مواضيع المحاضرة: vision
background image

Visual system 

 

Eye 

image formation & phototransduction 

 

Visual pathway 

tranmission of nerve impulses 

 

Visual cortex 

occipital lobe of cerebral cortex 

 

primary visual receiving area: sides of the calcarine fissure 

visual processing & perception occurs here 

Stimulus 

 

Light 

visible portion of the electromagnetic spectrum 

Sensory organ 

 

Eye 

optical instrument for focusing of images on retina by refraction of 
light rays 

Refractive power 

 

Cornea: 40 dioptres 

 

fixed 

 

Lens: 20 dioptres 

 

adjustable 

Photoreceptors on retina 

 

rods 

 

cones 

_____________________________________________________________________ 

Refraction of light 

 

when light beam passes through an angulated interface, light rays bend 

 

measured in diopters 

 

Biconvex spherical lens 

convergence 

 

Concave spherical lens 

divergens 

Accommodation 

 

Parasympathetic response 

 

When a person looks at a near object, 3 changes occur: 

accommodation reflex 

convergence of visual axis 

pupil constrict 

 

When accommodation relaxed: 

Near object (<6 m) 


background image

 

diverging rays  

 

image falls behind retina 

Far object (>6 m) 

 

parallel rays 

 

image falls on retina 

 

Physiology 

ciliary muscles contracts 

 

this relaxes the lens ligaments 

 

lens spring into a more convex shape 

 

near point of vision recedes throughout life 

slowly at 1st 

 

advancing rapidly with old age 

due to increasing hardness of lens 

 

impaired accommodation 

 

receding of near point 

Presbyopia 

 

reading and close vision difficult 

 

corrected by wearing convex lens 

 

diverging rays 

 

Errors of refraction 

Emmetropia 

 

normal vision 

 

accommodation relaxed 

 

far object, parallel rays – image falls on retina 

Hyperopia 

 

farsightedness 

 

short eyes ball/weak lens 

 

image from distant objects formed behind retina 

 

accommodation all the time 

 

ciliary muscle overworked 

 

eye strain 

 

headache 

 

convergence of visual axes 

 

squint/strabismus 

 

corrected by  

 

convex lens 

Myopia 

 

nearsightedness 

 

long eye ball 

 

image from distant objects is formend infront of retina 

 

corrected by 

 

concave lens 

Astigmatism 

 

Uneven corneal surface 

curvatures at various meridians not equal 

 

Different focal points 

distorted image 


background image

 

_____________________________________________________________________ 

Photoreceptors 

 

Receptor cells containing excitatory/inhibitory synaptic transmitters 

Rods 

 

Photopigments 

protein: rhodopsin 

Vitamin  A aldehyde 

 

retinal 

 

retinene 

 

Abundant in 

peripheral retina 

 

Low threshold receptors for 

dim light 

night vision (scotopic vision) 

 

Most sensitive to 

505 nm 

Blue-Green 


background image

Cones 

 

Photopigments 

protein: photopsins 

Vitamin A aldehyde 

 

retinal  

 

retinene 

 

Abundant in 

central retina 

 

particularly in fovea centralis (in macula lutea) 

 

Higher threshold receptors for 

daylight 

detailed vision (photopic vision) 

colour vision 

 

Visual acuity greatest at 

fovea centralis 

Phototransduction 

 

In the photoreceptors, 

 

In the dark 

Na+ channel open 

 

Na+ entry 

 

Depolarization 

 

Inhibitory neurotransmitter release 

Bipolar cells inhibited 

Ganglion cells (axons of optic nerves) 


background image

 

decrease discharge 

 

In the light 

Activates rhodopsin 

 

decomposition of rhodopsin 

 

cis-retinal bleached –> trans-retinal (opsin & retinal) 

 

retinal detaches from opsin  

 

activated opsin 

Na+ channels close 

 

Na+ entry decrease 

 

Hyperpolarization 

 

Decrease inhibitory neurotransmitter release from the rod 

 

removal of inhibition 

Bipolar cells excited 

Ganglion cells 

 

action potential initiated 

 

transmit to the brain –> vision occurs 

Dark adaptation 

 

 

If one moves from a brightly lighted room to a dimly lighted room 

retina slowly becomes more sensitive to light 

 

pupil dilate – to capture more light into the retina 

this decline in visual threshold: dark adaptation 

 

Dark adaptation depends on 

rate of regeneration of rhodopsin 

 

which depends on vitamina A (retinol) 


background image

 

Vitamin A deficiency: 

 

Signs & Symptoms 

 

impaired dark adaptation 

 

Nactalopia 

 

night blindness 

 

Bitot spots 

 

Xerophthalmia 

 

eye drying 

 

Keratomalacia 

 

corneal softening 

 

Ulceration 

 

Scars 

 

Pathophysiology 

 

degeneration of rods & cones 

 

degeneration of neural layers of retina 

 

blindness 

 

most common cause of preventable blindness 

 

treatment before receptors are destroyed 

_____________________________________________________________________ 

Colour vision 

 

 

The sensation of white/any spectral colour can be produced by 

mixture of various proportions of 

 

Red wavelength 

 

Green wavelength 

 

Blue wavelengh 

 

3 types of cones 

Red cones 

 

absorb long wavelength, L cones 

Green cones 

 

absorb medium wavelength, M cones 

Blue cones 

 

absorb short wavelength, S cones 

 

Cones most sensitive to 

405 nm (yellow-green) 


background image

 

Color blindness 

 

Trichromats (have 3 cone systems -RGB) 

Normal trichromats 

 

individuals with normal colour vision 

Anomalous trichromats (1 weak cone system) 

 

Protanomaly 

 

red weakness 

 

defective red-sensitive cones 

 

Deuteranomaly 

 

green weakness 

 

defective green-sensitive cones 

 

Tritanomaly 

 

blue weakness 

 

defective blue-sensitive cones 

 

Dichromats (2 cone systems) 

Protanopia 

 

red blindness 

 

no red-sensitive cones 

Deuteranopia 

 

green blindness 

 

no green-sensitive cones 

Tritanopia 

 

blue blindness 

 

no blue-sensitive cones 

 

Monochromats (1 cone system) 


background image

 

 

Causes of colour blindness 

Inherited 

 

X-linked recessive 

 

defective opsins 

 

most frequently: red-green weakness 

Lesions of visual cortex concerned with colour vision 

 

achromatopsia 

Sildenafil (viagra) 

 

inhibits retinal as well as penile form of phosphodiesterase 

 

transient blue-green colour weakness 

Test for colour vision 

 

Colour matching 

 

Ishihara Pseudoisochromatic plates 


background image

 

_____________________________________________________________________ 

Visual fields & Visual pathways 

 


background image

 

 

Fusion of 2 images occurs in the visual cortex 

 

Visual axes of 2 eyes must be properly aligned 

if not, double vision (diplopia) 

 

Diplopia 

2 different images sent to the brain 

brain will suppress one of the images 

 

to prevent seeing double 

in children (<6 y/o) 

 

suppression of one eye’s input to the brain leads to reduced 
vision in the suppressed eye 

 

amblyopia 

 

Examination of visual fields 

Perimetry 

Lesions in visual pathways (Visual field defect) 


background image

 

 

Anterior pituitary tumours 

pressure on optic chiasma from below 

eg. visual field defects in gigantism 

Visual acuity 

 

Defined in terms of minimum separable 

shortest distance by which 2 lines can be separated & still be perceived 
as 2 lines 

corresponds to a visual angle of about 1 minutes 

 

Snellen letter charts 

designed so that the height of the letters in the smallest line a normal 
individual can read at 20 ft (6m) subtends a visual angle of 5 minutes 

 

Jaeger’s cards 

test for near vision (reading) 

 

When visual acuity is markedly reduced 

can be quantified in terms of 

 

Count fingers (CF) 

 

distance at which the patient can count fingers 

 

Hand movement (HM) 

 

discern hand movement 

 

Perceive light 

 

No light perception (NLP) 

 

if an eye is totally blind, examination will reveal NLP 


background image

 

 

_____________________________________________________________ 

Blindness (Visual impairment) 

 

Transient blindness 

may occur on sudden exposure to darkness/bright light 

blinding light 

light adaptation= 5 minutes 

 

Transient monocular blindness 

associated with an increased risk of subsequent stroke 

 

Night blindenss 

 

Colour blindness 

 

Total blindness 

 

Visual field contraction/blindness 

 

Legal blindness 


background image

a level of visual impairment that has been defined by law to determine 
eligibility for benefits 

 

central visual acuity of 20/200 or less  

 

in the better eye  

 

with best possible correction 

 

visual field of 20 degrees or less 

Common causes of blindness 

 

Cataract 

Lens opacity increases 

due to aging 

leading cause of blindness 

 

Glaucoma 

increased accumulation of aqueous humor 

 

increased pressure in anterior & posterior chambers 

 

increased pressure on vitreous humor 

 

increased pressure on retinal layers & optic nerve 

 

Age-related macular degeration (AMD) 

trachoma (infection) 

other corneal opacities 

diabetic retinopathy 

retinal detachment 

Eye conditions in children 

 

cataract 

 

retinopathy of prematurity 

 

vitamin A deficiency 

 

amblyopia  

 

associated with refractive error/strabismus/squint 

_____________________________________________________________________ 


background image

 

 




رفعت المحاضرة من قبل: Abdalmalik Abdullateef
المشاهدات: لقد قام 8 أعضاء و 121 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل