مواضيع المحاضرة: hearing
background image

Hearing: and Equilibrium 

Hearing 

Organ of hearing: organ of Corti 

Sensory receptor :cochlea duct 

Nerve: cochlear nerve 

Equilibrium: 

 

Dancing with music 

dynamic equilibrium 

 

Organ of equilibrium 

dynamic: crista ampularis (hair cells + cupula) of the semicircular 
canals 

 

vestibular nerve 

static: maculae 

Common characteristics – receptor for hearing & equilibrium 

 

Hair cells bathed in endolymph  

Hairs (cilia) of the cells are embedded in a dense mass  

 

Movement of the mass of hair cells relative to one another stretches/bends the 
cilia  

Stretching/ bending of cilia in 1 direction increases impulse generation  

 

Hearing (Audition) 

Outline of hearing (3 major steps) 

1.Airborne sound consists of vibrations: alternate phases of condensation & 
rarefaction; the auditory apparatus convert these vibrations in air to vibrations in the 
inner ear fluid  

2.Vibrations lead to bending of cilia of hair cells (of the Organ of Corti); Generate 
nerve impulse: transmit along auditory nerve to higher centers of hearing 

 

 


background image

Sound 

 

 

pressure wave produced by air by a vibrating body 

results from the back & forth vibration of the particles of the medium 
(air) 

resulting in alternate phases of condensations (compressions) and 
rarefactions 

 

Properties 

Greater amplitude (intensity of sound wave) 

 

louder the sound 

 

expressed as decibel (dB) 

 

1 dB = 0.1 bel 

 

1 bel 

 

the logarithm of the ratio of the intensity of the 
sound and a standard sound 

 

0 dB 

 

not absence of sound 

 

sound level of an intensity equal to that of the 
standard 

 

threshold pressure 

 

140 dB 

 

potentially damaging to auditory receptor 

 

organ of Corti 

Greater frequency 

 

higher the pitch 

Soundwaves that have repeating patterns 

 

perceived as musical sounds 

Aperiodic nonrepeating vibrations 

 

noisiness 

Threshold for human hearing 


background image

 

 

 

Threshold varies with the pitch of sound 

 

Greatest sensitivity range 

1000-4000 Hz  

 

Audible frequency range 

20 – 20,000 Hz 

Hearing mechanism 


background image

 

 

Collection & concentration of sound waves 

by ear lobes (pinna) 

 

Vibration of tympanic membrane 

in harmony with the frequency of sound source 

 

Movements of 3 ossicles 

 

In & out movement of the footplate of stapes at the oval window of cochlea 

pressing on the fluid in the cochlear 

Impedance matching – function of the middle ear 

 

 

Auditory receptors of the inner ear 

operate in a fluid environment 

underwater sound receiver 


background image

 

Effective transfer of sound energy from air (lower acoustic 
resistance/impedance) to fluid (higher acoustic resistance/impedance) 

is due to amplification of the pressure by: 

 

large ratio btwn the areas of tympanic membrane & stapes 
footplate-oval window (17:1) 

 

amplified 17 times 

 

pressure = force/area 

 

mechanical advantage of the ossicular lever system 

 

1:3 

3 chambers of cochlea & cochlea nerve 

 


background image

 

 

Functional parts of the ‘uncoiled’ cochlea 


background image

 

 

Round window allows for fluid displacement in the cochlea 

because fluid of the inner ear is not compressible 

 

inward movement of the stapes footplate is allowed because of 
the yielding of the thin membrane which covers the round 
window 

this is essential to the transmission process 

 

since it provides elastic relief for the fluid of the inner ear 

 

thus permitting movement of the stapes & the structure of the 
inner ear 

Mechano-electrical event 

 

 

Hair cells & their stereocilia are ‘wedged’ between tectorial membrane & 
reticular lamina 

 

Vibrations transmitted by stapes 

produce displacement of basilar membrane 

up & down movement 

 

Shearing movement between the tectorial membrane & reticular lamina 

bends the hairs (stereocilia) of the hair cells of organ of Corti 

Opening of mechanically-gated K+ channes in the stereocilia 

 

K+ influx from endolymph into the stereocilia 

 

depolarization of the hair cell membrane 

Opening of voltage-gated Ca2+ channels 

 

Ca2+ influx 

Release excitatory neurotransmitter 


background image

 

glutamate 

 

When basilar membrane bends towards scala vestibuli (medially) 

hair cells depolarized 

Opposite direction 

 

hyperpolarize 

generating alternating hair cell receptor potential 

Auditory Pathways 

 

 

Receptors 


background image

cochlear division of 8th CN 

 

Cochlear nuclei in the medulla oblongata 

 

Inferior colliculi 

 

Medial geniculate bodies of thalamus 

 

Thalamic radiation 

 

Cortical auditory centres in temporal lobe 

Auditory cortex 

 

Pitch discrimination 


background image

 

 

Sounds of different frequencies travel different distances down the basilar 
membrane 

low pitched – apex 

high pitched – base 

 

Why? 

the width & stiffness of the basilar membrane vary from the apex to 
the base 

 

Intensity discrimination 

 

Greater the degree of displacement of the hair cells 

more hair cells displaced 

hence more nerve fibres are stimulated 

Summary of hearing physiology 


background image

 

Deafness 

Types of deafness 


background image

 

Conductive deafness 

pathology in external/middle ear 

impaired sound conduction 

common causes 

 

plugging of the external auditory canals with wax (cerumen) or 
foreign bodies 

 

otitis externa 

 

inflammation of the outer ear 

 

swimmer’s ear 

 

otitis media 

 

inflammation of the middle ear 

 

causing fluid accumulation 

 

hyperemic swelling & increased mucus 
production associated with an upper respiratory 
infection leads to temporary closing of the 
Eustachian tube 

 

-ve pressure develops within the middle 
ear 

 

distention of the tympanic membrane 

 

perforation of the eardrum 

 

osteosclerosis 

 

bone is resorbed and replaced with sclerotic bone 

 

grows over oval window 

 

fixation of the stapes in the oval window 

 

Sensorineural deafness/nerve deafness 

pathology in cochlear/auditory neural pathways 

common causes 

 

presbycusis 

 

hearing loss with aging 

 

loss of hair cells & neurons 

 

ototoxicity 

 

aminoglycoside antibiotics (streptomycin, gentamycin) 

 

obstruct the mechanosensitive channels in the 
stereocilia of the hair cells 

 

cause cells to degerate 

 

damage to hair cells by prolonged exposure to noise 

 

tumours in 

 

8th cranial nerve  

 

cerebellopontine angle 

 

vascular damage in the medulla 

 

Mixed deafness 

Tinnitus 

 

What is tinnitus? 

conscious experience of sound that originates within the head  

 

not originating from external source 

may take many forms 

 

roaring noise 

 

tones and clicks 


background image

 

intermittent/continuous 

Bone conduction 

 

What is bone conduction? 

direct conduction of sound to the inner ear through the bones of the 
skull 

 

bypassing the external auditory canal & middle ear 

 

Differentiate between conduction and sensorineural deafness 

 

Some hearing aids employ bone conduction 

effect equivalent to hearing directly from ear 

 

Recreational use 

Audio Bone 1.0 

safer for eardrums 

Tuning fork tests 

 

Differentiate between conduction and sensorineural deafness 

 

Based on principle 

air conduction (AC) is better than bone conduction (BC) 

AC is subjected to the ‘masking efect’ of environmental noise 

Rinne’s test 

 

Vibrating tuning fork placed on mastoid process 

then place beside the ear when the sound stops 

 

Results: 

sound heard better when held infront of ear (AC>BC) 

 

+ve test 

 

normal hearing/ partial nerve deafness 

sound heard better over the bone (BC>AC) 

 

-ve test 

 

conduction deafness* 

 

Can’t really tell if there’s sensorineural deafness with this test 

Weber’s test 

 

Vibrating tuning fork placed centrally on the forehead 

 

Results: 

Sound is heard equally on both sides 

 

normal 

Sound is localized on 1 side 

 

side of sound: conduction deafness 

 

there is masking of sound from environment 

 

no nerve damage, just bone conduction is defective 

 

no sound at all on 1 side: nerve deafness 

 

Useful in differentiating the type of hearing loss 


background image

 

Audiometry 

 

Audiometer – measure auditory acuity 

pure tones of various frequencies through earphones 

 

At each frequency 

threshold intensity is determined & plotted on a graph as a % of 
normal hearing 

 

Provides objective measurement of the degree of deafness 

and the tonal range that is most affected 


background image

 

 

 


background image

Equilibrium 

 

Sensory organ 

vestibular apparatus 

 

encased in a system of bony tubes & chambers located in the 
petrous portion of the temporal bone 

 

bony labyrinth 

 

within this system are membranous tubes & chamgers 

 

membranous labyrinth 

 

functional part of the vestibular apparatus 

 

Vestibular functions 

Responding to gravity & acceleration 

 

maintains: 

 

body posture 

 

labyrinthine reflexes 

 

equilibrium 

 

vestibulocerebellar connections 

Gives subjective sensation to motion & spatial orientation 

 

along with visual, proprioceptive and cutaneous (exteroceptive) 
inputs 

Vestibular input to regions of the nervous system controlling eye 
movements 

 

helps stabilize the eye in space during head movements 

 

reduced movement of the image of a fixed object on the retina 

 

vestibulo-ocular reflex (VOR) 

Vestibular apparatus 

 

 

Vestibular portion of the labyrinth (filled with endolymph) consists of: 

vestibule 

 

utricle 

 

saccule 

3 semicircular canals 


background image

Vestibular receptors 

 

 

Macula (otolith organ) in 

Utricle 

 

oriented in horizontal plane 

 

Responds to: 

 

changes in head position 

 

fore & aft lift 

 

linear acceleration in horizontal plane 

 

running 

Saccule 

 

oriented in vertical plane 

 

Responds to: 

 

changes in head position 

 

lateral lift 

 

linear acceleration in vertical plane 

 

jumping down 

Crista ampularis 

 

in each of the expanded ends (Ampulla) of the 3 semicircular 
canal 


background image

 

detect angular/rotational acceleration 

 

Detection of linear & rotational acceleration 

Linear acceleration 

 

When the body is suddenly thrust forward-that is, when the body accelerates- 

the statoconia, which have greater mass inertia than the surrounding 
fluid, fall backward on the hair cell cilia, and information of 
dysequilibrium is sent into the nervous centers, causing the person to 
feel as though he or she were falling backward.  

This automatically causes the person to lean forward until the resulting 
anterior shift of the statoconia exactly equals the tendency for the 
statoconia to fall backward because of the acceleration.  

At this point, the nervous system senses a state of proper equilibrium 
and leans the body forward no farther.  

Thus, the maculae operate to maintain equilibrium during linear 
acceleration in exactly the same manner as they operate during static 
equilibrium  

Rotational acceleration 

-when stereocilia bend towards kinocilium –> stimulation  
-when sterocilia bend away from kinocilium –> inhibition 

 

Rotational acceleration in the plane of a given semicircular canal stimulates its 
crista.  

 

The endolymph, because of its inertia, is displaced in a direction opposite to 
the direction of rotation. The fluid pushes on the cupula, deforming it. This 
bends the processes of the hair cells.  

 

When a constant speed of rotation is reached, the fluid spins at the same rate 
as the body and the cupula swings back into the upright position.  

 

When rotation is stopped, deceleration produces displacement of the 
endolymph in the direction of the rotation, and the cupula is deformed in a 
direction opposite to that during acceleration.  
It returns to mid position in 25 to 30 s.  


background image

 

Movement of the cupula in one direction commonly causes an increase in the 
firing rate of single nerve fibers from the crista, whereas movement in the 
opposite direction commonly inhibits neural activity  

 

 


background image

Vestibular connections 

 

Vestibular pathways 

 

Vestibular dysfunction 

 

Impairment 

loss of equilibrium & postural adjustments 


background image

Absence of nystagmus on vestibular stimulation 

 

caloric test: 

 

setting up convection currents in endolymph of the 
lateral semicircular canal (made vertical) by instilling 
water hotter/cooler than body temperature into external 
auditory canal 

 

Overstimulation 

motion sicknss 

 

giddiness 

 

nausea 

 

vomiting 

irritative lesions in vestibular pathways 

 

vestibular neuronitis 

 




رفعت المحاضرة من قبل: Abdalmalik Abdullateef
المشاهدات: لقد قام 7 أعضاء و 106 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل