:502-8.

 13.  Magill AJ. Cutaneous leishmaniasis in the returning traveler. Infect Dis Clin North 

Am 2005; 19:241-66.

 14.  Davies CR , Kaye P, Croft  SL et al. Leishmaniasis: new approaches to disease 

control. BMJ 2003; 326:377-82.

 15.  Bogdan C, Guessner A, Solbach W et al. Invasion, control and persistence of 

Leishmania parasites. Curr Opin Immunol 1996; 8:517-25.

 16.  Convit J. Leishmaniasis: Immunological and clinical aspects and vaccines in 

Venezuela. Clin Dermatol 1996; 14:479-87.

 17.  Khamesipour A, Rafati S, Davoudi N et al. Leishmaniasis vaccine candidates for 

development: a global overview. Indian J Med Res 2006; 123:423-38.

 18.  Reithinger R, Mohsen M, Wahid M et al. Effi  cacy of thermotherapy to treat 

cutaneous leishmaniasis caused by Leishmania tropica in Kabul, Afghanistan: a 

randomized, controlled trial. Clin Infect Dis 2005; 40:1148-55.

 19.  Lobo IMF. Soares MBP, Correia TM et al. Heat therapy for cutaneous 

leishmaniasis elicits a systemic cytokine response similar to that of antimonial 

(Glucantime) therapy.Trans Roy Soc Trop Med Hyg 2006; 100:642-9.

 20.  Drugs for parasitic infections. Th e Medical Letter 2004; 46:e5.

189

Cutaneous Leishmaniasis

25


background image

C

HAPTER

 26

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Toxoplasmosis

Sandhya Vasan and Moriya Tsuji

Defi nition

Toxoplasmosis is an infection caused by the protozoan obligate intracellular 

parasite Toxoplasma gondii.

Overview and Incidence

Th e incidence of toxoplasmosis varies greatly by country and by age, but may 

aff ect up to one-third of the global human population. Th e majority of immu-
nocompetent adults, pregnant women and children infected with Toxoplasma 

gondii experience no or mild symptoms during acute infection. Infants of women 
who seroconvert during pregnancy may develop congenital toxoplasmosis. Th is 
incidence ranges from one to ten per 10,000 live births. Immunocompromised 
individuals are at risk for reactivation of latent infection, including potentially 
fatal encephalitis.

Causes and Risk Factors

Th e house cat and other members of the family Felidae serve as defi nitive hosts 

in which the sexual stages of the parasite develop. Th e life cycle of Toxoplasma gondii 
begins when a cat ingests toxoplasma-infected tissue from an intermediate host, 

usually a rodent. Tissue cysts within the muscle fi bers or brain are digested in the 
cat’s digestive tract. Th e parasite then undergoes sexual development, multiplies in 
the intestine of the cat and is eventually shed in cat feces, mainly into litter boxes 
and garden soil. A human may become infected in one of the following ways:

1. By accidentally ingesting oocysts passed in cat feces through contaminated 

soil or handling of cat litter.

2. By ingesting tissue cysts within raw or undercooked meat (lamb, pork and 

beef ), drinking unpasteurized milk, contaminated water, or unwashed fruits 

or vegetables.

3. By direct transmission of tachyzoites from mother to fetus through the pla-

centa (congenital infection) or, rarely, by blood transfusion or solid organ 
transplantation from a positive donor to a previously uninfected host.

Parasite Life Cycle (Fig. 26.1)

Oocysts: Infective stages transmitted via cat feces aft er sexual development 

in cat.

Tachyzoites: Infective stages that infect macrophages and are carried through-

out the human body via macrophages, causing pathology.


background image

191

Toxoplasmosis

26

Tissue cysts (pseudocysts): Large cyst-like forms that become quiescent in 

response to host adaptive immune responses.

Bradyzoites: Slowly developing forms within tissue cyst.

Pathology

T. gondii invades numerous organs, infecting a broad spectrum of cell types. 

Tachyzoites infect macrophages and are disseminated through the blood to many 
organs, where they invade, asexually multiply and cause cellular disruption, lead-
ing to cell death. Th e resulting necrosis attracts infl ammatory host cells, such as 

lymphocytes and monocytes. It is this infl ammatory response that causes the major 
pathology in infected individuals.

Figure 26.1. Toxoplasmosis Life Cycle. Image reproduced with permission of the 

Centers for Disease Control and Prevention (CDC) (http://www.cdc.gov).


background image

192

Medical Parasitology

26

As host resistance develops, usually around 3 weeks post infection, tissue cysts 

may form in many organs, primarily in brain and muscle. Th ese quiescent cysts 
enable Toxoplasma gondii to evade the adaptive host immune. As tissue cysts pe-

riodically rupture, the released bradyzoites are killed by the host immune system. 
If immune surveillance becomes compromised, such as due to chemotherapy or 

AIDS, these bradyzoites develop into tachyzoites, causing active toxoplasmosis.

Clinical Manifestations

Over 80-90% of primary infections produce no symptoms. Th e incubation 

period for symptoms is 1 to 2 weeks. Mild symptoms of primary infection include 
localized, painless cervical or occipital lymphadenopathy, usually persisting 4-6 

weeks, or nonspecifi c symptoms including myalgia, headache, rash or sore throat 
that persist for one month or longer. Recently, newer more virulent strains causing 
severe symptoms in immunocompetent individuals have been reported.

Congenital toxoplasmosis is caused by infection with Toxoplasma gondii in a 

pregnant woman. Infants born to women who were infected before conception 
do not develop disease due to protection by maternal antibodies. In contrast, new 
infections with detectable maternal parasitemia are associated with up to a 50% 

transmission rate to the fetus. Th e likelihood of transmission and severity of disease 
in the fetus are inversely proportional. Mothers who develop acute toxoplasmosis 
in the fi rst trimester have a much lower fetal transmission rate than in the third 
trimester, but fetuses exposed early are at much higher risk for severe symptoms 
or death and spontaneous abortion.

Up to 85% of newborns with congenital toxoplasmosis show no initial symp-

toms. Infants may show signs of central nervous system disorders such as hydro-
cephalus, microcephaly, or mental retardation. Hepatomegaly, splenomegaly, rash, 

fever, jaundice, anemia may also be present.

Th e most common pathology is chorioretinitis, which may result in strabismus 

or blindness. Th e age of onset ranges from 1-2 months to several years. A character-
istic residual pigmented scar is left  on the retina aft er resolution of infection.

Severe toxoplasmosis occurs most oft en in immunocompromised adults that 

develop either acute infection or reactivation from quiescent tissue cysts. In these 
cases, the disease may aff ect the brain, lung, heart, eyes, or liver. Brain lesions are 
associated with fever, headache, confusion, seizures and abnormal neurological fi nd-

ings. Systemic manifestations include myocarditis, pneumonitis and chorioretinitis, 
although immunocompetent individuals may also experience ocular damage from 
toxoplasmosis. Th e hallmark fi nding of chorioretinitis is white focal retinal lesions 
accompanied by vitreous infl ammaion.

Diagnosis

Diagnosis relies on either indirect serological tests or direct detection of the 

organism. Serologic tests, indicating recent or past infection, are most eff ective in 
immunocompetent adults who are able to mount a humoral response to the parasite. 

Th ese include ELISA, IFA, complement fi xation and in the past, the Sabin-Feldman 
dye test to detect IgG antibodies. IgG antibodies develop 1-2 weeks post infection 
and then persist and therefore will not distinguish between recent and past infection. 

Rising titers on serial examination may be indicative of active or ongoing infection. 
Th e presence of a high IgM titer in the absence of a signifi cant IgG titers indicates 


background image

193

Toxoplasmosis

26

early stages of primary infection. A negative IgM titer is helpful for ruling out recent 

infection. However, due to considerable variability in tests and a high false positive 
rate, a positive IgM test should be verifi ed in a reference laboratory (e.g., the US 

Centers for Disease Control or Toxoplasmosis Serology Lab, Palo Alto Medical 
Foundation).

Direct diagnosis can be made by PCR on several bodily fl uids and tissues, 

including blood, bronchioalveolar lavage, vitreous fl uid, amniotic fl uid aft er 18 
weeks gestation and brain biopsies. It is particularly useful in cases of advanced 

immunosuppression, where antibody titers may be less reliable. Diagnosis is oc-

casionally made from identifi cation of trophozoites in infected tissue. Histologic 
examination of lymph nodes may reveal a characteristic histiocytic hyperplasia. 
Additional indirect diagnostic tests include cranial MRI or CT scan for cysts in 

brain tissue and ocular slit lamp examination for characteristic retinal lesions.

In infants, it is important to distinguish between maternal antibodies found in a 

non-infected infant versus a high titer of antibodies being produced by an infected 

infant. In this regard, the simultaneous measurement of maternal and infant IgG 
antibodies specifi c for the parasites is critical. An infant: maternal IgG ratio of four 
or higher is indicative of new infection. Th is test should be repeated in the infant at 

4 months of age. In addition, the presence of high titers of specifi c IgM antibodies 
in the infant’s serum is diagnostic. Current procedures allow diagnosis of an ac-
tive infection in the fetus in utero by means of PCR of amniotic fl uid obtained by 
amniocentesis. Th e majority of infants will appear normal on prenatal ultrasound 
although fi ndings may include intracranial calcifi cations, ventricular dilatation, 

hepatic enlargement, increased placental thickness and ascites.

Treatment

Th e immunocompetent, nonpregnant individual over 5 years of age with acute 

toxoplasmosis is treated with specifi c medications only if signs and symptoms are 
severe or persistent, or in the case of active chorioretinitis. Immunocompromised 
patients must be treated, oft en for 4 to 6 weeks aft er cessation of symptoms. 
Treatment of new infections in pregnant women is controversial because of the 
toxicity of the medications, but treatment is still advocated. Congenitally-infected 

newborns are treated aggressively.

Medications to treat the infection include: pyrimethamine (25-100 mg/d × 3-4 

wks) plus either trisulfapyrimidines or sulfadiazine (1-1.5 gm qid 3-4 wks). Pregnant 

women are usually treated with spiramycin. Th e length of treatment varies widely 
between countries and may be followed by a course of pyrimethadine/sulfadiazine. 
Additional medications include sulfonamide drugs, folinic acid, clindamycin and 
trimethoprim-sulfamethoxazole. In immunocompetent adults and newborns with 
chorioretinitis, corticosteroids may help suppress the acute vitreous infl ammatory 

response. Treatment in AIDS patients is continued as long as the individual is 
considered immunocompromised, usually until the CD4

+

 T-cell count is above 

200 cells/

μ

L, to prevent reactivation of the disease.

Prognosis

Toxoplasmosis in immunocompetent adults carries a good prognosis without long 

term sequellae. In contrast, infection in immunocompromised adults can be fatal if 

not treated early, oft en due to neurological complications. Congenital toxoplasmosis 


background image

194

Medical Parasitology

26

can result in permanent disability in infants due to ocular and neurological involve-

ment, including blindness, learning disorders and mental retardation.

Prevention

General

  Protect children’s play areas from cat and dog feces. Cover sandboxes when 

not in use to avoid cat defecation.

  Wash hands thoroughly aft er contact with soil that may be contaminated with 

animal feces.

 Control fl ies and cockroaches as much as possible. Th ey can spread contami-

nated soil or cat feces onto food.

  Avoid rubbing eyes or face when preparing food, especially raw meat or poultry. 

Aft er food preparation, wash hands thoroughly with soap and water and clean 
the counter.

  Avoid ingesting raw or undercooked meat or poultry, raw eggs and unpasteur-

ized milk. Fruits and vegetables should be peeled or thoroughly washed.

During Pregnancy

  Pregnant women should have their serologic testing for toxoplasma antibod-

ies that may be repeated several times during the pregnancy depending upon 
initial results.

  Avoid exposure to cat feces by having other family members change the cat 

litter box. If the litter box must be changed, wear rubber gloves to avoid contact 
with the litter. Wash hands thoroughly with soap and water aft erwards.

  Use work gloves when gardening and wash hands aft erwards.

HIV-Infected Individuals

Patients with HIV disease should have toxoplasma antibody titers checked. If the 

results are positive and if the CD4

+

 T-cell count is less than 200 cells/

μ

L, patients 

should be given prophylactic antibiotics, such as trimethoprim-sulfamethoxazole, 
in conjunction with antiretroviral therapy until the CD4

+

 T-cell count has risen.

Selected Internet Resources

http://www.cdc.gov/ncidod/dpd/parasites/toxoplasmosis/default.htm—

CDC Division of Parasitic Diseases.

www.cfsph.iastate.edu/Factsheets/pdfs/toxoplasmosis.pdf—Center for Food 

Security and Public Health, Institute for International Cooperation in Animal 
Biologics, Iowa State university, 2005.

Suggested Reading

  1.  Lopez A, Dietz VJ, Wilson M et al. Preventing congenital toxoplasmosis. MMWR 

2000; 49:57-75.

  2.  Olliaro P. Congenital toxoplasmosis. Clin Evid 2004; 12:1058-61.

  3.  Kravetz JD, Federman DG. Toxoplasmosis in pregnancy. Am J Med 2005; 

118:212-6.

  4.  Montoya JG, Liesenfi eld O. Toxoplasmosis. Lancet 2004; 363:1965-1976.

  5.  Bossi P, Bricaire F. Severe acute disseminated toxoplasmosis. Lancet 2004; 

364:579.


background image

C

HAPTER

 27

Giardiasis

Photini Sinnis

Introduction

Giardia intestinalis, also called Giardia lamblia and Giardia duodenalis, is one 

of the most common intestinal parasites in the world, occurring in both industrial-
ized and developing countries with an estimated 2.8 million new cases annually. 
First observed by Anton Van Leuwenhoek in 1681 in a sample of his own diarrheal 
stool, and later described in greater detail by Vilem Lamble, Giardia was initially 
thought to be a commensal and has only been recognized as a pathogen since the 
mid 1900s. In this chapter, salient features of the parasite and the disease it causes 

are described. 

Life Cycle and Structure

Th is one-celled fl agellated protozoan has a simple life cycle consisting of two 

stages: trophozoite and cyst (Fig. 27.1). Cysts are the transmission stage and are 
excreted in the feces of infected individuals into the environment where they can 

survive for weeks. When ingested, exposure to the low pH of the stomach and 
pancreatic enzymes induces excystation, with two trophozoites developing from 
each cyst. Trophozoites attach to epithelial cells of the upper intestine, primarily 
the jejeunum but also the duodenum, where they grow and divide. Attachment 
is required to prevent being swept away by peristalsis and is mediated by the 

ventral disk of the trophozoite as well as adhesins on the parasite surface. As the 
intestinal epithelial cell surface is renewed, trophozoites move and reattach to 
other epithelial cells. In some cases, the detached trophozoite is carried down the 

intestinal tract where exposure to bile salts, which occurs when the trophozoite 
is no longer protected by the mucous layer of the epithelium, and cholesterol 
starvation induce encystation. 

Th e structure of trophozoite and cyst are shown in Figure 27.2. Trophozoites 

have two nuclei and each nucleus contains a prominent karyosome, giving the 

parasite its characteristic face-like appearance. In addition it has four pairs of fl a-
gella, an axostyle (a microtubule-containing organelle to which the fl agella attach), 
a ventral disk and two median bodies, organelles whose function is not known. 

Cysts, which are slightly smaller than trophozoites, have a carbohydrate-rich cell 
wall which likely protects them from the environment and two to four nuclei. 
Giardia is an aerotolerant anaerobe that metabolizes glucose and scavenges cho-
lesterol, phospholipids, purines, pyrimidines and amino acids. Giardia does not 
contain classical mitochondria but does make ATP in double-membraned organ-

elles called mitosomes, which may represent degenerate mitochondria. Th e lack of 

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.


background image

196

Medical Parasitology

27

mitochondria originally led people to classify these parasites as early eukaryotes; 

however, the recent sequencing of the Giardia genome has identifi ed genes that 
can be traced to the common prokaryotic ancestor of the mitochondria raising 
the possibility that mitosomes have evolved from mitochondria as an adaptation 
to the microaerophilic environment of the gut and that Giardia is an ancestor of 
an aerobic mitochondria-containing fl agellate. 

Epidemiology

Giardia transmission occurs by the fecal-oral route, either directly, via person 

to person contact or indirectly, via contamination of surface water or food Th e 
salient features of Giardia cysts that infl uence disease transmission include their 

stability in the environment, their immediate infectivity upon leaving the host and 
the small number of cysts required to cause infection. 

Figure 27.1. Lifecycle of Giardia intestinalis. 1) Ingestion of cysts either di-

rectly or via fecally-contaminated water or food. 2) Excystation of trophozoites 

in small intestine where they grow and multiply. 3) Encystation as the tropho-

zoite leaves the small intestine and excretion of cysts into the environment. 

Some trophozoites may be found in feces but are not adapted for survival in 

the environment. Adapted from: Centers for Disease Control and Prevention 

(CDC) (http://www.dpd.cdc.gov/dpdx/images/ParasiteImages).


background image

197

Giardiasis

27

Th e stability of cysts in the environment means that fecal contamination of 

both food and surface water can lead to disease transmission. Common source 

outbreaks of giardiasis are primarily the result of contaminated water, although 
foodborne outbreaks have been reported. In the United States, Giardia is the 
most common cause of waterborne diarrheal disease. Risk factors for Giardia 
infection via waterborne transmission include drinking tap water, swallowing 
water while swimming, contact with recreational fresh water and eating lettuce, 

the last factor likely refl ecting the use of contaminated water or fertilizer in farm-
ing. Giardia cysts can also be transmitted directly from person to person and this 
commonly occurs in daycare centers, custodial institutions and among men who 

have sex with men. In developing countries inadequate means of disposing of 
human waste leads to very high rates of infection, likely via both contamination 
of drinking water and direct person to person contact. 

Th ere are fi ve species of Giardia, only one of which, G. intestinalis, infects 

humans; the others infect a variety of domestic and wild animals. G. intestinalis

can be further subdivided into six genetically distinct groups or Assemblages, 
only two of which, Assemblages A and B, are associated with human infection. 
Further molecular typing may fi nd that these genotypes actually represent distinct 

species. Th e two human-infecting genotypes have a broad host-range that includes 
aquatic mammals such as seals, domestic animals and beavers. Although it has 
been suggested that these animals serve as reservoirs for human infection, recent 
studies using molecular tools that allow for precise genotyping of isolates have sug-
gested that, on the contrary, other animals are indicator species for environmental 

contamination with human waste. More studies that incorporate genotyping of 
Giardia isolates are required before we fully understand the zoonotic potential of 
the Giardia parasites that infect humans.

Figure 27.2. Structure of trophozoite (10 - 20 microns by 5 - 15 microns) 

is shown on the left and the slightly smaller cyst (7 - 10 microns by 8 - 12 

microns) is on the right. Reproduced from: Nappi AJ, Vass E, eds. Parasites 

of Medical Importance. Austin: Landes Bioscience, 2002:16.


background image

198

Medical Parasitology

27

Clinical Presentation

In the early 1920s, Rendtorff  gave human volunteers Giardia cysts in gela-

tin capsules and found that although infection can occur aft er ingestion of as 
few as 10 cysts, it more reliably occurs upon ingestion of 100 or more cysts. 

More recent studies demonstrate that ingestion of cysts results in one of three 
outcomes: no infection, asymptomatic infection with excretion of cysts, or 

symptomatic infection. Analysis of infection rates during outbreaks indicates 
that 35 to 70% of exposed people remain uninfected, without symptoms or any 

trace of infection, possibly in part due to a low innoculum, 5 to 15% of people 
remain completely asymptomatic but pass cysts in their feces and 15 to 60% of 
people become symptomatic. Th e majority of symptomatic people have an acute 

self-limited diarrhea, lasting 7 to 15 days while a small proportion of symptomatic 
patients develop chronic diarrhea accompanied by signs of malabsorption and 
signifi cant weight loss. 

Symptoms usually begin 7 to 14 days aft er cyst ingestion but can begin as late 

as 4 weeks later. Th e onset is usually acute with diarrhea accompanied by diff use 
abdominal cramping and discomfort, bloating, fl atulence and fatigue. Nausea can 

be present but vomiting is rare. Fever, when present, is low-grade and seen early 
in the course of infection. Initially stools are usually profuse and watery but later 
in the course of the disease can become greasy and malodorous. Stools usually do 
not contain blood or white blood cells, the peripheral white blood cell count is 
not elevated and there is no increase in the absolute eosinophil count. Weight loss 

is common and it is not unusual for patients to present with a greater than 10 lb 
weight loss. Very rarely, extraintestinal symptoms such as urticaria and polyarthritis 
are seen and there are a few case reports in which Giardia infection extended into 

the biliary tract. Two distinguishing features of Giardia infection are its duration, 
usually in the range of 2 to 4 weeks, and the associated weight loss. Although the 
majority of symptomatic Giardia infections are self-limiting, symptoms can none-
theless be quite severe and occasionally lead to hospitalization, usually secondary to 
volume depletion. In an outbreak in New Hampshire, it was estimated that about 

13% of symptomatic individuals required hospitalization. 

A small percentage of symptomatic individuals will have chronic infection, 

lasting months or longer. Th ese patients can have chronic diarrhea or a waxing 
and waning course characterized by intermittent symptoms of diff use abdominal 

discomfort, malaise and diarrhea. Chronic giardiasis is frequently accompanied 

by weight loss, which can be signifi cant, and malabsorption. Malabsorption 

of fats, vitamins A and B12, disacharrides, especially lactose, and protein are 

observed, with malabsorption of fats and lactose being most common. Lactose 
malabsorption is likely due to damage to the brush border which aff ects the 

disaccharidase-containing microvilli. All of these absorption defi cits resolve with 
treatment of the infection. However, it can take several weeks for full restoration 

of the disaccharidase activity of the brush border so that lactose intolerance can 
persist even aft er the infection is eradicated. 

More severe and prolonged symptoms are observed in patients with immu-

nodefi ciencies, especially those aff ecting the humoral arm of the immune system. 
Adults with common variable immunodefi ciency (T and B cell defi cits resulting 

in impaired production of most immunoglobulins), selective IgA defi ciency and 


background image

199

Giardiasis

27

X-linked agammaglobulinemia have an increased incidence of symptomatic disease 

with a prolonged course. HIV patients do not have more severe disease, with the 
exception of a subset of AIDS patients with low CD4 counts who have severe 

symptoms and are diffi  cult to cure. Exactly how this group of AIDs patients diff er 
from most is not clear. 

One group of patients worth particular mention is children living in poor 

communities where baseline nutritional status is borderline and infection with 
intestinal helminths and protozoans is common. Many studies in poor communi-

ties in Central and South America, the Middle East and other places have found 

that Giardia infection in children is strongly associated with growth stunting. In 
children harboring several intestinal parasites, Giardia infection is most robustly 
associated with decreased growth. In one study, it was found that more than one 

episode per year of giardiasis was associated with a decrease in cognitive function. 
In contrast to these fi ndings, growth of children in a daycare setting in Israel, was 
not aff ected by Giardia infection, despite the fact that prevalence of infection was 

high (20 to 40%). It is likely that underlying conditions, such as protein-energy 
malnutrition, aff ect the ability of the child to mount an eff ective immune response, 
resulting in more severe, chronic infection and leading to malabsorption of essential 

vitamins and fats. Th is situation is compounded by the fact that malabsorption in a 
child with borderline nutritional status will have more far-ranging and deleterious 
eff ects than it would in otherwise healthy children. 

It is not yet known why there is such a large range of outcomes aft er ingestion 

of Giardia cysts. Infectious dose does not seem to play a role in outcome other than 

the fact that very low infectious doses may not result in infection at all. Likely both 
host and parasite factors are involved. Th e immune status of the host is clearly im-
portant with nonimmune and immunocompromised hosts more likely to become 

ill or severely ill. In addition, some studies suggest that diff erent strains of Giardia 
diff er in their capacity to cause disease. Th ese types of studies, however, are still 
in their infancy and there is not yet consensus as to which strains or Assemblages 
of Giardia are more virulent. Undoubtedly as studies are performed with more 
markers, the role of strain variation in virulence will become clear. 

Immunity

Th ere is immunity to Giardia infection but it is not complete and reinfection is 

common. Th e existence of immunity is supported by several clinical observations: 
First, in developing countries where the prevalence of Giardia infection is high, 
the incidence of giardiasis is higher in younger age groups, suggesting immunity 
develops with exposure. Second, infection is typically more severe and of longer 
duration in people with immunodefi ciencies, especially those with defi ciencies in 

the humoral immune response. 

In mouse models, using either G. lamblia or the rodent parasite G. muris, it has 

been shown that mice clear the infection and become resistant to reinfection, indicat-

ing that there is an immune response to the parasite in mice. Immunodefi cient mice 
such as nude mice or thymectomized mice cannot clear the parasite and have chronic 
persistant infections. More detailed studies have found that depletion of B-cells 
leads to chronic giardiasis, indicating a role for antibodies in parasite clearance. IgA 
knockout mice cannot clear the infection although they control the infection better 


background image

200

Medical Parasitology

27

than B-cell knockout mice, suggesting that IgA antibodies are critical for parasite 

clearance but that other isotypes play a role in controlling infection or can partly 
compensate for the defi ciency in IgA. Other experiments using rodent models found 

that the cytokine IL-6 is important in the acute phase of infection. IL-6 knockout 
mice had normal IgA production and could control G. lamblia infection but did so 

more slowly. Overall, the work from rodent models suggests that there is an early 
B-cell independent response to the parasite followed by an antibody-dependent 
phase, with secretory IgA being one of the most important components of the im-

mune response. In humans its been suggested that failure to mount an IgA response 

is correlated with chronic giardiasis. 

Work with rodent models also suggests that in addition to being important 

in clearing the infection, the host immune response may also lead to some of the 

pathology observed during infection. For example, one study found that adop-
tive transfer of either CD8

+

 T-cells or whole unfractionated lymphocytes from 

Giardia-infected mice to naïve recipients resulted in diff use shortening of microvilli 
and loss of brush border surface area in the recipients. In another study, Giardia 
infection in immunocompetent mice resulted in diff use loss of the brush border 
microvillus surface whereas T-cell defi cient mice infected with the same load of 
parasites had no change in microvillus surface area or structure. 

Protection against both infection and disease is associated with breast feeding 

and it has been shown that both immune and nonimmune mechanisms are involved 
in this protection. Specifi c antibodies are transferred in milk from mothers previ-

ously infected with Giardia and are associated with a decreased risk of acquiring 
the infection and of developing severe giardiasis. Human breast milk also protects 
against Giardia infection because it contains a specifi c lipase that releases free fatty 
acids from milk triglycerides upon stimulation by bile salts (bile salt stimulated 
lipase), that kill Giardia trophozoites. 

Pathogenesis 

Th e mechanisms by which Giardia causes diarrhea and malabsorption have not 

been elucidated. Th ere is no evidence that Giardia produces an enterotoxin or that 
it invades the intestinal epithelial cells. Electron microscopy shows that the ventral 
disk embeds the parasite into the epithelial microvillus layer and “footprints” of 
formerly adherent trophozoites are visible on the epithelial cell surface. However, 
even in a heavy infection, the surface area covered and possibly damaged by the 

adherent trophozoites cannot account for the symptoms. In humans, biopsy of 
the infected gut shows little abnormality. In a European study in which over 500 
biopsy specimens from Giardia-infected patients were observed, slightly over 

96% had normal looking mucosa and 3.7% had mild villous shortening with a 
small amount of neutrophil and lymphocyte infi ltration. Th e lack of histologic 
abnormalities in the majority of symptomatic patients has also been observed in 
other, smaller studies. In one study in which patients with villous shortening and 
infl ammatory infi ltration were followed with serial biopsies, these abnormalities 

all resolved aft er the infection was eradicated. In the murine models of giardiasis, 
similar fi ndings of villous atrophy and infl ammatory infi ltration of villous epithe-
lium can be observed. However as with humans, the fi ndings are subtle and the 

infl ammatory changes mild. 


background image

201

Giardiasis

27

In conclusion, the cause of diarrhea and malabsorption in Giardia infection is 

likely to be multifactorial, involving the host immune response to the pathogen 
as well as, yet to be identifi ed, cytopathic substances that the parasite may secrete. 

Additionally, it has been suggested that Giardia may cause pathology by alteration 
of the bile content or endogenous fl ora of the small intestine which in turn could 

aff ect the absorptive function of gut. Th ese hypotheses must now be formally tested 
before a more complete picture emerges. 

Diagnosis 

Th e traditional method of diagnosis is examination of stool for trophozoites or 

cysts (stool O&P). Both fresh and fi xed stool specimens are usually examined. Cysts 
are normally found but motile trophozoites can be observed in a fresh specimen 
of loose stool (Fig. 27.3). Because the parasites are normally found in the small 
intestine and are shed intermittently, the sensitivity of one stool specimen is low, 
in the range of 50 - 70%. However, examination of three specimens, from three 
diff erent days, increases the sensitivity to 85 - 90%; specifi city is close to 100%. 

Th is assay remains the most widely used method to diagnose Giardia infection 
and is the gold standard to which other newer assays are usually compared. It is 
important to note that there can be a delay between the onset of symptoms and the 

excretion of cysts so that a negative stool sample in someone in whom giardiasis 
is suspected warrants reanalysis at a later time.

Recently, new assays have been developed based on detection of Giardia anti-

gens. Th e direct fl uorescent antibody test (DFA), uses a Giardia-specifi c antibody 
conjugated to a fl uorophore to stain stool specimens. Because the parasites are 

labeled, much larger regions of the slide can be scanned more quickly and the likeli-
hood of detecting the parasite is increased. On a single stool specimen the sensitivity 
is between 96 - 100%. Other antigen-detection tests detect soluble Giardia-specifi c 

proteins in the stool. Th ere are two diff erent types of soluble-antigen-detection 

Figure 27.3. Light microscopy of G. intestinalis trophozoites and cyst in stool 

sample. Reproduced with permission from Apple Trees Productions, LLC, New 

York and generously supplied by Dr. Dickson Despommier.


background image

202

Medical Parasitology

27

tests, the enzyme immunoassays (EIA) and immunochromatographic dipsticks 

(ICT) which work on the same overall principal, i.e., immobilization of antibod-
ies specifi c for Giardia proteins on a plate (EIA) or a piece of chromatography 

paper (ICT) that then capture Giardia proteins in the stool. ICTs are relatively 
new and have a lower sensitivity than EIAs (80% versus 94 to 98%). Importantly, 

these can be positive even aft er a person stops shedding intact organisms and can 
give false-positive results in someone who has been treated and cured of Giardia 
infection. Specifi city for all of the antigen-based detection assays is 90 to 100%. 

Although these tests are faster and do not require a highly trained technician, in 

contrast to the stool O&P which does, stool for O&P can be more economical 
when screening for more than one intestinal parasite. However antigen tests can 
be very useful during outbreaks or in institutional settings when screening large 

numbers of people. 

Both stool O&P and the antigen detection tests give false-negative results 

when there are very few organisms in the stool. In these cases, the physician may 

decide to directly sample the contents of the duodenum using either the string test 
(Entero-Test, HDC Corporation, San Jose, CA) or by endoscopy accompanied 
by duodenal fl uid sampling and biopsy. Th e mucus adherent to the string and the 

duodenal aspirate fl uid are examined for organisms, primarily trophozoites, directly 
and aft er staining. In cases where biopsy is performed, it is processed, stained and 
then examined by a pathologist for trophozoites. Th ese more invasive tests are not 
more sensitive for detecting parasites but can be used when the more widely-used 
diagnostic methods fail.

Assays which detect Giardia-specifi c nucleic acid, using polymerase chain 

reaction (PCR), are being developed but are currently experimental and not in 
clinical use. 

Treatment

Treatment of giardiasis is summarized in Table 27.1. Th e nitroimidazole, met-

ronidazole is the most commonly used drug to treat Giardia infection although it 
has never been FDA approved for this use. In adults, 250 mg tid for 5-7 days has 
been shown to be eff ective in 80 to 95% of cases. Shorter courses of higher doses 
lead to better compliance but are less eff ective and have a worse side eff ect profi le. 
Metronidazole is mutagenic to bacteria and carcinogenic in laboratory rodents; for 

this reason most physicians prefer not to use it in children although no mutagenic 
eff ects have been observed in humans. 

Tinidazole is another nitroimidazole that until recently was not available in the 

United States but was commonly used in Europe and in parts of the world where 
the prevalence of Giardia infection is very high. It has a longer half-life than met-
ronidazole and is 80 to 100% eff ective as a single 2 gm dose. It is likely that given 
its recent availability in the United States and FDA approval for use in giardiasis, 
combined with its effi  cacy as a single dose, tinidazole may replace metronidazole 

as the most frequently prescribed drug for the treatment of giardiasis. 

Nitazoxanide, discovered in the 1980s by Jean Francois Rossignol at the Pasteur 

Institute, is a new drug in the anti-Giardia arsenal and was recently approved by the 

FDA to treat giardiasis in children aged 1-11 and in adults. It is a thiazolide that 
interferes with pyruvate-ferredoxin oxidoreductase-dependent electron transport 


background image

203

Giardiasis

27

which is required for anaerobic respiration. It is not mutagenic and so is more 
appropriate for use in children. Effi  cacy is over 85% and it is well-tolerated with a 
good side eff ect profi le. Nitazoxanide's effi  cacy extends well beyond the treatment 
of giardiasis, and it has been found to be eff ective in treating Cryptosporidium

EntamoebaCyclosporaIsospora as well as many intestinal helminthes. 

Albendazole, a benzimidazole commonly used to treat intestinal helminth in-

fections, is also eff ective against Giardia. Its cure rates are similar to metronidazole 

when 400 mg/d is given for 5 to 7 days. Interestingly, the other benzimidazole, 
mebendazole, is not as eff ective in the treatment of Giardia infection and so is 
generally not used for this purpose. 

Pregnant women with Giardia infection can be diffi  cult to manage because 

none of the aforementioned drugs has been shown to be safe for the fetus. Th e ni-

troimidazoles (metronidazole and tinidazole) rapidly enter the fetal circulation aft er 
absorption from the mother's GI tract. Although large retrospective studies have not 
demonstrated any adverse eff ects on the fetus in the 2nd and 3rd trimester, in one 

large study of pregnant women, a small increase in fetal malformations was associated 
with fi rst trimester exposure to metronidazole. Albendazole, and the other benzimi-
dazole, mebendazole, are teratogenic in animals at high doses and are also generally 
not used in pregnant women. Th e use of these drugs in mass treatment campaigns to 
eradicate fi lariasis or treat intestinal helminths has led to their inadvertent use in early 

pregnancy, and no increased risk of fetal malformations has been observed. However, 
given that the doses used were much lower than that needed to eradicate Giardia and 
that the numbers of pregnant women in these studies was small, it is not advisable 

Table 27.1. Treatment of Giardia infection in adults and children

 

 

Dosing

Drug 

Adult Dose 

in Children* 

Comments

Metronidazole  250 mg tid x   5 mg/kg tid x

 

5 -10 days  

5 -10 days

Tinidazole 

2 gm single  

50 mg/kg  

Only recently available

 

dose 

single dose 

in the United States 

Nitazoxanide 

500 mg bid x   1-3 year-old: 100 

A recent addition to the

 

3 days  

mg bid x 3 days 

anti-Giardia arsenal

 

 

4-11 yrs: 200 mg 

 

 

bid x 3 days

Albendazole 

400 mg qd x 

15 mg/kg/d x

 

5d  

5-7 d

Paromomycin 

500 mg tid x 

10 mg/kg tid x 

Used primarily in

 

5-10 days  

5-10 days 

pregnant women

Quinacrine 

100 mg tid x   2 mg/kg tid x  

Used primarily in

 

5 - 7 days  

5 - 10 days 

refractory cases in 

   

combination 

with 

   

nitroimidazole

*Tinidazole, Nitazoxanide and Albendazole available in liquid form. 


background image

204

Medical Parasitology

27

to use these drugs to treat giardiasis in pregnant women. Lastly, there are no safety 

data available regarding the use of the recently discovered nitazoxanide in pregnant 
women. So how to treat the pregnant woman with giardiasis? If her symptoms are 

not severe and pose no threat to herself or the fetus, she can be given supportive 
treatment to maintain her fl uid and nutritional status during the fi rst trimester and 

if possible, the entire pregnancy. If treatment becomes necessary, paromomycin, an 
aminoglycoside that is not absorbed in signifi cant quantities from the GI tract is 
usually tried fi rst. It is not as eff ective as metronidazole, with effi  cacies ranging from 

55 to 88% and is usually administered for 10 days. If necessary, metronidazole can 

be given during the 2nd and 3rd trimesters using the dosing schedule outlined in 
Table 27.1 rather than a high-dose short-course regimen. 

Although most people respond to treatment with one of the aforementioned 

drugs, there is a small subset of patients who do not. In a series of six patients with 
refractory infections, the majority of which were immunodefi cient, the combina-
tion of a nitroimidazole, either metronidazole or tinidazole, and quinacrine (100 

mg tid), administered for 2 to 3 weeks, resolved the infection. Quinacrine is an old 
antimalarial drug that is no longer used to treat malaria, is no longer produced in the 
United States, and has a high incidence of side eff ects. However, in combination with 

a nitroimidazole, it appears to be eff ective in eradicating Giardia in refractory infec-
tions. It can be ordered from an independent compounding pharmacy, Panorama 
Pharmacy, Panorama City, CA (http://www.panoramapharmacy.com/). 

Since a large proportion of infected people are asymptomatic, the question 

arises as to whether they should be treated. It is generally accepted that if they 

pose a risk to others and are unlikely to rapidly become re-infected, they should be 
treated. Th is would mean that asymptomatic children in daycare centers who are 
excreting cysts should be treated, as should asymptomatic carriers in institutional 

settings. In developing countries the likelihood that an infected, asymptomatic 
child will become re-infected aft er treatment is high and for this reason, treatment 
is not always recommended. However, in studies demonstrating that Giardia in-
fection in preschool children with borderline nutritional status is associated with 
reduced growth, it was found that eradicating the infection allows for catch-up 

growth. For this reason, Giardia infection should be treated in children in areas 

where there is a high prevalence of giardiasis and malnutrition. 

Prevention

Providing safe drinking water is critical if Giardia transmission is to be con-

trolled. Th e traditional methods employed to insure water safety are protection 
of the watershed, fl occulation and sedimentation (using compounds such as alum 
to bridge contaminating organisms into clumps that can then be removed by 
sedimentation), chemical disinfection usually with chlorine, and fi ltration. As the 
population increases and expands into areas once considered remote and pristine, 

our watersheds are becoming more diffi  cult to protect from human and animal 
waste. A 1991 study found that 81% of the raw surface water entering 66 diff erent 
water purifi cation plants was contaminated with Giardia cysts. Short of assuring a 

pristine watershed, fi ltration is the most important component of the standard water 
purifi cation process in the prevention of waterborne outbreaks of Giardia. Numbers 
of cysts can be decreased by fl occulation and sedimentation but not to acceptable 


background image

205

Giardiasis

27

levels. Although Giardia cysts are sensitive to chlorine, their inactivation requires 

high levels of chlorine and long exposures that are not routinely implemented in 
water treatment plants. Proper fi ltration of surface water, or ground water under the 

direct infl uence of surface water, is required and can decrease cyst number by 2 to 3 
orders of magnitude. However, fi ltration to remove all cysts on a large scale is not 

feasible so that drinking water continues to pose some risk. In New York City, the 
Department of Environmental Protection began, in 1992, to monitor the level of 
Giardia and Cryptosporidium contamination in the city's source water. Th ese data 

can be viewed at: http://www.ci.nyc.ny.us/html/dep/html/pathogen.html.

Backpackers and hikers drinking untreated water and travelers to areas where 

Giardia is prevalent and safe drinking water is not available can perform one of the 
following to insure the safety of their water: Boil for 1 minute or at high altitude 

for 3 minutes; fi lter through a 2 micron pore size fi lter; treat with iodine (12.5 
ml/liter for 30 minutes) or halazone (5 tablets/liter for 30 minutes). 

Conclusion

Giardia  is an important cause of diarrhea worldwide. Most symptomatic 

patients recover with treatment although disease is more prolonged and can be 
diffi  cult to treat in certain groups of immunocompromised patients. Th e great-
est impact of giardiasis is likely on children of marginal nutritional status where 
the malabsorption associated with infection can cause growth stunting. As our 
watersheds become increasingly contaminated with human waste, it is likely that 

the incidence of the disease will increase. Th e recent availability of tinidazole in 
the United States combined with the discovery of nitazoxanide should make the 
treatment of giardiasis simpler and more straightforward.

Suggested Reading

  1.  Appelbee AJ, Th ompson ARC, Olson ME. Giardia and Cryptosporidium in mam-

malian wildlife - current status and future needs. Trends Parasitol 2005; 21:370-5.

  2.  Gardner TB, Hill DR. Treatment of Giardiasis. Clin Microbiol Rev 2001; 

14:114-28.

  3.  Nash TE, Ohl CA, Th omas E et al. Treatment of patients with refractory Giardiasis. 

Clin Infect Dis 2001; 33:22-8.

  4.  Fox LM, Saravolatz LD. Nitazoxanide: A new Th iazolide antiparasitic agent. Clin 

Infect Dis 2005; 40:1173-80.

  5.  Farthing MJG, Mata L, Urrutia JJ, Kronmal RA. Natural history of Giardia infection 

of infants and children in rural Guatemala and its impact on physical growth. Am J 

Clin Nutr 1986; 43:395-405.

  6.  Berkman DS, Lescano AG, Gilman RG et al. Eff ects of stunting, diarrhoeal disease 

and parasitic infection during infancy on cognition in late childhood: A follow-up 

study. Lancet 2002; 359:564-71.

  7.  Lopez CE, Dykes AC, Juranek DD et al. Waterborne giardiasis: A communitywide 

outbreak of disease and a high rate of asymptomatic infection. Am J Epidemiol 1980; 

112:495-507.

  8.  Adam RD. Biology of Giardia lamblia. Clin Microbiol Rev 2001; 14:447-475.

  9.  Petri WA. Treatment of Giardiasis. Curr Treat Options Gastroenterol 2005; 

8:13-7.

 10.  Hill DR. Giardia lamblia. In: Mandell GL, Bennett JE, Dolin R, eds. Principles and 

Practics of Infectious Diseases, 6th Edition. Philadelphia: Churchill Livingstone, 

2005:3198-203.


background image

C

HAPTER

 28

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Amebiasis

Daniel J. Eichinger

Introduction

Th e causative agent of intestinal amebiasis is the single-celled protozoan parasite 

Entamoeba histolytica. Th is parasite is endemic in most tropical and subtropical 
areas of the world, where it causes millions of cases of dysentery and liver abscess 
each year. Infected persons display a wide range of disease severity, refl ecting the 
contributions of the patient’s immune and nutritional status, the infective dose 
and the pathogenic potential of the infecting organism. It is only one of several 
Entamoeba organisms that can reside in the human GI tract, which in the past 

has made diagnosis diffi  cult. It is uniquely adapted to the conditions found in 
the lumen of the large intestine and as a result is sensitive to drugs that target 
anaerobic organisms.

Life Cycle and Structure

Th ere are only two stages to the life cycle of E. histolytica, the infectious cyst 

stage and the multiplying, disease-causing trophozoite stage. In the majority of 
cases infection results from the ingestion of fecally-contaminated water or food 

that contains E. histolytica cysts. Much less oft en the cyst or the trophozoite forms 
can be transmitted as a result of oral or oral/anal sexual practices. Cysts are 8-10 

μ

m in diameter and when they are released from infected persons they are stable 

for days to weeks in low-temperature aqueous conditions. Re-ingested cysts are 
resistant to the low pH of the stomach and appear to be triggered to exit the cyst 

capsule (excyst) by components of bile and bicarbonate that are encountered in 
the small intestine. Th ese metacystic amoebae are carried to the colon where the 
10-30 

μ

m diameter trophozoite form adheres to the mucus layer overlying the 

colonic epithelium. Th is adherence is mediated by lectins found on the surface of 
the trophozoite that have specifi city for ligands expressing appropriately spaced 

terminal N-acetylgalactosamine and galactose sugar residues, as are found on the 
colonic form of mucin. Th e trophozoite stage of the parasite feeds on host ingesta, 
components of mucus and the resident bacteria and multiplies by asexual binary 
fi ssion. In response to conditions and stimuli that are not yet completely defi ned, 
trophozoites stop multiplying and revert to the cyst form (encyst). Th ese cysts are 

released in the tens of millions per gram of feces to allow for completion of the life 
cycle upon infection of another person. Most cysts are released from asymptomatic 
carriers of the parasite, suggesting that conditions within the intestine that are 

conducive to cyst formation are not signifi cantly abnormal. Recent reports have 
also revealed an ability of products (short-chain fatty acids) normally produced 


background image

207

Amebiasis

28

by the enteric bacteria to regulate the encystment process. Mixtures of cysts and 

trophozoites are more commonly released by symptomatic (dysenteric) persons, but 
the trophozoite form is generally not considered infectious due to its sensitivity to 
hypoosmotic conditions outside the body and the low pH of the stomach.

Th e trophozoite form contains a single nucleus and many internal vesicles 

(Fig. 28.1). Th e nucleus has a thin continuous rim of heterochromatin and a cen-

trally located nucleolus (karyosome). In fresh wet mounts the trophozoite displays 
ameboid motion with rapid extension of ectoplasmic pseudopods. Th e cyst form 
contains a refractile chitin-containing cyst wall, four nuclei and, in many cases, 

crystalline, bullet-shaped aggregations of ribosomes called chromatoid bodies. 
Th ese features of the trophozoite nucleus and the cyst distinguish E. histolytica 
from other species of nonpathogenic amoebae that can also reside in the human 
colon, such as E. coliE. nana or Iodamoeba butschlii.

Epidemiology

Most parasite transmission follows the oral-fecal route in which cysts are in-

gested. More rarely cysts are transmitted directly between persons. Th e worldwide 
distribution of E. histolytica therefore primarily refl ects the incomplete separation 
of human feces from water and food sources typical of densely populated areas of  
developing countries although infrequent outbreaks in developed countries have  
occurred. Th e previous worldwide estimates of up to 500 million Entamoeba

infected persons now need to be qualifi ed with the recent understanding that 
approximately 90% of those infections are with the morphologically indistinguish-
able but genetically distinct organism E. dispar, which does not cause disease. An 

estimated 40-100,000 persons die each year from infection with E. histolytica
however, and many more are either asymptomatically infected or present with 
varying  degrees of dysentery and extraintestinal disease. Experimental establish-
ment of infection with E. coli, a nonpathogenic parasite of humans, was shown 

Figure 28.1. Schematic depictions of the morphology of the E. histolytica 

trophozoite and cyst, as compared to other amoebae found in the human 

intestine. Reproduced from Nappi AJ, Vass E, eds. Parasites of Medical 

Importance. Austin: Landes Bioscience, 2002:20.


background image

208

Medical Parasitology

28

to be  possible with as few as 1-10 cysts, with a prepatent period (time following 

ingestion to the detection of cysts in stool) ranging from 6 to 23 days, an average 
of 10 days.

In closely examined areas where E. histolytica is endemic, most infected adults 

are asymptomatic. Depending on the age of the person, the time of asymptomatic 

infection can be considerable, with a half-life of parasite persistence of about 13 
months in adults in one area of Vietnam where the 10% of adults are infected. Th e 
time of parasite persistence in children appears to be shorter, which may refl ect the 

higher incidence of diarrhea episodes from multiple unrelated causes in that age 

group that serves to physically remove the parasite. Th e long (13 month) half life 
of asymptomatic parasite infection in adults suggests that up to 5% of individu-
als can retain the parasite for up to 5 years. Asymptomatic persons can therefore 

develop intestinal or extraintestinal disease (liver abscess) months to years aft er 
visiting areas where parasite transmission is known or suspected to occur. Most 
cases of diagnosed E. histolytica infection in the US occur in immigrants, par-

ticularly those from Mexico, central and South America and Asia. Seropositivity, 
refl ecting the tissue-invasive capacity of E. histolytica, is approximately 8% in the 
entire population of Mexico.

In contrast to disease restricted to the lumen of the intestine, which occurs 

nearly equally in males and females, for unknown reasons extraintestinal liver 
abscess shows a 3-20 fold higher incidence in males vs females and in individuals 
that abuse alcohol.

Clinical Presentation

Presentation of amebiasis can take several forms, depending on the severity of 

the disease within the intestine and the involvement of extraintestinal sites.

Intestinal Disease

Th e greatest numbers of infected individuals have parasites restricted to the 

lumen of the intestine and are asymptomatic. 90-96% of these would normally 
clear the parasite spontaneously, but the potential for disease development in 
the remaining 4-10% requires that even asymptomatic individuals be treated if 
E. histolytica is defi nitively identifi ed. Th ose persons presenting with colitis typi-
cally have a history of several weeks of gradually increasing abdominal cramping, 

tenderness, weight loss and a range of bowel function alterations, ranging from 
frequent mucoid stools to watery and bloody diarrhea, oft en with periods of 
dysentery alternating with constipation. As these symptoms are also typical of 

those elicited by a variety of bacterial pathogens, diff erential diagnosis should 
include other infectious as well as noninfectious causes of colitis. Stools are nearly 
always heme-positive due to the invasive nature of the parasite, and rectal release 
of blood without diarrhea is not uncommon in children. Fever is present in less 
than half of intestinal amebiasis patients. However, fulminant necrotizing colitis, 

developing in less than 1% of patients, has a high mortality rate (40%) and pres-
ents with fever, bloody mucoid diarrhea, leukocytosis and peritoneal tenderness. 
Intestinal perforation occurs in the majority of patients with fulminant colitis, 

and both it and toxic megacolon, associated with corticosteroid use, require 
surgical intervention. Another infrequent intestinal manifestation, ameboma, 


background image

209

Amebiasis

28

mimics colonic carcinoma in its radiologic presentation as an annular deposition 

of granulomatous tissue that locally narrows the lumen of the colon.

Liver Abscess

Th e most common site of extraintestinal infection (up to 9% of amebiasis cases) 

is the liver, resulting from hematogenous spread (via portal circulation primarily 
to the right lobe) of trophozoites that have eroded through the colonic mucosa. 

Within the liver trophozoites multiply while degrading liver tissue in a spherically 
expanding abscess that becomes fi lled with necrotic liver cells. Hepatic amebiasis 

can present months to years aft er an individual has traveled to or resided in an 
endemic area, during which time the patient may be completely asymptomatic and 
negative for stool parasites. Only 20% of patients with liver abscess have a prior 

history of clinical dysentery. Not all liver abscesses will progress to a symptomatic 
stage and some can self-resolve subclinically. Once they do become apparent, how-

ever, liver abscess symptoms develop relatively rapidly, over a course of 10 days to 
several weeks and can include right upper quadrant pain, fever, point tenderness 
of the liver, anorexia and weight loss. Abscesses located just below the diaphragm 
can lead to pleural pain or referred right shoulder pain. Liver alkaline phosphatase 
levels are normal and alanine aminotransferase levels are elevated in acute liver 

abscess, which may, however, reverse over time. Males are ten times more likely to 
present with liver abscess than females and middle-age and young adults more than 
children. Careful history elicitation is important because of the possible length of 

time ensuing between presentation with liver abscess and past residence or visitation 
in an endemic geographic region. Serum antibodies to amoeba antigens are nearly 
always found in such patients, but if residence in an endemic area was prolonged, 
such antibodies may be the result of prior infection.

Pathogenesis

Th e species name, histolytica, refers to the impressive ability of this organism 

to degrade a variety of host tissues. Th e parasite expresses a large number of factors, 
including lytic peptides (amebapores), cysteine proteinases and phospholipases 
that are presumably designed to aid in the ingestion and digestion of bacteria and 
other food materials. Th ese products are considered virulence factors as they can 
also lyse colonic epithelial, liver and immune cells that come into contact with the 

trophozoite via its galNAc-specifi c lectin. Entamoeba trophozoites are actively 
phagocytic and the presence of ingested red blood cells is diagnostic of E. histolytica 
organisms that are found in suitably stained biopsy specimens (Fig. 28.2). As a result 

of the variability of these activities, the range of pathological fi ndings in the colitic 
colon includes increased height of the mucosa, isolated ulcerations of the mucosal 
layer, invasion and erosion of the submucosa (Fig. 28.3), areas of necrosis with loss 
of large patches of mucosa and complete perforation of the colon. Invasion of the 
mucosal layer is oft en stopped by underlying muscularis layers, forcing the parasite 

to erode tissues laterally in a manner that generates ulcers with a fl ask-shaped cross 
sectional appearance.

Liver abscesses are well circumscribed with an outer wall of connective tissue 

surrounded by normal liver cells, an underlying layer of trophozoites and dying 
hepatocytes and a central area fi lled with dead hepatocytes and immune cells. A 


background image

210

Medical Parasitology

28

complication of liver abscess that results from suffi  cient expansion of the abscess 

to make contact the liver capsule is the rupture of the abscess into surrounding 
anatomic spaces, which occurs in up to 20% of abscess patients. Rupture of liver 
abscess through the diaphragm can yield pleuropulmonary amebiasis that presents 

with cough, chest pain and respiratory distress. Signifi cant leakage of liver abscess 
material into the lung can yield cough producing brown sputum. Erosions of liver 
abscesses into the peritoneal and pericardial spaces are less frequent but can be of 
greater clinical signifi cance even though the liver abscess contents are sterile. Much 
less common but with highest mortality is the dissemination of tropohozoites from 

liver abscesses via general circulation to the brain.

Diagnosis

Blood cell parameters of amebiasis patients are not grossly abnormal, but 

elevated total white cell counts are found in >75%. Unlike infection with invasive 
helminth parasites, there is typically no eosinophilia with amebiasis. Chemistry 
changes are usually limited to increased alkaline phosphatase levels in the majority 

of liver abscess patients.

Microscopic identifi cation of trophozoites or cysts in stool samples or biopsy 

specimens is the most defi nitive method of diagnosis. However, cyst passage is 
known to be inconsistent in asymptomatic carriers and to require the examina-
tion of multiple samples. Visualization of the organism is therefore being sup-

planted by ELISA assays that detect stool antigen rather than whole cells and, 
importantly, are capable of distinguishing between pathogenic E. histolytica and 
nonpathogenic E. dispar. With high sensitivity (80%), specifi city (99%) and 

Figure 28.2. Biopsy specimen containing E. histolytica trophozoites with 

ingested red blood cells. Original image courtesy of Dr. William Petri, 

University of Virginia.


background image

211

Amebiasis

28

commercial availability, these tests will make diagnosis of intestinal amebiasis 
more reliable. Invasive disease presenting as colitis or liver abscess can addition-

ally be diagnosed serologically, as antibodies are present in >90% of such patients 
and detectable by ELISA and various agglutination and electrophoresis methods. 
Antibody titers increase with length of infection, so patients presenting with 

acute suspected disease may be negative initially but positive within 2 weeks. 
Asymptomatic patients can also develop positive antibody titers, allowing for 
determination of the infecting organism when stool samples are positive for 
cysts and consideration of treatment.

Amebic liver abscesses are readily detected radiographically with ultrasound, 

CT scan or MRI methods, which, when combined with serology, can distinguish 
the amebic abscess from other space-occupying lesions such as hepatoma, pyogenic 
or hydatid abscesses. (Fig. 28.4). Nearly all amebic liver abscesses completely resolve, 

but a small number will leave residual radiographic lesions that do not require 
further treatment. Amebomas can be visualized by barium contrast radiography, 
taking into account the risk of perforation if colitis is also present.

Treatment

Since most asymptomatic persons diagnosed with amebiasis are infected with 

E. dispar and do not require treatment, it is important to establish that E. his-
tolytica
 is present to justify treatment. In contrast, asymptomatic infections with 

E. histolytica do require treatment because of the possibility of eventual disease 
development. Paromomycin (Humatin) and diloxanide furoanate (Furamide) are 

the two drugs recommended for treatment of these patients. Recent analysis of 

Figure 28.3. Isolated amoeba-induced lesions, as well as areas of sloughed 

mucosa resulting from fusion of adjacent lesions, are evident in this patho-

logical colon specimen.


background image

212

Medical Parasitology

28

Figure 28.4. CT scan images of a patient with a right lobe amoebic liver abscess, upon admission (left), and six weeks following per-

cutaneous drainage and a course of metronidazole (right).


background image

213

Amebiasis

28

the relative eff ectiveness of these two drugs against E. histolytica as compared to 

E. dispar showed that paromomycin (25-35 mg/kg/d in three doses for 7 days) is 
85% eff ective against E. histolytica and an equal course of diloxanide furoate is 51% 

eff ective. Successful treatment is documented with follow-up stool (microscopic or 
ELISA) examination 2-4 weeks later. Treatment failure rates can be as high as 15%. 

An alternative drug is iodoquinol (Yodoxin), which, however, requires a longer 
treatment course (20 days) and has iodine-related toxicities.

As compared with luminal asymptomatic infection, the drug of choice for sus-

pected or defi ned invasive (colitis) and extraintestinal (hepatic abscess) disease is 

metronidazole (Flagyl). Paroral metronidazole is completely absorbed and recent 
studies have shown that the previously recommended 750 mg tid 7-10 day course 
for adults can be reduced to one daily 2.4 g dose for 3 days with equal effi  cacy. 

Because it is so readily absorbed, treatment with metronidazole must be combined 
(either concurrently or sequentially) with a lumenally-retained agent to eliminate 
potential parasites within the intestine whether or not they are detected by stool 

examination. Metronidazole appears not to have adverse aff ects on fetal develop-
ment during the fi rst trimester. Percutaneous drainage of liver abscess is warranted 
only if medical therapy appears not to be working, abscess rupture appears to be 

imminent, or left  lobe abscesses threaten to rupture into the pericardium.

Suggested Reading

  1.  Petri WA, Singh U. Diagnosis and management of amebiasis. Clin Infect Dis 1999; 

29:1117-25.

  2.  Stanley SL. Amoebiasis. Lancet 2003; 361:1025-34.

  3.  Haque R, Huston CD, Hughes M et al. Amebiasis. New Engl J Med 2003; 

348:1565-73.

  4.  Blessman J, Tannich E. Treatment of asymptomatic intestinal Entamoeba histo-

lytica infection. New Engl J Med 2002; 347:1384.

  5.  Blessman J, Ali IKM, Nu PAT et al. Longitudinal study of intestinal Entamoeba 

histolytica infections in asymptomatic adult carriers. J Clin Microbiol 2003; 

41:4745-50.


background image

C

HAPTER

 29

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Cryptosporidiosis

Gerasimos J. Zaharatos

Introduction

Although the fi rst human cases of Cryptosporidium were described in 1976, 

the contribution of this protozoan parasite to gastrointestinal disease was not 
fully appreciated until the 1980s when scores of cases were described among 
patients with acquired immunodefi ciency syndrome (AIDS). Th e disease gained 
greater notoriety aft er a massive outbreak of waterborne cryptosporidial infection 
in Milwaukee, Wisconsin in 1993. Watery diarrhea and malabsorption are the 
usual sequelae of symptomatic infection. In addition to Cryptosporidium causing 

chronic diarrhea and extraintestinal disease in immunocompromised individuals, 
the parasite is an important source of self-limited diarrhea in immunocompetent 
individuals and a major contributor to persistent diarrhea in children through-

out the developing world. Routine fecal specimen testing, for enteric pathogens 
including ova and parasites, will fail to detect this organism and thus self-limited 
cases may remain undiagnosed. Limited therapeutic options for persistent and 
chronic disease present an additional challenge to clinicians and treatment of any 
underlying immunodefi ciency is paramount.

Th e Parasite

Th e genus Cryptosporidium consists of at least 10 species. Th is group of or-

ganisms resides within the subphylum Apicomplexa, along with other protozoan 
parasites such as Plasmodium species. It is most closely related to coccidian para-

sites including other intestinal pathogens such as Cyclospora and Isospora species. 
Cryptosporidium species have been detected in the gastrointestinal tract of a 
number of mammalian and vertebrate species. Its presence in ruminants has been 
most widely described. C. parvum, a species commonly found in bovine hosts, was 
formerly the species most oft en associated with human disease. However, genotypic 

and phenotypic diff erences among isolates eventually led to the recognition of two 
separate species, C. hominis (formerly “human” genotype or C. parvum genotype 1) 
and C. parvum (“bovine” genotype or C. parvum genotype 2). Humans are most 

commonly infected by C. hominis or C. parvum and on occasion by species nor-
mally present in other animal hosts. It appears that C. hominis only infects humans. 
Mixed infections have been rarely described in immunocompromised patients. As 
the genetic diversity of various host-adapted species is better appreciated, it is likely 
that the present nomenclature will evolve and the relative importance of zoonotic 

transmission will undergo further re-evaluation.


background image

215

Cryptosporidiosis

29

Lifecycle, Pathogenesis and the Host Response

Th e lifecycle of Cryptosporidium can be completed entirely within a single 

host (Fig. 29.1A). Subsequent to oocyst ingestion and activation in the upper GI 
tract, the organisms excyst to release sporozoites. Th ese sporozoites bind intestinal 

epithelial cells and via induction of actin polymerization, provoke their own en-
gulfment to eventually reside in a parasitophorous vacuole within the microvillus 

layer. In this sequestered environment, the parasites undergo asexual reproduction 
(termed merogony) and ultimately produce merozoites that are released intralumi-

nally. Th ese forms in turn bind and are again engulfed by epithelial cells and thus 
perpetuate the cycle. Alternatively the engulfed merozoites may undergo sexual 
diff erentiation and ultimately the fertilization of macrogamonts by microgametes 

will yield new oocysts. Th ese new oocysts may either be shed into the environment 
or excyst within the same host.

Th e organism can be found throughout the gastrointestinal tract; however it ap-

pears to have an affi  nity for epithelial cells in the jejunum, ileum and proximal colon. 
Cholangiocytes are also susceptible to infection, and apoptosis of these epithelial 
cells likely contributes to biliary tract disease. Th e respiratory tract also appears to 

be a site of infection in immunocompromised individuals. Epithelial cell death, 
by both apoptotic and necrotic mechanisms, has been noted in involved regions. 
Th ere is evidence that infected epithelial cells can induce apoptosis in neighboring 
uninfected cells. Epithelial cell infection usually culminates in dysregulation of cell 
signaling pathways including upregulation of proinfl ammatory cascades as well as 

cyclooxygenase-2, prostaglandins and neuropeptide production. Th ese perturba-
tions result in epithelial barrier dysfunction, augmented intestinal permeability, 
dysregulation of electrolyte absorption and secretion and fl uid malabsorption. 

Accordingly, symptomatic infection usually manifests as watery diarrhea.

Epidemiology

Cryptosporidium has a wide geographic distribution, though infection is 

more prevalent in regions of the world with poor sanitary conditions. Infection 
is more common during warm rainy months. Th e reported prevalence of infec-
tion varies widely and is infl uenced by geographic region, age, immune status, 

local outbreaks and the range of sensitivities and specifi cities off ered by diff erent 
diagnostic modalities. In general, exposure rates based on seroprevalence stud-
ies suggest that in North America at least 30% of adults have been previously 
exposed to Cryptosporidium species. However, seroprevalence rates are as high as 
90% in the developing world. In moist environments, Cryptosporidium oocysts 

may remain infectious for 6 months. Th e infectious dose can be as low as 10 
oocysts, though considerable variability exists among isolates and a much higher 
infectious dose is oft en required in previously exposed seropositive individuals. 

Oocysts have been detected in apparently pure surface water sources, though 
protected spring water sources are less likely to be contaminated. Untreated or 
raw waste water is substantially contaminated with oocysts. Moreover munici-
pal wastewater treatment centers, runoff  from animal agriculture and various 
wildlife populations all contribute to a remarkable release of oocysts into the 

aquatic environment. Oocysts are highly resistant to chlorination and can by-
pass certain fi ltration methods. Accordingly, sources of treated potable water 


background image

216

Medical Parasitology

29

can contain signifi cant numbers of oocysts. Oocysts can survive for a period 
of time in seawater, and indeed shellfi sh in coastal areas have been found to be 

contaminated with infectious oocysts. Most cases among immunocompetent 
hosts have been associated with waterborne outbreaks and have involved either 
contaminated drinking water or recreational water sources such as swimming 
pools and lakes. Disease is also well-described in returning travelers, persons 
with animal contact (e.g., farmers) and amongst daycare personnel working with 

young children. Direct person-to-person transmission via the fecal-oral route 
is also common in a number of settings including during sexual activity. Health 
care workers should be cognizant of the potential for nosocomial transmission. 

Foodborne transmission, though relatively infrequent, has been reported from a 
number of sources including inadequately pasteurized beverages and raw fruits 
and vegetables.

Clinical Manifestations and the Host Response

Nonbloody diarrhea is the most common clinical presentation of cryptosporidi-

osis; however clinical fi ndings may vary widely and are dependent on the aff ected 
host population being considered. Th e severity and duration of diarrhea may be 

quite variable. Th e incubation period is usually 7 to 10 days, though it can range 
from several days to weeks.

Th e Developed World: Immunocompetent Hosts

Among immunocompetent adults, the most common presentation is watery, 

occasionally mucoid, diarrhea. Th e severity and frequency of diarrhea can be 
variable ranging from small volume intermittent stools to continuous and volu-

minous unformed or watery stools. Diarrhea is usually self-limited and persists 
for up to 14 days, though it can persist in normal hosts for a more prolonged 
period. Diarrhea may be accompanied by abdominal cramping, fever, malaise, 
nausea and occasionally vomiting. Concurrent respiratory symptoms have also 
been reported. Despite an initial resolution of symptoms, a considerable pro-

portion of infected individuals eventually have recurrent disease within days 
to weeks. Some individuals with C. hominis infection report development of 
extraintestinal symptoms late in their course including recurrent headaches, 

fatigue, dizziness, ocular pain and arthralgias. Accumulating evidence suggests 
that mild or asymptomatic infection may also be common. Previously exposed 
seropositive individuals appear to be more resistant to reinfection and when 
reinfected have milder forms of disease.

Figure 29.1, viewed on following page. A) Life cycle of Cryptosporidium 

species. From the CDC Public Health Image Library (PHIL #3386). Image 

credit: Alexander J da Silva and Melanie Moser (CDC). B) Modifi ed Acid Fast 

Stain. Examination of fecal specimens may reveal round pink or red oocysts 

of 4-6 microns in diameter on a blue or blue-green background (represented 

here as black oocysts on a grey background). Sporozoites may be visual-

ized inside individual oocysts. The assessment of three separate specimens 

and use of an oocyst concentration technique prior to staining may increase 

diagnostic yield. From the CDC Public Health Image Library (PHIL# 7829). 

Image credit: Melanie Moser (CDC/ DPDx).


background image

217

Cryptosporidiosis

29

Figure 29.1. Please see fi gure legend on previous page.


background image

218

Medical Parasitology

29

Th e Developing World: Childhood Diarrhea and Malnutrition

In the developing world, diarrhea amongst children is the most common clinical 

presentation of cryptosporidiosis. Little distinguishes Cryptosporidium-associated 
diarrhea from other infectious causes of childhood diarrhea except for its propen-

sity to cause persistent diarrhea beyond 2 weeks duration. Persistent diarrhea is 
associated with greater morbidity and mortality. Relapsing diarrhea, signifi cant 

weight loss and growth rate reduction are common sequelae of infection in this 
population. Th e relationship between cryptosporidiosis and malnutrition is com-

plex. It is unclear whether malnourished children have an increased susceptibility 
to infection and predilection for more severe and persistent disease.

Th e Immunocompromised Host: AIDS and Other 
Immunodefi ciencies

In the patient with HIV, the course of cryptosporidiosis oft en correlates with 

the immune status of the individual. Patients with CD4 counts above 200 cells/

μ

are likely to have a clinical course similar to immunocompetent hosts. Patients with 
AIDS and progressively declining CD4 counts are more likely to present with foul 
smelling bulky stools in the context of chronic diarrhea and weight loss. Severely im-

munocompromised individuals with CD4 counts less than 50 cells/microL develop 
a more fulminant cholera-like disease with watery and voluminous diarrhea. Biliary 
and respiratory tract disease is more likely to manifest in severely immunocompro-
mised persons with CD4 counts less than 50 cells/

μ

L. Biliary tract involvement may 

result in biliary strictures, papillary stenosis, pancreatitis, acalculous cholecystitis, or 
sclerosing cholangitis. Th ese may manifest with right upper quadrant pain, nausea, 
vomiting and low grade fever. Although oocysts have been detected in respiratory 

secretions of immunocompromised patients, a causal link between Cryptosporidium 
and pulmonary disease is usually diffi  cult to establish given the occurrence of 
coexistent opportunistic pathogens in this population. More severe or persistent 
cryptosporidiosis has also been described in other immunocompromised settings, 
including organ transplantation, immunosuppressive therapy, chemotherapy, primary 

immunodefi ciencies, hematologic malignancies, cytokine defi ciencies and a variety 
of other conditions associated with cell mediated immune dysfunction. CD4 T-cells 
and the induction of certain cytokines, particularly interferon-gamma, play a critical 

role in controlling infection. Th e role of other cytokines in both pathogenesis and 
eff ective immunity or parasitologic clearance continues to be investigated. Th e role of 
antibodies in immune protection remains contentious and immunoglobulin defi cits 
or B-cell dysfunction do not preclude contemporaneous defi cits in T-cell or den-
dritic cell function. Moreover, patients with AIDS can mount apparently adequate 

humoral responses yet remain susceptible to severe or persistent cryptosporidiosis. 
Interestingly, fulminant disease has been noted in patients with severe combined 
immunodefi ciency syndrome, immunoglobulin defi ciencies and subset of hyper IgM 

syndromes. Th e latter syndromes are a heterogeneous and rare group of disorders 
which manifest high levels of IgM but markedly reduced levels of other Ig isotypes. 
Th e X-linked form is associated with inadequate levels of CD40L expression, defec-
tive immunoglobulin class switching and ineff ective generation of antigen specifi c 
responses. Despite immunoglobulin replacement therapy, these patients remain 

susceptible to certain opportunistic infections including cryptosporidiosis.


background image

219

Cryptosporidiosis

29

Diagnosis

Routine stool examination for ova and parasites will generally fail to detect 

the organism and the clinician should specify that Cryptosporidium species is in 
the diff erential diagnosis. Th e sample should be preserved in 10% buff ered for-

malin, though some laboratories use a concentration method with formalin-ethyl 
acetate fi xation that may augment the sensitivity of detection. Examination 

of unfi xed specimens should be discouraged to reduce the risk to laboratory 
workers. A number of diagnostic modalities with varying sensitivities and 

specifi cities are now available. Traditionally, the diagnosis of cryptosporidiosis 
has been made on the basis of microscopic identifi cation of round oocysts of 
4-6 

μ

m in diameter (Fig. 29.1B). Standard staining techniques include modifi ed 

acid fast staining in which oocysts appear pink or red on a blue or blue-green 
background, allowing clear diff erentiation from morphologically similar yeasts. 
Sporozoites may be seen in individual oocysts and their visualization may 

assist in the diagnosis. White blood cells are usually not seen. At least three 
separate specimens should be examined to improve the diagnostic yield. Th e 
yield may be enhanced if the stool specimen is unformed and if the laboratory 
uses a concentration technique prior to staining. Fluorescent auramine stains 
are potentially useful but provide little specifi city by themselves. Malachite 

green, Giemsa and hematoxylin and eosin staining techniques have been used 
to detect the organism with varying success and are inferior to modifi ed acid 
fast staining. Immunofl uorescence assays are now commonly used and may be 

a log more sensitive than acid-fast stains. 

Antigen-detection assays in the form of ELISA or immunochromatographic 

kits are now more widely used. A number of commercially available kits now have 
excellent sensitivity and specifi city relative to the modifi ed acid fast technique. 
Th e clinician should nevertheless review the diagnostic reliability of such kits be-

fore excluding the diagnosis. PCR remains investigational, is more labor intensive 
and is not widely used though signifi cantly more sensitive than any microscopic 
technique. Validated in-house assays can be more sensitive than antigen-detection 

assays and may have the capability to distinguish between diff erent species. 
Although serological testing has been instrumental in determining the prevalence 
of cryptosporidiosis, it is of limited usefulness given the persistence of antibody 
titers aft er remote infection in otherwise healthy individuals.

In the immunocompromised patient with biliary disease or pancreatitis, the 

clinician should maintain a high index of suspicion for a cryptosporidiosis. One 
should not exclude the diagnosis based on negative stool specimen testing; as 
such investigations may be negative in this setting. Without frank obstruction, 

hyperbilirubinemia may be unimpressive or absent though elevated alkaline 
phosphatase and glutamyl transpeptidase, as well as elevated amylase and lipase 
in the setting of pancreatitis, may point to the diagnosis of biliary tract infection. 

Ultrasonographic abnormalities may include a thickened gallbladder wall as well 
as dilated and irregular intrahepatic and extrahepatic bile ducts. A suspicion of 

Cryptosporidium-related cholangiopathy should prompt an endoscopic assessment 
of biliary involvement with tissue biopsy for histology as well as examination of 

bile for oocysts.


background image

220

Medical Parasitology

29

Management

Supportive care of the patient with cryptosporidiosis includes fluid and 

electrolyte replacement, adequate nutritional intake and a lactose-free diet. Fluid 
absorption may be improved by supplementation with glutamine. Antimotility 

agents like loperamide are a mainstay of symptomatic treatment, though opiates 
and octreotide have been used as adjuncts in more severe disease. In the setting of 

obstruction secondary to papillary stenosis, endoscopic sphincterotomy with or 
without stent placement may off er a symptomatic benefi t.

Th e effi  cacy of antiparasitic therapy has historically been quite disappointing, 

particularly amongst immunocompromised or malnourished patients. Th ree an-
tiparasitic agents are presently considered as having some in vivo activity against 

Cryptosporidium: paromomycin, azithromycin and nitazoxanide. Amongst im-
munocompetent individuals, nitazoxamide (500 mg po BID for 3 days) has more 
recently been shown to speed the resolution of diarrhea and oocyst shedding. 

Nitazoxanide is also available as a suspension for pediatric use and is approved 
for use in the United States for children older than 12 months of age at a range of 
age-adjusted doses. Th e clinician should be cognizant of the signifi cant likelihood 

of relapsing disease, even in the immunocompetent host.

In patients with immune dysfunction, eff orts to improve immune function 

are paramount. In persons with AIDS, diarrhea may improve dramatically and 
resolve on eff ective antiretroviral therapy as a result of immune reconstitution. 
Interestingly, some investigators have reported that protease inhibitors have some 

antiparasitic activity. Nevertheless, treatment of the patient with advanced AIDS 
may be challenging in that antiretroviral medications may be poorly absorbed in the 
setting of active cryptosporidiosis. For this reason, some authorities suggest initially 

controlling disease with antiparasitic drugs prior to instituting a new antiretroviral 
regimen. Antiparasitic therapy can speed resolution of diarrhea and oocyst shed-
ding, however a transient response to therapy is to be expected in patients with 
advanced AIDS if immune reconstitution does not eventually occur. 

Paromomycin has been shown to improve diarrhea to some extent in patients 

with AIDS and in combination with azithromycin has been eff ective in dimin-
ishing symptoms and oocyst shedding in some patients. However, this regimen 

does not usually result in resolution of disease in patients with AIDS. Numerous 
isolated case reports have suggested a response to various combinations of a num-

ber of alternative agents. Such regimens have contributed transciently, if at all, to 

improvement of symptoms and should be considered as adjuncts of limited eff ec-

tiveness. Th ese agents include spiramycin, clarithromycin, atovaquone, letrazuril 

and hyperimmune bovine colostrum. Interestingly, rifaximin has been shown to 
improve diarrhea to some extent in patients with HIV. A recent small case series 

has also described its success in treating patients with advanced AIDS, but such 
reports remain preliminary.

Promising data has been garnered from compassionate use programs for 

nitazoxamide in patients with AIDS, suggesting that most recipients have a 

sustained clinical response to this agent. However, short courses of nitazoxanide 

appear ineff ective in children with AIDS not receiving ongoing eff ective antire-
troviral therapy. Judging the eff ectiveness of the drug in HIV-infected and other 


background image

221

Cryptosporidiosis

29

immunocompromised hosts will require further formal investigation. Higher 

doses and/or a more extended duration of this therapy (500 to 1000 mg po BID 
for 14 days in adults) should be considered for such populations, and immune 

reconstitution remains fundamental to any sustained response. Th erapy may 
need to be prolonged until suffi  cient immune reconstitution has been achieved. 

In hosts with intractable immunodefi ciency, parasitologic cure is very unlikely 
irrespective of the regimen chosen and persistent fulminant diarrhea portends 
a dismal prognosis.

Suggested Reading

  1.  Bushen OY, Lima AA, Guerrant RL. Cryptosporidiosis. In: Guerrant RL, 

Walker DH, Weller PF: Tropical infectious diseases. Principle, pathogens and 

practice. Philadelphia, PA: Elsevier Churchill Livingstone 2006; 1003-14.

  2.  Huang DB, White AC. An updated review on Cryptosporidium and Giardia. 

Gastroenterol Clin N Am 2006; 35: 291-314.

  3.  White AC. Cryptosporidiosis (Cryptosporidium hominis, Cryptosporidium 

parvum and other species). In: Mandell, Bennett & Dolin: Principles and Practice 

of Infectious Diseases. 6th Edition. Philadelphia: Elsevier Churchill Livingstone, 

2005:3215-28.

  4.  Xiao L, Fayer R, Ryan U et al. Cryptosporidium taxonomy: recent advances and 

implications for public health. Clin Microbiol Rev 2004; 17:72-97.

  5.  Hunter PR, Nichols G. Epidemiology and clinical features of Cryptosporidium in-

fection in immunocompromised patients. Clin Microbiol Rev 2002; 15:145-54.

  6.  Centers for disease control and prevention and the national center for infec-

tious diseases, division of parasitic diseases. Parasitic disease information: 

Cryptosporidium Infection/Cryptosporidiosis. http://www.cdc.gov/ncidod/

dpd/parasites/cryptosporidiosis/default.htm


background image

C

HAPTER

 30

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Trichomoniasis

Raymond M. Johnson

Introduction

Trichomonas vaginalis is a fl agellated single cell eukaryote with a relatively 

simple lifecycle. T. vaginalis exists only in the trophozoite form and divides by 

simple binary fi ssion in its human host. Th ere are no T. vaginalis cysts, portions 

of the parasite lifecycle that occur outside its human host, or known animal or 

environmental reservoirs. A closely related relative Tritrichomonas foetus causes 

commercially important reproductive tract and fetal infections in cattle.

T. vaginalis carries the distinction of being the only truly sexually transmitted 

parasitic infection in humans.

1

 It is very successful as a pathogen causing roughly 

the same number of STDs as Chlamydia trachomatis, the most prevalent sexually 

transmitted bacterial pathogen. In the U.S. there are an estimated 3-5 million new 

cases of ‘trich’ every year with an infected pool of approximately 20 million indi-

viduals. Worldwide the prevalence of T. vaginalis varies from 2% to greater than 

50% depending on region, country, gender and demographics of the population 

specifi cally evaluated.

T. vaginalis is highly adapted to the human urogenital tract and is never found in 

stool specimens. Th e unique adaptation of T. vaginalis to the urogenital tract allows 

it to be easily identifi ed in urogenital tract clinical specimens without concern about 

other parasite species. T. vaginalis thrives in the microaerophilic environment of 

the vaginal mucosa. To live in the low oxygen tension it utilizes an organelle called 

a hydrogenosome to generate ATP. T. vaginalis lack mitochondria that generate 

ATP for oxygen-dependent eukaryotes. Instead the hydrogenosome generates 

ATP utilizing a pathway similar to mitochondria except that the fi nal electron 

acceptor is hydrogen rather than oxygen, generating hydrogen gas as a byproduct 

of metabolism. Th e hydrogenosome is also the Achille’s heel of T. vaginalis as it 

metabolizes the 5-nitroimidazole antibiotics metronidazole and tinidazole into 
toxic anion radicals that kill the parasite.

Clinical Disease

Trichomonas vaginalis typically comes to medical attention through one of 

four basic scenarios:

1. Women seeking evaluation for a vaginal discharge.

2. Women incidentally found to be infected with T. vaginalis during prenatal 

care visits or examination of routine Pap smears.

3. Male partners of women diagnosed with T. vaginalis via (1) or (2).

4. Men with nongonococcal urethritis (NGU) that does not respond to usual 

NGU therapy.


background image

223

Trichomoniasis

30

T. vaginalis is only found in the lower urinary and reproductive tracts of men 

and women. In women it causes a superfi cial infection of the vagina and urethra, 
occasionally ascending further to cause cystitis (bladder infections). In males 

the infection is largely confi ned to the urethra, but can ascend into the prostate 
and epididymis. T. vaginalis is not known to disseminate from the urogenital 

tract to cause deep seated infections in other parts of the body. Neonates acquir-
ing Trichomonas vaginalis during transit through the birth canal rarely develop 
pneumonia and a single case of a trauma related T. vaginalis perinephric abscess 

has been reported.

Consistent with its tropism, T. vaginalis causes lower reproductive tract symp-

toms in women including vaginal discharge, vulvar irritation and dysparunia. 
Colonization of the urinary tract is associated with dysuria, urinary frequency, 

post voiding discomfort and lower abdominal pain. Th e vaginal discharge caused 
by T. vaginalis tends to be copious and can be ‘frothy’. While women seeking 
medical attention for the above conditions are subjectively and objectively ill, 

many women carry T. vaginalis asymptomatically for protracted periods of time. 
40-50% of women infected with T. vaginalis do not report a vaginal discharge.

2

 

A recent study in adolescent women over approximately 2 years had an incident 
rate of infection of 23%, with roughly a third of the infected adolescent women 
remaining asymptomatic.

3

Th e majority of infected men are asymptomatic, however T. vaginalis can 

cause a symptomatic nongonococcal urethritis (NGU).

4

 Th e urethral discharge 

associated with the infection tends to be minimal compared with other NGU 
etiologies. Because diagnostic testing for T. vaginalis in men is suboptimal, it is 
common practice in many STD clinics to empirically treat for T. vaginalis in men 
that have failed standard nongonococcal urethritis therapy and observe for resolu-
tion of symptoms. T. vaginalis rarely ascends into the prostate or epididymis to 

cause symptomatic infections.

Th e natural history of T. vaginalis infections is poorly understood. It is estimated 

that only 20% of women and 40% of men spontaneously clear their infections. Th e 

long duration of infection combined with a high rate of asymptomatic carriage 
likely account for the success of T. vaginalis as a sexually transmitted parasite. 
Th e relative insensitivity of currently utilized laboratory tests for diagnosing T. 
vaginalis
 allows it to escape detection and likely further facilitates its prevalence 
throughout the world.

Diagnosis

Th e approach to diagnosing T. vaginalis infection diff ers between men and 

women. A vaginal discharge may be caused by multiple etiologies and concurrent 
infections with two or more pathogens are common. Th e physical exam should 

include inspection of the cervix for presence of mucopurulent cervicitis associated 
with chlamydia and gonorrhea infections and the so-called ‘strawberry cervix’, a 
rare physical fi nding associated with T. vaginalis infection. Th e exam should also 

include evaluation for cervical motion tenderness, the physical exam fi nding that 
correlates with pelvic infl ammatory disease.

Th e nature of the vaginal discharge itself is not particularly informative, 

though experienced STD clinic practitioners develop some ability to diff erentiate 


background image

224

Medical Parasitology

30

trichomonas infections from bacterial vaginosis and other infectious etiologies. An 

abundant frothy vaginal discharge is highly suspicious for T. vaginalis infection, but 
is not specifi c enough to establish a diagnosis and defer further diagnostic evalu-
ation. Vaginal fl uid specimens collected with swabs should be tested for pH and 
normal saline and KOH slides prepared. Typical cases of vaginal T. vaginalis infec-
tions have pH values greater than 4.5, but a normal vaginal pH does not rule out a T. 

vaginalis infection. Th is fi nding also does not distinguish T. vaginalis from bacterial 
vaginosis that is also associated with elevated pH. A positive KOH ‘whiff  ’ test for 
amines (fi shy smell) implies bacterial vaginosis but does not exclude T. vaginalis 

co-infection. Th e normal saline wet prep slide on microscopy may show clue cells 
(vaginal epithelial cells coated with bacteria) consistent with bacterial vaginosis, or 
motile trichomonads diagnostic for T. vaginalis infection, or both. Visualization 
of motile trichomonads on microscopic examination is somewhat dramatic and 
is diagnostic of a ‘trich’ infection (Fig. 30.1). Unfortunately examination of the 

normal saline slide is only about 60% sensitive for making the diagnosis of a T. 
vaginalis
 infection. However, a positive T. vaginalis wet prep is all that is needed 
to make the diagnosis in the majority of patients and therefore is an important 

part of the initial medical evaluation in women with vaginal discharges.

A sizeable minority of women with T. vaginalis infections will have a negative 

saline wet prep. Th ere is no consensus among STD care providers on how the sub-
sequent evaluation should proceed. For patients diagnosed with bacterial vaginosis 
(BV), systemic metronidazole given to treat BV would eradicate a coincident T. 

vaginalis infection while topical metronidazole gel therapy is not eff ective ‘trich’ 
therapy. Also, missing the diagnosis of a co-incident T. vaginalis infection means 
that the patient’s male partner will go untreated and the patient will likely be 

reinfected immediately aft er coming off  antibiotic therapy.

Figure 30.1. Trichomonas vaginalis visualized on normal saline wet prep 

microscopy. Image courtesy of Barbara Van Der Pol, Indiana University 

School of Medicine, Indianapolis, IN.


background image

225

Trichomoniasis

30

In medical settings where the test is available, the InPouch™ Trichomonas 

vaginalis culture system (Biomed) is probably the best and most aff ordable 
second screening test. It does however have several drawbacks. Samples must be 

inoculated into the culture medium within 30 minutes as the T. vaginalis must 
be viable for the culture to give a positive result. Also, because it is a culture 

system, there is an incubation period of 1 to 5 days before the test turns positive. 
In addition a microbiology technician must be available to evaluate the culture 
system microscopically for identifi cation of motile T. vaginalis forms to fi nalize 

the test results. Th e culture technique is currently considered the gold standard 

for making a T. vaginalis diagnosis and is the most sensitive of any diagnostic 
test currently available for diagnosing T. vaginalis in women. PCR tests for T. 
vaginalis
 in vaginal fl uid specimens are not commercially/clinically available 

and most of those in development do not appear to be more sensitive than 
Trichomonas vaginalis culture. Because a vaginal discharge represents more than 
a simple inconvenience for most women, a more rapid point of care diagnostic 

test would be desirable.

Th ere are two nonculture clinical tests available for diagnosing T. vaginalis 

vaginal infections. A DNA probe test (Affi  rm™ VPII, Becton Dickinson) is capable 

of identifying Trichomonas vaginalisGardnerella vaginalis and Candida species 
in vaginal fl uid specimens. Th e DNA probe test has a sensitivity of roughly 90% 
compared with culture. It has the advantage of potentially identifying polymicro-
bial infections and has more forgiving specimen handling requirements. However, 
it requires specialized equipment specifi c to the assay and has potential delays in 

diagnosis depending on individual laboratory protocols for processing specimens 
and reporting results. A simple point of care test based on Trichomonas vaginalis 
antigen (OSOM® Trichomonas Rapid Test, Genzyme Diagnositics) is commer-

cially available and FDA approved in the US. Th e antigen-based test is about 80% 
sensitive compared with culture. Once vaginal swabs have been obtained, sample 
processing and test completion take about 10 minutes. In some clinical settings 
where culture is unavailable or immediate results are desired, examination of a 
saline wet mount combined with a point of care antigen test for negative wet 

preps may be a practical approach for diagnosing T. vaginalis.

In men, microscopic examination of urethral swabs or urine sediment are 

insensitive tests for diagnosing ‘trich’ infections and are not routinely performed. 
Culture is the test of choice for making a defi nitive diagnosis with a sensitivity of 

roughly 60-70%. To get maximum sensitivity both urethral swab and urine sedi-

ment cultures should be obtained. Semen may be the most sensitive clinical sample 
for culturing Trichomonas vaginalis, though it is not routinely used. In men, the 

development of urine sediment PCR assay for T. vaginalis holds the promise of 

being a more sensitive and convenient test. Currently urine sediment PCR test-

ing is only available on an experimental basis or in clinical labs with ‘home brew’ 
PCR assays. Because of the diffi  culty inherent in diagnosing T. vaginalis in men 

with currently available tests, many men are treated empirically for T. vaginalis 

because a female partner has been diagnosed with T. vaginalis or because they have 
an NGU that did not respond to standard therapy. While there are no defi nite 

statistics available, asymptomatic infected men likely represent a major reservoir 
for ongoing transmission of T. vaginalis infections.


background image

226

Medical Parasitology

30

Treatment

Trichomonas vaginalis is susceptible to the 5-nitroimidazole antibiotics metro-

nidazole and tinidazole. Th e standard therapies for both men and women are:

1. Metronidazole 2 g orally in a single dose, or

2. Metronidazole 500 mg orally twice a day for 7 days, or
3. Tinidazole 2 g orally in a single dose

4. A single 2 g dose of metronidazole is recommended for pregnant women.

Th ere are no major advantages of tinidazole over metronidazole, with the 

latter being less costly than the former. Tinidazole, commonly used outside the 
U.S. and recently approved in the U.S., has a longer half-life and may be better 
tolerated. Patients and their partners are generally treated with a single 2 g dose 

of metronidazole or tinidazole. Patients should abstain from sexual activity 
until asymptomatic or, more specifi cally, for at least one week aft er completing 
antibiotic therapy. Th e seven day course of metronidazole therapy is generally 

reserved for initial treatment failures. Multiple treatment failures refl ect either 
untreated ongoing sexual partners or 5-nitroimidazole resistance. 5-nitroimida-
zole resistance is estimated to be 2-5%.

5

 Suspicious cases should be referred to 

an infectious diseases specialist or gynecologist with expertise and in the U.S. 
arrangements should be made to send cultures to the Centers for Disease Control 
and Prevention (CDC; Consultation is available via tel: 770-488-4115 or website: 

http://www.cdc.gov/std/). Th erapy with metronidazole or tinidazole is generally 
well tolerated, but patients should be warned to avoid drinking alcohol for at 
least 48 hours aft er their last dose of either metronidazole or tinidazole to avoid 
severe ‘hangovers’ that result from antibiotic inhibition of alcohol metabolism. 
In addition, patients should be warned about a metallic taste in the back of their 

mouths especially those on a 7 day course of therapy. For a very small minority of 
patients nausea/vomiting is a signifi cant side eff ect of the medications.

Th e possibility the Trichomonas vaginalis infections contribute to the spread 

of HIV combined with its high prevalence has altered “trich’s” status from that 
of a mere ‘nuisance’ to that of an important sexually transmitted microbial 
pathogen.

6

References

  1.  Schwebke JR, Burgess D. Trichomoniasis. Clin Microbiol Rev 2004; 17:794-803, 

table of contents.

  2.  Fouts AC, Kraus SJ. Trichomonas vaginalis: reevaluation of its clinical presentation 

and laboratory diagnosis. J Infect Dis 1980; 141:137-43.

  3.  Van Der Pol B, Williams JA, Orr DP et al. Prevalence, incidence, natural history 

and response to treatment of Trichomonas vaginalis infection among adolescent 

women. J Infect Dis 2005; 192:2039-44.

  4.  Krieger JN. Trichomoniasis in men: old issues and new data. Sex Transm Dis 1995; 

22:83-96.

  5.  Cudmore SL, Delgaty KL, Hayward-McClelland SF et al. Treatment of infections 

caused by metronidazole-resistant Trichomonas vaginalis. Clin Microbiol Rev 

2004; 17:783-93, table of contents.

  6.  Cohen MS, Hoff man IF, Royce RA et al. Reduction of concentration of HIV-1 in 

semen aft er treatment of urethritis: implications for prevention of sexual transmis-

sion of HIV-1. AIDSCAP Malawi Research Group. Lancet 1997; 349:1868-73.


background image

C

HAPTER

 31

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Pneumocystis Pneumonia

Allen B. Clarkson, Jr. and Salim Merali

Introduction

Pneumocystis is an opportunistic fungal pathogen causing Pneumocystis pneu-

monia (PcP) in mammals with compromised immunity. It was most oft en classifi ed 
as a protozoan until, beginning in the late 1980s, genetic and other data showed 
conclusively that Pneumocystis is a fungus, albeit an unusual one. Because it appears 
similar in all mammals and produces similar pneumonias, all Pneumocystis was once 
classifi ed as the single species, P. carinii. When genetic analyses in recent years showed 
wide divergence amongst Pneumocystis infecting diff erent animals, the need for 

diff erentiation became clear. Initially the species P. carinii was divided into several 
form specialis, but that clumsy nomenclature has been superseded by a widely, but 
not yet universally, accepted classifi cation with multiple species within the genus 

Pneumocystis with P. jiroveci for the species infecting humans, P. carinii for one of 
two species specifi c for rats and other names for Pneumocystis species infecting other 
mammals. Identifi cation of genetically distinct strains within P. jiroveci has proven 
helpful for epidemiological studies. For practical reasons, the established acronym 
PCP (or PcP) remains in use, but now refers to Pneumocystis pneumonia rather than 

P. carinii pneumonia. Figure 31.1 shows Pneumocystis in the lung at the electron 
microscope level and Figure 31.2 at the light microscope level.

Populations at Risk

Pneumocystis was described in animal lungs in 1912, but was not known to be 

a human pathogen until 1951 when it was associated with interstitial plasma-cell 
pneumonia in malnourished institutionalized children. Subsequently, PCP was 

recognized as important complication for children being treated for acute lympho-
cytic leukemia and the introduction of cotrimoxazole to treat PCP comorbidity in 
1975 greatly improved outcomes. PCP remains a threat for patients given drugs that 
suppress immunity. Without prophylaxis, the rate of PCP aft er organ transplant 
ranges from 5-25% and for cancer treatment from 1-25%. Drugs used for rheumatic 

disease can also increase susceptibility. However, advanced HIV disease accounts 
for the greatest number of cases. Th e rate of PCP associated with HIV infection 
dropped when prophylaxis was widely adopted in the early 1990s and dropped 

further in the mid 1990s with the introduction of HAART to suppress viral load. 
But for untreated or nonresponsive advanced HIV disease, the rate remains above 
50%. Although the risk of HIV-associated PCP can be nearly eliminated by good 
compliance with a correctly chosen and tolerated chemoprophylactic regimen, 
PCP remains the most common opportunistic infection associated with AIDS. 


background image

228

Medical Parasitology

31

Recent anecdotal information suggests the overall rate has risen with the shift  in 

HIV infection patterns to populations with a lower probability of seeking and less 
access to timely medical care. PCP was thought to be rare in the huge population 
of HIV-infected people in sub-Saharan Africa, but recent studies show a high 
prevalence there as well—especially in children.

Life Cycle and Transmission

Because Pneumocystis cannot yet be cultured well and genetic manipulation is 

not yet possible, it is diffi  cult to study and much remains unknown. Two distinct life 
cycle forms are known: cyst and trophozoite. Th e mature cyst has a thick cell wall 

and eight intracystic bodies. Good evidence indicates that intracystic bodies are the 
product of meiosis, but details are lacking. Upon cyst rupture, intracystic bodies are 
released and become trophozoites which either grow and divide by binary fi ssion or 

develop into precysts then cysts. Mature cysts have a characteristic indented-sphere 

Figure 31.1. Transmission electron micrograph showing Pneumocystis 

trophozoites attached to Type 1 pneumocytes: These organisms reduce gas 

exchange, although the degree of involvement seen here is light. As the 

disease progresses and alveoli of lobules become completely fi lled  with 

organisms, gas exchange becomes totally blocked. However, progression 

is slow with areas of high involvement becoming consolidated and fi brous 

tissue replacing portions of lung parenchyma. *) Pneumocystis organisms; 1) 

capillary lumen; 2) erythrocyte; 3) alveolar air space; 4) area of consolida-

tion with cross-sectioned collagen fi bers seen as small dots.


background image

229

Pneumocystis Pneumonia

31

shape and a narrow size range, but trophozoites are highly variable in both size and 

shape. Transmission from animal to animal by air has been directly demonstrated and 
air sampling fi lters placed in hospital rooms of patients with PCP trap particulates 
containing more copies of Pneumocystis-specifi c nucleic acid sequences than fi lters 
from control areas clinical. Th e thick presumably environmentally resistant cyst wall 
suggests a role in transmission, but animal studies show both forms can transmit 

infection when instilled directly into lungs. Speculation exists regarding a cryptic 
life cycle stage outside mammalian hosts, but evidence is lacking.

A long-standing question has been whether PCP develops upon immunosup-

pression due to activation of nearly universal colonization or as the result of a new 
inoculation. If the former is true, patients with PCP present no risk to other im-
munosuppressed persons. However, accumulating data support the second hypoth-
esis. Th ese data include reports of clusters of PCP cases, analyses showing related 
groups of patients to have the same genetic strain and examinations of Pneumocystis 

taken from patients during multiple episodes of PCP that showed diff erent genetic 
strains to be involved in each episode. Th e risk of those with active PCP present 
to other immunosuppressed persons is unclear, but several recent reports suggest 

it is signifi cant.

Diagnosis

Presenting symptoms of PCP can include general fatigue, dry cough, night 

sweats, low grade fever, tachypnea and history of progressive dyspnea most no-

ticeable on exertion. Auscultation is characteristically uninformative, but fi ne 

Figure 31.2. Lung sections silver-stained and counterstained with eosin: The 

dark bodies are cysts, but the far more numerous trophozoites are not selec-

tively stained. The left panel shows a region with moderate pathology; septa 

are not yet markedly thickened, although gas exchange will have already 

been compromised by trophozoites attached to Type 1 pneumocytes. The 

right panel shows a region with greater involvement; septa are thickened and 

some regions show consolidation. As the disease progresses, gas exchange 

becomes more compromised eventually to the point of asphyxiation.


background image

230

Medical Parasitology

31

dry rales may be noted. Presentation can include pneumothorax, but this is rare. 

For those with advanced HIV disease, symptoms may progress slowly so the 
patient isn’t aware of the developing pneumonia and attributes breathlessness 

upon exertion as general fatigue. Clinical data associated with PCP include chest 
X-ray showing a bilateral fi ne smooth “ground glass” opacity, positive gallium 

scan, hypoxia indicated by arterial oxygen saturation <85%, abnormal diff using 
capacity and elevated serum lactate dehydrogenase. Although all these symptoms 
and data can all result from other causes and thus are not diagnostic, the presence 

of any requires PCP be considered, especially for persons with impaired immune 

function. Furthermore, since PCP may be the fi rst indication of developing HIV 
disease, particularly for those unaware of their infection, it should be considered 
even in the absence of known immunosuppression. A presumptive diagnosis of 

PCP is sometimes given based on knowledge of immunosuppression in combi-
nation with a set of symptoms and clinical data; response to specifi c therapy is 
considered confi rmation. However, the particular set of symptoms and laboratory 

data varies among physicians and hospitals and there is no accepted standard. 
Although presumptive diagnoses by experienced clinicians can be timely, accurate, 
cost eff ective and benefi cial to patients, most authorities recommend the eff ort 

to obtain a defi nitive diagnosis by demonstrating presence of Pneumocystis using 
histologic, cytologic, or nucleic acid-based methods. For some years following 
discovery of HIV infection, diagnosis based on open lung biopsy was common, 
but this has been replaced by less invasive procedures. Bronchial alveolar lavage 
(BAL) is the current gold standard and is sometimes combined with transbron-

chial biopsy, depending on hospital policy. Figure 31.3 shows sediment from BAL 
fl uid stained to reveal cysts. Examination of sputum induced by inhalation of an 
aerosol of hypertonic saline is also very eff ective. In some hospitals, diagnoses 

have been made using oral washings. Success of these progressively less invasive 
diagnostic procedures has depended upon progressive improvements in both 
detection methods and laboratory experience. Because P. jiroveci cysts have a 
thick fungal-type, glycan-containing cell wall, they are revealed by fungal cell 
wall stains such as methenamime silver, cresyl echt violet and toluidine blue as 

well as by selective uptake of fl uorescent dyes such as calcofl uor white. Th ese are 

not specifi c for Pneumocystis so diff erentiation from other fungi depends on the 

characteristic size (∼5 

μ

M) and shape of cysts (individual indented spheres with 

a smooth surface). As a consequence, identifi cation of individual cysts in sections 
is not as easy as in preparations such as smears that preserve the shape of the intact 
organism. However, sections reveal alveoli fi lled with “foamy exudate” characteris-
tic of PCP and can be useful for diagnosis. Although trophozoite numbers exceed 
cysts by an order of magnitude, they can be less useful for diagnosis. Th ey are not 

stained by fungal cell wall reagents. Th ey do take up hematological stains such as 
Wrights and Giemsa, but host material and other pathogens are also stained by 
these. Trophozoites are highly variable in both size (0.5-8 

μ

m) and shape (from 

round to almost stellate and from a smooth to a highly irregular surface) so that 
reliable identifi cation requires training, skill and experience. Because intracystic 

bodies within cysts stain similarly to trophozoites, they are sometimes seen as a 
cluster of eight intracystic bodies. IFA kits licensed for PCP diagnosis are com-
mercially available; these label both trophozoites and cysts selectively and strongly. 


background image

231

Pneumocystis Pneumonia

31

When used with BAL samples, they oft en reveal distinctive fl uorescent clusters 

of trophozoites and cysts enmeshed in exudate that is also labeled. Although IFA 
provides high sensitivity and specifi city, this diagnostic tool may not be available 
due to drawbacks of reagent cost, fl uorescence microscope requirement and the 
time, skill and equipment needed for processing the specimens. PCR-based nucleic 
acid detection off ers exquisite sensitivity and specifi city, but suff ers from lack of 

FDA-approved kits as well as the general problems of PCR-based diagnoses: costs 
of special reagents, special equipment, technical training, inclusion of extensive 
positive and negative controls and need for rigid procedures to prevent false 

positives due to contamination. Furthermore, the extreme sensitivity of PCR 
presents a problem in that colonization with small numbers of P. jiroveci can be 
detected even if they are not causing disease. A well-designed and fully developed 
quantitative-PCR protocol with a clear “initial target copy number” threshold 
could resolve many of these issues and encouraging clinical studies have been 

done; however, even if fully developed, general disadvantages of PCR diagnosis 
will remain. Reported success rates for the various diagnostic methods vary from 
study to study, partially due to the experience and expertise of physicians and 

laboratories, but trends are clear. Open lung or transbronchial biopsy specimens 
stained for cysts provide diagnostic sensitivity and specifi city of 98+ and 100%, 
respectively, but both procedures are invasive and present risks to the patient. 
Sensitivities and specifi cities for BAL fl uid samples stained for cysts are reported 
as high as 95 and 100%, respectively; IFA can improve sensitivity to 98% while 

retaining selectivity. Reports of effi  cacy using induced sputum samples have a much 
broader spread with sensitivity ranging from 30 to 90%; specifi city remains high. 

Figure 31.3. BAL sample silver-stained and counterstained with Fast Green: Due 

to their shape and dark gray staining, cysts are readily recognizable. When 

present in adequate numbers, the diagnosis can be made with confi dence.


background image

232

Medical Parasitology

31

Finally, because those persons vulnerable to PCP can and oft en do have multiple 

respiratory infections, the presence of other pathogens and their possible contri-
bution to disease must be considered. Th is is true even if all symptoms and data 

are consistent with PCP, P. jiroveci is positively identifi ed in patient specimens 
and the disease responds to treatment.

Course of Disease and Pathology

PCP in infants from age 1 to 7 months of age, particularly from 2 to 4 months, 

develops more rapidly and becomes more severe than in older children or adults. 
Onset in infants can be insidious with the fi rst signs being tachypnea and slight 

perioral cyanosis; coughing and fever may not be signifi cant. Th e disease may 
progress over several weeks with increased tachypnea, dyspnea with sternal 
contraction and cyanosis. However, progression can be very rapid with death 
preceding diagnosis. Th ere is no information on the eff ectiveness of maternally 

transferred immunity, but animal studies showing antibody protection suggests 
a role for maternal antibodies. Since antibodies specifi c for Pneumocystis com-
monly develop in early childhood without any history of PCP, the severity of PCP 

in immunosuppressed infants may be due to a combination of fading maternal 
protection and primary exposure. Interestingly, recent information indicates 
that even in otherwise healthy infants primary infections may not be completely 
silent. When nasopharyngeal samples from 105 infants (2 or 3 months old with 
respiratory infection symptoms) were tested for the presence of P. jiroveci, 48% 

were positive; the frequency was markedly lower for younger or older infants with 
similar symptoms. Examination of lungs from sudden infant death syndrome 
victims revealed a high proportion infected with P. jiroveci. However, the question 

remains open as to whether PCP contributed to death, whether the presence P. 
jiroveci
 refl ects another underlying pathological condition, or whether this fi nd-
ing is irrelevant because P. jiroveci colonization is common in infants of that age 
and causes no signifi cant pathology without immunosuppression. Progression 
of symptoms in older children and adults is slower, oft en over several months. 

Progression in HIV-infected children and adults is still slower than in those 
immunosuppressed from other causes. Th e best evidence suggests that, despite 
immunosuppression, disease is more the result of residual immune function 

than any direct damage by P. jiroveci. Th is may explain why, despite numbers of 
organisms being greater for PCP associated with HIV, symptoms develop more 
slowly and the probability of successful treatment is better than other causes 
of immunosuppression. Regardless the cause of immunosuppression, disease 
progression always involves increasing numbers of alveoli becoming fi lled with 

organisms and exudate which leads to impairment of air exchange and ultimately 

asphyxiation. While mechanical ventilation can be helpful in maintaining blood 

gases, that requirement is associated with poor prognosis. Postmortem examina-
tion reveals heavy, fi rm lungs that retain shape aft er removal from the thoracic 

cavity. H&E stained sections from biopsy and postmortem specimen show al-

veoli fi lled with an eosinophilic foamy or honeycomb exudate. When treatment 
is successful, there may be residual fi brosis and pulmonary defi cit. While rare, 

extrapulmonary pneumocystosis does occur and infections have been reported 

at sites such brain, spleen, middle ear and peritoneum.


background image

233

Pneumocystis Pneumonia

31

Treatment

Th e antifolate combination of trimethoprim (15 mg/kg/d) and sulfamethox-

azole (75 mg/kg/d in 3-4 doses) (cotrimoxazole, TMP-SMZ) for 14-21 d is widely 
considered fi rst line treatment for PCP. Advantages include effi  cacy equal or better 

than for all other treatments, favorable cost and availability and generally good tol-
erance. Drawbacks include gathering genetic evidence suggesting development of 

resistance as well as more frequent and more severe adverse drug reactions (ADRs) 
in patients immunosuppressed due to HIV infection (40-60% or higher depend-

ing on the study vs 8-10% for patients without HIV). However, clinical resistance 
has not been demonstrated to date and ADRs are not always of such severity to 
necessitate a change in therapy. Second line drugs include clindamycin with pri-

maquine, other antifolate combinations such as trimethoprim or pyrimethamine 
combined with dapsone, pentamidine either by aerosol or i.v. and atovaquone as a 
single agent or combined with azithromycin. All treatments for PCP have associated 

ADRs and some interact negatively with drugs used to suppress HIV replication. 
While ADRs are frequently mild, they may be severe and changes in therapy are 
more oft en due to ADRs than lack of response. For TMP-SMZ and dapsone, the 

ADR spectra are similar, yet it is not uncommon for a patient to be intolerant of 
one and do well with the other. Th e most frequent ADRs for these drugs are fever, 
rash, nausea and vomiting, elevation of plasma liver enzymes and leukopenia. For 
TMP-SMZ the most severe ADR is debilitating Stevens-Johnson syndrome-like 
skin reaction that sometimes leads to extensive skin loss. TMP-SMZ and dapsone 

can also cause hemolytic anemia, especially for patients with G-6-PD defi ciency. 
Occasionally other severe systemic reactions involve liver, kidney, bone marrow 
and heart. Clindamycin plus primaquine can cause rash, liver enzyme elevation, 

leukopenia, or anemia. Pentamidine can result in nephrotoxicity, hypoglycemia, 
pancreatitis and arrhythmias. Pentamidine delivery by aerosol has a lower ADR 
rate, but such delivery may not provide adequate dosage to upper portions of 
the lung and cannot treat rare extrapulmonary infection sites. Atovaquone when 
used as a single agent can cause rash, nausea, diarrhea or headache, but the rate of 

ADRs is lower than for other drugs; effi  cacy, however, is lower as well. Combining 
azithromycin with atovaquone improves effi  cacy, but the rate of ADRs also rises. 

Atovaquone can slow metabolism of zidovudine thus may signifi cantly increase 
ADRs for that drug. Documentation of diff erences in effi  cacies or ADR rates for 

approved anti-Pneumocystis regimens is made diffi  cult by the wide variation in clini-

cal responses with any one drug, diff erences in study populations and diff erences 

in study designs. Furthermore, actual diff erences may be small. Should a change in 

treatment be necessary due to poor response or ADRs, any of the approved drugs 
can be substituted. However, one large study did fi nd clindamycin/primaquine and 

atovaquone to be the most successful salvage therapies, regardless of the primary 
treatment. Trimetrexate with leucovorin to reduce toxicity has been used success-

fully for salvage, but suff ers from a higher rate of relapse.

Th e evidence for spreading resistance to TMP-SMZ is emergence of mutations 

in P. jiroveci similar to those of other microbes that are known to confer resistance 

to the sulfamethoxazole component of TMP-SMZ. Th ese mutations are found with 
higher frequency in populations where TMP-SMZ has been used extensively to treat 

and/or prevent PCP as well as in individual patients who have used TMP-SMZ for 


background image

234

Medical Parasitology

31

prophylaxis. Th e same relationship exists for emergence of mutations associated with 

resistance to atovaquone. However, direct evidence of clinical resistance is lacking 
and obtaining such evidence is problematic because response to treatment is vari-

able and in vitro testing is not possible because the organism cannot be cultured 
from patient samples.

Response to treatment is oft en slow with improvement sometimes seen only aft er 

a week or more; lung function improvement oft en precedes changes detectable by 
radiology. Slow response can be problematic if there is any doubt of the diagnosis 

and, even if the diagnosis is confi rmed cytologically, the possibility of one or more 

comorbidities arises. Several approaches to a response-to-treatment assay have been 
suggested and promising data have been collected. Th ese include a plasma assay 
for glycan shed from cyst walls, a sputum assay using PCR to detect changes in P. 

jiroveci DNA or RNA content and a plasma assay for changes in host metabolic 
intermediates infl uenced by P. jiroveci. None, however, are available for clinical use. 
Controlled trials needed to determine optimal duration of therapy are lacking, but 

clinical experience has led to treatment usually lasting 14 to 21 days, even if response 
is relatively rapid. Adjuvant corticosteroid treatment for severe PCP was evaluated 
by controlled trials and the consensus recommendation of an expert panel in 1990 

was they be used for treatment of severe PCP (arterial O

2

 partial pressure <70 mm 

Hg or alveolar-arterial gradient >35 mm Hg, both on room air). Meta-analysis of 
data from randomized trials published through 2004 confi rmed and quantifi ed this 
benefi t. Th e advantage of steroid treatment can be demonstrated by radiology and 
lung performance studies showing that anti-Pneumocystis drugs used alone cause an 
initial increase in lung opacity and a decline in lung function parameters. Animal 

model data show treatment exacerbates infl ammation leading to a reduction in 
gas exchange effi  ciency. For moderate PCP the case is not as strong and there is no 
indication for steroids in treatment of mild disease.

Treatment Outcomes

Factors associated with poor outcomes include age, poor oxygenation on ad-

mission, elevated serum LDH, low hemoglobin, low serum albumin, presence of 
pulmonary co-pathogens, neutrophils in BAL fl uid, delay in needed ICU admission 
aft er start of anti-PCP treatment, high APACHE II score and pneumothorax either 
at presentation or aft er initiation of mechanical ventilation. PCP is a serious disease 
but it is oft en now described as a “treatable disease”, refl ecting the perception that 

outcomes are generally better now than early in the HIV epidemic. Any improve-
ments must be attributed to clinical skills derived from experience since, other 
than the introduction of adjuvant steroid treatment, the list of approved drugs has 

not changed for over a decade and effi  cacies from oldest to newest drugs are very 
similar. A sobering view is provided by two recent papers, one based on data from a 
major UK and the other from a major US medical center. Both studies included all 
patient records with laboratory-confi rmed PCP diagnoses. Th e UK data covered the 
period from 1985 -2006 and included 494 patients; the US data from 1990 -2001 

and 488 patients. Both reported reductions in PCP mortality aft er the introduc-
tion of HAART in 1996. UK data showed a 16.9% mortality rate for the period 
1990 -1996 and 9.7% for the period 1996 -2006; however, the 1985 -1989 rate was 

10.1% so real improvement is certain. US data showed a 47% mortality rate for the 


background image

235

Pneumocystis Pneumonia

31

period 1990 -1995 and 37% for the period 1996 -2001; the higher US mortality 

likely refl ects the “inner city” patient population of the study. Since these data are 
from major centers where there is considerable experience and expertise in treating 

PCP, broader mortality rates may be even higher.

Prophylaxis

Th e overall incidence of PCP associated with HIV infection dropped with wide 

acceptance of prophylaxis guidelines published in 1989 and dropped further upon 
introduction of HAART in the mid-1990s. Currently, discontinuation of prophylaxis 

is now recommended when HAART allows restoration of CD4 cells to >200 cell 

μ

L

1

, but risk of PCP is not a threshold phenomenon: an increase in CD4 count 

from 100 to 200 cells 

μ

L

1

 is associated with a 10x reduction in risk of PCP, but there 

is a further 10X reduction in risk with an increase from 200 to 500 CD4 cells 

μ

L

1

Drugs used for prophylaxis include all the drugs used for treatment. TMP-SMZ is the 
mainstay and the advantages/disadvantages are the same as for treatment; however, 
due to time factors, desensitization using a slowly increasing dosage plays a bigger 
role in prophylaxis. Aerosolized pentamidine has advantages of a low ADR rate and 
good protection but has drawbacks: upper lung regions are poorly treated and this can 

allow intense local involvement without symptoms so pneumothorax may be a result. 
Extrapulmonary sites are also not protected, but infection beyond the lungs is rare. 
Diffi  culties and costs associated with aerosol administration are also disadvantages. 

Dapsone used as a single prophylactic agent has effi  cacy and ADR profi les similar 
to aerosolized pentamidine, but without the upper lung and extrapulmonary site 
limitations. However, one of the few studies of prophylaxis failure reported the vast 
majority of probable failures to be associated with dapsone.

Suggested Reading

Biology of Pneumocystis

 1. Wakefi eld AE. Pneumocystis carinii. British Medical Bulletin 2002; 61:175-88.

  2.  Stringer JR, Beard CB, Miller RF et al. A new name (Pneumocystis jiroveci) for 

pneumocystis from humans. Emerg Infect Dis 2002; 8:891-6.

  3.  Huang L, Morris A, Limper AH et al. ATS pneumocystis workshop participants. 

An offi  cial ATS workshop summary: recent advances and future directions in 

pneumocystis pneumonia (PCP). Proc Am Th orac Soc 2006; 3:655-64.

Course of Disease and Prognosis

  1.  Miller RF, Allen E, Copas A et al. Improved survival for HIV infected severe 

Pneumocystis jirovecii pneumonia independent of highly active antiretroviral. 

Th orax 2006; 61:716-72.

  2.  Festic E, Gajic O, Limper AL et al. Acute respiratory failure due to pneumocystis 

pneumonia in patients without human immunodefi ciency virus infection: outcome 

and associated features. Chest 2005; 128:573-9.

  3.  Fujii T, Nakamura T, Iwamoto A. Pneumocystis pneumonia in patients with HIV 

infection: clinical manifestations, laboratory fi ndings and radiological features. J 

Infect Chemother 2007; 13:1-7.

  4.  Walzer, PD, Evans HE, Copas AJ et al. Early predictors of mortality from 

Pneumocystis jirovecii pneumonia in HIV-infected patients: 1985-2006. Clin 

Infect Dis 2008; 46(4):625-33.

  5.   Tellez I, Barragán M, Franco-Paredes C et al. Pneumocystis jiroveci pneumonia 

in patients with AIDS in the inner city: a persistent and deadly opportunistic 

infection. Am J Med Sci 2008; 335(3):192-7.


background image

236

Medical Parasitology

31

Adjuvant Steroids for Treating Severe PCP and Insight into Benefi cial Eff ect

  1.  Briel M, Boscacci R, Furrer H et al. Adjunctive corticosteroids for Pneumocystis 

jiroveci pneumonia in patients with HIV infection: a meta-analysis of randomised 

controlled trials. BMC Infect Dis 2005; 5:101-8.

  2.  Gigliotti F, Wright TW. Immunopathogenesis of Pneumocystis carinii pneumonia. 

Expert Rev Mol Med 2005; 7:1-16.

Prophylaxis

  1.  Rodriguez M, Fishman JA. Prevention of infection due to Pneumocystis spp. in 

human immunodefi ciency virus-negative immunocompromised patients. Clin 

Microbiol Rev 2004; 17:770-82.

  2.  Podlekareva D, Mocroft  A, Dragsted UB et al. EuroSIDA study group. Factors 

associated with the development of opportunistic infections in HIV-1-infected adults 

with high CD4

+

 cell counts: a EuroSIDA study. J Infect Dis 2006; 194:633-41.

  3.  Green H, Hay P, Dunn DT et al. STOPIT Investigators. A prospective multicentre 

study of discontinuing prophylaxis for opportunistic infections aft er eff ective 

antiretroviral therapy. HIV Med 2004; 5:278-83.

Current Recommendations for Treatment and Prophylaxis

  1.  Morbidity and Mortality Weekly Report (MMWR) http://www.cdc.gov/mmwr/

 2. Th e Medical Letter on Drugs and Th erapeutics http://www.medicalletter.org/ 

(fee-based access).


background image

C

HAPTER

 32

Malaria

Moriya Tsuji and Kevin C. Kain

Introduction

Malaria parasites are members of the Apicomplexa, characterized by the presence 

of a unique organelle called an apical complex. Th ere are four malaria species that 
infect and cause disease in humans, Plasmodium falciparumP. vivaxP. malariae and 
P. ovale, although cases of human infection with Plasmodium knowlesi, a monkey ma-
laria, have very recently been reported in Malaysia. Each Plasmodium sp. is associated 
with a specifi c cyclic fever, caused by the synchronous release of parasites from the 
erythrocytes in which they had been developing and multiplying. Th e diff erent spe-

cies may be distinguished by their morphological characteristics on Giemsa-stained 
thin blood smears. Th ey are also distinct in their clinical course, including incubation 
period, pathophysiology and associated morbidity and mortality.

Life Cycle

Malaria infection may be acquired congenitally from mother to baby across the 

placenta, from platelet or blood transfusions and from the use of shared needles; 
however it is most frequently initiated with the bite of an infected, female Anopheles 

mosquito, which injects the sporozoite stage of the parasite with its bite. A typi-
cal life cycle of Plasmodium is shown in Figure 32.1. Usually 20-30 sporozoites 
are transmitted to the host by a single mosquito bite and some of the sporozoites 
rapidly reach the liver of the host via the blood circulation and thereby invade 
hepatocytes. Once inside the hepatocyte, the parasite undergoes asexual division 

and develops into liver schizonts within the infected hepatocytes over a period of 
approximately 1-2 weeks, depending on the species of Plasmodium. Because the 
initial stage of development within the liver occurs outside the bloodstream, this 

hepatic stage is generally referred to as the exo-erythrocytic stage. At the end of 
the hepatic stage of development, a single sporozoite can develop into a schizont 
that contains thousands of daughter parasites that fi ll the hepatocyte. Infected 
hepatocytes burst and release numerous merozoites into the bloodstream. P. 
falciparum
 can complete this liver stage within 7 days and each of its sporozoites 

produces about 40,000 daughter parasites. For P. vivax, these values are 6-8 days 
and 10,000 merozoites; for P. malariae, 12-16 days and 2000 merozoites; and for 
P. ovale, 9 days and 15,000 merozoites.

Th e next stage of development, called the erythrocytic or blood stage, is initiated 

when exo-erythrocytic merozoites from the liver invade red blood cells (RBCs). 
Merozoites of P. falciparum can infect RBCs of all ages, whereas those of P. vivax 
and P. ovale infect reticulocytes and those of P. malariae invade only older RBCs. 

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.


background image

238

Medical Parasitology

 

32

Shortly aft er merozoites are released from hepatocytes, they invade RBCs and 

over a period of 2 or 3 days, develop asexually. Th e stages of asexual development 
include the ring (early trophozoite), trophozoite and schizont stages. Th e diagnosis 
of malaria can be made upon the identifi cation of the parasites within erythrocytes 
on Giemsa-stained blood smears (see Table 32.1). Th e distinct appearance of 
these stages of development on Giemsa-stained thin blood smears, allows one to 

determine the specifi c species infecting the host.

Th e ring stage derives its name from its signet ring-like appearance, with 

a blue-stained nucleus and a pink-stained ring of cytoplasm. Th e trophozoite 

is the feeding stage of the parasite and contains a single nucleus with pigment 
granules, called hemozoin (a product of hemoglobin digestion), located within 
the cytoplasm of the parasite. Th e schizont stage is initiated by the division of the 
trophozoite nucleus. Further nuclear division leads to enlargement of the parasite. 
Each individual nucleus then becomes surrounded by parasite cytoplasm to form 

a merozoite.

At maturation, the schizont bursts and releases merozoites into the blood 

circulation. Most of the released merozoites re-invade a new erythrocyte, thereby 

repeating their asexual life cycle (blood stage cycle). In some instances, however, 
invasion of an erythrocyte by a merozoite initiates sexual development instead of 
asexual development. Th us, merozoites may develop into male gametocytes (mi-
crogametocytes) or female gametocytes (macrogametocytes). Th ese gametocytes 

Figure 32.1. Life cycle of malaria parasite. Modifi ed from an original, kindly 

provided by Drs. Chris Janse and Andy Waters at the Leiden University 

Medical Centre, The Netherlands.


background image

239

Malaria

32

Table 32.1. Differential features of infected RBCs among various plasmodial species

 

P. falciparum

P. vivax

P. malariae

P. ovale

Characteristics of infected 

red blood cell (RBC)

RBC not enlarged

Schüffner’s dots in cytoplasm 

of RBC; RBC enlarged

RBC not enlarged

Schüffner’s dots in 

cytoplasm of RBC; 

Compact trophozoite;

RBC enlarged

Ring forms

Smaller rings; Multiple rings 

per cell; Double nuclei; 

Appliqué forms (Fig. 32.2)

Large rings

Medium sized rings

Large rings

Trophozoites

Seldom seen in peripheral 

blood

Parasite “active”; amoeboid 

shape with pseudopodia

“Band” forms

Compact

Mature schizonts

Seldom seen in peripheral 

blood

Schüffner’s dots in cytoplasm 

of RBC; RBC enlarged

“Rosette” forms

Schüffner’s dots; fewer 

merozoites per cell; 

RBC elongated

Gametocytes

“Crescent” shaped

Round; within enlarged RBC

Round; within 

non-enlarged RBC

Round; within enlarged 

RBC


background image

240

Medical Parasitology

 

32

can develop further only when they are taken up by an appropriate species of 

Anopheles mosquito during a blood meal. Th ey subsequently mate within the gut 
of the mosquito, the defi nitive host. Th e parasites eventually become sporozoites, 

which reach the salivary gland of the mosquito. With the next bite, the infected 
mosquito releases sporozoites into the host, thereby completing the life cycle.

Pathology

Malaria is often classified as uncomplicated or complicated/severe. 

Uncomplicated malaria can be caused by all four species and is characterized by 
periodic fever and chills, mild anemia and splenomegaly. Uncomplicated malaria 

is rarely fatal unless it is left  untreated and it progresses to severe disease. Severe 
or complicated malaria is almost exclusively caused by P. falciparum infections 
(although occasionally by P. vivax and other species) and is associated with higher 
parasite burdens and vital organ dysfunction including CNS (coma, seizures etc.) 

and pulmonary compromise (pulmonary edema, ARDS, respiratory distress etc.), 
acute renal failure, severe anemia and metabolic acidosis. Anemia arises in part 
from the destruction of erythrocytes when merozoites burst out of the infected 

RBC and RBC production is further compromised by bone marrow suppression or 
dyserythropoeisis. In falciparum malaria, anemia can be dramatic and life threaten-
ing. Th e rise in temperature is also correlated with the rupture of schizonts with 
release of pyrogens together with merozoites from the bursting infected RBCs. Th e 
pathogenesis of general malaise, myalgia and headache is ill-defi ned. Th e classic 

periodicity of the fever (P. vivax/ovale = every 2nd day; P. malariae = every 3rd 
day), based on synchronous infections, is oft en not observed particularly early in 
the course of infection. In the early phase of infection, the growth of the parasites 

is not synchronous, RBC rupture is more random and consequently fever can be 
erratic. In addition, some infections may be due to two or more broods of parasites, 
with the periodicity of one being independent of that of the others. Th is is more 
oft en seen in the case of severe falciparum malaria.

Most malaria deaths are associated with P. falciparum infections. RBCs infected 

with the maturing forms of this parasite express parasite proteins called PfEMP-1 
associated with morphological structures (“knobs”) that permit them to stick to 
endothelial cells lining the blood vessels and result in sequestration of these infected 

RBCs within the vascular bed of vital organs. When this occurs in the brain, the 
resulting cerebral malaria may lead to coma and death. Renal, pulmonary and GI 
complications may also be seen. Congenital malaria and infection of the placenta 
may result in stillbirth, low birth weight infants, or perinatal mortality.

Aft er the initiation of blood stage infection by the parasite, the repeated in-

fection of erythrocytes by merozoites results in exponential growth. As a result, 

the parasitized RBCs accumulate in the capillaries and sinusoids of blood vessels, 

causing general congestion in the peripheral blood circulation. Th e congestion 
causes organomegaly, notably splenomegaly and possibly hepatomegaly and 

contributes to anemia, leukopenia and thrombocytopenia. In vivax malaria, these 

processes occur rather acutely and the aff ected organs, particularly the spleen, 
become susceptible to rupture following trauma. In severe falciparum malaria, the 

kidneys may show punctate hemorrhages and tubular necrosis. Severe hemolysis 

and damage in the renal tubules results in hemoglobinuria or in its most severe 


background image

241

Malaria

32

form “blackwater fever”. In fact, the latter condition has been oft en associated with 

massive intravascular hemolysis in the context of prior treatment with quinine 
or treatment with primaquine in those with glucose-6 phosphate dehydrogenase 

defi ciency (G6PD). Chronic P. malariae infection can be associated with nephrotic 
syndrome, a condition in which the kidney shows histological hypertrophy, caused 

by the deposition of immune complexes.

Epidemiology

Malaria is the most important parasitic disease in the world accounting for 

over 500 million clinical infections and 1 million deaths every year. Ecologic 
change, economic and political instability, combined with escalating malaria drug 

resistance, has led to a worldwide resurgence of this parasitic disease. However, 
malaria is not just a problem in the developing world. Th e combination of 
burgeoning international travel and increasing drug resistance has resulted in 
a growing number of travelers at risk of contracting malaria. It is estimated 

that as many as 30,000 travelers from industrialized countries contract malaria 
each year. However, this incidence is likely to be an underestimate because of 
the prevalence of underreporting. Th e majority of P. falciparum cases imported 

into North America and Europe are acquired in Africa (85%) and travel to the 
African continent is currently on the rise.

P. ovale infection can be distinguished from P. vivax infection in part by its 

epidemiology, i.e., the distribution of P. ovale is limited to tropical Africa and 
to discrete areas of the Western Pacifi c. Most West Africans are negative for the 

Duff y blood-type, which is shown to be associated with receptor sites for P. vivax 
merozoites on the RBC. Th erefore, many West Africans are not susceptible to 
infection with P. vivax. Falciparum malaria is generally confi ned to tropical and 

subtropical regions, particularly in sub-Saharan Africa, the Amazon region of 
South America, rural forested areas of Southeast Asia and urban and rural areas of 
the Indian subcontinent. Individuals with sickle-cell trait (AS) are more resistant 
to severe falciparum malaria than normal homozygotes (AA). Th e SS individuals 
are also protected, but their sickle-cell disease leads to an early death. P. malariae 

has a wide, but spotty distribution throughout the world.

Clinical Manifestations

Aft er being bitten by a malaria-infected Anopheles mosquito, the fi rst symptoms 

appear aft er an incubation period ranging from 7 to 30 days. A shorter incubation 
period is most frequently observed with P. falciparum, whereas the incubation 
period for P. malariae can be quite lengthy. Typical symptoms include fever, chills, 
sweats, rigors, headache, nausea and vomiting, body aches and general malaise. 
Th ese symptoms may be seen in all types of malaria and the malaria paroxysm is 

typically accompanied by sudden shaking chills. Th is may last 10 to 15 minutes or 
longer. During this stage, the patient complains of feeling extremely cold, despite 
a steady elevation of body temperature. Chills may be followed by severe frontal 

headache and myalgia (muscular pain) in the limbs and back. Th is stage lasts 2-6 
hours in P. vivax and P. ovale infections, 6 hours or more in P. malariae infection 
and considerably longer in falciparum malaria. Finally, the patient starts to sweat 
profusely for several hours and usually begins to feel better until the onset of the 


background image

242

Medical Parasitology

 

32

next paroxysm. Fever occurs on alternate days with P. vivax and P. ovale and every 

3 days with P. malariae. With falciparum malaria, fever may be asynchronous, 
recurring every 36 to 48 hours. P. falciparum is a deadly parasite, causing death 

as quickly as 36 hours from the onset of symptoms in non-immune individuals. 
P. vivax is a relatively benign parasite that elicits alternate day fever without caus-

ing mortality. P. ovale also produces alternate day fever and is clinically similar to 
vivax malaria.

Relapsing and recrudescent disease must also be diff erentiated. Relapsing 

disease implies the reappearance of parasitemia in sporozoite-induced infec-

tion, following adequate antiblood stage therapy. In the case of P. vivax and P. 
ovale
, the development of exo-erythocytic forms allows the parasite to remain 
dormant within the hepatocyte. Th ese dormant parasites are called hypnozoites. 

Accordingly, despite eradication of parasites from the peripheral circulation with 
conventional antimalarial drugs, a fresh wave of exo-erythrocytic merozoites can 
emerge from the hepatocytes and reinitiate the infection. Th e hypnozoites can 

remain quiescent in the liver for more than fi ve years. In order to achieve radical 
cure, therefore, it is necessary to destroy not only the blood circulating parasites, 
but also the hypnozoites. P. falciparum and P. malariae do not develop hypnozoites 

and do not cause relapsing disease. Recrudescence is the recurrence of symptoms 
of malaria aft er a subclinical or asymptomatic level of parasitemia for a certain 
period of time. Th is recrudescence likely occurs in cases where the blood stages 
of malaria are maintained at very low levels aft er inadequate drug treatment. Such 
parasites may become drug resistant. All malaria species can cause recrudescence. 

In the case of P. falciparum, the parasites can recrudesce aft er one or two days, 
whereas P. malariae can do so for up to 30 years.

Diagnosis

For over a century, malaria diagnosis has relied on the microscopic detection of 

Plasmodium sp. on Giemsa-stained blood smears as no other reliable and relatively 
rapid method for the detection of infection and quantifi cation of parasite burden 
has been available. A detailed study of malaria parasites can be accomplished with 
Giemsa stained thin blood smears (Fig. 32.2), whereas thick smears are more sensi-
tive, because greater volume of blood can be examined. As shown in Table 32.1, 

there are a number of diff erential features of infected RBCs among the various 
species. It should be noted that a diagnosis oft en cannot be made on the basis of a 
single slide. In practice, several slides must be read systematically before a negative 

report may be given. It is noteworthy that P. ovale, the least common of the malaria 
species, resembles P. vivax in morphology and in biology.

Although microscopic detection of parasites has been the reference standard, 

its reliability highly depends on the technical expertise of the microscopist. Th e 
ability to maintain the required level of expertise in malaria diagnostics may 

be problematic especially in peripheral medical centers in countries where the 
disease is not endemic. Consequently recent eff orts have focused on developing 
sensitive and specifi c nonmicroscopic malaria-diagnostic devices including those 

based on PCR or the detection of malaria antigen in whole blood. Many fi rst 


background image

243

Malaria

32

generation rapid diagnostic products relied on the detection of the histidine-rich 

protein II (HRP II) antigen of P. falciparum and therefore could not detect other 
Plasmodium species. Th e next generation of rapid diagnostic devices based on 
antigen capture with immunochromatographic (ICT) strip technology, utilize 

monoclonal antibodies to HRP II for the detection of P. falciparum as well as 
aldolase, a pan- Plasmodium antigen, thus facilitating identifi cation of nonfalci-
parum infections. One such assay has now been licensed and is available for sale 
in the United States. Within the last decade, PCR-based diagnostic methods 
for malaria have been developed and surpass microscopic methods with respect 

to sensitivity and specifi city. Currently reported amplifi cation-based methods 
for malaria diagnosis, particularly nested PCR-based methods, are sensitive 
and specifi c but are also labour intensive with turnaround times that are gener-

ally too long for routine clinical application. Moreover these are open systems 
that require considerable pre- and post-sample handling and therefore special 
eff orts need to be employed in order to prevent false positive assays. Real-time 
quantitative PCR technology has recently been developed and overcomes these 
limitations, off ering a simple, time-eff ective and quantitative diagnostic option, 

if an appropriate laboratory setting is readily available.

Figure 32.2. Thin blood smear showing P. falciparum-infected erythrocytes.


background image

244

Medical Parasitology

 

32

Table 32.2. Summary of CDC guidelines for treatment of malaria in the 

United States

Clinical Diagnosis/ 

Plasmodial Species

Region Infection 

Acquired

Recommended Drug

Uncomplicated 

malaria/P. falciparum or 

Species unidentifi ed (If 

subsequently diagnosed 

as P. vivax or P. ovale

then treatment with 

primaquine is required 

provide G6PD levels are 

normal)

Chloroquine-sensitive 

(Central America west of 

Panama Canal; Haiti; the 

Dominican Republic; and 

most of the Middle East)

Chloroquine phosphate

Chloroquine-resistant 

or unknown resistance 

(All malarious regions 

except those specifi ed 

as chloroquine-sensitive 

listed above)

A.  Quinine sulfate plus 

Doxycycline, Tetracycline 

or Clindamycin

B.  Atovaquone-proguanil
C.  Mefl oquine

Uncomplicated 

malaria/P. malariae

All regions

Chloroquine phosphate

Uncomplicated 

malaria/P. vivax or 

P. ovale

All regions

Chloroquine phosphate 

followed by Primaquine 

phosphate

Uncomplicated 

malaria/P. vivax

Chloroquine-resistant 

(Papua New Guinea 

and Indonesia)

A.  Quinine sulfate 

plus Doxycycline or 

Tetracycline, followed by 

Primaquine phosphate

B.  Mefl oquine followed by 

Primaquine phosphate

Uncomplicated malaria: 

alternatives for pregnant 

women

Chloroquine-sensitive

Chloroquine phosphate

Chloroquine-resistant 

P. falciparum 

(regions except 

Chloroquine-sensitive 

regions listed above)

Quinine sulfate plus 

Clindamycin

Chloroquine-resistant 

P. vivax (Papua New 

Guinea and Indonesia)

Quinine sulfate 

Severe falciparum 

malaria

All regions

A.  Parenteral quinidine or 

quinine plus Doxycycline, 

Tetracycline or Clindamycin

B.  Artesunate* followed by 

Atovaquone, Doxycycline 

or Mefl oquine

*Investigational new drug available from CDC.


background image

245

Malaria

32

Treatment

Table 32.2 summarizes the CDC guidelines for treatment of malaria in the 

United States.

Key tips to stepwise approaches for malaria:

i.  Fever in a returned traveler or immigrant from a malaria endemic area is con-

sidered malaria until proven otherwise.

ii.  Malaria is a medical emergency and needs STAT diagnosis and treatment.
iii. Treat all falciparum malaria as drug-resistant unless you know without ques-

tion that the infection was acquired in an area of chloroquine sensitivity.

iv.  Decide if the case is falciparum or not and what the parasitemia is (percentage 

of RBCs infected with parasites on a blood smear).

v.  Is it complicated malaria (i.e., any evidence of organ dysfunction etc.) or not.
vi.  If complicated then you need to use parenteral quinine/quinidine including 

a loading dose (parenteral drug should also be used in any case for any species 

in which the patient can not tolerate oral therapy); alternatively, parenteral 
Artesunate is available through the CDC as an investigational new drug.

vii. If falciparum and the parasitemia is high (>10%) consider exchange transfu-

sion and seek expert consultation.

Prevention and Control

Th ere are four principles—adapted from the WHO’s ABCD of malaria protec-

tion—of which all travelers to malarious areas should be informed:

A. Be Aware of the risk, the symptoms and understand that malaria is a serious 

infection.

B. Avoid mosquito Bites.
C. Take Chemoprophylaxis when appropriate.
D. Seek immediate Diagnosis and treatment if they develop fever during or 

aft er travel.

Protection against malaria can be summarized into the following four 

principles:

Assessing Individual Risk

Estimating a traveler’s risk is based on a detailed travel itinerary and the specifi c 

risk behaviors of the traveler. Th e risk of acquiring malaria varies according to the 
geographic area visited (e.g., Southeast Asia versus Africa), the travel destination 
within diff erent geographic areas (urban versus rural area), type of accommoda-

tions (well-screened or air conditioned versus camping), duration of stay (1 week 
business travel versus 3-month overland trek), season of travel (low versus high 
malaria transmission season) and elevation of destination (malaria transmission is 
rare above 2000 meters). In addition to the location, travelers can infl uence their 
own risk by how well they comply with preventive measures such as treated bed 

nets and chemoprophylactic drugs and the effi  cacy of these measures. Additional 
information can be obtained from good sources of updated malaria information 
and country-specifi c risk are available on line from the WHO and Centers for 

Disease Control and Prevention (CDC).


background image

246

Medical Parasitology

 

32

Preventing Mosquito Bites (Personal Protection Measures)

All travelers to malaria-endemic areas need to be instructed in how best to avoid 

bites from Anopheles mosquitoes that transmit malaria. Any measure that reduces 
exposure to the evening and night-time feeding female Anopheles mosquito will 

reduce the risk of acquiring malaria. Insecticide-impregnated bed nets (permethrin 
or similarly treated) are safe for children and pregnant women and are an eff ective 

prevention strategy that is underused by travelers. Insect repellents that contain 
DEET (N,N-diethyl-meta-toluamide) can also help you to avoid contracting ma-

laria. Insect repellents should be applied sparingly, only to exposed skin or clothing, 
and from dusk to dawn—the time malaria mosquitoes bite the most. Th e use of 
repellents should be minimized in pregnant and nursing women. 

Use of Chemoprophylactic Drugs where Appropriate

Th e use of antimalarial drugs and their potential adverse eff ects must be weighed 

against the risk of acquiring malaria (as described previously). Th e following ques-
tions should be addressed before prescribing any antimalarial:

a. Will the traveler be exposed to malaria?

b. Will the traveler be in a drug-resistant P. falciparum zone?
c. Will the traveler have prompt access to medical care (including blood smears 

prepared with sterile equipment and then properly interpreted) if symptoms 
of malaria were to occur?

d. Are there any contraindications to the use of a particular antimalarial drug?

If the traveler will be in chloroquine-sensitive areas, the drug of choice is 

chloroquine phosphate at 5 mg base/kg/wk beginning 1-2 weeks before travel 
until 4 weeks aft er leaving the malarious area. For the adult traveler heading to 

chloroquine-resistant areas, the primary choice of the prophylaxis is atovaquone/
proquantil at 1 adult tab/d beginning 1-2 days before travel until 1 week aft er 
leaving, or mefl oquine at 250 mg once/wk beginning 1-2 weeks before travel until 
4 weeks aft er leaving. It is important to note that a number of travelers to low-risk 
areas, such as urban areas and tourist resorts of Southeast Asia, continue to be 

inappropriately prescribed antimalarial drugs that result in unnecessary adverse 
events but off er little protection. Improved traveler adherence with antimalarial 
drugs is more likely when travel medicine practitioners make a concerted eff ort 

to identify and carefully counsel the high-risk traveler and avoid unnecessary 
drugs in the low-risk individual.

Seeking Early Diagnosis and Treatment if Fever Develops
during or aft er Travel

Travelers should be informed that although personal protection measures and 

antimalarials can markedly decrease the risk of contracting malaria, these interven-

tions do not guarantee complete protection. Symptoms resulting from malaria may 
occur as early as 1 week aft er fi rst exposure and as late as several years aft er leaving 

a malaria zone whether or not chemoprophylaxis has been used. Most travelers 
who acquire falciparum malaria will develop symptoms within 2 months of expo-
sure. Falciparum malaria can be eff ectively treated early in its course, but delays in 

therapy may result in a serious and even fatal outcome. Th e most important factors 
that determine outcome are early diagnosis and appropriate therapy. Travelers and 


background image

247

Malaria

32

health care providers alike must consider and urgently rule out malaria in any febrile 

illness that occurs during or aft er travel to a malaria-endemic area.

In addition to travelers from endemic areas, an important source of malaria 

infection includes immigrants from endemic areas. Also, it is noteworthy that a 
person who has never travelled to endemic areas could get malaria by the bites of 

malaria-infected mosquitoes carried in airplanes from endemic areas. Th is is called 
“Airport (Baggage) malaria.”

Both adequate mosquito control and an eff ective malaria vaccine remain 

unavailable, though promising work is proceeding towards development of these 

pivotal preventive strategies.

Suggested Reading

  1.  Centers for Disease Control and Prevention: Health information for international 

travel, Washington DC, 2005-2006, Government Printing Offi  ce.

  2.  Katz, Despommier, Gwadz. Parasitic Diseases, Second Edition. Springer-Verlag 

1988.

  3.  Fiona E, Lovegrove, Kevin C. Kain. Malaria prevention. In: Jong E, ed. Th e Travel 

and Tropical Medicine Manual. 4th Edition. Philadelphia: WB Saunders, 2007: 

Chapter 5.

  4.  Neva FA, Brown HW. Basic Clinical Parasitology, 6th Edition. Norwalk: Appleton 

& Lange, 1994.

  5.  World Health Organization: International travel and health 2006. Geneva 

Switzerland, 2006.

  6.  Nappi AJ, Vass E, eds. Parasites of Medical Importance. Austin: Landes Bioscience, 

2002:29.


background image

background image

S

ECTION

 V

Arthropods


background image

C

HAPTER

 33

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Clinically Relevant Arthropods

Sam R. Telford III

Introduction

Arthropods are animals with segmented bodies covered by a chitin exoskel-

eton. Familiar arthropods include fl ies, fl eas, bees, spiders, crabs and shrimp. 
Medically important arthropods are typically thought of as vectors of infectious 
agents or as infestations causing direct injury. Arthropods may also actively 
or passively defend themselves against crushing or swatting by biting, sting-
ing, piercing, or secreting noxious chemicals; or by means of urticarial hairs. 
Arthropods may also be medically important due to a patient’s fear of insects, 

delusional parasitosis, or allergy due to dust mites. Th e diversity of ways in which 
arthropods may aff ect human health refl ects the great diversity of these animals. 
More than 80% of all known animal species are arthropods. Given their presence 

in all environments, pathology may also sometimes be erroneously attributed 
to their presence.

Arthropods may transmit infectious agents including viruses, bacteria, pro-

tozoa and helminths. Such agents may require an arthropod for perpetuation 
(biological transmission) or may simply contaminate an arthropod (mechanical 

transmission). Leishmania parasites have a complex developmental cycle within 
certain phlebotomine sandfl ies and could not move from animal to animal 
without the sandfl y. Housefl ies may have salmonella contaminating their outer 

surfaces or mouthparts, which may be transferred to animals by the act of landing 
and crawling; but, salmonella does not need the housefl y because it is an enteric 
commensal of many kinds of animals. Few agents can survive long enough to 
be transmitted by mechanical means: HIV, for example, has never been epide-
miologically linked with mosquitoes or other arthropods even though it might 

be taken up during the act of bloodfeeding, probably because the virus is labile 
outside of host tissues and enough infected lymphocytes may never contaminate 
the small surface area of mosquito mouthparts.

Th ere are fi ve major groups of vectors, the diptera (fl ies and mosquitoes); 

hemiptera (kissing bugs); siphonaptera (fl eas); anoplura (lice); and acarines (ticks 
and mites). In addition, several other groups of arthropods may be medically 
important. Th e general life history strategies and clinical signifi cance for each 
group are briefl y reviewed; specifi c vector-pathogen relationships are discussed 

in detail in chapters focusing on the respective agents.


background image

251

Diseases Transmitted by Arthropods

33

Hexapoda (Insects)

Diptera

Th e dipteran vectors are winged insects that include mosquitoes, sandfl ies, 

blackfl ies, gnats, horse/deerfl ies and tsetse fl ies. Th ese range in size from minute 
(ceratopogonid midges less than 2 mm in length) to large (horsefl ies more than 

2 cm in length). Unlike other winged insects, dipterans have only one pair of 
wings. Th ose that take bloodmeals as adult females may serve as vectors or pests. 

Bloodmeals are used as nutrient to produce eggs; once those eggs are laid, another 
bloodmeal may be taken and more eggs produced. Th us, unless a mosquito (as an 

example of a dipteran) inherits infection (transovarial or vertical transmission), 
the fi rst bloodmeal infects it and the second allows the agent to be transmitted; 
under favorable environmental circumstances, a mosquito may survive for several 
weeks and take more than two bloodmeals. Eggs, larvae and pupae would never 
be associated with illness; the only medical relevance is that these stages are oft en 
targeted when trying to control infestations.

Host-seeking cues for the bloodfeeding diptera include body heat, carbon 

dioxide (exhaled by the host), mechanical vibrations and lactic acid or other skin 
associated compounds. Repellants such as DEET (diethyltoluamide) work by 

disrupting the airborne gradients of chemical cues that allow diptera to home in 
to their hosts. Once a host has been identifi ed, feeding is initiated and completed 
within minutes. Sandfl ies, blackfl ies and mosquitoes have a diverse salivary ar-
mamentarium of pharmacologically active substances that promote fi nding and 
removing blood. People may develop immediate and delayed-type hypersensitivity 

to dipteran bites, manifesting as erythema or welts accompanied by itch. Itch may 
be severe enough to cause scratching and secondary infection. Th e transient nature 
of infestation by bloodfeeding diptera means that few specimens are submitted 

to clinical laboratories. Other than analyses related to confi rming the diagnosis 
of a vector borne infection, dipterans would come to the attention of physicians 
mainly for issues related to hypersensitivity, or for myiasis.

The muscoid diptera include the muscids (houseflies, stable flies); the 

Calliphoridae (blowfl ies); and the Sarcophagidae (the fl esh fl ies). Egg deposi-

tion and larval development occurs in characteristic materials, viz., fecal mate-
rial for housefl ies, decaying plant material for stable fl ies, live fl esh for blowfl ies 

and carrion for the fl esh fl ies. Housefl ies have received much attention for their 
potential health burden because of their association with poor hygiene. A large 

fl eshy structure at the apex of the proboscis provides a surface for contamination, 

as does the hairy body and legs of the fl y. In addition, fl ies may regurgitate while 

feeding and the vomitus may contain organisms that were acquired in a previous 

landing. Housefl ies commonly feed on human excrement and virtually every 
possible enteric pathogen (those causing amebiasis, cholera, typhoid, hepatitis 

A, poliomyelitis; even roundworms and Helicobacter pylori) has been detected 
within or upon them. With few exceptions, such fi ndings are epidemiologically 

irrelevant inasmuch as all of the agents perpetuate in their absence. It is likely that 
individual cases of enteric disease may derive from fl y contamination of food, but 

whether the risk of such an event merits worry by patients or their health care 

providers remains unclear.


background image

252

Medical Parasitology

 

33

Myiasis is the infestation of human or animal tissue by fl y larvae, deposited as 

eggs or fi rst stage larvae; the larvae develop by feeding on the surrounding tissue, 
emerge as third stage larvae and pupate in the environment. A variety of clinical 

presentations are evident depending on the site where the larvae are present. Botfl ies 
cause furuncular lesions or migratory integumomyiasis (a serpiginous track may 

be produced in the skin). Wound myiasis comprises shallow or pocketlike initial 
lesions that become more deeply invasive. Maggots may invade the nose and ac-
companying structures, causing nasal or oral myiasis. Maggots may get into the ears, 

producing aural myiasis. Ophthalmomyiasis is due to external or internal infesta-

tion. Enteric, vaginal, or vesicomyiasis is due to invasion of the gut or genitalia. In 
all presentations, pathology may be due to tissue trauma or local destruction, but 
is more oft en associated with secondary bacterial infection. On the other hand, 

many maggots do not promote bacterial infection, but rather secrete bacteriolytic 
compounds and have been used as a surgical intervention to debride wounds. Th us, 
the development of secondary bacterial infection in myiasis may suggest the death 

of the maggot. In all cases, treatment is by removal of the maggots, laboriously pick-
ing them out using forceps. Th e maggots causing furuncular myiasis or migratory 
integumomyiasis will have their posterior end visible within the lesion, exposing the 

spiracular plates that cover their tracheolar breathing apparatus. Although much 
lore exists on how to best remove such maggots, including “luring” the maggots 
with bacon or pork fat, the simplest method is to cover the lesion with vaseline, 
thereby preventing the maggot from breathing. It will eventually move out enough 
in an attempt to get air so that it may be grasped with forceps.

Hemiptera

Th e only hemiptera that serve as vectors are the kissing or reduviid bugs, minute 

to large insects with compound eyes, antennae, sucking mouthparts, two pairs of 
wings (one delicate pair hidden under an outer pair of more robust ones) and a 
segmented abdomen. All are easily seen without magnifi cation, adult bedbugs being 
slightly less than 1 cm in length and adult triatomines ranging in size from 1 cm 
to more than 5 cm. Reduviid bugs are cryptic, living within cracks of mud walls or 

other narrow, confi ned spaces. Th ey serve as vectors of trypanosomes (Trypanosoma 
cruzi
, the agent of Chagas disease) in Latin America. Transmission of T. cruzi to 
humans requires contamination of the site of the bite or mucosa by trypanosomes 

that are excreted in the bug feces. As with mosquitoes, salivary products from 
reduviids contain a variety of pharmacologically active compounds. Unlike those 
of mosquitoes, repeated reduviid feedings may cause a dangerous anaphylactoid 
reaction in residents of houses where the bugs are common. Th e resulting itching 
and irritation promote the entry of bug feces directly into the bite site or indirectly 

by contamination of mucosa. Although it is possible that a true reduviid bug may 
be presented by a patient for identifi cation in clinical settings outside of Latin 
America, it is more likely that such specimens are related heteropterans such as 

assassin bugs, which are insect predators, or the plant-feeding stink bugs, chinch 
bugs, harlequin bugs, or squash bugs.

Bedbugs (Cimex lectulariusC. hemipterus) are hemipterans, but are not known 

to serve as vectors for any pathogen. Th ese bugs with short broad heads, oval bodies 
and 4-jointed antennae undergo incomplete metamorphosis, with four nymphal 


background image

253

Diseases Transmitted by Arthropods

33

stages, each taking a bloodmeal in order to develop. Th ey are cryptic and require 

hiding places such as cracks in walls, mattress foundations, or rattan furniture. At 
night, bedbugs will emerge and infest sleeping people, taking 10-20 minutes for 

engorgement. Feeding is oft en interrupted by the movements of people during 
their sleep and so multiple bites may result from a single bedbug. Erythematous, 

itching bites, oft en several in number, are typically observed as a result; treatment 
is symptomatic. Bedbug infestations are currently increasing in prevalence, in all 
socioeconomic levels. Elimination of these pests can be diffi  cult, particularly in 

multi-family dwellings. Mattresses and box springs must be decontaminated or 

destroyed; baseboards of walls must be sprayed.

Blattaria

Roaches are dorsoventrally fl attened, smooth-bodied, winged insects that 

resemble the hemiptera but are closely related to termites and mole crickets, with 
long antennae, biting-type mouthparts and abdominal projections. Th e outer pair 
of wings is thick and leathery and the inner pair membranous. Roaches may fl y, but 
usually scuttle about on long spiny legs. Roaches can live for months without food, 
but water seems critical. Th ey are omnivorous, feeding on the fi nest of foods to the 

vilest of waste, usually at night. Secretions deposited by scent glands (including trail 
and aggregation pheromones) give rise to a characteristic disagreeable odor that 
confi rms an infestation even when live roaches cannot be found. Common roaches 

range in size from the small German cockroach (Blatella germanica) about half an 
inch in length, to the American cockroach, nearly two inches. As with fl ies, the 
presence of roaches suggests poor environmental hygiene, but only rare instances 
of enteric disease might be associated with them. Dense infestations may produce 
large amounts of antigenic material (feces, molted cuticle, or parts from carcasses), 

which may be implicated in allergic or asthmatic reactions. Control of roach in-
festations can be diffi  cult. Boric acid, deposited along walls, behind moldings and 
around other sites where they may hide, is eff ective in killing adults and nymphs 

by abrading cuticle between abdominal segments, rendering the roach prone to 
dessication. Removing standing water (wiping up and getting rid of clutter around 
sinks) can also reduce infestations by preventing access to water.

Siphonaptera

Th e fl eas are bilaterally compressed, heavily chitinized insects with greatly modi-

fi ed hind legs for their characteristic jumping mode of locomotion; they lack wings. 
Fleas are generally small, no larger than 5 mm in length. Th e female fl ea requires 
blood for egg production. Most fl eas are what are known as “nest parasites”, par-
ticularly of rodents. Individual fl eas may live as long as a year but usually only for a 
couple of months, laying eggs daily. Only a few species are of medical importance. 

Th ese include the “human” fl ea (Pulex irritans); the dog and cat fl eas (Ctenocephalides 
canis
 and C. felis); the main plague vector (Xenopsylla cheopis) and the sticktight fl ea 
(Echidnophaga gallinacea). Of these, C. felis are the most notorious pests, feeding 

voraciously and rapidly developing dense infestations. Chronic infestation of homes 
are largely due to the presence of a cat or dog (despite its name, this fl ea will feed on 
either animal), their bedding, wall-to-wall carpeting and relatively great humidity 
within the home. Cold climates rarely have self sustaining infestations because winter 


background image

254

Medical Parasitology

 

33

heating tends to dry out the carpets and molding and other places where the larval 

fl eas tend to be hidden. Although bites sustained over several weeks will usually 
induce a typical delayed type hypersensitivity reaction, with an intensely itching 

red spot developing at the site of the bite (usually around the ankles), note that not 
all members of a household will react in the same manner.

An unusual fl ea, the chigoe or jigger (Tunga penetrans) will attach to a host and 

maintain a feeding site. Originally found in Latin America, the chigoe has been 
carried across to sub-Saharan Africa by humans and may be found anywhere there. 

Th is fl ea will oft en penetrate under toenails, or burrow into skin between toes, or 

in the soles of feet, an infestation known as tungiasis. When the fl ea dies, the lesion 
becomes secondarily infected, causing great irritation and pain. Tourists will oft en 
become infested by walking barefoot in shady spots around beaches.

Phthiraptera

Infestation by lice is called pediculosis. Th e lice are wingless, fl at (dorsoven-

trally), elongate, small (0.4-10 mm) insects that are generally characterized by strong 
host specifi city. Lice undergo incomplete (hemimetabolous) development, with 
nymphal forms resembling adult lice and are oft en found concurrently with the 
adults. Th us, size may appear to greatly vary within a single collection of specimens 
from one host. All lice are delicate and very sensitive to temperature and humid-

ity requirements; all die within days without the host. Th e lice of greatest clinical 
importance are the head louse (Pediculus humanus capitis); body louse (Pediculus 
humanus corporis
); and the pubic louse (Phthiris pubis). All of these sucking lice 

have prominent claws attached to each of their legs, morphologically adapted for 
grasping the hairs of their host. Th ey feed at least daily and deposit 1-10 eggs from 
each bloodmeal, gluing one egg at a time onto the shaft s of hairs (or in the case of the 
body louse, onto threads within clothing). Th e eggs, or nits, are almost cylindrical 
in shape and have an anterior operculum. Lice are transferred between hosts by 

close physical contact, or by sharing clothing in the case of body lice.

Body or pubic louse infestation may result in intense irritation for several days, 

with each bite generating a red papule. Chronically infested individuals may become 

desensitized, or may develop a nonspecifi c febrile illness with lymphadenopathy, 
edema and arthropathy (although such signs and symptoms should prompt a search 
for the agent of trench fever). Although body louse or pubic louse infestation may 
be considered evidence of poor hygiene or poor judgement, infestation by head lice 
should not be a stigma, occurring in the best of families. Nor should head louse 

infestation be considered to be a public health menace, or even a clinical problem. 
Very few infestations are dense enough to cause signs or symptoms and head lice are 
not vectors. Head or pubic louse infestations may be easily treated by shaving the 

head or pubes; body lice, by changing clothing. Several permethrin-based shampoos 
have great effi  cacy, although resistance has been reported.

Hymenoptera

Wasps, bees and ants all belong to the order Hymenoptera, which are minute to 

medium-sized insects with compound eyes, mandibles and two pairs of transparent 
wings (although in the ants, wings may be seen on males or females only at certain 

times of the year). Th ese insects have a complex social behavior, with males, females 


background image

255

Diseases Transmitted by Arthropods

33

and worker castes. Workers have a stinging organ, which is used for defending the 

colony or capturing prey. Most stings by hymenoptera cause localized reactions, 
sometimes with extreme pain and resulting in a transient induration with hyperemia. 

By virtue of their living in large colonies, bees and ants may swarm an intruder and 
dozens if not hundreds of stings may be sustained. Airway obstruction may result 

should multiple stings be received on the face or neck. Bees diff er from wasps and ants 
in that their stinging apparatus is forcibly torn out during the act of stinging, thereby 
ensuring the death of individual bee as a result. Wasps and ants may sting multiple 

times; some fi re ants may hang on by their mandibles and repeatedly insert their pos-

teriorly located stinger. Bee venom has been well characterized and consists of a large 
amount of a polypeptide (melittin), phospholipase A2, histamine, hyaluronidase, 
mast cell discharging peptide and apamin. Histamine appears to be the cause of the 

acute pain of bee stings. Th e most important clinical manifestation of bee or wasp 
stings is anaphylaxis. Chest tightness, nausea, vertigo, cyanosis and urticaria may be 
seen even in individuals who apparently had never previously been exposed. Dozens 

of people die each year in the US due to bee sting anaphylaxis. Ants, on the other 
hand, rarely pose a risk for anaphylaxis but produce a reaction that may persist for a 
longer duration. An induration or wheal may be observed immediately aft er the sting 

and a papule may develop that itches or remains irritated for several days.

Lepidoptera

Caterpillars with urticating hairs are associated with rashes caused by contact 

with hairs (erucism, or erucic rash). A common shade tree pest, the brown tailed 
moth (Nygmia phaeorrhoea), in Europe and northeastern North America, liberates 
tiny barbed hairs when the caterpillar molts. Th ese hairs are blown about by the 
wind and when skin is exposed, a severe dermatitis results; ingestion or inhalation 
can also cause signifi cant irritation of the mucosa or bronchospasm. Contact with 

the eye may induce conjunctivitis. Dermatitis produced by urticating hairs typically 
comprises itchy, erythematous patches associated with small vesicles and edema. 
Th ese lesions are only where the hairs have free access to the skin or where contact 

is made. Use of a masking tape-type lint roller can be very eff ective in removing 
urticating hairs, which may or may not be visible.

Beetles

Some beetles may induce vesication: direct contact with live or crushed beetles 

may expose a person to cantharidin. Bombardier beetles will spray a boiling hot 
jet of benzoquinone as a defense, causing burns and blistering. Blistering is also 
produced by crushing the staphylinid beetle Paederus fusca of Southeast Asia, 
which contain a toxic alkaloid, pederin. More commonly, carpet beetles (der-
mestids) which feed on wool rugs and other animal fur products are associated 

with a papulovesicular eruption. In particular, larval dermestids and their hairs 
or shed skins (exuviae) cause a contact dermatitis.

Arachnida

Th e acarines are a subclass within the Class Arachnida, which also contains the 

spiders and scorpions. Acarina comprise the mites and ticks, tiny to small arthro-
pods with eight legs as nymphs and adults (as opposed to six for insects) and with 

fused main body segments as opposed to three discrete ones for insects.


background image

256

Medical Parasitology

 

33

Rickettsialpox and scrub typhus are currently the only known infections trans-

mitted by mites. Mites are, however, important for their pest potential, causing 
itch, dermatitis and allergy. Th e most common of the ectoparasite-caused direct 

injury is scabies, caused by infestation with the human scabies mite (Sarcoptes 
scabiei
). Infestation may occur anywhere in the world. Canine sarcoptic mange is 

commonly associated with scabies infestations in the owners of the dogs. In either 
animal or human scabies, transmission is by direct personal contact and infestations 
oft en cluster among groups of people, particularly families. Th ere is little evidence 

that environments become contaminated; fomites have not been identifi ed. Th e 

female scabies mite burrows beneath the stratum corneum, leaving behind eggs and 
highly antigenic feces within a track like trail. Nocturnal itching begins within a 
month of the fi rst infestation, but may begin within a day in previously exposed 

individuals. Erythematous papules and vesicles fi rst appear on the webs of fi ngers 
and spread to the arms, trunk and buttocks. Interestingly, in individuals who are 
immunocompromised, hundreds of female mites may be found, itching is minimal, 

but a hyperkeratosis is prominent. Such “crusted” or Norwegian scabies are highly 
infectious to other people.

Scabies infestations can be easily diagnosed by scraping a newly developed 

papule (not one that has been scratched) with a scalpel coated with mineral oil. 
Th e scrapings in oil may be transferred to a slide and examined at X100 or X400 
brightfi eld for 300-400 

μ

m mites or the smaller black fecal granules. Scabies may 

be treated by 5% permethrin cream or 1% permethrin rinse (Nix, same as is used 
for head lice). Th e method of choice until recently was topical lindane (Kwell), 
but FDA now suggests the use of permethrin fi rst and lindane only if that fails. 
Lindane can be neurotoxic to children and small adults.

Demodex folliculorum, the follicle mite, infests virtually everybody. Th is elongate 

500 

μ

m long mite may be found within follicles on the face, the ear and breast 

and are oft en brought to the attention of a physician because a tweezed eyelash 
may have a few mites at the base of the hair shaft . Although they appear to largely 
be nonpathogenic, the same species causes demodectic mange in dogs and cattle. 
Pityriasis folliculorum, with small pustules appearing on the forehead, has been 
attributed to them.

Dust mite allergies (one of many causes of asthma, rhinitis and atopic dermati-

tis) are due to inhalation of feces excreted by Dermatophagoides farinae or related 
pyroglyphid mites, which are human commensals that feed on fl akes of skin shed 

from a person. Th e mites themselves do not infest a person, but remain in the en-
vironment (usually within bedding or carpets) to feed and develop. About a half 
gram of skin may be shed from a person each day; one female mite lays one egg a 
day, for about 2 months; thus, large accumulations of mites may readily develop. 
Th e 300-400 

μ

m long mites may be presented by patients as suspects for other 

nonspecifi c lesions or sets of signs and symptoms because they may be found in 
virtually all houses and can be detected if dust is allowed to settle on standing 

water; the mites fl oat and will move and can be seen at X20. Humidity less than 
60% will greatly reduce dust mite infestations, as will periodic vacuuming and 
washing of bedding and carpets.

Ticks are prolifi c vectors, with more recognized transmitted agents than any 

arthropod other than mosquitoes. Hard ticks are so named because of the hardened 


background image

257

Diseases Transmitted by Arthropods

33

dorsal shield or scutum. In female hard ticks, the scutum is on the anterior third of 

the body with the remainder consisting of pleated, leathery cuticle that allows for 
tremendous expansion during bloodfeeding. In male hard ticks, which may or may 

not feed at all, the scutum extends the length of the body. In contrast, soft  ticks 
have no scutum; their entire body is leathery. Th e “head”, or capitulum, consists 

of the holdfast (hypostome), chelicerae (which are homologs of insect mandibles) 
and the palps, which cover the mouthparts (hypostome and chelicerae). Chelicerae 
act as cutting organs, the two sides sliding past each other, with the cutting teeth 

at the end gaining a purchase into a host’s skin. Th e hypostome is thereby inserted 

and allows anchoring of the entire tick due to recurved, backward facing teeth or 
denticles. Many hard ticks also secrete a cement around the hypostome. Oft en, 
when removing an attached tick from a host, a large piece of skin comes with the 

hypostome, mostly cement and surrounding epidermis. Th us, by virtue of the ce-
ment and denticles, tick hypostomes rarely emerge intact when a tick is removed. 
“Leaving the head in” is not critical and most times the remnant will be walled off  as 

a foreign body, or will work itself out, perhaps by the act of scratching. Treatment, 
therefore, should simply be disinfection of the site of the bite and certainly not 
excavation of the epidermis looking for the “head”. Soft  ticks are transient feeders 

and will only rarely be found attached.

Hard ticks require several days to complete their bloodmeal; the number of 

days depends on the species and stage of the tick. (In contrast, soft  ticks are more 
like mosquitoes in their feeding, spending tens of minutes to no more than a few 
hours feeding, usually as their host is sleeping.) North American deer ticks (Ixodes 

dammini) will feed 3 days as a larva, 4 days as a nymph and 7 days as the female. 
During the fi rst 70% of the feeding process, very little blood or lymph appears to 
be present within ticks, which remain dorsoventrally fl at. Hemoglobin is excreted 

from the anus, lipids are retained and water from the blood is recycled back into 
the host as saliva. In the last day, usually in the last 3 or 4 hours of the bloodmeal, 
the tick takes what has been termed “the big sip”, removing a large volume of whole 
blood, then detaching and dropping from the host. Because they must remain 
attached for days, hard ticks have evolved means of temporarily disabling a host’s 

local infl ammatory response, which might inhibit its feeding. Hard tick saliva is 

an extremely complex mixture of anticoagulant, anti-infl ammatory and antihe-

mostatic agents that act mainly at the site of the feeding lesion. Hosts that have 
never been exposed to ticks will not realize that a tick is attached. Indeed, most 

cases of Lyme disease or spotted fever never knew that they had been “bitten”. Th e 

most dangerous tick is not necessarily the one that a patient fi nds, removes and 
aborts the transmission process, but the one that he or she never knew was there 

and which was able to complete its feeding. Because most tick-borne pathogens 

require at least 24 hours to attain infectivity, prompt removal of an attached tick 

will usually abort infection.

An unusual toxicosis due to tick bite is tick paralysis. Th e presence of certain 

feeding ticks (Australian Ixodes holocyclus, Western American Dermacentor ander-

soni) induces an acute ascending paralysis. Children are the usual victims of tick 
paralysis, with ticks attached at the nape of the neck. Th e illness is characterized by 

fatigue, irritability, distal paresthesias, leg weakness with reduced tendon refl exes, 
ataxia and lethargy. Unless the tick is removed, quadriplegia and respiratory failure 


background image

258

Medical Parasitology

 

33

may result; the case fatality rate without treatment can be 10%. Removal of the 

tick induces a miraculous recovery within 48 hours.

Scorpions

Scorpions are arachnids with a characteristic crablike appearance. Th e seg-

mented body ends in a segmented tail, which terminates in a prominent stinging 
apparatus. Th e four pairs of legs includes well defi ned pincers on the fi rst pair of 

legs. Scorpions may range in size from 2-10 cm. Scorpions are problems mainly 
in the warmer climates. Th e bulbous end of the tail contains muscles that force 

venom through the stinger. Humans are stung by walking barefoot at night; by 
not shaking their shoes out in the morning in an endemic area; lift ing rocks or 
logs; or in bedding that is on the fl oor. Th e stings cause local pain (probably due 

to the great biogenic amine content of the venom), edema, discoloration and 
hypesthesia. Systemic signs can include shock, salivation, confusion or anxiety, 

nausea, tachycardia and tetany. Venom characteristics diff er depending on the ge-
nus of scorpion: some stimulate parasympathetic nerves and can lead to secondary 
stimulation of catecholamines resulting in sympathetic stimulation, which in turn 
may contribute to respiratory failure. Others aff ect the central nervous system, are 
hemolytic, or cause local necrosis. Treatment is usually symptomatic.

Spiders

Even though all spiders have stout chelicerae and can bite and all spiders have 

a venom with which to immobilize their prey, most are too small to be noticed by 
humans even if they were to be bitten. Th e clinical manifestations and complica-
tions of envenomenation may diff er between the four main kinds of medically 
important spiders and the syndromes caused by each have been given names that 
refl ect the identity of the spider. With spider bites in general there is local pain 

and erythema at the site of the bite and this may be accompanied by fever, chills, 
nausea and joint pains. In loxoscelism (recluse spiders), the site of the bite will 
ulcerate and become necrotic. Skin may slough and there may be destruction of 

the adjacent tissues. Hemolysis, thrombocytopenia and renal failure may ensue. 
Necrotic dermal lesions are oft en classifi ed as loxoscelism even if the appropriate 
spiders are not known to be present in the area. In addition, severe reactions to 
tick bite, or even the erythema migrans of Lyme disease may be confused with 
recluse spider bites. With latrodectism (black widow spiders), phoneutrism and 

funnel-web neurotoxicity, the venoms have a strong neurotoxic action. Muscle 
rigidity and cramping (similar to acute abdomen) is seen with latrodectism; 
complications include EKG abnormalities and hypotension. With phoneutrism, 

visual disturbances, vertigo and prostration may occur; complications include 
hypotension and respiratory paralysis. Funnel web spiders induce autonomic 
nervous system excitation, with muscular twitching, salivation and lachrymation, 
nausea and vomiting and diarrhea; fatal respiratory arrest may result from apnea 
or laryngospasm. Funnel web spider bites require prompt fi rst aid and the same 

recommendations could be used for latrodectism or phoneutrism. A compres-
sion bandage should be applied over the site of the bite and the aff ected limb 
immobilized by splinting with a compression bandage if bitten on an extremity 

(standard procedures for snakebite). Th is may help prevent the venom from 


background image

259

Diseases Transmitted by Arthropods

33

moving from the local lymphatics. Th e patient should seek medical attention as 

soon as possible for antivenom treatment. Otherwise, treatment is symptomatic 
with analgesics and antipyretics.

Myriapods

Th e centipedes and millipedes are elongate, vermiform arthropods with dozens 

of segments, each of which bears a pair of legs. “Centipedes” would suggest having 
100 segments (and pairs of legs) or fewer; “millipedes”, more than 100 and up to 

1000. Th e diversity of both millipedes and centipedes is greatest in the tropics and 
virtually all those of medical importance are found in warm climates. Millipedes 

may squirt a noxious, corrosive fl uid from pores on their segments. Such fl uid may 
contain benzoquinone, aldehydes and hydrocyanic acid and cause an immediate 

burning sensation followed by erythema and edema, even progressing to blistering. 
Most millipedes also have a repugnant smell; both the corrosive fl uid and smell 
tend to protect them from predation. People become exposed when they step on or 

sleep on millipedes, or provoke them (children playing with them are oft en victims). 
Treatment consists of washing the aff ected site as soon as possible to dilute and 
remove the corrosive fl uids and symptomatic for the skin lesions and pain.

Centipedes have powerful biting mandibles and small fang-like structures 

situated between them and derived from the fi rst pair of legs that may inject a 

venom. Centipede bites occur when people step on or sleep on them, or play with 
them. Envenomation is manifested by local pain and swelling, with proximal 
lymphadenopathy. Headache, nausea and anxiety are common. Skin lesions may 

ulcerate and become necrotic.

Suggested Reading

  1.  Centers for Disease Control and Prevention. Pictorial keys to arthropods, reptiles, 

birds and mammals of public health signifi cance. [online] http://www.cdc.gov/

nceh/ehs/Pictorial_Keys.htm

  2.  Eldridge BF, Edman JD. Medical Entomology: A Textbook on Public Health 

and Veterinary Problems Caused by Arthropods. New York: Kluwer Academic 

Publishers, 2004.

  3.  Harwood RF, James MT. Entomology in Human and Animal Health, 7th Edition. 

New York: Macmillan, 1979.

  4.  Herms WB. Medical Entomology, 3rd Edition. New York: Macmillan, 1939.

  5.  Horsfall WR. Mosquitoes: Th eir Bionomics and Relation to Disease. London: 

Constable, 1955.

  6.  Kettle DS. Medical and Veterinary Entomology. London: Croom Helm, 1984.

  7.  Marquardt WC, Black WC IV, Freier JE et al. Biology of Disease Vectors, 2nd 

Edition. Burlington: Elsevier Academic Press, 2005.

  8.  Peters W. A Colour Atlas of Arthropods in Clinical Medicine. London: Wolfe 

Publishing Ltd, 1992.

  9.  Smith KGV. Insects and Other Arthropods of Medical Importance. London: 

British Museum of Natural History, 1973.

 10.  Sonenshine DE. Biology of Ticks, vol 1. New York: Oxford Press, 1991.

 11.  Sonenshine DE. Biology of Ticks, vol 2. New York: Oxford Press, 1994.


background image

background image

A

PPENDIX

Medical Parasitology, edited by Abhay R. Satoskar, Gary L. Simon, Peter J. Hotez 
and Moriya Tsuji. ©2009 Landes Bioscience.

Infection/Drug 

Adult Dosage 

Pediatric Dosage

Acanthamoeba keratitis—see footnote 1
Amebiasis (Entamoeba histolytica
)

Asymptomatic

Iodoquinol

D,2

 

650 mg PO tid x 20 d 

30-40 mg/kg/d (max 2 g) PO in 3 

 

 

  doses x 20 d

Paromomycin

3

 

25-35 mg/kg/d PO  

25-35 mg/kg/d PO in 3 doses x 7 d

 

  in 3 doses x 7 d

Diloxanide furoate

4*

  500 mg PO tid x 10 d 

20 mg/kg/d PO in 3 doses x 10 d

Mild to moderate intestinal disease

Metronidazole

D,5

 

500-750 mg PO tid 

35-50 mg/kg/d PO in 3 doses 

 

  x 7-10 d  

  x 7-10 d

Tinidazole

6

 

2 g once PO daily x 3 d  ≥3 yrs: 50 mg/kg/d (max 2 g) PO 

 

 

  in 1 dose x 3 d

either followed by

Iodoquinol

2

 

650 mg PO tid x 20 d 

30-40 mg/kg/d (max 2 g) PO in 3 

 

 

  doses x 20 d

Paromomycin

3

 

25-35 mg/kg/d PO in 3   25-35 mg/kg/ d PO in 3 doses x 7 d

 

  doses x 7 d

Severe intestinal and extraintestinal disease

Metronidazole

D

 

750 mg PO tid x 7-10 d   35-50 mg/kg/d PO in 3 doses 

 

 

  x 7-10 d

Tinidazole

6

 

2 g once PO daily x 5 d  ≥3 yrs: 50 mg/kg/d (max 2 g) PO 

 

 

  in 1 dose x 3 d

either followed by

Iodoquinol

2

 

650 mg PO tid x 20 d 

30-40 mg/kg/d (max 2 g) PO in 3 

 

 

  doses x 20 d

Paromomycin

3

 

25-35 mg/kg/d PO  

25-35 mg/kg/d PO in 3 doses x 7 d

 

  in 3 doses x 7 d

Amebic meningoencephalitis—primary and granulomatous

Naegleria

Amphotericin B

D,7,8

  1.5 mg/kg/d IV in 2  

1.5 mg/kg/d IV in 2 doses x 3 d, 

 

  doses x 3 d, then  

  then 1 mg/kg/d x 6 d plus

 

  1 mg/kg/d x 6 d plus     1.5 mg/d intrathecally x 2 d, 

 

  1.5 mg/d intrathecally     then 1 mg/d every other

 

  x 2 d, then 1 mg/d  

  day x 8 d

 

  every other day x 8 d

Drugs for Parasitic Infections

Appendix information from: The Medical Letter, “Drugs for Parasitic Infections”, vol. 5, 
Supplement 2007, last modifi ed August 2008; with permission.


background image

262

Medical Parasitology

 

Appendix

Infection/Drug 

Adult Dosage 

Pediatric Dosage

Acanthamoeba—see footnote 9

Balamuthis mandrillaris—see footnote 10

Sappinia diploidea—see footnote 11

Ancylostoma caninum (Eosinophilic enterocolitis)

Albendazole

D,7,12

 

400 mg PO once 

400 mg PO once

Mebendazole 

100 mg PO bid x 3 d 

100 mg PO bid x 3 d

Pyrantel  

11 mg/kg (max 1 g)  

11 mg/kg (max 1 g) PO x 3 d

  pamoate

7,13*

 

  PO x 3 d 

Endoscopic removal

Ancylostoma duodenale—see Hookworm
Angiostrongyliasis (Angiostongylus cantonensis, Angiostrongylus 

  costaricensis)

14

Anisakiasis (Anisakis spp.)—see footnote 15

Surgical or endoscopic removal

Ascariasis (Ascaris lumbricoides, roundworm)

Albendazole

D,5,7,12

  400 mg PO once 

400 mg PO once

Mebendazole 

100 mg bid PO x 3 d  

100 mg PO bid x 3 d or 500 mg 

 

  or 500 mg once  

  once

Ivermectin

7,16

 

150-200 mcg/kg PO once  150-200 mcg/kg PO once

Babesiosis (Babesia microti)

Clindamycin

D,7,17,18

  1.2 g bid IV or 600 mg 

20-40 mg/kg/d PO in 3 doses 

 

  tid PO x 7-10 d 

  x 7-10 d

plus quinine

7,19

 

650 mg PO tid x 7-10 d  30 mg/kg/d PO in 3 doses x 7-10 d

or Atovaquone

7,20

 

750 mg PO bid x 7-10 d  20 mg/kg/d PO in 2 doses x 7-10 d

plus azithromycin

7

  600 mg PO daily x 7-10 d  12 mg/kg/d PO x 7-10 d

Balamuthia mandrillaris—see Amebic meningoencephalitis, primary
Balantidiasis (Balantidium coli
)

Tetracycline

D,7,21

 

500 mg PO qid x 10 d 

40 mg/kg/d (max 2 g) PO in 

 

 

  4 doses x 10 d

Metronidazole

A,7

 

750 mg PO tid x 5 d 

35-50 mg/kg/d PO in 3 doses x 5 d

Iodoquinol

A,2,7

 

650 mg PO tid x 20 d 

30-40 mg/kg/d (max 2 g) PO in

 

 

  3 doses x 20 d

Baylisascariasis (Baylisascaris procyonis)—see footnote 22
Blastocystis hominis
 infection—see footnote 23
Capillariasis (Capillaria philippinensis
)

Mebendazole

D,7

 

200 mg PO bid x 20 d 

200 mg PO bid x 20 d

Albendazole

A,7,12

 

400 mg PO daily x 10 d  400 mg PO daily x 10 d

Chagas’ disease—see Trypanosomiasis
Clonorchis sinensis
—see Fluke infection
Cryptosporidiosis (Cryptosporidium
)

Non-HIV infected

Nitazoxanide

D,5

 

500 mg PO bid x 3 d 

1-3 yrs: 100 mg PO bid x 3 d

 

 

4-11 yrs: 200 mg PO bid x 3 d

 

 

>12 yrs: 500 mg PO q 12 h x 3 d

HIV infected—see footnote 24


background image

263

Appendix

 

Appendix

Infection/Drug 

Adult Dosage 

Pediatric Dosage

Cutaneous larva migrans (creeping eruption, dog and cat hookworm)

Albendazole

D,7,12,25

  400 mg PO daily x 3 d 

400 mg PO daily x 3 d

Ivermectin

7,16

 

200 mcg/kg PO daily  

200 mcg/kg PO daily x 1-2 d

 

  x 1-2 d

Cyclosporiasis (Cyclospora cayetanensis)

Trimethoprim/sulfa-  TMP 160 mg/SMX 

TMP 5 mg/kg/SMX

methoxazole

D,7,26

 

800 mg (1 DS tab) PO  

25 mg/kg/d PO in 2 doses

 

  bid x 7-10 d 

  x 7-10d

Cysticercosis—see Tapeworm infection
Dientamoeba fragilis
 infection

27

Iodoquinol

D,2,7

 

650 mg PO tid x 20 d 

30-40 mg/kg/d (max 2 g) PO in 3 

 

 

  doses x 20 d

Paromomycin

3,7

 

25-35 mg/kg/d PO in 3   25-35 mg/kg/d PO in 3 doses

 

  doses x 7 d 

  x 7 d

Tetracycline

7,21

 

500 mg PO qid x 10 d 

40 mg/kg/d (max 2 g) PO in 4 

 

 

  doses x 10 d

Metronidazole

7

 

500-750 mg PO tid x 10 d  35-50 mg/kg/d PO in 3 doses x 10 d

Diphyllobothrium latum—see Tapeworm infection
Dracunculus medinensis
 (guinea worm) infection—see footnote 28
Echinococcus—see Tapeworm infection
Entamoeba histolytica
—see Amebiasis
Enterobius vermicularis
 (pinworm) infection

Mebendazole

D,29

 

100 mg PO once; repeat   100 mg PO once; repeat in 2 wks

 

  in 2 wks 

Pyrantel pamoate

13*

  11 mg/kg base PO once   11 mg/kg base PO once (max 1 g);

 

  (max 1 g); repeat  

  repeat in 2 wks

 

  in 2 wks

Albendazole

7,12

 

400 mg PO once; repeat   400 mg PO once; repeat in 2wks

 

  in 2wks

Fasciola hepatica—see Fluke infection
Filariasis

30

Wuchereria bancrofti, Brugia malayi, Brugia timori

Diethylcarbama- 6 

mg/kg/d PO in 3 

6 mg/kg/d PO in 3 doses x 12 d

32,33

  zine

D,31

  doses x 12 d

32,33

Loa loa

Diethylcarbama- 

6 mg/kg/d PO in 3 

6 mg/kg/d PO in 3 doses x 12 d

32,33

  zine

34

  doses x 12 d

32,33

Mansonella ozzardi—see footnote 35

Mansonella perstans

Albendazole

D,7,12

 

400 mg PO bid x 10 d 

400 mg PO bid x 10 d

Mebendazole

7

 

100 mg PO bid x 30 d 

100 mg PO bid x 30 d

Mansonella streptocerca

Diethylcarbama- 6 

mg/kg/d PO x 12 d

33

  6 mg/kg/d PO x 12 d

33

  zine

D,36

*

Ivermectin

7,16

 

150 mcg/kg PO once 

150 mcg/kg PO once


background image

264

Medical Parasitology

 

Appendix

Infection/Drug 

Adult Dosage 

Pediatric Dosage

Filariasis (continued)

30

Tropical Pulmonary Eosinophilia (TPE)

37

Diethylcarbama- 6 

mg/kg/d in 3 doses 

6 mg/kg/d in 3 doses x 12-21 d

33

  zine

D

  x 12-21 d

33

Onchocerca volvulus (River blindness)

Ivermectin

D,16,38

 

150 mcg/kg PO once,  

150 mcg/kg PO once, repeated 

 

  repeated every 6-12  

  every 6-12 mos until

 

  mos until asymptomatic    asymptomatic

Fluke—hermaphroditic, infection

Clonorchis sinensis (Chinese liver fl uke)

Praziquantel

D,39

 

75 mg/kg/d PO in 3 

75 mg/kg/d PO in 3 doses x 2 d

 

  doses x 2 d 

Albendazole

7,12

 

10 mg/kg/d PO x 7 d 

10 mg/kg/d PO x 7 d

Fasciola hepatica (sheep liver fl uke)

Triclabendazole

D,40

*  10 mg/kg PO once 

10 mg/kg PO once or twice

41

 

  or twice

41

Bithionol

A,

30-50 mg/kg on alternate  30-50 mg/kg on alternate days

 

  days x 10-15 doses 

  x 10-15 doses

Nitazoxanide

A,5,7

 

500 mg PO bid x 7 d 

1-3 yrs: 100 mg PO q 12 h x 7 d

 

 

4-11 yrs: 200 mg PO q 12 h x 7 d

 

 

>12 yrs: 500 mg PO q 12 h x 7 d

Fasciolopsis buski, Heterophyes heterophyes, Metagonimus yokogawai (intestinal fl ukes)

Praziquantel

D,7,39

 

75 mg/kg/d PO in 3 

75 mg/kg/d PO in 3 doses x 1 d

 

  doses x 1 d

Metorchis conjunctus (North American liver fl uke)

Praziquantel

D,7,39

 

75 mg/kg/d PO in 3 

75 mg/kg/d PO in 3 doses x 1 d

 

  doses x 1 d

Nanophyetus salmincola

Praziquantel

D,7,39

 

60 mg/kg/d PO in 3  

60 mg/kg/d PO in 3 doses x 1 d

 

  doses x 1 d

Opisthorchis viverrini (Southeast Asian liver fl uke)

Praziquantel

D,39

 

75 mg/kg/d PO in 3  

75 mg/kg/d PO in 3 doses x 2 d

 

  doses x 2 d

Paragonimus westermani (lung fl uke)

Praziquantel

D,7,39

 

75 mg/kg/d PO in 3 

75 mg/kg/d PO in 3 doses x 2 d

 

  doses x 2 d

Bithionol

A,42

30-50 mg/kg on alternate  30-50 mg/kg on alternate days

 

  days x 10-15 doses 

  x 10-15 doses

Giardiasis (Giardia duodenalis)

Metronidazole

7

 

250 mg PO tid x 5-7 d 

15 mg/kg/d PO in 3 doses x 5-7 d

Tinidazole

6

 

2 g PO once 

50 mg/kg PO once (max 2 g)

Nitazoxanide

5

 

500 mg PO bid x 3 d 

1-3 yrs: 100 mg PO q 12 h x 3 d

 

 

4-11yrs: 200 mg PO q12h x 3d

 

 

>12yrs: 500 mg PO q12h x 3d

Paromomycin 

A,3,7,

  25-35 mg/kg/d PO in  

25-35 mg/kg/d PO in 3 doses 

  

43,44

 

  3 doses x 5-10 d  

  x 5-10 d

Furazolidone

A,43

100 mg PO qid x 7-10 d  6 mg/kg/d PO in 4 doses x 7-10 d

Quinacrine

A,4,43,45*

  100 mg PO tid x 5 d 

2 mg/kg/d PO in 3 doses x 5 d 

 

 

  (max 300 mg/d)


background image

265

Appendix

 

Appendix

Infection/Drug 

Adult Dosage 

Pediatric Dosage

Gnathostomiasis (Gnathostoma spinigerum)

46

Albendazole

T,7,12

 

400 mg PO bid x 21 d 

400 mg PO bid x 21 d

Ivermectin

7,16

 

200 mcg/kg/d PO x 2 d  200 mcg/kg/d PO x 2 d

either

± Surgical removal

Gongylonemiasis (Gongylonema sp.)

47

Surgical removal

T

Albendazole

7,12

 

400 mg/d PO x 3 d 

400 mg/d PO x 3 d

Hookworm infection (Ancylostoma duodenale, Necator americanus)

Albendazole

D,7,12

 

400 mg PO once 

400 mg PO once

Mebendazole 

100 mg PO bid x 3 d 

100 mg PO bid x 3 d or 500 mg 

 

  or 500 mg once  

  once

Pyrantel  

11 mg/kg (max 1 g)  

11 mg/kg (max 1 g) PO x 3 d

  pamoate

7,13

  PO x 3 d

Hydatid cyst—see Tapeworm infection
Hymenolepis nana
—see Tapeworm infection
Isosporiasis (Isospora belli
)

Trimethoprimsulfa- 

TMP 160 mg/SMX 800   TMP 5 mg/kg/d/SMX 25 mg/kg/d

  methoxazole

D,7,48

    mg (1 DS tab) PO bid     PO in 2 doses x 10 d

 

  x 10 d

Leishmania

Visceral

49,50

Liposomal 

3 mg/kg/d IV d 1-5,  

 3 mg/kg/d IV d 1-5, 14 and 21

52

  amphotericin B

D,51

    14 and 21

52

Sodium  

20 mg Sb/kg/d IV or 

 20 mg Sb/kg/d IV or IM x 28 d

  stibogluconate* 

  IM x 28 d

Miltefosine

53

2.5 mg/kg/d PO (max 

2.5 mg/kg/d PO (max 150 mg/d)

 

  150 mg/d) x 28 d  

x 28 d

Meglumine 

20 mg Sb/kg/d IV or  

20 mg Sb/kg/d IV or IM x 28 d

  antimonate

A

  IM x 28 d

Amphotericin B

A,7

 

1 mg/kg IV daily x 15-20 1 mg/kg IV daily x 15-20 d or every 

 

  d or every second 

  second day for up to 8 wks 

 

  day for up to 8 wks

Paromomycin

7,13,54

*  15 mg/kg/d IM x 21 d 

15 mg/kd/d IM x 21 d

Cutaneous

49,55

Sodium  

20 mg Sb/kg/d IV or  

20 mg Sb/kg/d IV or IM x 20 d

  stibogluconate

D

*    IM x 20 d

Meglumine 

20 mg Sb/kg/d IV or  

20 mg Sb/kg/d IV or IM x 20 d

  antimonate* 

  IM x 20 d

Miltefosine

53

2.5 mg/kg/d PO (max   2.5 mg/kg/d PO (max 150 mg/d) 

 

  150 mg/d) x 28 d  

  x 28 d

Paromomycin

A,7,

 

Topically 2 x/d x 

Topically 2 x/d x 10-20 d

  

13,54,56*

 

  10-20 d

Pentamidine

7,56

 

2-3 mg/kg IV or IM  

2-3 mg/kg IV or IM daily or every

 

  daily or every second  

  second day x 4-7 doses

57

 

  day x 4-7 doses

57


background image

266

Medical Parasitology

 

Appendix

Infection/Drug 

Adult Dosage 

Pediatric Dosage

Leishmania (continued)

Mucosal

49,58

Sodium  

20 mg Sb/kg/d IV or  

20 mg Sb/kg/d IV or IM x 28 d

  stibogluconate

D,

*    IM x 28 d

Meglumine 

20 mg Sb/kg/d IV or  

20 mg Sb/kg/d IV or IM x 28 d

  antimonate* 

  IM x 28 d

Amphotericin B

7

 

0.5-1 mg/kg IV daily  

0.5-1 mg/kg IV daily or every

 

  or every second day 

  second day for up to 8 wks 

 

  for up to 8 wks

Miltefosine

53

2.5 mg/kg/d PO (max   2.5 mg/kg/d PO (max 150 mg/d)

 

  150 mg/d) x 28d 

  x 28d

Lice infestation (Pediculus humanus, P. capitis, Phthirus pubis)

0.5% Malathion

D,60

 Topically 

Topically

1% Permethrin

61

 Topically 

Topically

Pyrethrins with 

Topically 

Topically

  piperonyl 

  butoxide

A,61

Ivermectin

A,7,16,62

 

200 mcg/kg PO 

>15 kg: 200 mcg/kg PO

Loa loa—see Filariasis
Malaria, treatment of (Plasmodium falciparum
,

63

 P. vivax,

64

 

  P. ovale, and P. malariae

65

)

Oral:

66

P. falciparum or unidentifi ed species acquired in areas of chloroquine-resistant 

  P. falciparum

63

Atovaquone/ 

2 adult tabs bid

69

 or 4 

<5 kg: not indicated

  proguanil

D,68

 

  adult tabs once/d x 3 d  5-8 kg: 2 peds tabs once/d x 3 d

 

 

9-10 kg: 3 peds tabs once/d x 3 d

 

 

11-20 kg: 1 adult tab once/d x 3 d

 

 

21-30 kg: 2 adult tabs once/d x 3 d

 

 

31-40 kg: 3 adult tabs once/d x 3 d

 

 

>40 kg: 4 adult tabs once/d x 3 d

Quinine sulfate 

650 mg q 8 h x 3 or 7 d

70

  30 mg/kg/d in 3 doses x 3 or 7 d

70

plus

doxycycline

7,21,71

 

100 mg bid x 7 d 

4 mg/kg/d in 2 doses x 7 d

or plus

tetracycline

7,21

 

250 mg qid x 7 d 

6.25 mg/kg/d in 4 doses x 7 d

or plus

clindamycin

7,21,72

 

20 mg/kg/d in 3  

20 mg/kg/d in 3 doses x 7 d

 

  doses x 7d

73

Mefl oquine

A,67,74,75

  750 mg followed 12 hrs   15 mg/kg followed 12 hrs later by 

 

  later by 500 mg 

  10 mg/kg

Artemether/lume- 

6 doses over 3d (4  

6 doses over 3d at same intervals

  fantrine

A,67,76,77

  tabs/dose at 0, 8, 24,    as adults;

 

  36, 48 and 60 hrs)  

<15 kg: 1 tab/dose

 

 

15-25 kg: 2 tabs/dose

 

 

25-35 kg: 3 tabs/dose

 

 

>35 kg: 4 tabs/dose

Artesunate

A,76

4 mg/kg/d x 3 d 

4 mg/kg/d x 3 d

plus see footnote 78


background image

267

Appendix

 

Appendix

Infection/Drug 

Adult Dosage 

Pediatric Dosage

Malaria, treatment of (continued)

P. vivax acquired in areas of chloroquine-resistant P. vivax

64

Mefl oquine

D,67,74

 

750 mg PO followed  

15 mg/kg PO followed 12 hrs later 

 

  12 hrs later by 500 mg     by 10 mg/kg

Atovaquone/ 

2 adult tabs bid

69

 or 4 

<5 kg: not indicated

  proguanil

68

 

  adult tabs once/d x 3 d  5-8 kg: 2 peds tabs once/d x 3 d

 

 

9-10 kg: 3 peds tabs once/d x 3 d

 

 

11-20 kg: 1 adult tab once/d x 3 d

 

 

21-30 kg: 2 adult tabs once/d x 3 d

 

 

31-40 kg: 3 adult tabs once/d x 3 d

 

 

>40 kg: 4 adult tabs once/d x 3 d

either followed by

primaquine 

30 mg base/d PO 

0.6 mg/kg/d PO x 14 d

  phosphate

79

 

  x 14 d

Chloroquine 

25 mg base/kg PO in  

25 mg base/kg PO in 3 doses

  phosphate

A,67,80

 

  3 doses over 48 hrs

81

 

  over 48 hrs

81

Quinine sulfate

A

 

650 mg PO q 8 h 

30 mg/kg/d PO in 3 doses 

 

  x 3-7 d

70  

  

x 3-7 d

70

plus

doxycycline

7,21,71

 

100 mg PO bid x 7 d 

4 mg/kg/d PO in 2 doses x 7 d

either followed by

primaquine 

30 mg base/d PO 

0.6 mg/kg/d PO x 14 d

  phosphate

79

 

  x 14 d

All Plasmodium species except chloroquine-resistant P. falciparum

63

 and chloroquine-

resistant P. vivax

64

Chloroquine 

1 g (600 mg base) PO,   10 mg base/kg (max 600 mg base)

  phosphate

D,67,80

 

  then 500 mg  (300 mg     PO, then 5 mg base/kg 6 hrs later, 

 

  base) 6 hrs later, then     then 5 mg base/kg at 24

 

  500 mg (300 mg base)     and 48 hrs

81

 

  at 24 and 48 hrs

81

  

Parenteral:

66

All Plasmodium species (Chloroquine-sensitive and resistant)

Quinidine 

10 mg/kg IV loading 

10 mg/kg lV loading dose 

  gluconate

D,67,82,83

    dose (max 600 mg) in 

  (max 600 mg) in normal saline

 

  normal saline over 1-2 hrs,   over 1-2 hrs, followed by continuous

 

  followed by continuous    infusion of 0.02 mg/kg/min

 

  infusion of 0.02 

  until PO therapy can be started

 

  mg/kg/min until PO 

 

  therapy can be started

Quinine dihydro- 

20 mg/kg IV loading  

20 mg/kg IV loading dose in 5%

  chloride

83

dose in 5% dextrose over 

 

  4 hrs, followed by 

  dextrose over 4 hrs, followed by

 

  10 mg/kg over 2-4 hrs    10 mg/kg over 2-4 hrs q 8 h (max

 

  q 8 h (max 1800 mg/d)    1800 mg/d) until PO therapy can

 

  until PO therapy can 

  be started

 

  be started

Artesunate

76

2.4 mg/kg/dose IV 

2.4 mg/kg/dose IV x 3d at 0, 12, 

 

  x 3d at 0, 12, 24,  

  24, 48 and 72 hrs

 

  48 and 72 hrs

plus see footnote 78


background image

268

Medical Parasitology

 

Appendix

Infection/Drug 

Adult Dosage 

Pediatric Dosage

Malaria, prevention of

84

All Plasmodium species in chloroquine-sensitive areas

63-65

Chloroquine phos-  500 mg (300 mg base)   5 mg/kg base PO once/wk, up to

  phate

D,67,80,85,86

 

  PO once/wk

87

 

  adult dose of 300 mg base

87

All Plasmodium species in chloroquine-resistant areas

63-65

Atovaquone/ 

1 adult tab/d

88

 

5-8 kg: 1/2 peds tab/d

68,88

  proguanil

D,67,68

 

 

9-10 kg: 3/4 peds tab/d

68,88

 

 

11-20 kg: 1 peds tab/d

68,88

 

 

21-30 kg: 2 peds tabs/d

68,88

 

 

31-40 kg: 3 peds tabs/d

68,88

 

 

>40 kg: 1 adult tab/d

68,88

Doxycycline

7,21,71

 

100 mg PO daily

89

 

2 mg/kg/d PO, up to 100 mg/d

89

Mefl oquine

74,75,90

 

250 mg PO once/wk

91

 

5-10 kg: 1/8 tab once/wk

91

 

 

11-20 kg: 1/4 tab once/wk

91

 

 

21-30 kg: 1/2 tab once/wk

91

 

 

31-45 kg: 3/4 tab once/wk

91

 

 

>45 kg: 1 tab once/wk

91

Primaquine 

30 mg base PO daily

93

 

0.6 mg/kg base PO daily

93

  phosphate

A,7,79

Malaria, prevention of relapses: P. vivax and P. ovale

67

Primaquine 

30 mg base/d PO 

0.6 mg base/kg/d PO x 14 d

  phosphate

D,79

 

  x 14 d

Malaria, self-presumptive treatment

94

Atovaquone/ 

4 adult tabs once/d 

<5 kg: not indicated

  proguanil

D,7,68

 

  x 3 d

69

 

5-8 kg: 2 peds tabs once/d x 3 d

 

 

9-10 kg: 3 peds tabs once/d x 3 d

 

 

11-20 kg: 1 adult tab once/d x 3 d

 

 

21-30 kg: 2 adult tabs once/d x 3d

 

 

31-40 kg: 3 adult tabs once/d x 3 d

 

 

>40 kg: 4 adult tabs once/d x 3 d

69

Quinine sulfate 

650 mg PO q 8 h 

30 mg/kg/d PO in 3 doses 

 

  x 3 or 7 d

70

 

  x 3 or 7 d

70

plus

doxycycline

7,21,71

 

100 mg PO bid x 7 d 

4 mg/kg/d PO in 2 doses x 7 d

Artesunate

76

4 mg/kg/d PO x 3 d 

4 mg/kg/d PO x 3 d

plus see footnote 78

Microsporidiosis

Ocular (Encephalitozoon hellemE. cuniculiVittaforma corneae [Nosema corneum])

Albendazole

D,7,12

 

400 mg PO bid

plus fumagillin

95

*

Intestinal (E. bieneusiE. [Septata] intestinalis)

E. bieneusi

Fumagillin

D,96

20 mg PO tid x 14 d

E. intestinalis

Albendazole

D,7,12

 

400 mg PO bid x 21 d

Disseminated (E. hellem, E. cuniculi, E. intestinalis, Pleistophora sp., Trachipleistophora 

sp. and Brachiola vesicularum)

Albendazole

D,7,12,97

*  400 mg PO bid


background image

269

Appendix

 

Appendix

Infection/Drug 

Adult Dosage 

Pediatric Dosage

Mites —see Scabies
Moniliformis
 infection

Pyrantel 

11 mg/kg PO once,  

11 mg/kg PO once, repeat twice,

  pamoate

D,7,13

repeat twice, 2wks apart    2wks apart

Naegleria species—see Amebic meningoencephalitis, primary
Necator americanus
, see Hookworm infection
Oesophagostomum bifurcum
—see footnote 98
Onchocerca volvulus
—see Filariasis
Opisthorchis viverrini
—see Fluke infection
Paragonimus westermani
—see Fluke infection
Pediculus capitis
humanusPhthirus pubis—see Lice
Pinworm—see Enterobius
Pneumocystis jiroveci (formerly carinii
) pneumonia (PCP)

99

Trimethoprim/ 

TMP 15 mg/SMX 

TMP 15 mg/SMX 75 mg/kg/d,

  sulfamethoxazole

D

     75 mg/kg/d, PO or IV    PO or IV in 3 or 4 doses x 21 d

 

  in 3 or 4 doses x 21 d

Primaquine

A,7,79

 

30 mg base PO daily 

0.3 mg/kg base PO daily x 21 d

 

  x 21 d

plus clindamycin

7,18

  600 mg IV q 6 h x 21 d,   15-25 mg/kg IV q 6 h x 21 d, or

 

  or 300-450 mg PO  

10 mg/kg PO q 6 h x 21 d

 

  q 6 h x 21 d

Trimethoprim

A,7

 

5 mg/kg PO tid x 21 d 

5 mg/kg PO tid x 21 d

plus dapsone 

7

 

100 mg daily x 21 d 

2 mg/kg/d PO x 21 d

Pentamidine

A

 

3-4 mg/kg IV daily 

3-4 mg/kg IV daily x 21 d

 

  x 21 d

Atovaquone

A

 

750 mg PO bid x 21 d 

1-3 mos: 30 mg/kg/d PO x 21 d

 

 

4-24 mos: 45 mg/kg/d PO x 21 d

 

 

>24 mos: 30 mg/d PO x 21 d

Primary and secondary prophylaxis

100

Trimethoprim/ 

1 tab (single or double 

TMP 150 mg/SMX 750 mg/m

2

/d

  sulfamethoxazole

D

    strength) daily or 1 DS   PO in 2 doses 3 d/wk

 

  tab PO 3 d/wk

Dapsone

A,7

 

50 mg PO bid or 

2 mg/kg/d (max 100 mg) PO or

 

  100 mg PO daily  

4 mg/kg (max 200 mg) PO each wk

Dapsone

A,7

 

50 mg PO daily or 

 

  200 mg PO each wk

plus 

pyrimethamine

101

 

50 mg PO or 75 mg 

 

  PO each wk

Pentamidine

A

 

300 mg aerosol inhaled  ≥5 yrs: 300 mg inhaled monthly via

 

  monthly via Respirgard   Respirgard II nebulizer

  

 

II nebulizer

Atovaquone

A,7,20

 

1500 mg PO daily 

1-3 mos: 30 mg/kg/d PO

 

 

4-24 mos: 45 mg/kg/d PO

 

 

>24 mos: 30 mg/kg/d PO


background image

270

Medical Parasitology

 

Appendix

Infection/Drug 

Adult Dosage 

Pediatric Dosage

River Blindness—see Filariasis
Roundworm—see Ascariasis
Sappinia diploidea
—see Amebic meningoencephalitis, primary
Scabies (Sarcoptes scabiei
)

5% Permethrin

D

 Topically 

once

102

 Topically 

once

102

Ivermectin

A,7,16,103,104

  200 mcg/kg PO once

102

  200 mcg/kg PO once

102

10% Crotamiton

A

 

Topically once/d x 2 

Topically once/d PO x 2

Schistosomiasis (Bilharziasis)

S. haematobium

Praziquantel

D,39

 

40 mg/kg/d PO in 

40 mg/kg/d PO in 2 doses x 1 d

 

  2 doses x 1 d

S. japonicum

Praziquantel

D,39

 

60 mg/kg/d PO in 

60 mg/kg/d PO in 3 doses x 1 d

 

  3 doses x 1 d

S. mansoni

Praziquantel

D,39

 

40 mg/kg/d PO in 

40 mg/kg/d PO in 2 doses x 1 d

 

  2 doses x 1 d

Oxamniquine

A,105

*  15 mg/kg PO once

106

 

20 mg/kg/d PO in 2 doses x 1 d

106

S. mekongi

Praziquantel

D,39

 

60 mg/kg/d PO in 

60 mg/kg/d PO in 3 doses x 1 d

 

  3 doses x 1 d

Sleeping sickness, see Trypanosomiasis
Strongyloidiasis (Strongyloides stercoralis
)

Ivermectin

D,16,107

 

200 mcg/kg/d PO x 2 d  200 mcg/kg/d PO x 2 d

Albendazole

A,7,12

 

400 mg PO bid x 7 d 

400 mg PO bid x 7 d

Tapeworm infection

Adult (intestinal stage):

Diphyllobothrium latum (fi sh), Taenia saginata (beef), Taenia solium (pork), Dipylidium 

caninum (dog)

Praziquantel

D,7,39

 

5-10 mg/kg PO once 

5-10 mg/kg PO once

Niclosamide

A,108

2 g PO once 

50 mg/kg PO once

Hymenolepis nana (dwarf tapeworm)

Praziquantel

D,7,39

 

25 mg/kg PO once 

25 mg/kg PO once

Nitazoxanide

A,5,7

 

500 mg PO once/d 

1-3 yrs: 100 mg PO bid x 3 d

109

 

  or bid x 3 d

109

 

4-11 yrs: 200 mg PO bid x 3 d

109

Larval (tissue stage):

Echinococcus granulosus (hydatid cyst)

Albendazole

D,12,110

  400 mg PO bid  

15 mg/kg/d (max 800 mg) 

 

  x 1-6 mos  

  x 1-6 mos

Echinococcus multilocularis—see footnote 111

T

Taenia solium (Cysticercosis)

Treatment of choice—see footnote 112

Albendazole

A,12

 

400 mg PO bid x 8-30 d;  15 mg/kg/d (max 800 mg) PO in

 

  can be repeated as  

  2 doses x 8-30 d; can be 

 

  necessary  

  repeated as necessary

Praziquantel

A,7,39

 

100 mg/kg/d PO in 3 

100 mg/kg/d PO in 3 doses x 1 d

 

  doses x 1 d then 50 mg/   then 50 mg/kg/d in 3 doses 

 

  kg/d in 3 doses x 29 d     x 29 days


background image

271

Appendix

 

Appendix

Infection/Drug 

Adult Dosage 

Pediatric Dosage

Toxocariasis—see Visceral larva migrans
Toxoplasmosis (Toxoplasma gondii
)

Pyrimetha- 

25-100 mg/d PO 

2 mg/kg/d PO x 2d, then 1 mg/

  mine

D,113,114

 

  x 3-4 wks  

  kg/d (max 25 mg/d) x 4 wks

115

plus

sulfadiazine

116

 

1-1.5 g PO qid x 3-4 wks  100-200 mg/kg/d PO x 3-4 wks

Trichinellosis (Trichinella spiralis)

Steroids for severe

  symptoms

D

plus

albendazole

7,12

 

400 mg PO bid x 8-14 d  400 mg PO bid x 8-14 d

Mebendazole

A,7

 

200-400 mg PO tid  

200-400 mg PO tid x 3 d, then

 

  x 3 d, then 400-500  

400-500 mg tid x 10 d

 

  mg tid x 10 d

Trichomoniasis (Trichomonas vaginalis)

Metronidazole

D,117

  2 g PO once or 500  

15 mg/kg/d PO in 3 doses x 7 d

 

  mg bid x 7 d

Tinidazole

6

 

2 g PO once 

50 mg/kg once (max 2 g)

Trichostrongylus infection

Pyrantel  

11 mg/kg base PO  

11 mg/kg PO once (max 1 g)

  pamoate

D,7,13

  once (max 1 g)

Mebendazole

A,7

 

100 mg PO bid x 3 d 

100 mg PO bid x 3 d

Albendazole

A,7,12

 

400 mg PO once 

400 mg PO once

Trichuriasis (Trichuris trichiura, whipworm)

Mebendazole

D

 

100 mg PO bid x 3 d 

100 mg PO bid x 3 d or 500 mg

 

  or 500 mg once  

  once

Albendazole

A,7,12

 

400 mg PO x 3 d 

400 mg PO x 3 d

Ivermectin

A,7,16

 

200 mcg/kg PO daily  

200 mcg/kg/d PO x 3 d

 

  x 3 d

Trypanosomiasis

T. cruzi (American trypanosomiasis, Chagas’ disease)

Nifurtimox

D

8-10 mg/kg/d PO in  

1-10 yrs: 15-20 mg/kg/d PO in

 

  3-4 doses x 90-120 d 

  4 doses x 90-120 d

 

 

11-16 yrs: 12.5-15 mg/kg/d in 

 

 

  4 doses x 90-120 d

Benznidazole

119

5-7 mg/kg/d PO in 2 

≤12 yrs: 10 mg/kg/d PO in 2 doses

 

  doses x 30-90 d 

  x 30-90 d

 

 

>12 yrs: 5-7 mg/kg/d in 2 doses 

 

 

  x 30-90 d

T. brucei gambiense (West African trypanosomiasis, sleeping sickness)

      Hemolymphatic stage:

Pentamidine

D,7,120

 

4 mg/kg/d IM x 7 d 

4 mg/kg/d IM x 7 d

Suramin

A

100-200 mg (test dose)   20 mg/kg on d 1,3,7,14 and 21

 

  IV, then 1 g IV on days 

 

  1,3,7,14 and 21


background image

272

Medical Parasitology

 

Appendix

Infection/Drug 

Adult Dosage 

Pediatric Dosage

Trypanosomiasis (continued)

T. brucei gambiense (continued)

      Late disease with CNS involvement:

Efl ornithine

D,121

400 mg/kg/d IV in 4  

400 mg/kg/d IV in 4 doses x 14 d

 

  doses x 14d

Melarsoprol

122

 

2.2 mg/kg/d IV x 10 d  2.2 mg/kg/d IV x 10 d

T. b. rhodesiense (East African trypanosomiasis, sleeping sickness)

      Hemolymphatic stage:

Suramin

D

100-200 mg (test dose) 

20 mg/kg on d 1,3,7,14 and 21

 

  IV, then 1 g IV on days 

 

  1,3,7,14 and 21

Late disease with CNS involvement

Melarsoprol

D,122

 

2-3.6 mg/kg/d IV x 3 d;   2-3.6 mg/kg/d x 3 d; after 7 d

 

  after 7 d 3.6 mg/kg/d     3.6 mg/kg/d x 3 d; repeat again

 

  x 3 d; repeat again  

  after 7d 

 

  after 7d

Visceral larva migrans

123

 (Toxocariasis)

Albendazole

D,7,12

 

400 mg PO bid x 5 d 

400 mg PO bid x 5 d

Mebendazole

7

 

100-200 mg PO bid  

100-200 mg PO bid x 5 d

 

  x 5 d

Whipworm—see Trichuriasis
Wuchereria bancrofti
—see Filariasis

  D  Drug of choice

  A  Alternative drug choice

  T  Treatment of choice

  *  Availability problems. See following table.

  1.  Topical 0.02% chlorhexidine and polyhexamethylene biguanide (PHMB, 0.02%), either 

alone or in combination, have been used successfully in a large number of patients. 

Treatment with either chlorhexidine or PHMB is often combined with propamidine isethionate 

(Brolene) or hexamidine (Desmodine). None of these drugs is commercially available or 

approved for use in the US, but they can be obtained from compounding pharmacies (see 

footnote 2). Leiter’s Park Avenue Pharmacy, San Jose, CA (800-292-6773; www.leiterrx.

com) is a compounding pharmacy that specializes in ophthalmic drugs. Propamidine is 

available over the counter in the UK and Australia. Hexamidine is available in France. 

The combination of chlorhexidine, natamycin (pimaricin) and debridement also has been 

successful (K Kitagawa et al, Jpn J Ophthalmol 2003; 47:616). Debridement is most useful 

during the stage of corneal epithelial infection. Most cysts are resistant to neomycin; its 

use is no longer recommended. Azole antifungal drugs (ketoconazole, itraconazole) have 

been used as oral or topical adjuncts (FL Shuster and GS Visvesvara, Drug Resist Update 

2004; 7:41). Use of corticosteroids is controversial (K Hammersmith, Curr Opinions 

Ophthal 2006; 17:327; ST Awwad et al, Eye Contact Lens 2007; 33:1). 

  2.  Iodoquinol should be taken after meals.

  3.  Paromomycin should be taken with a meal.

  4. Not available commercially. It may be obtained through compounding pharmacies 

such as Panorama Compounding Pharmacy, 6744 Balboa Blvd, Van Nuys, CA 91406 

(800-247-9767) or Medical Center Pharmacy, New Haven, CT (203-688-6816). Other 

compounding pharmacies may be found through the National Association of Compounding 

Pharmacies (800-687-7850) or the Professional Compounding Centers of America 

(800-331-2498, www.pccarx.com).

  5.  Nitazoxanide may be effective against a variety of protozoan and helminth infections (DA 

Bobak, Curr Infect Dis Rep 2006; 8:91; E Diaz et al, Am J Trop Med Hyg2003; 68:384). 


background image

273

Appendix

 

Appendix

It was effective against mild to moderate amebiasis, 500 mg bid x 3 d, in a recent study 

(JF Rossignol et al, Trans R Soc Trop Med Hyg 2007 Oct; 101:1025 E pub 2007 July 20). 

It is FDA-approved only for treatment of diarrhea caused by Giardia or Cryptosporidium 

(Med Lett Drugs Ther 2003; 45:29). Nitazoxanide is available in 500-mg tablets and an 

oral suspension; it should be taken with food.

  6. A nitroimidazole similar to metronidazole, tinidazole appears to be as effective as 

metronidazole and better tolerated (Med Lett Drugs Ther 2004; 46:70). It should be taken 

with food to minimize GI adverse effects. For children and patients unable to take tablets, 

a pharmacist can crush the tablets and mix them with cherry syrup (Humco, and others). 

The syrup suspension is good for 7 days at room temperature and must be shaken before 

use (HB Fung and TL Doan et al, Clin Ther 2005; 27:1859). Ornidazole, a similar drug, 

is also used outside the US.

  7.  Not FDA-approved for this indication.

 8. 

Although 

Naegleria fowleri infection was treated successfully in a 9-year-old girl with 

combination of amphotericin B and miconazole both intravenous and intrathecal, plus oral 

rifampin (JS Seidel et al NEJM 1982;306:346). Amphotericin B and miconazole appear 

to have a synergistic effect, but Medical Letter consultants believe the rifampin probably 

had no additional effect (GS Visvesvara et al, FEMS Immunol Med Microbiol 2007; 

50:1). Parenteral miconazole is no longer available in the US. Azithromycin has been 

used successfully in combination therapy to treat Balmuthia infection, but was changed to 

clarithromycin because of toxicity concerns and for better penetration into the cerebrospinal 

fl uid. In vitro, azithromycin is more active than clarithromycin against Naegleria, so may 

be a better choice combined with amphotericin B for treatment of Naegleria (TR Deetz 

et al, Clin Infect Dis 2003; 37:1304; FL Schuster and GS Visvesvara, Drug Resistance 

Updates 2004; 7:41). Combinations of amphotericin B, ornidazole and rifampin (R Jain 

et al, Neurol Indian 2002; 50:470) and amphotericin B fl uconazole and rifampin have 

also been used (J Vargas-Zepeda et al, Arch Med Research 2005;36:83). Case reports 

of other successful therapy have been published (FL Schuster and GS Visvesvara, Int J 

Parasitol 2004; 34:1001).

  9.  Several patients with granulomatous amebic encephalitis (GAE) have been successfully 

treated with combinations of pentamidine, sulfadiazine, fl ucytosine, and either fl uconazole 

or itraconazole (GS Visvesvara et al, FEMS Immunol Med Microbiol 2007; 50:1, epub 

Apr 11). GAE in an AIDS patient was treated successfully with sulfadiazine, pyrimethamine 

and fl uconazole combined with surgical resection of the CNS lesion (M Seijo Martinez et 

al, J Clin Microbiol 2000; 38:3892). Chronic Acanthamoeba meningitis was successfully 

treated in 2 children with a combination of oral trimethoprim/sulfamethoxazole, rifampin 

and ketoconazole (T Singhal et al, Pediatr Infect Dis J 2001; 20:623). Disseminated 

cutaneous infection in an immunocompromised patient was treated successfully with 

IV pentamidine, topical chlorhexidine and 2% ketoconazole cream, followed by oral 

itraconazole (CA Slater et al, N Engl J Med 1994; 331:85) and with voriconazole and 

amphotericin B lipid complex (R Walia et al, Transplant Infect Dis 2007; 9:51). Other 

reports of successful therapy have been described (FL Schuster and GS Visvesvara, Drug 

Resistance Updates 2004; 7:41). Susceptibility testing of Acanthamoeba isolates has 

shown differences in drug sensitivity between species and even among strains of a single 

species; antimicrobial susceptibility testing is advisable (FL Schuster and GS Visvesvara, 

Int J Parasitiol 2004; 34:1001).

 10. B. mandrillaris is a free-living ameba that causes subacute to fatal granulomatous amebic 

encephalitis (GAE) and cutaneous disease. Two cases of Balamuthia encephalitis have been 

successfully treated with fl ucytosine, pentamidine, fl uconazole and sulfadiazine plus either 

azithromycin or clarithromycin (phenothiazines were also used) combined with surgical 

resection of the CNS lesion (TR Deetz et al, Clin Infect Dis 2003; 37:1304). Another case 

was successfully treated following open biopsy with pentamidine, fl uconazole, sulfadiazine 

and clarithromycin (S Jung et al, Arch Pathol Lab Med 2004; 128:466).

  11.  A free-living ameba once thought not to be pathogenic to humans. S. diploidea has been 

successfully treated with azithromycin, pentamidine, itraconazole and fl ucytosine combined 

with surgical resection of the CNS lesion (BB Gelman et al, J Neuropathol Exp Neurol 

2003; 62:990).


background image

274

Medical Parasitology

 

Appendix

  12.  Albendazole must be taken with food; a fatty meal increases oral bioavailability.

  13.  Pyrantel pamoate suspension can be mixed with milk or fruit juice.

 14. A. cantonensis causes predominantly neurotropic disease. A. costaricensis causes 

gastrointestinal disease. Most patients infected with either species have a self-limited 

course and recover completely. Analgesics, corticosteroids and careful removal of CSF at 

frequent intervals can relieve symptoms from increased intracranial pressure (V Lo Re III 

and SJ Gluckman, Am J Med 2003; 114:217). Treatment of A. cantonensis is controversial 

and varies across endemic areas. No anthelminthic drug is proven to be effective and 

some patients have worsened with therapy (TJ Slom et al, N Engl J Med 2002; 346:668). 

Mebendazole and a corticosteroid, however, appear to shorten the course of infection (H-C 

Tsai et al, Am J Med 2001; 111:109; V Chotmongkol et al, Am J Trop Med Hyg 2006; 

74:1122). Albendazole has also relieved symptoms of angiostrongyliasis (XG Chen et 

al, Emerg Infect Dis 2005; 11:1645).

  15. A Repiso Ortega et al, Gastroenterol Hepatol 2003; 26:341. Successful treatment of 

Anisakiasis with albendazole 400 mg PO bid x 3-5d has been reported, but the diagnosis 

was presumptive (DA Moore et al, Lancet 2002; 360:54; E Pacios et al, Clin Infect Dis 

2005; 41:1825).

  16. Safety of ivermectin in young children (<15 kg) and pregnant women remains to be 

established. Ivermectin should be taken on an empty stomach with water.

  17.  Exchange transfusion has been used in severely ill patients and those with high (>10%) 

parasitemia (VI Powell and K Grima, Transfus Med Rev 2002; 16:239). In patients who 

were not severely ill, combination therapy with atovaquone and azithromycin was as 

effective as clindamycin and quinine and may have been better tolerated (PJ Krause 

et al, N Engl J Med 2000; 343:1454). Longer treatment courses may be needed in 

immunosuppressed patients and those with asplenia. Patients are commonly co-infected 

with Lyme disease (Med Lett Drugs Ther 2007; 49:49; AC Steere et al, Clin Infect Dis 

2003; 36:1078).

  18. Oral clindamycin should be taken with a full glass of water to minimize esophageal 

ulceration.

 19. Quinine should be taken with or after a meal to decrease gastrointestinal adverse 

effects.

  20.  Atovaquone is available in an oral suspension that should be taken with a meal to increase 

absorption.

 21. Use of tetracyclines is contraindicated in pregnancy and in children <8 years old. 

Tetracycline should be taken 1 hour before or 2 hours after meals and/or dairy 

products.

  22.  No drug has been demonstrated to be effective. Albendazole 25 mg/kg/d PO x 20 d 

started as soon as possible (up to 3 d after possible infection) might prevent clinical 

disease and is recommended for children with known exposure (ingestion of raccoon 

stool or contaminated soil) (WJ Murray and KR Kazacos, Clin Infect Dis 2004; 39:1484). 

Mebendazole, levamisole or ivermectin could be tried if albendazole is not available. 

Steroid therapy may be helpful, especially in eye and CNS infections (PJ Gavin et al, 

Clin Microbiol Rev 2005; 18:703). Ocular baylisascariasis has been treated successfully 

using laser photocoagulation therapy to destroy the intraretinal larvae (CA Garcia et al, 

Eye 2004; 18:624).

 23. Clinical signifi cance of these organisms is controversial; metronidazole 750 mg PO tid x 

10 d, iodoquinol 650 mg PO tid x 20 d or trimethoprim/sulfamethoxazole 1 DS tab PO 

bid x 7d have been reported to be effective (DJ Stenzel and PFL Borenam, Clin Microbiol 

Rev 1996; 9:563; UZ Ok et al, Am J Gastroenterol 1999; 94:3245). Metronidazole 

resistance may be common in some areas (K Haresh et al, Trop Med Int Health 1999; 

4:274). Nitazoxanide has been effective in clearing organism and improving symptoms (E 

Diaz et al, Am J Trop Med Hyg 2003; 68:384; JF Rossignol, Clin Gastroenterol Hepatol 

2005; 18:703).

  24.  No drug has proven effi cacy against cryptosporidiosis in advanced AIDS (I Abubakar 

et al, Cochrane Database Syst Rev 2007; 1:CD004932). Treatment with HAART is the 

mainstay of therapy. Nitazoxanide (JF Rossignol, Aliment Pharmacol Ther 2006; 24:807), 

paromomycin (P Maggi et al, Clin Infect Dis 2000; 33:1609), or a combination of 

paromomycin and azithromycin (NH Smith et al, J Infect Dis 1998; 178:900) may be 


background image

275

Appendix

 

Appendix

tried to decrease diarrhea and recalcitrant malabsorption of antimicrobial drugs, which 

can occur with chronic cryptosporidiosis.

  25. G Albanese et al, Int J Dermatol 2001; 40:67; D Malvy et al, J Travel Med 2006; 

13:244.

  26.  HIV-infected patients may need higher dosage and long-term maintenance. Successful use 

of nitazoxanide (see also footnote 5) has been reported in one patient with sulfa allergy 

(SM Zimmer et al, Clin Infect Dis 2007; 44:466).

  27.  A Norberg et al, Clin Microbiol Infect 2003; 9:65; O Vandenberg et al, Int J Infect Dis 

2006; 10:255.

  28. No drug is curative against Dracunculus. A program for monitoring local sources of 

drinking water to eliminate transmission has dramatically decreased the number of cases 

worldwide (M Barry, N Engl J Med 2007; 356:2561). The treatment of choice is slow 

extraction of worm combined with wound care and pain management (C Greenaway, 

CMAJ 2004; 170:495).

 29. Since family members are usually infected, treatment of the entire household is 

recommended.

  30. Antihistamines or corticosteroids may be required to decrease allergic reactions to 

components of disintegrating microfi lariae that result from treatment, especially in 

infection caused by Loa loa. Endosymbiotic Wolbachia bacteria may have a role in fi larial 

development and host response, and may represent a potential target for therapy. Addition 

of doxycycline 100 or 200 mg/d PO x 6-8 wks in lymphatic fi lariasis and onchocerciasis 

has resulted in substantial loss of Wolbachia and decrease in both micro- and macrofi lariae 

(MJ Taylor et al, Lancet 2005; 365:2116; AY Debrah et al, Plos Pathog 2006; e92:0829); 

but use of tetracyclines is contraindicated in pregnancy and in children <8 yrs old.

 31. Most symptoms are caused by adult worm. A single-dose combination of albendazole (400 

mg PO) with either ivermectin (200 mcg/kg PO) or diethylcarbamazine (6 mg/kg PO) is 

effective for reduction or suppression of W. bancrofti microfi laria, but the albendazole/

ivermectin combination does not kill all the adult worms (D Addiss et al, Cochrane Database 

Syst Rev 2004; CD003753).

  32.  For patients with microfi laria in the blood, Medical Letter consultants start with a lower 

dosage and scale up: d1: 50 mg; d2: 50 mg tid; d3: 100 mg tid; d4-14: 6 mg/kg in 3 

doses (for Loa loa d4-14: 9 mg/kg in 3 doses). Multi-dose regimens have been shown 

to provide more rapid reduction in microfi laria than single-dose diethylcarbamazine, but 

microfi laria levels are similar 6-12 months after treatment (LD Andrade et al, Trans R Soc 

Trop Med Hyg 1995; 89:319; PE Simonsen et al, Am J Trop Med Hyg 1995; 53:267). 

A single dose of 6 mg/kg is used in endemic areas for mass treatment (J Figueredo-Silva 

et al, Trans R Soc Trop Med Hyg 1996; 90:192; J Noroes et al, Trans R Soc Trop Med 

Hyg 1997; 91:78).

  33.  Diethylcarbamazine should not be used for treatment of Onchocerca volvulus due to the 

risk of increased ocular side effects including blindness associated with rapid killing of 

the worms. It should be used cautiously in geographic regions where O. volvulus coexists 

with other fi lariae. Diethylcarbamazine is contraindicated during pregnancy. See also 

footnote 38.

  34.  In heavy infections with Loa loa, rapid killing of microfi lariae can provoke encephalopathy. 

Apheresis has been reported to be effective in lowering microfi larial counts in patients 

heavily infected with Loa loa (EA Ottesen, Infect Dis Clin North Am 1993; 7:619). 

Albendazole may be useful for treatment of loiasis when diethylcarbamazine is ineffective 

or cannot be used, but repeated courses may be necessary (AD Klion et al, Clin Infect Dis 

1999; 29:680; TE Tabi et al, Am J Trop Med Hyg 2004; 71:211). Ivermectin has also been 

used to reduce microfi laremia, but albendazole is preferred because of its slower onset of 

action and lower risk of precipitating encephalopathy (AD Klion et al, J Infect Dis 1993; 

168:202; M Kombila et al, Am J Trop Med Hyg 1998; 58:458). Diethylcarbamazine, 

300 mg PO once/wk, has been recommended for prevention of loiasis (TB Nutman et 

al, N Engl J Med 1988; 319:752).

  35.  Diethylcarbamazine has no effect. A single dose of ivermectin 200 mcg/kg PO reduces 

microfi laria densities and provides both short- and long-term reductions in M. ozzardi 

microfi laremia (AA Gonzalez et al, W Indian Med J 1999; 48:231).


background image

276

Medical Parasitology

 

Appendix

  36.  Diethylcarbamazine is potentially curative due to activity against both adult worms and 

microfi lariae. Ivermectin is active only against microfi lariae.

  37.  AK Boggild et al, Clin Infect Dis 2004; 39:1123. Relapses occur and can be treated with 

a repeated course of diethylcarbamazine.

  38.  Diethylcarbamazine should not be used for treatment of this disease because rapid killing 

of the worms can lead to blindness. Periodic treatment with ivermectin (every 3-12 months), 

150 mcg/kg PO, can prevent blindness due to ocular onchocerciasis (DN Udall, Clin 

Infect Dis 2007; 44:53). Skin reactions after ivermectin treatment are often reported in 

persons with high microfi larial skin densities. Ivermectin has been inadvertently given to 

pregnant women during mass treatment programs; the rates of congenital abnormalities 

were similar in treated and untreated women. Because of the high risk of blindness from 

onchocerciasis, the use of ivermectin after the fi rst trimester is considered acceptable 

according to the WHO. Doxycycline (100 mg/day PO for 6 weeks), followed by a single 

150 mcg/kg PO dose of ivermectin, resulted in up to 19 months of amicrofi laridermia and 

100% elimination of Wolbachia species (A Hoerauf et al, Lancet 2001; 357:1415).

  39.  Praziquantel should be taken with liquids during a meal.

 40. Unlike infections with other fl ukes, Fasciola hepatica infections may not respond to 

praziquantel. Triclabendazole (Egaten - Novartis) appears to be safe and effective, but 

data are limited (DY Aksoy et al, Clin Microbiol Infect 2005; 11:859). It is available from 

Victoria Pharmacy, Zurich, Switzerland (www.pharmaworld.com; 41-1-211-24-32) and 

should be given with food for better absorption. Nitazoxanide also appears to have effi cacy 

in treating fascioliasis in adults and in children (L Favennec et al, Aliment Pharmacol Ther 

2003; 17:265; JF Rossignol et al, Trans R Soc Trop Med Hyg 1998; 92:103; SM Kabil 

et al, Curr Ther Res 2000; 61:339).

  41.  J Keiser et al, Expert Opin Investig Drugs 2005; 14:1513.

  42.  Triclabendazole may be effective in a dosage of 5 mg/kg PO once/d x 3 d or 10 mg/

kg PO bid x 1 d (M Calvopiña et al, Trans R Soc Trop Med Hyg 1998; 92:566). See 

footnote 40 for availability.

  43.  Another alternative is albendazole 400 mg/d PO x 5 d in adults and 10 mg/kg/d PO 

x 5 d in children (K Yereli et al, Clin Microbiol Infect 2004; 10:527; O Karabay et al, 

World J Gastroenterol 2004; 10:1215). Combination treatment with standard doses of 

metronidazole and quinacrine x 3 wks has been effective for a small number of refractory 

infections (TE Nash et al, Clin Infect Dis 2001; 33:22). In one study, nitazoxanide was 

used successfully in high doses to treat a case of Giardia resistant to metronidazole and 

albendazole (P Abboud et al, Clin Infect Dis 2001; 32:1792).

  44.  Poorly absorbed; may be useful for treatment of giardiasis in pregnancy.

  45.  Quinacrine should be taken with liquids after a meal.

  46.  P Nontasut et al, Southeast Asian J Trop Med Pub Health 2005; 36:650; M de Gorgolas 

et al, J Travel Med 2003; 10:358. All patients should be treated with medication whether 

surgery is attempted or not.

  47. ME Wilson et al, Clin Infect Dis 2001; 32:1378; G Molavi et al, J Helminth 2006; 

80:425.

  48.  Usually a self-limited illness in immunocompetent patients. Immunosuppressed patients may 

need higher doses, longer duration (TMP/SMX qid x 10 d, followed by bid x 3 wks) and 

long-term maintenance. In sulfonamide-sensitive patients, pyrimethamine 50-75 mg daily 

in divided doses (plus leucovorin 10-25 mg/d) has been effective.

  49.  To maximize effectiveness and minimize toxicity, the choice of drug, dosage, and duration 

of therapy should be individualized based on the region of disease acquisition, a likely 

infecting species, and host factors such as immune status (BL Herwaldt, Lancet 1999; 

354:1191). Some of the listed drugs and regimens are effective only against certain 

Leishmania species/strains and only in certain areas of the world (J Arevalo et al, Clin 

Infect Dis 2007; 195:1846). Medical Letter consultants recommend consultation with 

physicians experienced in management of this disease.

  50.  Visceral infection is most commonly due to the Old World species L. donovani (kala-azar) 

and L. infantum and the New World species L. chagasi.

  51. Liposomal amphotericin B (AmBisome) is the only lipid formulation of amphotericin B 

FDA-approved for treatment of visceral leishmania, largely based on clinical trials in 


background image

277

Appendix

 

Appendix

patients infected with L. infantum (A Meyerhoff, Clin Infect Dis 1999; 28:42). Two other 

amphotericin B lipid formulations, amphotericin B lipid complex (Abelcet) and amphotericin 

B cholesteryl sulfate (Amphotec) have been used, but are considered investigational for 

this condition and may not be as effective (C Bern et al, Clin Infect Dis 2006; 43:917).

 52. The FDA-approved dosage regimen for immunocompromised patients (e.g., HIV infected) is 

4 mg/kg/d IV on days 1-5, 10, 17, 24, 31 and 38. The relapse rate is high; maintenance 

therapy (secondary prevention) may be indicated, but there is no consensus as to dosage 

or duration.

 53. Effective for both antimony-sensitive and -resistant L. donovani (Indian); miltefosine 

(Impavido) is manufactured in 10- or 50-mg capsules by Zentaris (Frankfurt, Germany 

at info@zentaris.com) and is available through consultation with the CDC. The drug is 

contraindicated in pregnancy; a negative pregnancy test before drug initiation and effective 

contraception during and for 2 months after treatment is recommended (H Murray et al, 

Lancet 2005; 366:1561). In a placebo-controlled trial in patients ≥12 years old, oral 

miltefosine 2.5 mg/kg/d x 28 d was also effective for treatment of cutaneous leishmaniasis 

due to L.(V.) panamensis in Colombia, but not L.(V.) braziliensis or L. mexicana in Guatemala 

(J Soto et al, Clin Infect Dis 2004; 38:1266). “Motion sickness,” nausea, headache and 

increased creatinine are the most frequent adverse effects (J Soto and P Soto, Expert Rev 

Anti Infect Ther 2006; 4:177).

  54.  Paromomycin IM has been effective against leishmania in India; it has not yet been tested 

in South America or the Mediterranean and there is insuffi cient data to support its use 

in pregnancy (S Sundar et al, N Engl J Med 2007; 356:2371). Topical paromomycin 

should be used only in geographic regions where cutaneous leishmaniasis species 

have low potential for mucosal spread. A formulation of 15% paromomycin/12% 

methylbenzethonium chloride (Leshcutan) in soft white paraffi n for topical use has been 

reported to be partially effective against cutaneous leishmaniasis due to L. major in Israel 

and L. mexicana and L. (V.) braziliensis in Guatemala, where mucosal spread is very 

rare (BA Arana et al, Am J Trop Med Hyg 2001; 65:466). The methylbenzethonium is 

irritating to the skin; lesions may worsen before they improve.

  55.  Cutaneous infection is most commonly due to the Old World species L. major and L. tropica 

and the New World species L. mexicanaL. (Viannia) braziliensis, and others.

  56.  Although azole drugs (fl uconazole, ketoconazole, itraconazole) have been used to treat 

cutaneous disease, they are not reliably effective and have no effi cacy against mucosal 

disease (AJ Magill, Infect Dis Clin North Am 2005; 19:241). For treatment of L. major 

cutaneous lesions, a study in Saudi Arabia found that oral fl uconazole, 200 mg once/d 

x 6 wks appeared to speed healing (AA Alrajhi et al, N Engl J Med 2002; 346:891). 

Thermotherapy may be an option for cutaneous L. tropica infection (R Reithinger et al, Clin 

Infect Dis 2005; 40:1148). A device that generates focused and controlled heating of 

the skin has been approved by the FDA for this indication (ThermoMed—ThermoSurgery 

Technologies Inc., Phoenix, AZ, 602-264-7300; www.thermosurgery.com).

  57.  At this dosage pentamidine has been effective in Colombia predominantly against L. (V.) 

panamensis (J Soto-Mancipe et al, Clin Infect Dis 1993; 16:417; J Soto et al, Am J Trop 

Med Hyg 1994; 50:107). Activity against other species is not well established.

  58.  Mucosal infection is most commonly due to the New World species L. (V.) braziliensisL. 

(V.) panamensis, or L. (V.) guyanensis.

  59.  Pediculocides should not be used for infestations of the eyelashes. Such infestations are 

treated with petrolatum ointment applied 2-4 x/d x 8-10 d. Oral TMP/SMX has also been 

used (TL Meinking and D Taplin, Curr Probl Dermatol 1996; 24:157). For pubic lice, 

treat with 5% permethrin or ivermectin as for scabies. TMP/SMX has also been effective 

when used together with permethrin for head lice (RB Hipolito et al, Pediatrics 2001; 

107:E30).

  60.  Malathion is both ovicidal and pediculocidal; 2 applications at least 7 days apart are 

generally necessary to kill all lice and nits.

  61.  Permethrin and pyrethrin are pediculocidal; retreatment in 7-10 d is needed to eradicate 

the infestation. Some lice are resistant to pyrethrins and permethrin (TL Meinking et al, 

Arch Dermatol 2002; 138:220).


background image

278

Medical Parasitology

 

Appendix

  62.  Ivermectin is pediculocidal, but more than one dose is generally necessary to eradicate 

the infestation (KN Jones and JC English 3rd, Clin Infect Dis 2003; 36:1355). The number 

of doses and interval between doses has not been established, but in one study of body 

lice, 3 doses administered at 7-day intervals were effective (C Fouault et al, J Infect Dis 

2006; 193:474).

 63. Chloroquine-resistant P. falciparum occurs in all malarious areas except Central America 

(including Panama north and west of the Canal Zone), Mexico, Haiti, the Dominican 

Republic, Paraguay, northern Argentina, North and South Korea, Georgia, Armenia, most 

of rural China and some countries in the Middle East (chloroquine resistance has been 

reported in Yemen, Oman, Saudi Arabia and Iran). For treatment of multiple-drug-resistant P. 

falciparum in Southeast Asia, especially Thailand, where mefl oquine resistance is frequent, 

atovaquone/proguanil, quinine plus either doxycycline or clindamycin, or artemether/

lumefantrine may be used.

 64. P. vivax with decreased susceptibility to chloroquine is a signifi cant problem in Papua-New 

Guinea and Indonesia. There are also a few reports of resistance from Myanmar, India, 

the Solomon Islands, Vanuatu, Guyana, Brazil, Colombia and Peru (JK Baird et al, Curr 

Infect Dis Rep 2007; 9:39).

 65. Chloroquine-resistant P. malariae has been reported from Sumatra (JD Maguire et al, 

Lancet 2002; 360:58).

  66. Uncomplicated or mild malaria may be treated with oral drugs. Severe malaria (e.g. 

impaired consciousness, parasitemia >5%, shock, etc.) should be treated with parenteral 

drugs (KS Griffi n et al, JAMA 2007; 297:2264).

  67.  Primaquine is given for prevention of relapse after infection with P. vivax or P. ovale. Some 

experts also prescribe primaquine phosphate 30 mg base/d (0.6 mg base/kg/d for 

children) for 14 d after departure from areas where these species are endemic (Presumptive 

Anti-Relapse Therapy [PART], “terminal prophylaxis”). Since this is not always effective as 

prophylaxis (E Schwartz et al, N Engl J Med 2003; 349:1510), others prefer to rely on 

surveillance to detect cases when they occur, particularly when exposure was limited or 

doubtful. See also footnote 79.

  68. Atovaquone/proguanil is available as a fi xed-dose combination tablet: adult tablets 

(Malarone; 250 mg atovaquone/100 mg proguanil) and pediatric tablets (Malarone 

Pediatric; 62.5 mg atovaquone/25 mg proguanil). To enhance absorption and reduce 

nausea and vomiting, it should be taken with food or a milky drink. Safety in pregnancy 

is unknown; outcomes were normal in 24 women treated with the combination in the 

2nd and 3rd trimester (R McGready et al, Eur J Clin Pharmacol 2003; 59:545). The 

drug should not be given to patients with severe renal impairment (creatinine clearance 

<30mL/min). There have been isolated case reports of resistance in P. falciparum in 

Africa, but Medical Letter consultants do not believe there is a high risk for acquisition of 

Malarone-resistant disease (E Schwartz et al, Clin Infect Dis 2003; 37:450; A Farnert et 

al, BMJ 2003; 326:628; S Kuhn et al, Am J Trop Med Hyg 2005; 72:407; CT Happi et 

al, Malaria Journal 2006; 5:82).

  69.  Although approved for once-daily dosing, Medical Letter consultants usually divide the 

dose in two to decrease nausea and vomiting.

  70.  Available in the US in a 324-mg capsule; 2 capsules suffi ce for adult dosage. In Southeast 

Asia, relative resistance to quinine has increased and treatment should be continued for 7 d. 

Quinine should be taken with or after meals to decrease gastrointestinal adverse effects.

  71.  Doxycycline should be taken with adequate water to avoid esophageal irritation. It can 

be taken with food to minimize gastrointestinal adverse effects.

  72.  For use in pregnancy and in children <8 yrs.

  73.  B Lell and PG Kremsner, Antimicrob Agents Chemother 2002; 46:2315; M Ramharter et 

al, Clin Infect Dis 2005; 40:1777.

 74. At this dosage, adverse effects include nausea, vomiting, diarrhea and dizziness. Disturbed 

sense of balance, toxic psychosis and seizures can also occur. Mefl oquine should not 

be used for treatment of malaria in pregnancy unless there is no other treatment option 

because of increased risk for stillbirth (F Nosten et al, Clin Infect Dis 1999; 28:808). 

It should be avoided for treatment of malaria in persons with active depression or with 

a history of psychosis or seizures and should be used with caution in persons with any 

psychiatric illness. Mefl oquine can be given to patients taking 

β

-blockers if they do not have 


background image

279

Appendix

 

Appendix

an underlying arrhythmia; it should not be used in patients with conduction abnormalities. 

Mefl oquine should not be given together with quinine or quinidine, and caution is required 

in using quinine or quinidine to treat patients with malaria who have taken mefl oquine 

for prophylaxis. Mefl oquine should not be taken on an empty stomach; it should be taken 

with at least 8 oz of water.

 75.  P. falciparum with resistance to mefl oquine is a signifi cant problem in the malarious areas 

of Thailand and in areas of Myanmar and Cambodia that border on Thailand. It has also 

been reported on the borders between Myanmar and China, Laos and Myanmar, and in 

Southern Vietnam. In the US, a 250-mg tablet of mefl oquine contains 228 mg mefl oquine 

base. Outside the US, each 275-mg tablet contains 250 mg base.

  76.  The artemisinin-derivatives, artemether and artesunate, are both frequently used globally 

in combination regimens to treat malaria. Both are available in oral, parenteral and rectal 

formulations, but manufacturing standards are not consistent (HA Karunajeewa et al, JAMA 

2007; 297:2381; EA Ashley and NJ White, Curr Opin Infect Dis 2005; 18:531). In the US, 

only the IV formulation of artesunate is available; it can be obtained through the CDC under 

an IND for patients with severe disease who do not have timely access, cannot tolerate, or 

fail to respond to IV quinidine (www.cdc.gov/malaria/features/artesunate_now_available.

htm). To avoid development of resistance, monotherapy should be avoided (PE Duffy and 

CH Sibley, Lancet 2005; 366:1908). In animal studies artemisinins have been embryotoxic 

and caused a low incidence of teratogenicity; no adverse pregnancy outcome has been 

observed in limited studies in humans (S Dellicour et al, Malaria Journal 2007; 6:15).

  77. Artemether/lumefantrine is available as a fi xed-dose combination tablet (Coartem in 

countries with endemic malaria, Riamet in Europe and countries without endemic malaria); 

each tablet contains 20 mg artemether and 120 mg lumefantrine (M van Vugt et al, Am J 

Trop Med Hyg 1999; 60:936). It is contraindicated during the fi rst trimester of pregnancy; 

safety during the second and third trimester is not known. The tablets should be taken with 

food. Artemether/lumefantrine should not be used in patients with cardiac arrhythmias, 

bradycardia, severe cardiac disease or QT prolongation. Concomitant use of drugs that 

prolong the QT interval or are metabolized by CYP2D6 is contraindicated.

 78. Adults treated with artesunate should also receive oral treatment doses of either 

atovaquone/proguanil, doxycycline, clindamycin or mefl oquine; children should take 

either atovaquone/proguanil, clindamycin or mefl oquine (F Nosten et al, Lancet 2000; 

356:297; M van Vugt, Clin Infect Dis 2002; 35:1498; F Smithuis et al, Trans R Soc Trop 

Med Hyg 2004; 98:182). If artesunate is given IV, oral medication should be started 

when the patient is able to tolerate it (SEAQUAMAT group, Lancet 2005; 366:717).

  79. Primaquine phosphate can cause hemolytic anemia, especially in patients whose red 

cells are defi cient in G-6-PD. This defi ciency is most common in African, Asian and 

Mediterranean peoples. Patients should be screened for G-6-PD defi ciency before treatment. 

Primaquine should not be used during pregnancy. It should be taken with food to minimize 

nausea and abdominal pain. Primaquine-tolerant P. vivax can be found globally. Relapses 

of primaquine-resistant strains may be retreated with 30 mg (base) x 28 d.

  80. Chloroquine should be taken with food to decrease gastrointestinal adverse effects. If 

chloroquine phosphate is not available, hydroxychloroquine sulfate is as effective; 400 

mg of hydroxychloroquine sulfate is equivalent to 500 mg of chloroquine phosphate.

  81.  Chloroquine combined with primaquine was effective in 85% of patients with P. vivax 

resistant to chloroquine and could be a reasonable choice in areas where other alternatives 

are not available (JK Baird et al, J Infect Dis 1995; 171:1678).

 82. Exchange transfusion is controversial, but has been helpful for some patients with 

high-density (>10%) parasitemia, altered mental status, pulmonary edema or renal 

complications (VI Powell and K Grima, Transfus Med Rev 2002; 16:239; MS Riddle et 

al, Clin Infect Dis 2002; 34:1192).

  83.  Continuous EKG, blood pressure and glucose monitoring are recommended, especially 

in pregnant women and young children. For problems with quinidine availability, call 

the manufacturer (Eli Lilly, 800-821-0538) or the CDC Malaria Hotline (770-488-7788). 

Quinidine may have greater antimalarial activity than quinine. The loading dose should 

be decreased or omitted in patients who have received quinine or mefl oquine. If more 

than 48 hours of parenteral treatment is required, the quinine or quinidine dose should 

be reduced by 30-50%.


background image

280

Medical Parasitology

 

Appendix

  84.  No drug guarantees protection against malaria. Travelers should be advised to seek medical 

attention if fever develops after they return. Insect repellents, insecticide- impregnated bed 

nets and proper clothing are important adjuncts for malaria prophylaxis (Med Lett Drugs 

Ther 2005; 47:100). Malaria in pregnancy is particularly serious for both mother and 

fetus; prophylaxis is indicated if exposure cannot be avoided.

 85. Alternatives for patients who are unable to take chloroquine include atovaquone/proguanil, 

mefl oquine, doxycycline or primaquine dosed as for chloroquine-resistant areas.

  86.  Has been used extensively and safely for prophylaxis in pregnancy.

  87.  Beginning 1-2 wks before travel and continuing weekly for the duration of stay and for 4 

wks after leaving.

  88.  Beginning 1-2 d before travel and continuing for the duration of stay and for 1 wk after 

leaving. In one study of malaria prophylaxis, atovaquone/proguanil was better tolerated 

than mefl oquine in nonimmune travelers (D Overbosch et al, Clin Infect Dis 2001; 

33:1015). The protective effi cacy of Malarone against P. vivax is variable ranging from 

84% in Indonesian New Guinea (J Ling et al, Clin Infect Dis 2002; 35:825) to 100% 

in Colombia (J Soto et al, Am J Trop Med Hyg 2006; 75:430). Some Medical Letter 

consultants prefer alternate drugs if traveling to areas where P. vivax predominates.

  89.  Beginning 1-2 d before travel and continuing for the duration of stay and for 4 wks after 

leaving. Use of tetracyclines is contraindicated in pregnancy and in children <8 years old. 

Doxycycline can cause gastrointestinal disturbances, vaginal moniliasis and photosensitivity 

reactions.

 90. Mefl oquine has not been approved for use during pregnancy. However, it has been 

reported to be safe for prophylactic use during the second and third trimester of pregnancy 

and possibly during early pregnancy as well (CDC Health Information for International 

Travel, 2008, page 228; BL Smoak et al, J Infect Dis 1997; 176:831). For pediatric 

doses <½ tablet, it is advisable to have a pharmacist crush the tablet, estimate doses by 

weighing, and package them in gelatin capsules.There is no data for use in children <5 

kg, but based on dosages in other weight groups, a dose of 5 mg/kg can be used. Not 

recommended for use in travelers with active depression or with a history of psychosis or 

seizures and should be used with caution in persons with psychiatric illness. Mefl oquine 

can be given to patients taking 

β

-blockers if they do not have an underlying arrhythmia; 

it should not be used in patients with conduction abnormalities.

  91.  Beginning 1-2 wks before travel and continuing weekly for the duration of stay and for 4 wks 

after leaving. Most adverse events occur within 3 doses. Some Medical Letter consultants 

favor starting mefl oquine 3 weeks prior to travel and monitoring the patient for adverse 

events, this allows time to change to an alternative regimen if mefl oquine is not tolerated.

  92.  The combination of weekly chloroquine (300 mg base) and daily proguanil (200 mg) 

is recommended by the World Health Organization (www.WHO.int) for use in selected 

areas; this combination is no longer recommended by the CDC. Proguanil (Paludrine—

AstraZeneca, United Kingdom) is not available alone in the US but is widely available 

in Canada and Europe. Prophylaxis is recommended during exposure and for 4 weeks 

afterwards. Proguanil has been used in pregnancy without evidence of toxicity (PA 

Phillips-Howard and D Wood, Drug Saf 1996; 14:131).

  93.  Studies have shown that daily primaquine beginning 1d before departure and continued 

until 3-7 d after leaving the malarious area provides effective prophylaxis against 

chloroquine-resistant P. falciparum (JK Baird et al, Clin Infect Dis 2003; 37:1659). Some 

studies have shown less effi cacy against P. vivax. Nausea and abdominal pain can be 

diminished by taking with food.

  94.  A traveler can be given a course of medication for presumptive self-treatment of febrile 

illness. The drug given for self-treatment should be different from that used for prophylaxis. 

This approach should be used only in very rare circumstances when a traveler would not 

be able to get medical care promptly.

  95. CM Chan et al, Ophthalmology 2003; 110:1420. Ocular lesions due to E. hellem in 

HIV-infected patients have responded to fumagillin eyedrops prepared from Fumidil-B 

(bicyclohexyl ammonium fumagillin) used to control a microsporidial disease of honey bees (MJ 

Garvey et al, Ann Pharmacother 1995; 29:872), available from Leiter’s Park Avenue Pharmacy 

(see footnote 1). For lesions due toV. corneae, topical therapy is generally not effective and 

keratoplasty may be required (RM Davis et al, Ophthalmology 1990; 97:953).


background image

281

Appendix

 

Appendix

  96.  Oral fumagillin (Flisint—Sanofi -Aventis, France) has been effective in treating E. bieneusi 

(J-M Molina et al, N Engl J Med 2002; 346:1963), but has been associated with 

thrombocytopenia and neutropenia. Highly active antiretroviral therapy (HAART) may 

lead to microbiologic and clinical response in HIV-infected patients with microsporidial 

diarrhea. Octreotide (Sandostatin) has provided symptomatic relief in some patients with 

large-volume diarrhea.

  97. J-M Molina et al, J Infect Dis 1995; 171:245. There is no established treatment for 

Pleistophora. For disseminated disease due toTrachipleistophora or Brachiola, itraconazole 

400 mg PO once/d plus albendazole may also be tried (CM Coyle et al, N Engl J Med 

2004; 351:42).

  98.  Albendazole or pyrantel pamoate may be effective (JB Ziem et al, Ann Trop Med Parasitol 

2004; 98:385).

  99.  Pneumocystis has been reclassifi ed as a fungus. In severe disease with room air PO

2

 ≤ 

70 mmHg or Aa gradient ≥ 35 mmHg, prednisone should also be used (S Gagnon et al, 

N Engl J Med 1990; 323:1444; E Caumes et al, Clin Infect Dis 1994; 18:319).

 100.  Primary/secondary prophylaxis in patients with HIV can be discontinued after CD4 count 

increases to >200 x 10

6

/L for >3 mos.

 101.  Plus leucovorin 25 mg with each dose of pyrimethamine. Pyrimethamine should be taken 

with food to minimize gastrointestinal adverse effects.

 102.  Treatment may need to be repeated in 10-14 days. A second ivermectin dose taken 2 

weeks later increases the cure rate to 95%, which is equivalent to that of 5% permethrin 

(V Usha et al, J Am Acad Dermatol 2000; 42:236; O Chosidow, N Engl J Med 2006; 

354:1718; J Heukelbach and H Feldmeier, Lancet 2006; 367:1767).

 103. Lindane (γ-benzene hexachloride) should be reserved for treatment of patients who fail to 

respond to other drugs. The FDA has recommended it not be used for immunocompromised 

patients, young children, the elderly, pregnant and breast-feeding women, and patients 

weighing <50 kg.

 104.  Ivermectin, either alone or in combination with a topical scabicide, is the drug of choice 

for crusted scabies in immunocompromised patients (P del Giudice, Curr Opin Infect Dis 

2004; 15:123).

 105. Oxamniquine, which is not available in the US, is generally not as effective as praziquantel. 

It has been useful, however, in some areas in which praziquantel is less effective (ML Ferrari 

et al, Bull World Health Organ 2003; 81:190; A Harder, Parasitol Res 2002; 88:395). 

Oxamniquine is contraindicated in pregnancy. It should be taken after food.

 106.  In East Africa, the dose should be increased to 30 mg/kg, and in Egypt and South Africa 

to 30 mg/kg/d x 2 d. Some experts recommend 40-60 mg/kg over 2-3 d in all of Africa 

(KC Shekhar, Drugs 1991; 42:379).

 107.  In immunocompromised patients or disseminated disease, it may be necessary to prolong 

or repeat therapy, or to use other agents. Veterinary parenteral and enema formulations 

of ivermectin have been used in severely ill patients with hyperinfection who were unable 

to take or reliably absorb oral medications (J Orem et al, Clin Infect Dis 2003; 37:152; 

PE Tarr Am J Trop Med Hyg 2003; 68:453; FM Marty et al, Clin Infect Dis 2005; 41:e5). 

In disseminated strongyloidiasis, combination therapy with albendazole and ivermectin 

has been suggested (S Lim et al, CMAJ 2004; 171:479).

 108. Niclosamide must be chewed thoroughly before swallowing and washed down with 

water.

 109.  JO Juan et al, Trans R Soc Trop Med Hyg 2002; 96:193; JC Chero et al, Trans R Soc 

Trop Med Hyg 2007; 101:203; E Diaz et al, Am J Trop Med Hyg 2003; 68:384.

 110.  Patients may benefi t from surgical resection or percutaneous drainage of cysts. Praziquantel 

is useful preoperatively or in case of spillage of cyst contents during surgery. Percutaneous 

aspiration-injection-reaspiration (PAIR) with ultrasound guidance plus albendazole therapy 

has been effective for management of hepatic hydatid cyst disease (RA Smego, Jr. et al, 

Clin Infect Dis 2003; 37:1073; S Nepalia et al, J Assoc Physicians India 2006; 54:458; 

E Zerem and R Jusufovic Surg Endosc 2006; 20:1543).

 111. Surgical excision is the only reliable means of cure. Reports have suggested that in 

nonresectable cases use of albendazole (400 mg bid) can stabilize and sometimes cure 

infection (P Craig, Curr Opin Infect Dis 2003; 16:437; O Lidove et al, Am J Med 2005; 

118:195).


background image

282

Medical Parasitology

 

Appendix

 112.  Initial therapy for patients with infl amed parenchymal cysticercosis should focus on 

symptomatic treatment with anti-seizure medication (LS Yancey et al, Curr Infect Dis 

Rep 2005; 7:39; AH del Brutto et al, Ann Intern Med 2006; 145:43). Patients with 

live parenchymal cysts who have seizures should be treated with albendazole together 

with steroids (dexamethasone 6 mg/d or prednisone 40-60 mg/d) and an anti-seizure 

medication (HH Garcia et al, N Engl J Med 2004; 350:249). Patients with subarachnoid 

cysts or giant cysts in the fi ssures should be treated for at least 30 d (JV Proaño et al, N 

Engl J Med 2001; 345:879). Surgical intervention (especially neuroendoscopic removal) 

or CSF diversion followed by albendazole and steroids is indicated for obstructive 

hydocephalus. Arachnoiditis, vasculitis or cerebral edema is treated with prednisone 

60 mg/d or dexamethasone 4-6 mg/d together with albendazole or praziquantel (AC 

White, Jr., Annu Rev Med 2000; 51:187). Any cysticercocidal drug may cause irreparable 

damage when used to treat ocular or spinal cysts, even when corticosteroids are used. 

An ophthalmic exam should always precede treatment to rule out intraocular cysts.

 113. To treat CNS toxoplasmosis in HIV-infected patients, some clinicians have used 

pyrimethamine 50-100 mg/d (after a loading dose of 200 mg) with sulfadiazine and, when 

sulfonamide sensitivity developed, have given clindamycin 1.8-2.4 g/d in divided doses 

instead of the sulfonamide. Treatment is usually given for at least 4-6 weeks. Atovaquone 

(1500 mg PO bid) plus pyrimethamine (200 mg loading dose, followed by 75 mg/d PO) 

for 6 weeks appears to be an effective alternative in sulfa-intolerant patients (K Chirgwin 

et al, Clin Infect Dis 2002; 34:1243). Atovaquone must be taken with a meal to enhance 

absorption. Treatment is followed by chronic suppression with lower dosage regimens of 

the same drugs. For primary prophylaxis in HIV patients with <100 x 106/L CD4 cells, 

either trimethoprim-sulfamethoxazole, pyrimethamine with dapsone, or atovaquone with or 

without pyrimethamine can be used. Primary or secondary prophylaxis may be discontinued 

when the CD4 count increases to >200 x 106/L for >3mos (MMWR Morb Mortal Wkly 

Rep 2004; 53 [RR15]:1). In ocular toxoplasmosis with macular involvement, corticosteroids 

are recommended in addition to antiparasitic therapy for an anti-infl ammatory  effect. 

In one randomized single-blind study, trimethoprim/sulfamethoxazole was reported to 

be as effective as pyrimethamine/sulfadiazine for treatment of ocular toxoplasmosis (M 

Soheilian et al, Ophthalmology 2005; 112:1876). Women who develop toxoplasmosis 

during the fi rst trimester of pregnancy should be treated with spiramycin (3-4 g/d). After 

the fi rst trimester, if there is no documented transmission to the fetus, spiramycin can be 

continued until term. If transmission has occurred in utero, therapy with pyrimethamine and 

sulfadiazine should be started (JG Montoya and O Liesenfeld, Lancet 2004; 363:1965). 

Pyrimethamine is a potential teratogen and should be used only after the fi rst trimester.

 114.  Plus leucovorin 10-25 mg with each dose of pyrimethamine. Pyrimethamine should be 

taken with food to minimize gastrointestinal adverse effects.

 115. Congenitally infected newborns should be treated with pyrimethamine every 2 or 3 

days and a sulfonamide daily for about one year (JS Remington and G Desmonts in JS 

Remington and JO Klein, eds, Infectious Disease of the Fetus and Newborn Infant, 6th 

ed, Philadelphia: Saunders, 2006:1038).

 116.  Sulfadiazine should be taken on an empty stomach with adequate water.

 117.  Sexual partners should be treated simultaneously with same dosage. Metronidazole-resistant 

strains have been reported and can be treated with higher doses of metronidazole (2-4 

g/d x 7-14 d) or with tinidazole (MMWR Morb Mortal Wkly Rep 2006; 55 [RR11]:1).

 118.  MP Barrett et al, Lancet 2003; 362:1469. Treatment of chronic or indeterminate Chagas’ 

disease with benznidazole has been associated with reduced progression and increased 

negative seroconversion (R Viotti et al, Ann Intern Med 2006; 144:724).

 119.  Benznidazole should be taken with meals to minimize gastrointestinal adverse effects. It 

is contraindicated during pregnancy.

 120.  Pentamidine and suramin have equal effi cacy, but pentamidine is better tolerated.

 121. Efl ornithine is highly effective in T.b. gambiense, but not in T.b. rhodesiense infections. In 

one study of treatment of CNS disease due to T.b. gambiense, there were fewer serious 

complications with efl ornithine than with melarsoprol (F Chappuis et al, Clin Infect Dis 

2005; 41:748). Efl ornithine is available in limited supply only from the WHO. It is 

contraindicated during pregnancy.


background image

283

Appendix

 

Appendix

 122.  E Schmid et al, J Infect Dis 2005; 191:1922. Corticosteroids have been used to prevent 

arsenical encephalopathy (J Pepin et al, Trans R Soc Trop Med Hyg 1995; 89:92). Up 

to 20% of patients with T.b.gambiense fail to respond to melarsoprol (MP Barrett, Lancet 

1999; 353:1113). In one study, a combination of low-dose melarsoprol (1.2 mg/kg/d 

IV) and nifurtimox (7.5 mg/kg PO bid) x 10d was more effective than standard-dose 

melarsoprol alone (S Bisser et al, J Infect Dis 2007; 195:322).

 123.  Optimum duration of therapy is not known; some Medical Letter consultants 

would treat x 20 d. For severe symptoms or eye involvement, corticosteroids can

be used in addition (D Despommier, Clin Microbiol Rev 2003; 16:265).

 


background image

284

Medical Parasitology

 

Appendix

Safety of Antiparasitic Drugs 

in Pregnancy

Drug 

Toxicity in Pregnancy 

Recommendations

Albendazole (Albenza

Teratogenic and embryotoxic 

Caution*

 

  in animals

Amphotericin B 

None known 

Caution*

(Fungizone, and others)

Amphotericin B liposomal  None known 

Caution*

(AmBisome)

Artemether/lumefantrine 

Embryocidal and teratogenic 

Caution*

(CoartemRiamet)

  in animals

Artesunate

1

 

Embryocidal and teratogenic 

Caution*

 

  in animals

Atovaquone (Mepron

Maternal and fetal toxicity 

Caution*

 

  in animals

Atovaquone/proguanil  

Maternal and fetal toxicity  

Caution*

(Malarone)

2

 

  in animals

Azithromycin (Zithromax,   None known 

Probably safe

and others) 

Benznidazole (Rochagan) Unknown 

Contraindicated

Chloroquine (Aralen,  

None known with doses  

Probably safe in low

and others)  

  recommended for malaria 

  doses

 

  prophylaxis

Clarithromycin (Biaxin,  

Teratogenic in animals 

Contraindicated

and others)

Clindamycin (Cleocin,  

None known 

Caution*

and others)

Crotamiton (Eurax) Unknown 

Caution*

Dapsone 

None known; carcinogenic  

Caution*, especially 

 

  in rats and mice; hemolytic 

at term

 

  reactions in neonates

Diethylcarbamazine  

Not known; abortifacient  

Contraindicated

(DEC; Hetrazan

  in one study in rabbits

Diloxanide (Furamide

Safety not established 

Caution*

Doxycycline (Vibramycin,   Tooth discoloration and dysplasia,   Contraindicated

and others)  

  inhibition of bone growth in fetus; 

 

  hepatic toxicity and azotemia 

 

  with IV use in pregnant patients 

 

  with decreased renal function 

 

  or with overdosage

Efl ornithine (Ornidyl

Embryocidal in animals 

Contraindicated

Fluconazole (Difl ucan,  

Teratogenic  

Contraindicated for 

and others)  

 

  high dose; caution* 

 

 

  for single dose

Flucytosine (Ancoban

Teratogenic in rats 

Contraindicated

Furazolidone (Furoxone

None known; carcinogenic in  

Caution*; 

 

  rodents; hemolysis with 

  contraindicated

 

  G-6-PD defi ciency in newborn 

  at term


background image

285

Appendix

 

Appendix

Drug 

Toxicity in Pregnancy 

Recommendations

Hydroxychloroquine  

None known with doses  

Probably safe 

(Plaquenil)  

  recommended for malaria 

  in low doses

 

  prophylaxis

Itraconazole (Sporanox,  

Teratogenic and embryotoxic 

Caution*

and others)  

  in rats

Iodoquinol (Yodoxin,  

Unknown 

Caution*

and others) 

Ivermectin (Stromectol

Teratogenic in animals 

Contraindicated

Ketoconazole (Nizoral,  

Teratogenic and embryotoxic  

Contraindicated; 

and others)  

  in rats 

  topical probably safe

Lindane 

Absorbed from the skin; potential   Contraindicated

 

  CNS toxicity in fetus

Malathion, topical (Ovide)  None known 

Probably safe

Mebendazole (Vermox

Teratogenic and embryotoxic in rats  Caution*

Mefl oquine (Lariam)

3

 

Teratogenic in animals 

Caution*

Meglumine (Glucantine) Not 

known 

Caution*

Metronidazole (Flagyl,  

None known—carcinogenic  

Caution*

and others) 

  in rats and mice

Miconazole (Monistat i.v.)  None known 

Caution*

Miltefosine (Impavido

Teratogenic in rats and induces  

Contraindicated; 

 

  abortions in animals  

  effective contra-

 

 

  ception must be

 

 

  used for 2 months

 

 

  after the last dose

Niclosamide (Niclocide

Not absorbed; no known toxicity   Probably safe

 

  in fetus

Nitazoxanide (Alinia) None 

known 

Caution*

Oxamniquine (Vansil

Embryocidal in animals 

Contraindicated

Paromomycin (Humatin

Poorly absorbed; toxicity in fetus   Oral capsules 

 

  unknown  

  probably safe

Pentamidine (Pentam 300  Safety not established 

Caution*

NebuPent, and others)

Permethrin (Nix, and  

Poorly absorbed; no known 

Probably safe

others)  

  toxicity in fetus

Praziquantel (Biltricide

Not known 

Probably safe

Primaquine 

Hemolysis in G-6-PD defi ciency 

Contraindicated

Pyrantel pamoate  

Absorbed in small amounts;  

Probably safe

(Antiminth, and others) 

  no known toxicity in fetus

Pyrethrins and piperonyl  

Poorly absorbed; no known  

Probably safe

butoxide (RID, and others)    toxicity in fetus

Pyrimethamine 

Teratogenic in animals 

Caution*; contra-

(Daraprim)

4

  

 

  indicated during 

 

 

  1st trimester

Quinacrine (Atabrine

Safety not established 

Caution*

Quinidine 

Large doses can cause abortion 

Probably safe

Quinine (Qualaquin

Large doses can cause abortion;   Caution*

 

  auditory nerve hypoplasia, 

 

  deafness in fetus; visual

 

  changes, limb anomalies, 

 

  visceral defects also reported


background image

286

Medical Parasitology

 

Appendix

Drug 

Toxicity in Pregnancy 

Recommendations

Sodium stibogluconate 

 Not known 

Caution*

(Pentostam)

Sulfonamides 

Teratogenic in some animal 

Caution*; contra-

 

  studies; hemolysis in newborn 

  indicated at term

 

  with G-6-PD defi ciency; 

 

  increased risk of kernicterus

 

  in newborn

Suramin sodium 

Teratogenic in mice 

Caution*

(Germanin)

Tetracycline (Sumycin,  

Tooth discoloration and dysplasia,   Contraindicated

and others) 

  inhibition of bone growth in 

 

  fetus; hepatic toxicity and 

 

  azotemia with IV use in pregnant 

 

  patients with decreased renal 

 

  function or with overdosage

Tinidazole (Tindamax

Increased fetal mortality in rats 

Caution*

Trimethoprim (Proloprim,   Folate antagonism; teratogenic 

Caution*

and others) 

  in rats

Trimethoprim-sulfa-  

Same as sulfonamides and 

Caution*; contra-

methoxazole (Bactrim

  trimethoprim 

  indicated at term

and others) 

  *  Use only for strong clinical indication in absence of suitable alternative.

  1.  See also footnote 76 in previous table.

  2.  See also footnote 68 in previous table.

  3.  See also footnotes 74 and 90 in previous table.

  4.  See also footnote 113 in previous table.


background image

287

Appendix

 

Appendix

Manufacturers of Drugs Used to Treat 

Parasitic Infections

 albendazole—Albenza 

(GlaxoSmithKline)

  Albenza (GlaxoSmithKline)—albendazole

 Alinia 

(Romark)—nitazoxanide

  AmBisome (Gilead)—amphotericin B, liposomal

 amphotericin 

B—Fungizone (Apothecon), others

  amphotericin B, liposomal—AmBisome (Gilead)

  Ancobon (Valeant)—fl ucytosine

§  Antiminth (Pfi zer)—pyrantel pamoate

•  Aralen (Sanofi )—chloroquine HCl and chloroquine phosphate

§ artemether—Artenam (Arenco, Belgium)

§ artemether/lumefantrine—CoartemRiamet (Novartis)

§  Artenam (Arenco, Belgium)—artemether

§  artesunate—(Guilin No. 1 Factory, People’s Republic of China)

 atovaquone—Mepron (GlaxoSmithKline)

 atovaquone/proguanil—Malarone (GlaxoSmithKline)

 azithromycin—Zithromax (Pfi zer), others

•  Bactrim (Roche)—TMP/Sulfa

§ benznidazole—Rochagan (Brazil)

•  Biaxin (Abbott)—clarithromycin

§  Biltricide (Bayer)—praziquantel

† bithionol—Bitin (Tanabe, Japan)

†  Bitin (Tanabe, Japan)—bithionol

§  Brolene (Aventis, Canada)—propamidine isethionate chloroquine HCl 

and chloroquine phosphate—Aralen (Sanofi ), others

 clarithromycin—Biaxin (Abbott), others

•  Cleocin (Pfi zer)—clindamycin

 clindamycin—Cleocin (Pfi zer), others

 Coartem (Novartis)—artemether/lumefantrine

 crotamiton—Eurax (Westwood-Squibb)

 dapsone—(Jacobus)

§  Daraprim (GlaxoSmithKline)—pyrimethamine USP

†  diethylcarbamazine citrate (DEC)—Hetrazan

•  Difl ucan (Pfi zer)—fl uconazole

§ diloxanide 

furoate—Furamide (Boots, United Kingdom)

 doxycycline—Vibramycin (Pfi zer), others

 efl ornithine (Difl uoromethylornithine, DFMO)—Ornidyl (Aventis)

§  Egaten (Novartis)—triclabendazole

 Elimite (Allergan)—permethrin

 Ergamisol (Janssen)—levamisole

 Eurax (Westwood-Squibb)—crotamiton

•  Flagyl (Pfi zer)—metronidazole

§  Flisint (Sanofi -Aventis, France)—fumagillin

  fl uconazole—Difl ucan (Pfi zer), others

  fl ucytosine—Ancobon (Valeant)

§ fumagillin—Flisint (Sanofi -Aventis, France)

•  Fungizone (Apothecon)—amphotericin

§  Furamide (Boots, United Kingdom)—diloxanide furoate


background image

288

Medical Parasitology

 

Appendix

§ furazolidone—Furozone (Roberts)

§  Furozone (Roberts)—furazolidone

†  Germanin (Bayer, Germany)—suramin sodium

§  Glucantime (Aventis, France)—meglumine antimonate

†  Hetrazan—diethylcarbamazine citrate (DEC)

 Humatin (Monarch)—paromomycin

§  Impavido (Zentaris, Germany)—miltefosine

 iodoquinol—Yodoxin (Glenwood), others

 itraconazole—Sporanox (Janssen-Ortho), others

 ivermectin—Stromectol (Merck)

 ketoconazole—Nizoral (Janssen), others

†  Lampit (Bayer, Germany)—nifurtimox

L ariam (Roche)—mefl oquine

§  Leshcutan (Teva, Israel)—topical paromomycin

 levamisole—Ergamisol (Janssen)

 lumefantrine/artemether—CoartemRiamet (Novartis)

 Malarone (GlaxoSmithKline)—atovaquone/proguanil

 malathion—Ovide (Medicis)

 mebendazole—Vermox (McNeil), others

 mefl oquine—Lariam (Roche)

§ meglumine 

antimonate—Glucantime (Aventis, France)

† melarsoprol—Mel-B

†  Mel-B—melarsoprol

 Mepron (GlaxoSmithKline)—atovaquone

 metronidazole—Flagyl (Pfi zer), others

§ miconazole—Monistat i.v.

§ miltefosine—Impavido (Zentaris, Germany)

§  Monistat i.v.—miconazole

 NebuPent (Fujisawa)—pentamidine isethionate

 Neutrexin (US Bioscience)—trimetrexate

§ niclosamide—Yomesan (Bayer, Germany)

† nifurtimox—Lampit (Bayer, Germany)

 nitazoxanide—Alinia (Romark)

•  Nizoral (Janssen)—ketoconazole

 Nix (GlaxoSmithKline)—permethrin

§ ornidazole—Tiberal (Roche, France)

 Ornidyl (Aventis)—efl ornithine (Difl uoromethylornithine, DFMO)

 Ovide (Medicis)—malathion

§ oxamniquine—Vansil (Pfi zer)

§  Paludrine (AstraZeneca, United Kingdom)—proguanil

 paromomycin—Humatin (Monarch); Leshcutan (Teva, Israel; (topical formulation not 

  available in US)

 Pentam 300 (Fujisawa)—pentamidine isethionate

 pentamidine 

isethionate—Pentam 300 (Fujisawa), NebuPent (Fujisawa)

†  Pentostam (GlaxoSmithKline, United Kingdom)—sodium stibogluconate

 permethrin—Nix (GlaxoSmithKline), Elimite (Allergan)

§ praziquantel—Biltricide (Bayer)

  primaquine phosphate USP

§ proguanil—Paludrine (AstraZeneca, United Kingdom)

 proguanil/atovaquone—Malarone (GlaxoSmithKline)

§ propamidine 

isethionate—Brolene (Aventis, Canada)

§ pyrantel 

pamoate—Antiminth (Pfi zer)


background image

289

Appendix

 

Appendix

  pyrethrins and piperonyl butoxide—RID (Pfi zer), others

§ pyrimethamine 

USP—Daraprim (GlaxoSmithKline)

 Qualaquin—quinine sulfate (Mutual Pharmaceutical Co/AR Scientifi c)

*  quinidine gluconate (Eli Lilly)

§ quinine 

dihydrochloride

 quinine 

sulfate—Qualaquin (Mutual Pharmaceutical Co/AR Scientifi c)

 Riamet (Novartis)—artemether/lumefantrine

•  RID (Pfi zer)—pyrethrins and piperonyl butoxide

•  Rifadin (Aventis)—rifampin

 rifampin—Rifadin (Aventis), others

§  Rochagan (Brazil)—benznidazole

*  Rovamycine (Aventis)—spiramycin

†  sodium stibogluconate—Pentostam (GlaxoSmithKline, United Kingdom)

* spiramycin—Rovamycine (Aventis)

•  Sporanox (Janssen-Ortho)—itraconazole

 Stromectol (Merck)—ivermectin

 sulfadiazine—(Eon)

† suramin 

sodium—Germanin (Bayer, Germany)

§  Tiberal (Roche, France)—ornidazole

 Tindamax (Mission)—tinidazole

 tinidazole—Tindamax (Mission)

 TMP/Sulfa—Bactrim (Roche), others

§ triclabendazole—Egaten (Novartis)

 trimetrexate—Neutrexin (US Bioscience)

§  Vansil (Pfi zer)—oxamniquine

•  Vermox (McNeil)—mebendazole

•  Vibramycin (Pfi zer)—doxycycline

•  Yodoxin (Glenwood)—iodoquinol

§  Yomesan (Bayer, Germany)—niclosamide

•  Zithromax (Pfi zer)—azithromycin

  *  Available in the US only from the manufacturer.

  §  Not available in the US; may be available through a compounding pharmacy (see footnote 

4 in previous Drugs for Parasitic Infections table).

  †  Available from the CDC Drug Service, Centers for Disease Control and Prevention, Atlanta, 

Georgia 30333; 404-639-3670 (evenings, weekends, or holidays: 770-488-7100).

  •  Also available generically.


background image

background image

Index

I

NDEX

A

Acute schistosomiasis   113, 114, 123, 

124, 127, 131, 134

Affi  rm™ VPII   225
Afr ican trypanosomiasis  161, 162, 

164, 169, 174, 271, 272

AIDS   35, 171, 177, 179, 180, 192, 

193, 199, 214, 218, 220, 227, 
273, 274

Albendazole   5, 6, 11, 12, 18, 19, 29, 

37, 43, 56, 65, 69, 74, 82, 83, 91, 
96, 108, 143, 150, 203, 274-276, 
281, 282, 284, 287

Amebiasis   206, 208-211, 251, 261, 

263, 273

Ameboma   208, 211
Amphotericin B   178, 179, 187, 188, 

273, 276, 277, 284, 287

Ancyclostoma braziliense  63, 64
Ancylostoma   21, 23, 60, 63, 64, 262, 

265

Anemia   10, 12, 21, 25-27, 73, 93, 

105, 108, 114, 122, 132, 159, 
164, 165, 192, 233, 240, 279

Angioedema   54, 55
Animal hookworm   63, 64
Arachnida  255
Ascaris lumbricoides   14-16, 18, 19, 

24, 71, 262

Atovaquone   220, 233, 234, 244, 

246, 266-268, 274, 278-280, 
282, 284, 287, 288

Autoinfection   2, 6, 34, 35, 37, 38
Azithromycin   220, 233, 273, 274, 

284, 287, 289

B

Baylisascariasis   67, 68, 262, 274
Baylisascariasis procyonis  67-69
Beef tapeworm   138, 139

Benzimidazole   11, 12, 29, 30, 43, 74, 

95, 203

Biliary duct   93
Biliary tract   86, 88, 89, 91, 93, 95, 

149, 198, 215, 218, 219

Blood smear   99, 166, 176, 237, 238, 

242, 243, 245, 246

Bradyzoite  191, 192

C

Calabar swelling   53, 54, 56
Calcifi cation   60, 130, 133, 134, 193
Canine   146, 256
Card agglutination test for 

trypanosomiasis (CATT)   166

Cardiomyopathy   41, 155, 157, 160, 

165

Cercariae   89, 93, 105, 107, 112, 113, 

117, 119, 129, 130

Cerebral malaria   240
Chagas disease   154, 156-160, 169, 

177, 252, 262, 271, 282

Chloroquine resistant   244, 246, 

266-268, 278, 280

Cholangiocarcinoma  89, 91
Chorioretinitis   49, 50, 192, 193
Chronic schistosomiasis   113, 119, 

124, 132, 134

Chrysops spp   53
Clindamycin   193, 233, 244, 274, 

278, 279, 282, 284, 287

Clonorchiasis   86-91, 109
Clonorchis   86-88, 262, 264
Colitis   4, 5, 10, 11, 208, 211, 213
Congenital toxoplasmosis   190, 192, 

193

Copepod   58, 59, 61
Corticosteroid   35, 43, 56, 69, 74, 

131, 134, 143, 193, 208, 234, 
272, 274, 275, 282, 283


background image

292 

Medical Parasitology

Index

Creeping eruption   63, 64, 263
Cryptosporidium  203, 205, 

214-216, 218-220, 262, 273

Cutaneous larva migrans (CLM)   21, 

26-29, 63-65, 263

Cutaneous leishmaniasis   177, 179, 

182-185, 187, 277

Cyclic fever   237
Cyclopiscide  61
Cyst   41, 101, 105, 142, 143, 

146-151, 190-193, 195-199, 
201, 204-208, 210, 211, 222, 
228-231, 234, 265, 270, 272, 
281, 282

Cysticerca  138

D

Dapsone   233, 235, 269, 282, 284, 

287

DFMO   168, 169, 287, 288
Diagnosis   4-6, 11, 17, 18, 27, 37, 

43, 49, 55, 60, 65, 68, 73, 74, 
80, 82, 90, 93-96, 98, 101, 102, 
106, 108, 109, 114, 115, 123, 
129, 133, 143, 146, 150, 154, 
159, 161, 165-169, 176, 177, 
180, 186, 192, 193, 201, 206, 
208, 210, 211, 219, 223-225, 
229-232, 234, 238, 242-246, 
251, 274

Diarrhea   10, 11, 26, 27, 29, 35, 36, 

42, 89, 95, 105, 108, 109, 114, 
121, 122, 124, 142, 168, 179, 
198, 200, 201, 205, 208, 214, 
215, 216, 218, 220, 221, 233, 
258, 273, 275, 278, 281

Diethylcarbamazine (DEC)   49, 50, 

55, 56, 74, 82, 83, 275, 276, 284, 
287, 288

Diff use unilateral subacute 

neuroretinitis (DUSN)   68

Disseminated cutaneous leishmaniasis 

(DCL)   185, 187

Diurnal rhythm   53
Dracunculiasis   58, 60, 61
Dracunculus medinensis  58, 263
Duff y   241, 279
Dust mite   250, 256
Dysentery   10, 122, 174, 206-209

E

Echinococcosis  146, 148-150
Echinococcus granulosus   146, 148, 

149, 151, 270

Echinostome  107
Efl ornithine   168, 282, 284, 287, 288
Elephantiasis  79-81
Encephalitis   142, 190, 273
Endomyocardial fi brosis   55
Entamoeba   203, 206, 207, 209, 261, 

263

Enterobiasis   2-4, 6
Eosinophilia   4, 10, 16, 18, 26-28, 

31, 35, 36-38, 43, 54-56, 60, 65, 
68, 72, 73, 75, 80, 89, 90, 93, 99, 
101, 105, 108, 113, 121, 123, 
131, 210, 264

Eosinophilic meningoencephalitis  68, 

73

Eradication program   61
Erythrocytic (blood) stage   237, 238, 

240, 242

Exo-erythrocytic (hepatic) stage   237
Eye worm   53

F

Fasciola hepatica   92-95, 263, 264, 

276

Fascioliasis   92, 93, 95, 96, 276
Fasciolopsis buski  104-106, 264
Fecal-oral   87, 91, 144, 196, 216
Food-borne trematode control   106
Fungal infection   79, 227


background image

Index

 293

Index

G

Gastrointestinal disease   214, 274
Giardia duodenalis  195, 264
Giardia intestinalis  195-197, 201
Giardia lamblia   195, 199, 200
Giardiasis   195, 197-205, 264, 276
Global program for elimination of 

lymphatic fi lariasis (GPELF)   83

Glossina   161, 162
Guinea worm   58, 60, 61, 263

H

Hanging groin   48
Harada-Mori  28
Helminth   2, 8, 12, 16, 19, 21, 24, 35, 

37, 58, 60, 70, 82, 83, 129, 199, 
203, 210, 250, 272, 276

Hematuria   55, 78, 80, 129, 130, 133, 

135

Hepatic abscess   17, 213
Heterophyes heterophyes  104, 108, 

109, 264

Hexapoda  251
Histolytica   206-211, 213, 261, 263
HIV   35, 122, 157, 171, 174-176, 

178, 179, 185, 186, 194, 
199, 218, 220, 226-228, 230, 
232-235, 250, 262, 275, 277, 
280-282

Hookworm   8-11, 21-30, 37, 63, 64, 

262, 263, 265, 269

Human African trypanosomiasis 

(HAT)  161-169

Hydatid cyst   147-151, 265, 270, 281
Hydatidosis  146
Hydrocele   55, 79-82
Hyperinfection   34-38, 281

I

Immunocompromised   159, 177, 

190, 192, 193, 199, 205, 214, 
215, 218-221, 256, 273, 277, 281

Immunodefi ciency   122, 185, 198, 

199, 214, 218, 221

Immunosuppression   157, 193, 229, 

230, 232

InPouch™  225
Intestinal fl uke   104, 105, 264
Iron defi ciency   27
Ivermectin   6, 29, 37, 38, 49-51, 55, 

56, 61, 65, 69, 82, 83, 274-278, 
281, 285, 288, 289

K

Kato-Katz  114, 123

L

Liposomal amphotericin   179, 188, 

276

Liver fl uke   90, 92, 109, 264
Loa loa   50, 51, 53-56, 263, 266, 275
Loiasis   53, 55, 56, 275
Lung fl uke   98, 264
Lymphatic   21, 34, 41, 45, 76-83, 

109, 119, 155, 156, 164, 172, 
259, 275

Lymphedema   47, 79, 82

M

Macrofi lariae   45, 49-51, 275
Malaria   21, 25, 123, 129, 174, 

176, 204, 237, 238, 240-247, 
266-268, 278-280, 284, 285

Malnutrition   10, 12, 21, 25, 27, 29, 

34, 36, 104, 106, 122, 132, 138, 
174, 199, 204, 218

Mango fl y   53
Mazzotti reaction   49, 50
Mebendazole   5, 6, 11, 18, 19, 29, 43, 

61, 69, 74, 108, 203, 262, 265, 
274, 285, 288, 289

Megacolon   155, 158, 160, 208
Megaesophagus  155
Melarsoprol   167-169, 282, 283, 288


background image

294 

Medical Parasitology

Index

Meningoencephalitis   55, 68, 73, 

261, 262, 269, 270

Metacercariae   89, 91, 93, 98, 99, 

105, 107

Metagonimus yokogawai  104, 108, 

109, 264

Metronidazole   61, 96, 202-204, 212, 

213, 222, 224, 226, 273, 274, 
276, 282, 285, 287, 288

Microfi laria   45, 47-51, 53-56, 76-78, 

80, 82, 275, 276

Miltefosine   179, 187, 188, 277, 285, 

288

Mosquito   76, 77, 82, 237, 240, 241, 

245-247, 250-252, 256, 257

Mucocutaneous leishmaniasis   185, 

186

Muscle   39, 41-43, 89, 98, 99, 139, 

142, 143, 147, 150, 155, 157, 
190, 192, 258

Myocarditis   42, 44, 73, 157, 192
Myositis  64

N

Necator   21, 22, 64, 265, 269
Neglected tropical disease   105
Nematode   2, 6, 8, 11, 14, 21, 31, 39, 

45-48, 53, 63, 64, 67, 68, 76, 77

Neural larva migrans (NLM)   68, 69
Neurocysticercosis   124, 138, 142, 

143

Neurotrichinellosis  44
Nongonococcal urethritis (NGU)   

222, 223, 225

Nylon fi lter   61

O

Obstructive jaundice   17, 91
Ocular larva migrans (OLM)   68, 69, 

70, 72-74

Onchocerca volvulus   45-47, 50, 264, 

269, 275

Onchocercoma   45, 48, 49

Onchocercosis   45, 48-51
Oocyst   190, 215, 216, 218-220
Opisthorchiasis   86-90, 109
Opisthorchis   86, 87, 90, 264, 269
Opportunistic infection   164, 174, 

218, 227

Oriental blood fl uke   111
OSOM®  225

P

Paragonimiasis  98-102
Parasite   2, 3, 6, 9, 14-17, 21-23, 26, 

27, 32, 35, 40-43, 46, 47, 49, 50, 
54, 55, 58, 60, 65, 67, 68, 70, 71, 
74, 76, 77, 78, 80, 82, 83, 87-89, 
94, 95, 98-102, 105-107, 111, 
113, 116, 118, 123, 124, 126, 
130-134, 139-144, 146-148, 
154-159, 161, 163-168, 170-174, 
176-178, 180, 182-188, 190, 
192-197, 199-202, 206-210, 
213-215, 219, 222, 223, 
237-240, 242, 245, 250, 253

PCP treatment   234
Pentamidine   167-169, 179, 233, 

235, 273, 277, 282, 285, 288

Pentavalent antimony   178, 187
Periorbital swelling   157
Phlebotomine   171, 250
Pinworm   2, 4, 6, 263, 269
Plasmodium falciparum  237, 

239-244, 246, 266, 278-280

Plasmodium malariae   237, 239-242, 

244, 278

Plasmodium ovale  237, 239, 241, 

242, 244, 266, 278

Plasmodium vivax   237, 239-242, 

244, 266-268, 278-280

Pneumocystis carinii  227
Pneumocystis jiroveci   227, 230-234, 

269

Pneumocystis pneumonia (PCP)   

227-230, 232-235, 269


background image

Index

 295

Index

Polymerase chain reaction (PCR)   

43, 49, 50, 56, 82, 91, 102, 150, 
159, 166, 169, 177, 187, 193, 
202, 219, 225, 231, 234, 242, 
243

Poor sanitary conditions   8, 12, 215
Pork   39, 44, 138, 139, 190, 252, 270
Pork tapeworm   138, 139
Post-kala-azar dermal leishmaniasis 

(PKDL)   171, 172, 175-177, 
180, 185

Praziquantel   91, 96, 102, 106-109, 

116, 122, 124-126, 131, 134, 
143, 276, 281, 282, 285, 287, 
288

Primaquine   233, 241, 244, 267, 268, 

278-280, 285, 288

Prophylaxis   6, 12, 51, 56, 65, 69, 91, 

96, 116, 126, 135, 144, 151, 188, 
227, 234, 235, 246, 278-282, 
284, 285

Proteinuria   41, 55, 79, 80, 122, 132
Protozoa   11, 171, 250
Protozoan   154, 155, 161, 171, 182, 

190, 195, 199, 206, 214, 227, 
272

Punctate keratitis   49, 50
Pyrimethamine   193, 233, 273, 276, 

281, 282, 285, 287, 289

R

Raccoon   67-69, 274
Recrudescence   49, 51, 52, 157, 242
Rectal prolapse   10
Reduviid bug   155, 158, 160, 252
Relapse   65, 166, 175, 178-180, 233, 

268, 276-279

Reservoir   8, 23, 53, 58, 78, 92, 98, 

104, 106, 107, 129, 167, 171, 
172, 175, 197, 222, 225

River blindness   45, 264, 270
Roundworm   14, 63, 70, 251, 262, 

270

Rural areas   6, 8, 21, 31, 70, 76, 92, 

104, 105, 108, 113, 154, 172, 
177, 185, 241, 245, 278

S

Sabin-Feldman dye test   192
Sand fl y   171, 172, 175, 182, 184, 

188, 250, 251

Schistosoma haematobium  111, 113, 

118, 125, 129-135, 270

Schistosoma japonicum   111-118, 125, 

270

Schistosoma mansoni   111, 113, 116, 

118, 119, 121-127, 270

Schistosomiasis   106, 109, 111, 113, 

114, 117-120, 122-127, 129, 
131-135, 174, 176, 270

Scotch tape   4, 5
Serpinginous track   64
Sheep liver fl uke   92, 264
Sickle cell   241
Simulium  45, 48
Skin infection   63, 101
Skin ulcer   60
Sleeping sickness   162, 164, 270-272
Soil-transmitted infection   8, 12, 14, 

21, 106, 109

Sowda  46, 47
Sporozoite   215, 216, 219, 237, 240, 

242

Strongyloidiasis   31, 34-37, 270, 281
Subcutaneous nodule   45, 64, 101
Sulfadiazine   193, 273, 282, 289
Suramine  167-169
Syncytial tunnel   8

T

Tabanid fl y   53, 138, 139, 144
Tachyzoite  190-192
Taenia saginata   138-140, 270
Taeniasis   138, 142
Taenia solium   138, 142, 270


background image

296 

Medical Parasitology

Index

Temephos  61
Tetanus   58, 60
Tick   250, 255-258
Tinidazole   202-205, 222, 226, 273, 

282, 286, 289

Tissue cyst   190-192
Toxocariasis   67, 70, 72-75, 271, 272
Toxocariasis canis   70, 73
Toxocariasis cati  70
Toxoplasma gondii  190-192, 271
Treatment   5, 6, 10-12, 18, 19, 28-30, 

34, 37, 43, 50, 51, 55, 56, 60, 61, 
65, 69, 74, 75, 82, 91, 95, 96, 
102, 106-109, 113, 116, 117, 
122-127, 134, 135, 143, 146, 
150, 151, 159, 161, 164-169, 
171, 175, 177-180, 184, 
186-188, 193, 198, 202-205, 
211, 213-215, 220, 226, 227, 
232-235, 241, 242, 244-246, 
252, 253, 257-259, 266, 267, 
270, 272-282

Trematode   92, 95, 98, 101, 104, 106, 

107, 109, 111, 113, 118, 129

Trichinellosis   39, 42-44, 271
Trichomonas vaginalis  222-226, 271
Trichuriasis   8, 10-12, 271, 272
Triclabendazole   95, 102, 276, 287, 

289

Trimethoprim-sulfamethoxazole  

193, 194, 282

Trimetrexate   233, 288, 289
Trisulfapyrimidine  193

Trophozoite   193, 195-197, 200-202, 

206, 207, 209, 210, 222, 
228-231, 238, 239

Trypanosoma  154-156, 158, 161, 

162, 252

Trypanosoma brucei gambiense  162, 

271, 272

Trypanosoma brucei rhodesiense  162
Trypanosomiasis   154, 161, 162, 

164-166, 169, 174, 262, 270-272

Tsetse fl y   161, 162, 251

U

Uveitis   49, 50, 73

V

Vaginal discharge   222-225
Visceral larva migrans (VLM)   67, 

68, 70, 72-74, 271

Visceral leishmaniasis   171, 172, 

174-176, 179, 180, 182, 185, 188

W

Waterborne   93, 104, 197, 204, 214, 

216

Watercress   92, 93, 96, 105
Water sanitation   61
Whipworm   8, 271, 272
Wild game   39, 44
Wolbachia endosymbiont   51
Worm extraction   17, 55, 61, 275


background image

Satoskar

Simon

Hotez

Tsuji

Medical P

ar

asitolog

y

ad

e

m
e
c

u

m

V

V

m

a d e m e c u

Medical

Parasitology

Abhay R. Satoskar, Gary L. Simon,

Peter J. Hotez and Moriya Tsuji

LANDES

B I O S C I E N C E

LANDES

B I O S C I E N C E

m

V

a d e m e c u

Table of contents

Section I. Nematodes

Section II. Trematodes

Section III. Cestodes

Section IV. Protozoans

 Section V. Arthropods

The Vademecum series includes subjects generally not covered in other handbook 
series, especially many technology-driven topics that reflect the increasing 
infl uence of technology in clinical medicine.

The name chosen for this comprehensive medical handbook series is Vademecum, 
a Latin word that roughly means “to carry along”. In the Middle Ages, traveling 
clerics carried pocket-sized books, excerpts of the carefully transcribed canons, 
known as Vademecum. In the 19th century a medical publisher in Germany, Samuel 
Karger, called a series of portable medical books Vademecum.

The Landes Bioscience Vademecum books are intended to be used both in the 
training of physicians and the care of patients, by medical students, medical house 
staff and practicing physicians. We hope you will fi nd them a valuable resource.

All titles available at

www.landesbioscience.com

LANDES

B I O S C I E N C E

ISBN 978-1-57059-695-7

9 7 8 1 5 7 0 5 9 6 9 5 7




رفعت المحاضرة من قبل: Abdalmalik Abdullateef
المشاهدات: لقد قام 14 عضواً و 1232 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل