background image

                                                                                         Lec.1&2             

IMMUNITY TO INFECTION 

: االستاذة المساعدة

 

                               د وفاق محمود الوتار

 

_ Viral Infections 

_ Bacterial Infections 

_ Fungal infections 

_ Protozoan Diseases & diseases Caused by Parasitic Worms (Helminthes) 

_ Emerging Infectious Diseases 

One of the first and most important features of host innate immunity is the 
barrier provided by the epithelial surfaces of the skin and the lining of the 
gut. The difficulty of penetrating these epithelial barriers ensures that most 
pathogens never gain productive entry into the host. In addition to providing 

a physical barrier to infection, the epithelia also produce chemicals that are 
useful in preventing infection. The secretion of gastric enzymes by 
specialized epithelial cells lowers the pH of the stomach and upper 
gastrointestinal tract, and other specialized cells in the gut produce 
antibacterialpeptides. 

A major feature of innate immunity is the presence of the normal gut flora, 
which can competitively inhibit the binding of pathogens to gut epithelial 
cells. Innate responses can also block the establishment of infection. For 
example, the cell walls of some gram-positive bacteria contain a 
peptidoglycanthat activates the alternative complement pathway,resulting 
in the generation of C3b, which opsonizes bacteria and enhances 
phagocytosis. Some bacteria produce endotoxins such as LPS, which 


background image

stimulate the production of cytokines such as TNF-_, IL-1, and IL-6 by 
macrophages or endothelial cells. These cytokines can activate 
macrophages. Phagocytosis of bacteria by macrophages and other 
phagocytic cells is another highly effective line of innate defense. However, 
some types of bacteria that commonly grow intracellularly have developed 
mechanisms that allow them to resist degradation within the phagocyte. 

Viruses are well known for the stimulation of innate responses. In particular, 
many viruses induce the production of interferons, which can inhibit viral 
replication by inducing an antiviral response. Viruses are also controlled by 
NK cells. NK cells frequently form the first line of defense against viral 
infections. Generally, pathogens use a variety of strategies to escape 
destruction by the adaptive immune system. Many pathogens 

reduce their own antigenicity either by growing within host cells, where they 
are sequestered from immune attack,or by shedding their membrane 
antigens. Other pathogens camouflage themselves by mimicking the 
surfaces of host cells, either by expressing molecules with amino acid 
sequences similar to those of host cell-membrane molecules or by acquiring 
a covering of host membrane molecules. Some pathogens are able to 
suppress the immune response selectively or to regulate it so that a branch 
of the immune system is activated that is ineffective against the pathogen. 
Continual variation in surface antigens is another strategy that enables a 
pathogen to elude the immune system. This antigenic variation may be due 
to the gradual accumulation of mutations, or it may involve an abrupt 
change in surface antigens. 

Both innate and adaptive immune responses to pathogens provide critical 
defense, but infectious diseases, which have plagued human populations 
throughout history, still cause the death of millions each year. Although 


background image

widespread use of vaccines and drug therapy has drastically reduce 
mortality from infectious diseases in developed countries, such diseases 
continue to be the leading cause of death in the Third World. It is estimated 
that 

over 1 billion

 people are infected worldwide, resulting in more than 

11 

million

 deaths every year (Figure 17-1). some of these diseases are 

beginning to emerge or re-emerge in developed countries. For 

example, some United States troops returned from the Persian 

Gulf with leishmaniasis; cholera cases have recentlyincreased worldwide, 
with more than 100,000 cases reported in KwaZulu-Natal, South Africa, 
during the summer of 2001; and a new drug-resistant strain of 
Mycobacterium tuberculosis is spreading at an alarming rate in the United 
States. The selected infectious diseases caused by viruses, bacteria, 
protozoa, and helminthes ,the four main types of pathogens. 


background image

 

 

Viral Infections 

A number of specific immune effectors mechanisms, together with 
nonspecific defense mechanisms, are called into play to eliminate an 
infecting virus (Table 17-1). At the same time, the virus acts to subvert one 
or more of these mechanisms to prolong its own survival. The outcome of 
the infection depends on how effectively the host’s defensive mechanism 
resist the virus.

The innate immune response

 to viral infection is primarily 

through the induction of type I interferons (IFN-alpha_ and IFN-beta_) and 
the activation of NK cells. Double stranded RNA (dsRNA) produced during 
the viral life cycle can induce the expression of IFN-alpha _ and IFN-beta_ by 


background image

the infected cell. Macrophages, monocytes, and fibroblasts also are capable 
of synthesizing these cytokines, but the mechanisms that induce the 
production of type I interferons in these cells are not completely 
understood. IFN-alpha_ and IFN-beta_ can induce an antiviral response or 
resistance to viral replication by binding 

to the receptor leading to inhibition of viral replication. The binding of IFNs 
to NK cells induces lytic activity,making them very effective in killing virally 
infected cells. The activity of NK cells is also greatly enhanced by IL-12, a 
cytokine that is produced very early in a response to viral infection. 

HUMORAL IMMUNE RESPONSE

  

Many Viruses are Neutralized by Antibodies ,antibodies specific for viral 
surface antigens are often crucial in containing the spread of a virus during 
acute infection and in protecting against reinfection. Antibodies are 
particularly effective in protecting against infection if they are localized at 
the site of viral entry into the body. Most viruses express surface receptor 
molecules that enable them to initiate infection by binding to specific host-
cell membrane molecules. For example, influenza virus binds to sialic acid 
residues in cell membrane glycoproteins and glycolipids; rhinovirus binds to 
intercellular adhesion molecules (ICAMs); and Epstein-Barr virus binds to 
type 2 complement receptors on B cells. If antibody to the viral receptor is 
produced, it can block infection altogether by preventing the binding of viral 
particles to host cells. Secretory IgA in mucous secretions plays an important 
role in host defense against viruses by blocking viral attachment to mucosal 
epithelial cells. The advantage of the attenuated شلل االطفالoral polio vaccine, 
is that it induces production of secretory IgA, which effectively blocks 
attachment of poliovirus along the gastrointestinal tract. Viral neutralization 
by antibody sometimes involves mechanisms that operate after viral 


background image

attachment to host cells. also complement can agglutinate viral particles 
and function as an opsonizing agent to facilitate Fc- or C3b-receptor–
mediated phagocytosis of the viral particles. 

Cell-Mediated Immunity

 is Important for Viral Control and Clearance 

although antibodies have an important role in containing the spread of a 
virus in the acute phases of infection, they are not usually able to eliminate 
the virus once infection has occurred—particularly if the virus is capable of 
entering a latent state in which its DNA is integrated into host chromosomal 
DNA. Once an infection is established, cell-mediated immune mechanisms 
are most important in host defense. Ingeneral,CD8+ TC cells and CD4+ TH1 
cells are the main components of cell-mediated antiviral defense, although 
in some cases CD4+ TC cells have also been implicated .Activated TH1 cells 
produce a number of cytokines, including IL-2, IFN-a_,and TNF-b, that 
defend against viruses either directly or indirectly.IFN-gamma_ acts directly 
by inducing an antiviral state in cells. IL-2 acts indirectly by assisting in the 
recruitment of C TL precursors into an effector population. Both IL-2 and 

IFN-gamma_ activate NK cells, which play an important role in host 

defense during the first days of many viral infections until a specific CTL 
response develops. In most viral infections, specific CTL activity arises within 

3–4 days after infection, peaks by 7–10 days, and then declines. Within 7–10 
days of primary infection, most virions have been eliminated, The viral 
specificity of the CTL as well can be demonstrated with IFN-α/β receptor. 

How the Viruses Can Evade Host Defense Mechanisms 

Despite their restricted genome size, a number of viruses 

have been found to encode proteins that interfere at various 


background image

levels with specific or nonspecific host defenses. Presumably, 

the advantage of such proteins is that they enable viruses to 

replicate more effectively amidst host antiviral defenses. As 

described above, the induction of IFN-α/β is a major innate defense against 
viral infection, but some viruses have developed strategies to evade the 
action of both.These include hepatitis C virus, which has been shown to 

overcome the antiviral effect of the interferons

 .Another mechanism for 

evading host responses, utilized in particular by herpes simplex viruses (HSV) 
is 

inhibition of antigen presentation by infected host cell 

by HSV-1 or 

HSV-2 thus preventing presentation of viral antigen to CD8+ T cells. This 
results in the trapping of empty class I MHC molecules in the endoplasmic 
reticulumand effectively shuts down a CD8+ T-cell response to HSV-infected 
cells. 

The targeting of MHC molecules is not unique to HSV.Other viruses have 
been shown to 

down-regulate class I MHC expression 

shortly after infection. 

Two of the best characterized examples, the adenoviruses and 
cytomegalovirus(CMV), use distinct molecular mechanisms to reduce 

the surface expression of class I MHC molecules, again inhibiting antigen 
presentation to CD8+ T cells. Some viruses—CMV, measles virus, and HIV 

Antibody-mediated destruction of viruses requires complement activation, 
resulting either in direct lysis of the viral particle or opsonization and 
elimination of the virus by phagocytic cells. A number of viruses have 
strategies for 

evading complement-mediated destruction.

 Vaccinia virus, for 


background image

example, secretes a protein that binds to the C4b complementcomponent, 

inhibiting the classical complement 

pathway;and herpes simplex viruses 

have a glycoprotein componentthat binds to the C3b complement 
component, inhibiting both the classical and alternative pathways.

 

can have 

the same effect as an antigenic shift that generates anew subtype. 
protection against influenza, but its specificity is strain-specific and is readily 
bypassed by 

antigenic  shift&drift

 is responsible for our inabilityto produce 

an effective vaccine for colds. Now here is antigenic variation greater than in 
the human immunodeficiency virus (HIV), the causative agent of AIDS. 
Estimates suggest that HIV accumulates mutations at a rate 65 times faster 
than does influenza virus.

 

 

Bacterial Infections 

Immunity to bacterial infections is achieved by means of antibody unless the 
bacterium is capable of intracellular growth, in which case delayed-type 
hypersensitivity has an important role. Bacteria enter the body either 
through a number of natural routes (e.g., the respiratory tract, the 
gastrointestinal tract, and the genitourinary tract) or through normally 
inaccessible routes opened up by breaks in mucous membranes or skin. 
Depending on the number of organisms. 

specific immune response.Immune Responses to Extracellular 

and Intracellular Bacteria

 

different levels of host defense are enlisted. If the inoculum size and the 
virulence are both low, then localized tissue phagocytes may be able to 
eliminate the bacteria with an innate, nonspecific defense. Larger inoculums 
or organisms with greater virulence tend to induce an adaptive, specific 


background image

immune response.Immune Responses to extracellular and Intracellular 

Bacteria Can Differ

 

Infection by extracellular bacteria induces production of humoral antibodies, 
which are ordinarily secreted by plasma cells in regional lymph nodes and 
the submucosa of the respiratory and gastrointestinal tracts. The humoral 
immune response is the main protective response against extracellular 
bacteria. The antibodies act in several ways to protect the host from the 
invading organisms, including removal of the bacteria and inactivation of 
bacterial toxins (Figure 17-8). 

Extracellular bacteria can be pathogenic because they induce a localized 
inflammatory response or because they produce toxins. The toxins, 
endotoxin or exotoxin, can be cytotoxic but also may cause pathogenesis in 
other ways. An excellent example of this is the toxin produced by diphtheria, 
which exerts a toxic effect on the cell by blocking protein synthesis. 

Endotoxins, such as lipopolysaccharides (LPS), are generally components of 
bacterial cell walls, while exotoxins, such as diphtheria toxin, are secreted by 
the bacteria. 

Antibody that binds to accessible antigens on the surface of a bacterium can, 
together with the C3b component of complement, act as an opsonin that 
increases phagocytosis and thus clearance of the bacterium (see Figure 17-
8). In the case of some bacteria—notably, the gram-negative organism 
complement activation can lead directly to lysis of the organism. Antibody-
mediated activation of the complement system can also induce localized 
production of immune effector molecules that help to develop an amplified 
and more effective inflammatory response. For example, the complement 
split products C3a, C4a, and C5a act as anaphylatoxins, inducing local mast-
cell degranulation and thus vasodilation and the extravasation of 


background image

lymphocytes and neutrophils from the blood into tissue space (see Figure 
17-8). 

Other complement split products serve as chemotactic factors for 
neutrophils and macrophages, thereby contributing to the buildup of 
phagocytic cells at the site of infection.Antibody to a bacteria toxin may bind 
to the toxin and neutralize it; the antibody-toxin complexes are then cleared 
by phagocytic cells in the same manner as any other antigen-antibod 
complex. 

While innate immunity is not very effective against intracellular bacterial 
pathogens, intracellular bacteria can activate NK cells, which, in turn, 
provide an early defense against these bacteria. Intracellular bacterial 
infections tend to induce a cell-mediated immune response, specifically, 
delayed type hypersensitivity. In this response, cytokines secreted by 

CD4+ T cells are important—notably IFN-gamma, which activates 
macrophages to kill ingested pathogens more effectively . 

Bacteria Can Effectively Evade Host Defense Mechanisms 

There are four primary steps in bacterial infection: 

_ Attachment to host cells 

_ Proliferation 

_ Invasion of host tissue 

_ Toxin-induced damage to host cells 

Host-defense mechanisms act at each of these steps, and many bacteria 
have evolved ways to circumvent some of these host defenses. Some 
bacteria have surface structures or molecules that enhance their ability to 


background image

attach to host cells. A number of gram-negative bacteria, for instance, have 
pili (long hair like projections), which enable them to attach to the 
membrane of the intestinal or genitourinary tract . 

 Other bacteria, such as Bordetella pertussis, secrete adhesion moleculesthat 
attach to both the bacterium and the ciliated epithelial cells of the upper 
respiratory tract. Secretory IgA antibodies specific for such bacterial 
structures can block bacterial attachment to mucosal epithelial cells and are 
the main host defense against bacterial attachment. 

However, some bacteria (e.g., Neisseria gonorrhoeae,Haemophilus 
influenzae, 
and Neisseria meningitidis) evade the IgA response by secreting 
proteases that cleave secretory IgA at the hinge region; the resulting Fab 
and Fc fragments have a shortened half-life in mucous secretions and are 
not able to agglutinate microorganisms. 

Some bacteria evade the IgA response of the host bychanging these surface 
antigens. In N. gonorrhoeae, for example, pilin, the protein component of 
the pili, has a highly variable structure ,the continual changes in the pilin 
sequence allow the organism to evade neutralizationby IgA. 

Some bacteria possess surface structures that serve to inhibit phagocytosis. 
A classic example is Streptococcus pneumoniae, whose polysaccharide 
capsule prevents phagocytosis very effectively.  


background image

 


background image

 


background image

 

 

 

Other bacteria, such as Streptococcus pyogenes, a surface protein projection 

called the M protein inhibits phagocytosis. Some pathogenic staphylococci 
are able to assemble a protective coat from host proteins. These bacteria 
secrete a coagulase enzyme that precipitates a fibrin coat around them, 
shielding them from phagocytic cells. 

Mechanisms for interfering with the complement system help other bacteria 
survive. In some gram-negative bacteria, resist complement mediated 

lysis. Pseudomonas secretes an enzyme, elastase, that inactivates both the 
C3a and C5a anaphylatoxins, thereby diminishing the localized inflammatory 
reaction.  

A number of bacteria escape host defense mechanisms by their ability to 
survive within phagocytic cells. Some, such as Listeria monocytogenes, do 
this by escaping from the phagolysosome to the cytoplasm,which is a more 
favorable environment for their growth. Other bacteria, such as 
Mycobacterium avium, block lysosomal fusion with the phagolysosome; 
andsome mycobacteria are resistant to the oxidative attack that takes place 
within the phagolysosome.  

Immune Responses Can Contribute to Bacterial Pathogenesis 

In some cases, disease is caused not by the bacterial pathogen itself but by 
the immune response to the pathogen, pathogen-stimulated 
overproduction of cytokines leads to the symptoms of bacterial septic shock, 
food poisoning, and toxic-shock syndrome. For instance,cell-wall endotoxins 
of some gram-negative bacteria activate macrophages, resulting in release 


background image

of high levels of IL-1 and TNF-, which can cause septic shock. In 
staphylococcalfood poisoning and toxic-shock syndrome, exotoxins 

produced by the pathogens function as superantigens, which 

can activate all T cells that express T-cell receptors with a particular v- 
domain. The resulting overproduction of cytokines by activated TH cells 
causes many of the symptoms of these diseases. 

The ability of some bacteria to survive intracellularly within infected cells 
can result in chronic antigenic activation of CD4+ T cells, leading to tissue 
destruction by a cell-mediated response with the characteristics of a 
delayed-type hypersensitivityreaction  

Cytokines secreted by these activated CD4+ T cells can lead to extensive 
accumulation and activation of macrophages, resulting in formation of 
agranuloma. The localized concentrations of lysosomal enzymes in these 
granulomas can cause extensive tissue necrosis. 

Much of the tissue damage seen with M. tuberculosis is due to a cell-
mediated immune response. 

Diphtheria (Corynebacterium diphtheriae) may be controlled by 
Immunization with Inactivated Toxoid 

Diphtheria is the classic example of a bacterial disease caused by a secreted 
exotoxin to which immunity can be induced by immunization with an 
inactivated toxoid.  

The virulence of the organism is due completely to its potent exotoxin. The 
toxin causes destruction of the underlying tissue, resulting in the formation 
of a tough fibrinous membrane (“pseudomembrane”) composed of 
fibrin,white blood cells, and dead respiratory epithelial cells. The membrane 


background image

itself can cause suffocation. The exotoxin also is responsible for widespread 
systemic manifestations. Pronounced myocardial damage and neurologic 
damage (ranging from mild weakness to complete paralysis) are common. 

Tuberculosis (Mycobacterium tuberculosis) Is Primarily Controlled by CD4+ T 
Cells Tuberculosis is the leading cause of death in the world from a single 
infectious agent, killing about 3 million individuals every year ,roughly one-
third of the world’s population, are infected with the causative agent M. 
tuberculosis and are at risk of developing the disease. Long thought to have 
been eliminated as a 

Protozoan Diseases 

Protozoans are unicellular eukaryotic organisms. They are responsible for 
several serious diseases in humans, including amoebiasis, Chagas’ disease, 
African sleeping sickness, malaria, leishmaniasis, and toxoplasmosis.  

The type of immune response that develops to protozoan infection and the 
effectiveness of the response depend in part on the location of the parasite 
within the host. Many protozoans have life-cycle stages in which they are 
free within the bloodstream, and it is during these stages that humoral 
antibody is most effective. 

Many of these same pathogens are also capable of intracellular growth; 
during these stages, cell-mediated immune reactions are effective in host 
defense. In the development of vaccines for protozoan diseases, the branch 
of the immune system that is most likely to confer protection must be 
carefully considered. 

Malaria

 (Plasmodium Species) Infects 600 Million People Worldwide 

Malaria is one of the most devastating diseases in the world today, infecting 
nearly 10% of the world population and causing 1–2 million deaths every 


background image

year.There is speculation that some of the symptoms of malaria may be 
caused not by Plasmodium itself but instead by excessive production of 
cytokines.  

 

HOST RESPONSE TO PLASMODIUM INFECTION 

In regions where malaria is endemic, the immune responseto Plasmodium 
infection is poor. The low immune response to Plasmodium among children 
can be demonstrated by measuring serum antibody levels to the sporozoite 
stage. Only 22% of the children living in endemic areas have detectable 
antibodies to the sporozoite stage, whereas 84% of the adults have such 
antibodies. Even in adults, the degree of immunity is far from complete, 
however, and most people living in endemic regions have lifelonglow-level 
Plasmodium infections. 

A number of factors may contribute to the low levels of immune 
responsiveness to Plasmodium. The maturational changes from sporozoite 
to merozoite to gametocyte allow the organism to keep changing its surface 
molecules, resulting in continual changes in the antigens seen by the 
immune system. The intracellular phases of the life cycle in liver cells and 
erythrocytes also reduce the degree of immune activation generated by the 
pathogen and allow the organism to multiply while it is shielded from attack. 

DESIGN OF MALARIA VACCINES 

An effective vaccine for malaria should maximize the most effective immune 
defense mechanisms. Unfortunately, little is known of the roles that 
humoral and cell-mediated responses play in the development of protective 
immunity to this disease.  


background image

African Sleeping Sickness 

(Trypanosoma Species) 

Two species of African trypanosomes, causing meningoencephalitis and 
eventually the loss of consciousness. As parasite numbers increase after 
infection, an effective humoral antibody response develops to the 
glycoprotein coat, called variant surface glycoprotein (VSG), that covers 

the trypanosomal surface These antibodies eliminate most of the parasites 
from the bloodstream, both by complement-mediated lysis and by 
opsonization and Millions of trypanosomes per milliliter of blood 
subsequent phagocytosis. However, about 1% of the organisms, which bear 
an antigenically different VSG, escape the initial antibody response. These 
surviving organisms now begin to proliferate in the bloodstream, and a new 
wave of parasitemia is observed. The successive waves of parasitemia reflect 
a unique mechanism of antigenic shift by which the trypanosomes can 
evade the immune response  

Leishmaniasis

  

Is a Useful Model for Demonstrating Differences in Host Responses 

The protozoan parasite Leishmania major provides a powerful and 
illustrative example of how host responses can differ between individuals. 
These differences can lead to either clearance of the parasite or fatality from 
the infection. Leishmania is a protozoan that lives in the phagosomes of 
macrophages. Resistance to the infection correlates well with the 
production of IFN-gamma_ and the development of a TH1 response. 

Elegant studies in mice have demonstrated that strains that are resistant to 
Leishmania develop a TH1 response and produce IFN-gamma_ upon 


background image

infection. Such strains of mice become highly susceptible to Leishmania-
induced fatality if they lose either IFN-¥_ or the IFN-¥_ receptor, These mice 
mount a TH2-type response to Leishmania infection; they produce high 
levels of IL-4 and essentially no IFN-¥_. Thus, one difference between an 
effective and an ineffective defense against the parasite is the development 
of a TH1 response or a TH2 response.  

Diseases Caused by ParasiticWorms (Helminths) 

Unlike protozoans, which are unicellular and often grow within human cells, 
helminths are large, multicellular organisms that reside in humans but do 
not ordinarily multiply there and are not intracellular pathogens. Although 
helminthes are more accessible to the immune system than protozoans, 
most infected individuals carry few of these parasites; for this reason, the 
immune system is not strongly engaged and the level of immunity generated 
to helminths is often very poor. Parasitic worms are responsible for a wide 
variety of diseases in both humans and animals. More than a billion people 
are infected with Ascaris, a parasitic roundworm that infects the small 
intestine, and more than 300 million people are infected with Schistosoma, 
trematode worm that causes a chronic debilitating infection. Several 
helminths are important pathogens of domestic animals and invade humans 
ingest contaminated food. These helminths include Taenia, a tapeworm of 
cattle and pigs, and Trichinella, the roundworm of pigs that causes 
trichinosis. 

Several Schistosoma species are responsible for the chronic, debilitating, and 
sometimes fatal disease schistosomiasis(formerly known as bilharzia). Three 
species, are the major pathogens in humans, infecting individuals in Africa, 
the Middle East, South America, the Caribbean, China, Southeast Asia,.A rise 
in the incidence of schistosomiasis in recent years has paralleled the 


background image

increasing worldwide use of irrigation, which has expanded the habitat of 
the freshwater snail that serves as the intermediate host for 
schistosomes.the worms survive for up to 20 years. The schistosomules 
would appear to be the forms most susceptible to attack, but because they 
are motile, they can evade the localized cellular buildup of immune and 
inflammatory cells. Adult schistosome worms also have several 
uniquemechanisms that protect them from immune defenses. The adult 
worm has been shown to decrease the expression of antigens on its outer 
membrane and also to enclose itself in a glycolipid and glycoprotein coat 
derived from the host, masking the presence of its own antigens. Among the 
antigens observed on the adult worm are the host’s own ABO 

blood-group antigens and histocompatibility antigens! The immune 
response is, of course, diminished by this covering made of the host’s self-
antigens, which must contribute to the lifelong persistence of these 
organisms. The relative importance of the humoral and cellmediated 

responses in protective immunity to schistosomiasis 

is controversial. These manifestations suggest that cytokines produced by a 
TH2-like subset are important for the immune response: IL-4, which induces 
B cells to class-switch to IgE production; IL-5, which induces bone-marrow 
precursors to differentiate into eosinophils; and IL-3, which (along with IL-4) 
stimulates growth of mast cells. Degranulation of mast cells releases 
mediators that increase the infiltration of such inflammatory cells as 
macrophages and eosinophils. The eosinophils express Fc receptors for IgE 
and IgG and bind to the antibody-coated parasite. Once bound to the 
parasite, an eosinophil can participate in antibody-dependent cell-mediated 
cytotoxicity (ADCC), releasing mediators from its granules that damage the 
parasite . One eosinophil mediator, called basic protein, is particularly 


background image

toxic to helminths. الجدول األخير لالطالع فقط

 




رفعت المحاضرة من قبل: Abdalmalik Abdullateef
المشاهدات: لقد قام 12 عضواً و 152 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل