background image

Neoplasia

 

Cancer is the second leading cause of death in the United States; only cardiovascular diseases exact a higher 
toll. Even more agonizing than the mortality rate is the emotional and physical suffering inflicted by 
neoplasms. Patients and the public often ask, “When will there be a cure for cancer?” The answer to this 
simple question is difficult, because cancer is not one disease but many disorders that share a profound 
growth dysregulation. Some cancers, such as Hodgkin lymphoma, are curable, whereas others, such as 
pancreatic adenocarcinoma, have a high mortality. The only hope for controlling cancer lies in learning 
more about its cause and pathogenesis, and great strides have been made in understanding its molecular 
basis. Indeed, some good news has emerged: cancer mortality for both men and women in the United States 
declined during the last decade of the twentieth century and has continued its downward course in the 21st.

[1]

 

The discussion that follows deals with both benign and malignant tumors, focusing on the basic morphologic 
and biologic properties of tumors and the molecular basis of carcinogenesis. We also discuss the interactions 
of the tumor with the host and the host response to tumors. 

Nomenclature

  

Neoplasia means “new growth,” and a new growth is called a neoplasm. Tumor originally applied to the 
swelling caused by inflammation, but the non-neoplastic usage of tumor has almost vanished; thus, the term 
is now equated with neoplasm. Oncology (Greek oncos = tumor) is the study of tumors or neoplasms. 

Although all physicians know what they mean when they use the term neoplasm, it has been surprisingly 
difficult to develop an accurate definition. The eminent British oncologist Willis

[2]

 has come closest: “A 

neoplasm is an abnormal mass of tissue, the growth of which exceeds and is uncoordinated with that of the 
normal tissues and persists in the same excessive manner after cessation of the stimuli which evoked the 
change.” We know that the persistence of tumors, even after the inciting stimulus is gone, results from 
genetic alterations that are passed down to the progeny of the tumor cells. These genetic changes allow 
excessive and unregulated proliferation that becomes autonomous (independent of physiologic growth 
stimuli)
, although tumors generally remain dependent on the host for their nutrition and blood supply. As we 
shall discuss later, the entire population of neoplastic cells within an individual tumor arises from a single 
cell that has incurred genetic change, and hence tumors are said to be clonal

A tumor is said to be benign when its microscopic and gross characteristics are considered relatively 
innocent, implying that it will remain localized, it cannot spread to other sites, and it is generally amenable 
to local surgical removal; the patient generally survives. It should be noted, however, that benign tumors can 
produce more than localized lumps, and sometimes they are responsible for serious disease. 

Malignant tumors are collectively referred to as cancers, derived from the Latin word for crab, because they 
adhere to any part that they seize on in an obstinate manner, similar to a crab. Malignant, as applied to a 
neoplasm, implies that the lesion can invade and destroy adjacent structures and spread to distant sites 
(metastasize) to cause death. Not all cancers pursue so deadly a course. Some are discovered early and are 
treated successfully, but the designation malignant always raises a red flag. 

All tumors, benign and malignant, have two basic components: (1) clonal neoplastic cells that constitute 
their parenchyma and (2) reactive stroma made up of connective tissue, blood vessels, and variable numbers 
of macrophages and lymphocytes. Although the neoplastic cells largely determine a tumor's behavior and 
pathologic consequences, their growth and evolution is critically dependent on their stroma. An adequate 
stromal blood supply is requisite for the tumor cells to live and divide, and the stromal connective tissue 
provides the structural framework essential for the growing cells. In addition, there is cross-talk between 
tumor cells and stromal cells that directly influences the growth of tumors. In some tumors, the stromal 
support is scant and so the neoplasm is soft and fleshy. In other cases the parenchymal cells stimulate the 
formation of an abundant collagenous stroma, referred to as desmoplasia. Some demoplastic tumors—for 
example, some cancers of the female breast—are stony hard or scirrhous. The nomenclature of tumors and 
their biologic behavior are based primarily on the parenchymal component. 


background image

Benign Tumors.

  

In general, benign tumors are designated by attaching the suffix -oma to the cell of origin. Tumors of 
mesenchymal cells generally follow this rule. For example, a benign tumor arising in fibrous tisssue is called 
fibroma, whereas a benign cartilaginous tumor is a chondroma. In contrast, the nomenclature of benign 
epithelial tumors is more complex. These are variously classified, some based on their cells of origin, others 
on microscopic pattern, and still others on their macroscopic architecture. 

Adenoma is applied to a benign epithelial neoplasm derived from glands, although they may or may not 
form glandular structures. On this basis, a benign epithelial neoplasm that arises from renal tubular cells 
growing in the form of numerous tightly clustered small glands would be termed an adenoma, as would a 
heterogeneous mass of adrenal cortical cells growing as a solid sheet. Benign epithelial neoplasms 
producing microscopically or macroscopically visible finger-like or warty projections from epithelial 
surfaces are referred to as papillomas. Those that form large cystic masses, as in the ovary, are referred to as 
cystadenomas. Some tumors produce papillary patterns that protrude into cystic spaces and are called 
papillary cystadenomas. When a neoplasm, benign or malignant, produces a macroscopically visible 
projection above a mucosal surface and projects, for example, into the gastric or colonic lumen, it is termed 
polyp  

 

Malignant Tumors.

  

The nomenclature of malignant tumors essentially follows the same schema used for benign neoplasms, with 
certain additions. Malignant tumors arising in mesenchymal tissue are usually called sarcomas (Greek sar = 
fleshy), because they have little connective tissue stroma and so are fleshy (e.g., fibrosarcoma, 
chondrosarcoma, leiomyosarcoma, and rhabdomyosarcoma). Malignant neoplasms of epithelial cell origin, 
derived from any of the three germ layers, are called carcinomas. Thus, cancer arising in the epidermis of 
ectodermal origin is a carcinoma, as is a cancer arising in the mesodermally derived cells of the renal tubules 
and the endodermally derived cells of the lining of the gastrointestinal tract. Carcinomas may be further 
qualified. Squamous cell carcinoma would denote a cancer in which the tumor cells resemble stratified 
squamous epithelium, and adenocarcinoma denotes a lesion in which the neoplastic epithelial cells grow in 
glandular patterns. Sometimes the tissue or organ of origin can be identified, as in the designation of renal 
cell adenocarcinoma or bronchogenic squamous cell carcinoma. Not infrequently, however, a cancer is 
composed of undifferentiated cells of unknown tissue origin, and must be designated merely as an 
undifferentiated malignant tumor. 

In many benign and malignant neoplasms, the parenchymal cells bear a close resemblance to each other, as 
though all were derived from a single cell. Indeed, neoplasms are of monoclonal origin, as is documented 
later. Infrequently, divergent differentiation of a single neoplastic clone along two lineages creates what are 
called mixed tumors. The best example of this is the mixed tumor of salivary gland origin. These tumors 
contain epithelial components scattered within a myxoid stroma that sometimes contains islands of cartilage 
or bone . All these elements, it is believed, arise from a single clone capable of giving rise to epithelial and 
myoepithelial cells; thus, the preferred designation of these neoplasms is pleomorphic adenoma. The great 
majority of neoplasms, even mixed tumors, are composed of cells representative of a single germ layer. The 
multifaceted mixed tumors should not be confused with a teratoma, which contains recognizable mature or 
immature cells or tissues representative of more than one germ cell layer and sometimes all three. Teratomas 
originate from totipotential cells such as those normally present in the ovary and testis and sometimes 
abnormally present in sequestered midline embryonic rests. Such cells have the capacity to differentiate into 
any of the cell types found in the adult body and so, not surprisingly, may give rise to neoplasms that mimic, 
in a helter-skelter fashion, bits of bone, epithelium, muscle, fat, nerve, and other tissues. When all the 
component parts are well differentiated, it is a benign (mature) teratoma; when less well differentiated, it is 
an immature, potentially or overtly, malignant teratoma. A particularly common pattern is seen in the 
ovarian cystic teratoma (dermoid cyst), which differentiates principally along ectodermal lines to create a 
cystic tumor lined by skin replete with hair, sebaceous glands, and tooth structures. 


background image

The nomenclature of the more common forms of neoplasia is presented in Table 7-1 . It is evident from this 
compilation that there are some inappropriate but deeply entrenched usages. For generations, benign-
sounding designations such as lymphoma, melanoma, mesothelioma, and seminoma have been used for 
certain malignant neoplasms. The converse is also true; ominous terms may be applied to trivial lesions. 
Hamartomas present as disorganized but benign-appearing masses composed of cells indigenous to the 
particular site. They were once thought to be a developmental malformation, unworthy of the -oma 
designation. For example, pulmonary chondroid harmatoma contains islands of disorganized, but 
histologically normal cartilage, bronchi, and vessels. However, many hamartomas, including pulmonary 
chondroid hamartoma, have clonal, recurrent translocations involving genes encoding certain chromatin 
proteins.

[3]

 Thus, through molecular biology they have finally earned their -oma designation. Another 

misnomer is the term choristoma. This congenital anomaly is better described as a heterotopic rest of cells. 
For example, a small nodule of well-developed and normally organized pancreatic substance may be found 
in the submucosa of the stomach, duodenum, or small intestine. This heterotopic rest may be replete with 
islets of Langerhans and exocrine glands. The term choristoma, connoting a neoplasm, imparts to the 
heterotopic rest a gravity far beyond its usual trivial significance. Although regrettably the terminology of 
neoplasms is not simple, it is important because it is the language by which the nature and significance of 
tumors are categorized.  

 
TABLE 7-1   -- Nomenclature of Tumors 

Tissue of Origin 

Benign 

Malignant 

COMPOSED OF ONE PARENCHYMAL CELL TYPE 

Tumors of Mesenchymal Origin 

Connective tissue and derivatives  Fibroma 

Fibrosarcoma 

Lipoma 

Liposarcoma 

Chondroma 

Chondrosarcoma 

Osteoma 

Osteogenic sarcoma 

Endothelial and Related Tissues 

Blood vessels 

Hemangioma 

Angiosarcoma 

Lymph vessels 

Lymphangioma 

Lymphangiosarcoma 

Synovium 

Synovial sarcoma 

Mesothelium 

Mesothelioma 

Brain coverings 

Meningioma 

Invasive meningioma 

Blood Cells and Related Cells 

Hematopoietic cells 

  

Leukemias 

Lymphoid tissue 

Lymphomas 

Muscle 

Smooth 

Leiomyoma 

Leiomyosarcoma 

Striated 

Rhabdomyoma 

Rhabdomyosarcoma 

Tumors of Epithelial Origin 

Stratified squamous 

Squamous cell papilloma 

Squamous cell carcinoma 

Basal cells of skin or adnexa 

Basal cell carcinoma 

Epithelial lining of glands or 
ducts 

Adenoma 

Adenocarcinoma 

Papilloma 

Papillary carcinomas 


background image

Tissue of Origin 

Benign 

Malignant 

Cystadenoma 

Cystadenocarcinoma 

Respiratory passages 

Bronchial adenoma 

Bronchogenic carcinoma 

Renal epithelium 

Renal tubular adenoma 

Renal cell carcinoma 

Liver cells 

Liver cell adenoma 

Hepatocellular carcinoma 

Urinary tract epithelium 
(transitional) 

Transitional-cell papilloma 

Transitional-cell carcinoma 

Placental epithelium 

Hydatidiform mole 

Choriocarcinoma 

Testicular epithelium (germ 
cells) 

  

Seminoma 

Embryonal carcinoma 

Tumors of Melanocytes 

Nevus 

Malignant melanoma 

MORE THAN ONE NEOPLASTIC CELL TYPE—MIXED TUMORS, USUALLY DERIVED 
FROM ONE GERM CELL LAYER
 

Salivary glands 

Pleomorphic adenoma (mixed tumor 
of salivary origin) 

Malignant mixed tumor of salivary 
gland origin 

Renal anlage 

Wilms tumor 

MORE THAN ONE NEOPLASTIC CELL TYPE DERIVED FROM MORE THAN ONE GERM 
CELL LAYER—TERATOGENOUS
 

Totipotential cells in gonads or in 
embryonic rests 

Mature teratoma, dermoid cyst 

Immature teratoma, 
teratocarcinoma 

 

Characteristics of Benign and Malignant Neoplasms

  

 
DIFFERENTIATION AND ANAPLASIA

  

Differentiation refers to the extent to which neoplastic parenchymal cells resemble the corresponding 
normal parenchymal cells, both morphologically and functionally; lack of differentiation is called 
anaplasia. In general, benign tumors are well differentiated
 ( Figs. 7-4 and 7-5 ). The neoplastic cell in a 
benign adipocyte tumor—a lipoma—so closely resembles the normal cell that it may be impossible to 
recognize it as a tumor by microscopic examination of individual cells. Only the growth of these cells into a 
discrete mass discloses the neoplastic nature of the lesion. One may get so close to the tree that one loses 
sight of the forest. In well-differentiated benign tumors, mitoses are extremely scant in number and are of 
normal configuration.  

 

 

Malignant neoplasms are characterized by a wide range of parenchymal cell differentiation, from 
surprisingly well differentiated to completely undifferentiated. Certain well-differentiated adenocarcinomas 
of the thyroid, for example, may form normal-appearing follicles, and some squamous cell carcinomas 
contain cells that do not differ cytologically from normal squamous epithelial cells.  

 Thus, the morphologic diagnosis of malignancy in well-differentiated tumors may sometimes be quite 
difficult. In between the two extremes lie tumors that are loosely referred to as moderately well 
differentiated
.  


background image

Neoplasms that are composed of poorly differentiated cells are said to be anaplastic. Lack of differentiation, 
or anaplasia, is considered a hallmark of malignancy. The term anaplasia literally means “to form 
backward,” implying a reversal of differentiation to a more primitive level. It is believed, however, that most 
cancers do not represent “reverse differentiation” of mature normal cells but, in fact, arise from less mature 
cells with “stem-cell-like” properties, such as tissue stem cells ( Chapter 3 ). In well-differentiated tumors, 
daughter cells derived from these “cancer stem cells” retain the capacity for differentiation, whereas in 
poorly differentiated tumors that capacity is lost. 

Lack of differentiation, or anaplasia, is often associated with many other morphologic changes.  

   

      Pleomorphism. Both the cells and the nuclei characteristically display pleomorphism—variation in 

size and shape . Thus, cells within the same tumor are not uniform, but range from large cells, many 
times larger than their neighbors, to extremely small and primitive appearing. 

   

      Abnormal nuclear morphology. Characteristically the nuclei contain abundant chromatin and are 

dark staining (hyperchromatic). The nuclei are disproportionately large for the cell, and the nuclear-
to-cytoplasm ratio may approach 1 : 1 instead of the normal 1 : 4 or 1 : 6. The nuclear shape is 
variable and often irregular, and the chromatin is often coarsely clumped and distributed along the 
nuclear membrane. Large nucleoli are usually present in these nuclei. 

   

      Mitoses. As compared with benign tumors and some well-differentiated malignant neoplasms, 

undifferentiated tumors usually possess large numbers of mitoses, reflecting the higher proliferative 
activity of the parenchymal cells. The presence of mitoses, however, does not necessarily indicate 
that a tumor is malignant or that the tissue is neoplastic
. Many normal tissues exhibiting rapid 
turnover, such as bone marrow, have numerous mitoses, and non-neoplastic proliferations such as 
hyperplasias contain many cells in mitosis. More important as a morphologic feature of malignancy 
are atypical, bizarre mitotic figures, sometimes producing tripolar, quadripolar, or multipolar 
spindles. 

   

      Loss of polarity. In addition to the cytologic abnormalities, the orientation of anaplastic cells is 

markedly disturbed (i.e., they lose normal polarity). Sheets or large masses of tumor cells grow in an 
anarchic, disorganized fashion. 

   

      Other changes. Another feature of anaplasia is the formation of tumor giant cells, some possessing 

only a single huge polymorphic nucleus and others having two or more large, hyperchromatic nuclei. 
These giant cells are not to be confused with inflammatory Langhans or foreign body giant cells, 
which are derived from macrophages and contain many small, normal-appearing nuclei. Although 
growing tumor cells obviously require a blood supply, often the vascular stroma is scant, and in 
many anaplastic tumors, large central areas undergo ischemic necrosis

 
 
 

Before we leave the subject of differentiation and anaplasia, we should discuss metaplasia and dysplasia. 
Metaplasia is defined as the replacement of one type of cell with another type. Metaplasia is nearly always 
found in association with tissue damage, repair, and regeneration. Often the replacing cell type is more 
suited to a change in environment. For example, gastroesophageal reflux damages the squamous epithelium 
of the esophagus, leading to its replacement by glandular (gastric or intestinal) epithelium, more suited to the 
acidic environment. Dysplasia is a term that literally means disordered growth. Dysplasia often occurs in 
metaplastic epithelium, but not all metaplastic epithelium is also dysplastic. Dysplasia is encountered 
principally in epithelia, and it is characterized by a constellation of changes that include a loss in the 
uniformity of the individual cells as well as a loss in their architectural orientation
. Dysplastic cells exhibit 
considerable pleomorphism and often contain large hyperchromatic nuclei with a high nuclearto-
cytoplasmic ratio. The architecture of the tissue may be disorderly. For example, in squamous epithelium the 
usual progressive maturation of tall cells in the basal layer to flattened squames on the surface may be lost 
and replaced by a scrambling of dark basal-appearing cells throughout the epithelium. Mitotic figures are 
more abundant than usual, although almost invariably they have a normal configuration. Frequently, 


background image

however, the mitoses appear in abnormal locations within the epithelium. For example, in dysplastic 
stratified squamous epithelium, mitoses are not confined to the basal layers but instead may appear at all 
levels, including surface cells. When dysplastic changes are marked and involve the entire thickness of the 
epithelium but the lesion remains confined by the basement membrane, it is considered a preinvasive 
neoplasm and is referred to as carcinoma in situ. Once the tumor cells breach the basement membrane, the 
tumor is said to be invasive. Dysplastic changes are often found adjacent to foci of invasive carcinoma, and 
in some situations, such as in long-term cigarette smokers and persons with Barrett esophagus, severe 
epithelial dysplasia frequently antedates the appearance of cancer. However, dysplasia does not necessarily 
progress to cancer
. Mild to moderate changes that do not involve the entire thickness of epithelium may be 
reversible, and with removal of the inciting causes the epithelium may revert to normal. Even carcinoma in 
situ may take years to become invasive.  

 

 

Despite exceptions, the more rapidly growing and the more anaplastic a tumor, the less likely it will have 
specialized functional activity. The cells in benign tumors are almost always well differentiated and 
resemble their normal cells of origin; the cells in cancer are more or less differentiated, but some 
derangement of differentiation is always present

 
RATES OF GROWTH

  

A fundamental issue in tumor biology is to understand the factors that affect the growth rates of tumors and 
their influence on clinical outcome and therapeutic responses. One can begin the consideration of tumor cell 
kinetics by asking the question: How long does it take to produce a clinically overt tumor mass? It is a 
reasonable estimate the original transformed cell (approximately 10 μm in diameter) must undergo at least 
30 population doublings to produce 10

9

 cells (weighing approximately 1 gm), which is the smallest 

clinically detectable mass. In contrast, only 10 additional doubling cycles are required to produce a tumor 
containing 10

12

 cells (weighing -1kg), which is usually the maximal size compatible with life. These are 

minimal estimates, based on the assumption that all descendants of the transformed cell retain the ability to 
divide and that there is no loss of cells from the replicative pool. This concept of tumor as a “pathologic 
dynamo” is not entirely correct, as we discuss subsequently. Nevertheless, this calculation highlights an 
extremely important concept about tumor growth: By the time a solid tumor is clinically detected, it has 
already completed a major portion of its life span
. This is a major impediment in the treatment of cancer and 
underscores the need to develop diagnostic markers to detect early cancers. 

The rate of growth of a tumor is determined by three main factors: the doubling time of tumor cells, the 
fraction of tumor cells that are in the replicative pool, and the rate at which cells are shed or die
. Because 
cell cycle controls are deranged in most tumors, tumor cells can be triggered to cycle without the usual 
restraints. The dividing cells, however, do not necessarily complete the cell cycle more rapidly than do 
normal cells. In reality, total cell cycle time for many tumors is equal to or longer than that of corresponding 
normal cells. Thus, it can be safely concluded that growth of tumors is not commonly associated with a 
shortening of cell cycle time. 

The proportion of cells within the tumor population that are in the proliferative pool is referred to as the 
growth fraction. Clinical and experimental studies suggest that during the early, submicroscopic phase of 
tumor growth, the vast majority of transformed cells are in the proliferative pool . As tumors continue to 
grow, cells leave the proliferative pool in ever-increasing numbers as a result of shedding, lack of nutrients, 
necrosis, apoptosis, differentiation, and reversion to the nonproliferative phase of the cell cycle (G

0

). Thus, 

by the time a tumor is clinically detectable, most cells are not in the replicative pool. Even in some rapidly 
growing tumors, the growth fraction is only about 20% or less.  

 

 

Ultimately the progressive growth of tumors and the rate at which they grow are determined by an excess of 
cell production over cell loss
. In some tumors, especially those with a relatively high growth fraction, the 
imbalance is large, resulting in more rapid growth than in those in which cell production exceeds cell loss by 
only a small margin. Some leukemias and lymphomas and certain lung cancers (i.e., small-cell carcinoma) 


background image

have a relatively high growth fraction, and their clinical course is rapid. By comparison, many common 
tumors, such as cancers of the colon and breast, have low growth fractions, and cell production exceeds cell 
loss by only about 10%; they tend to grow at a much slower pace. 

Several important conceptual and practical lessons can be learned from studies of tumor cell kinetics:  

   

      Fast-growing tumors may have a high cell turnover, implying that rates of both proliferation and 

apoptosis are high. Obviously if the tumor is to grow, the rate of proliferation must exceed that of 
cell death. 

   

      The growth fraction of tumor cells has a profound effect on their susceptibility to cancer 

chemotherapy. Because most anticancer agents act on cells that are in cycle, it is not difficult to 
imagine that a tumor that contains 5% of all cells in the replicative pool will be slow growing but 
relatively refractory to treatment with drugs that kill dividing cells. One strategy used in the 
treatment of tumors with low growth fraction (e.g., cancer of colon and breast) is first to shift tumor 
cells from G

0

 into the cell cycle. This can be accomplished by debulking the tumor with surgery or 

radiation. The surviving tumor cells tend to enter the cell cycle and thus become susceptible to drug 
therapy. Such considerations form the basis of combined-modality treatment. Some aggressive 
tumors (such as certain lymphomas and leukemias) that contain a large pool of dividing cells literally 
melt away with chemotherapy and may even be cured. 

We can now return to the question posed earlier: How long does it take for one transformed cell to produce a 
clinically detectable tumor containing 10

9

 cells? If every one of the daughter cells remained in cell cycle and 

no cells were shed or lost, we could anticipate the answer to be 90 days (30 population doublings, with a cell 
cycle time of 3 days). In reality, the latent period before which a tumor becomes clinically detectable is 
unpredictable but typically much longer than 90 days, as long as many years for most solid tumors, 
emphasizing once again that human cancers are diagnosed only after they are fairly advanced in their life 
cycle
. After they become clinically detectable, the average volume-doubling time for such common killers as 
cancer of the lung and colon is about 2 to 3 months. As might be anticipated from the discussion of the 
variables that affect growth rate, however, the range of doubling time values is extremely broad, varying 
from less than 1 month for some childhood cancers to more than 1 year for certain salivary gland tumors. 
Cancer is indeed an unpredictable group of disorders. 

In general, the growth rate of tumors correlates with their level of differentiation, and thus most malignant 
tumors grow more rapidly than do benign lesions
. There are, however, many exceptions to such an 
oversimplification. Some benign tumors have a higher growth rate than malignant tumors. Moreover, the 
rate of growth of benign as well as malignant neoplasms may not be constant over time. Factors such as 
hormonal stimulation, adequacy of blood supply, and unknown influences may affect their growth. For 
example, the growth of uterine leiomyomas (benign smooth muscle tumors) may change over time because 
of hormonal variations. Not infrequently, repeated clinical examination of women bearing such neoplasms 
over the span of decades discloses no significant increase in size. After menopause the neoplasms may 
atrophy and may be replaced largely by collagenous, sometimes calcified, tissue. During pregnancy 
leiomyomas frequently enter a growth spurt. Such changes reflect the responsiveness of the tumor cells to 
circulating levels of steroid hormones, particularly estrogens. Cancers show a wide range of growth. Some 
malignant tumors grow slowly for years and then suddenly increase in size, explosively disseminating to 
cause death within a few months of discovery. It is possible that such behavior results from the emergence 
of an aggressive subclone of transformed cells. At the other extreme are malignant neoplasms that grow 
more slowly than do benign tumors and may even enter periods of dormancy lasting for years. On occasion, 
cancers decrease in size and even spontaneously disappear, but such “miracles” are rare enough that they 
remain intriguing curiosities. 

 

 


background image

 

 

CANCER STEM CELLS AND CANCER CELL LINEAGES

  

Cancers are immortal and have limitless proliferative capacity, indicating that like normal tissues, they also 
must contain cells with “stemlike” properties. The concept of cancer stem cells has several important 
implications. Most notably, if cancer stem cells are essential for tumor persistence, it follows that these cells 
must be eliminated to cure the affected patient. It is hypothesized that like normal stem cells, cancer stem 
cells have a high intrinsic resistance to conventional therapies, because of their low rate of cell division and 
the expression of factors, such as multiple drug resistance-1 (MDR1), that counteract the effects of 
chemotherapeutic drugs.Thus, the limited success of current therapies may in part be explained by their 
failure to kill the malignant stem cells that lie at the root of cancer. Cancer stem cells could arise from 
normal tissue stem cells or from more differentiated cells that, as part of the transformation process, acquire 
the property of self-renewal. Studies of certain leukemias support both of these possibilities. For example, 
chronic myelogenous leukemia (CML) originates from the malignant counterpart of a normal hematopoietic 
stem cell, whereas certain acute myeloid leukemias (AMLs) are derived from more differentiated myeloid 
precursors that acquire an abnormal capacity for self-renewal. The identification of “leukemia stem cells” 
has spurred the search for cancer stem cells in solid tumors. Most such studies have focused on the 
identification of tumor-initiating cells (T-ICs), which are defined as cells that allow a human tumor to grow 
and maintain itself indefinitely when transplanted into an immunodeficient mouse. T-ICs have been 
identified in several human tumors, including breast carcinoma, glioblastoma multiforme, colon cancer, and 
AML, in which they constitute 0.1% to 2% of the total cellularity. 

LOCAL INVASION

  

Nearly all benign tumors grow as cohesive expansile masses that remain localized to their site of origin and 
do not have the capacity to infiltrate, invade, or metastasize to distant sites, as do malignant tumors. Because 
they grow and expand slowly, they usually develop a rim of compressed connective tissue, sometimes called 
a fibrous capsule, which separates them from the host tissue. This capsule is derived largely from the 
extracellular matrix of the native tissue due to atrophy of normal parenchymal cells under the pressure of an 
expanding tumor. Such encapsulation does not prevent tumor growth, but it keeps the benign neoplasm as a 
discrete, readily palpable, and easily movable mass that can be surgically enucleated. Although a well-
defined cleavage plane exists around most benign tumors, in some it is lacking. For example, hemangiomas 
(neoplasms composed of tangled blood vessels) are often unencapsulated and may appear to permeate the 
site in which they arise (commonly the dermis of the skin).  

The growth of cancers is accompanied by progressive infiltration, invasion, and destruction of the 
surrounding tissue
. In general, malignant tumors are poorly demarcated from the surrounding normal tissue, 
and a well-defined cleavage plane is lacking. Slowly expanding malignant tumors, however, may develop an 
apparently enclosing fibrous capsule and may push along a broad front into adjacent normal structures. 
Histologic examination of such pseudo-encapsulated masses almost always shows rows of cells penetrating 
the margin and infiltrating the adjacent structures, a crablike pattern of growth that constitutes the popular 
image of cancer.  

 

 Most malignant tumors are obviously invasive and can be expected to penetrate the wall of the colon or 
uterus, for example, or fungate through the surface of the skin. They recognize no normal anatomic 
boundaries. Such invasiveness makes their surgical resection difficult or impossible, and even if the tumor 
appears well circumscribed it is necessary to remove a considerable margin of apparently normal tissues 
adjacent to the infiltrative neoplasm. Next to the development of metastases, invasiveness is the most reliable 
feature that differentiates malignant from benign tumors
. We noted earlier that some cancers seem to evolve 
from a preinvasive stage referred to as carcinoma in situ. This commonly occurs in carcinomas of the skin, 
breast, and certain other sites and is best illustrated by carcinoma of the uterine cervix ( Chapter 22 ). In situ 


background image

epithelial cancers display the cytologic features of malignancy without invasion of the basement membrane
They may be considered one step removed from invasive cancer; with time, most penetrate the basement 
membrane and invade the subepithelial stroma. 

 
METASTASIS

  

Metastases are tumor implants discontinuous with the primary tumor. Metastasis unequivocally marks a 
tumor as malignant because benign neoplasms do not metastasize
. The invasiveness of cancers permits them 
to penetrate into blood vessels, lymphatics, and body cavities, providing the opportunity for spread. With few 
exceptions, all malignant tumors can metastasize
. The major exceptions are most malignant neoplasms of 
the glial cells in the central nervous system, called gliomas, and basal cell carcinomas of the skin. Both are 
locally invasive forms of cancer, but they rarely metastasize. It is evident then that the properties of invasion 
and metastasis are separable. 

In general, the more aggressive, the more rapidly growing, and the larger the primary neoplasm, the greater 
the likelihood that it will metastasize or already has metastasized. There are innumerable exceptions, 
however. Small, well-differentiated, slowly growing lesions sometimes metastasize widely; conversely, 
some rapidly growing, large lesions remain localized for years. Many factors relating to both invader and 
host are involved. 

Approximately 30% of newly diagnosed individuals with solid tumors (excluding skin cancers other than 
melanomas) present with metastases. Metastatic spread strongly reduces the possibility of cure; hence, short 
of prevention of cancer, no achievement would be of greater benefit to patients than methods to block 
metastases. 

Pathways of Spread  

Dissemination of cancers may occur through one of three pathways: (1) direct seeding of body cavities or 
surfaces, (2) lymphatic spread, and (3) hematogenous spread. Although direct transplantation of tumor cells, 
as for example on surgical instruments, may theoretically occur, it is rare and we do not discuss this artificial 
mode of dissemination further. Each of the three major pathways is described separately. 

Seeding of Body Cavities and Surfaces.

  

Seeding of body cavities and surfaces may occur whenever a malignant neoplasm penetrates into a natural 
“open field.” Most often involved is the peritoneal cavity , but any other cavity—pleural, pericardial, 
subarachnoid, and joint space—may be affected. Such seeding is particularly characteristic of carcinomas 
arising in the ovaries, when, not infrequently, all peritoneal surfaces become coated with a heavy layer of 
cancerous glaze. Remarkably, the tumor cells may remain confined to the surface of the coated abdominal 
viscera without penetrating into the substance. Sometimes mucus-secreting appendiceal carcinomas fill the 
peritoneal cavity with a gelatinous neoplastic mass referred to as pseudomyxoma peritonei.  

 
 

Lymphatic Spread.

  

Transport through lymphatics is the most common pathway for the initial dissemination of carcinomas, and 
sarcomas may also use this route. Tumors do not contain functional lymphatics, but lymphatic vessels 
located at the tumor margins are apparently sufficient for the lymphatic spread of tumor cells.The emphasis 
on lymphatic spread for carcinomas and hematogenous spread for sarcomas is misleading, because 
ultimately there are numerous interconnections between the vascular and the lymphatic systems. The pattern 
of lymph node involvement follows the natural routes of lymphatic drainage
. Because carcinomas of the 
breast usually arise in the upper outer quadrants, they generally disseminate first to the axillary lymph nodes. 
Cancers of the inner quadrants drain to the nodes along the internal mammary arteries. Thereafter the 
infraclavicular and supraclavicular nodes may become involved. Carcinomas of the lung arising in the major 


background image

respiratory passages metastasize first to the perihilar tracheobronchial and mediastinal nodes. Local lymph 
nodes, however, may be bypassed—so-called “skip metastasis”—because of venous-lymphatic anastomoses 
or because inflammation or radiation has obliterated lymphatic channels.  

 

 

In breast cancer, determining the involvement of axillary lymph nodes is very important for assessing the 
future course of the disease and for selecting suitable therapeutic strategies. To avoid the considerable 
surgical morbidity associated with a full axillary lymph node dissection, biopsy of sentinel nodes is often 
used to assess the presence or absence of metastatic lesions in the lymph nodes. A sentinel lymph node is 
defined as “the first node in a regional lymphatic basin that receives lymph flow from the primary 
tumor.”Sentinel node mapping can be done by injection of radiolabeled tracers and blue dyes, and the use of 
frozen section upon the sentinel lymph node at the time of surgery can guide the surgeon to the appropriate 
therapy. Sentinel node biopsy has also been used for detecting the spread of melanomas, colon cancers, and 
other tumors. 

In many cases the regional nodes serve as effective barriers to further dissemination of the tumor, at least for 
a while. Conceivably the cells, after arrest within the node, may be destroyed by a tumor-specific immune 
response. Drainage of tumor cell debris or tumor antigens, or both, also induces reactive changes within 
nodes. Thus, enlargement of nodes may be caused by (1) the spread and growth of cancer cells or (2) 
reactive hyperplasia . Therefore, nodal enlargement in proximity to a cancer, while it must arouse suspicion, 
does not necessarily mean dissemination of the primary lesion

Hematogenous Spread.

  

Hematogenous spread is typical of sarcomas but is also seen with carcinomas. Arteries, with their thicker 
walls, are less readily penetrated than are veins. Arterial spread may occur, however, when tumor cells pass 
through the pulmonary capillary beds or pulmonary arteriovenous shunts or when pulmonary metastases 
themselves give rise to additional tumor emboli. In such vascular spread, several factors influence the 
patterns of distribution of the metastases. With venous invasion the blood-borne cells follow the venous flow 
draining the site of the neoplasm, and the tumor cells often come to rest in the first capillary bed they 
encounter. Understandably the liver and lungs are most frequently involved in such hematogenous 
dissemination ( Figs. 7-18 and 7-19 ), because all portal area drainage flows to the liver and all caval blood 
flows to the lungs. Cancers arising in close proximity to the vertebral column often embolize through the 
paravertebral plexus, and this pathway is involved in the frequent vertebral metastases of carcinomas of the 
thyroid and prostate.  

Certain cancers have a propensity for invasion of veins. Renal cell carcinoma often invades the branches of 
the renal vein and then the renal vein itself to grow in a snakelike fashion up the inferior vena cava, 
sometimes reaching the right side of the heart. Hepatocellular carcinomas often penetrate portal and hepatic 
radicles to grow within them into the main venous channels. Remarkably, such intravenous growth may not 
be accompanied by widespread dissemination. Histologic evidence of penetration of small vessels at the site 
of the primary neoplasm is obviously an ominous feature. Such changes, however, must be viewed 
guardedly because, for reasons discussed later, they do not indicate the inevitable development of 
metastases. 

Many observations suggest that mere anatomic localization of the neoplasm and natural pathways of venous 
drainage do not wholly explain the systemic distributions of metastases. For example, breast carcinoma 
preferentially spreads to bone, bronchogenic carcinomas tend to involve the adrenals and the brain, and 
neuroblastomas spread to the liver and bones. Conversely, skeletal muscles and the spleen, despite the large 
percentage of blood flow they receive and the enormous vascular beds present, are rarely the site of 
secondary deposits. The probable basis of such tissue-specific homing of tumor cells is discussed later. 

The distinguishing features of benign and malignant tumors discussed in this overview are summarized in 
Table 7-2. With this background on the structure and behavior of neoplasms, we now discuss the origin of 


background image

tumors, starting with insights gained from the epidemiology of cancer and followed by the molecular basis 
of carcinogenesis.  

 
TABLE 7-2   -- Comparisons between Benign and Malignant Tumors 

Characteristics 

Benign 

Malignant 

Differentiation/anaplasia  Well differentiated; structure sometimes 

typical of tissue of origin 

Some lack of differentiation with 
anaplasia; structure often atypical 

Rate of growth 

Usually progressive and slow; may come 
to a standstill or regress; mitotic figures 
rare and normal 

Erratic and may be slow to rapid; 
mitotic figures may be numerous and 
abnormal 

Local invasion 

Usually cohesive expansile well-
demarcated masses that do not invade or 
infiltrate surrounding normal tissues 

Locally invasive, infiltrating 
surrounding tissue; sometimes may be 
seemingly cohesive and expansile 

Metastasis 

Absent 

Frequently present; the larger and more 
undifferentiated the primary, the more 
likely are metastases 

 
 

 

 

 

Epidemiology

  

Because cancer is a disorder of cell growth and behavior, its ultimate cause has to be defined at the cellular 
and subcellular levels. Study of cancer patterns in populations, however, can contribute substantially to 
knowledge about the origins of cancer. Epidemiologic studies have established the causative link between 
smoking and lung cancer, and comparison of diet and cancer rates in the Western world and Africa has 
implicated high dietary fat and low fiber in the development of colon cancer. Major insights into the causes 
of cancer can be obtained by epidemiologic studies that relate particular environmental, racial (possibly 
hereditary), and cultural influences to the occurrence of specific neoplasms. Certain diseases associated with 
an increased risk of developing cancer (preneoplastic disorders) also provide clues to the pathogenesis of 
cancer. In the following discussion we first summarize the overall incidence of cancer to gain an insight into 
the magnitude of the cancer problem, then we review some factors relating to the patient and environment 
that influence the predisposition to cancer. 

CANCER INCIDENCE

  

In some measure, an individual's likelihood of developing a cancer is expressed by national incidence and 
mortality rates. For example, residents of the United States have about a one in five chance of dying of 
cancer. There were, it is estimated, about 1,437,180 new cancer cases and 565,650 deaths from cancer in 
2008, representing 23% of all mortality,

[1]

 a frequency surpassed only by deaths caused by cardiovascular 

diseases. These data do not include an additional 1 million, for the most part readily curable, non-melanoma 
cancers of the skin and 122,000 cases of carcinoma in situ, largely of the female breast and melanomas.

[1]

 

The major organ sites affected and the estimated frequency of cancer deaths are shown in Figure 7-21 . The 
most common tumors in men arise in the prostate, lung, and colorectum. In women, cancers of the breast, 
lung, and colon and rectum are the most frequent. Cancers of the lung, female breast, prostate, and 
colon/rectum constitute more than 50% of cancer diagnoses and cancer deaths in the U.S. population.

[1]

  

 

 

The age-adjusted death rates (number of deaths per 100,000 population) for many forms of cancer have 
significantly changed over the years. Many of the long-term comparisons are noteworthy. Over the last 50 
years of the twentieth century, the overall age-adjusted cancer death rate significantly increased in both men 


background image

and women. However, since 1995 the cancer incidence rate in men has stabilized and since 1990 the cancer 
death rate in men has decreased 18.4%. In women the cancer incidence rate stabilized in 1995, and the 
cancer death rate has decreased 10.4% since 1991. Among men nearly 80% of the total decrease in cancer 
death rates is accounted for by decreases in death rates from lung, prostate, and colorectal cancers since 
1990.

 

Among women nearly 60% of the decrease in cancer death rates is due to reductions in death rates 

from breast and colorectal cancers. Nearly 40% of the sex-specific decreases in cancer death rates is 
accounted for by a reduction in lung cancer deaths in men and breast cancer deaths in women.

[1]

 Decreased 

use of tobacco products is responsible for the reduction in lung cancer deaths, while improved detection and 
treatment are responsible for the decrease in death rates for colorectal, female breast, and prostate cancer.

[1]

 

The last half century has seen a decline in the number of deaths caused by cervical cancer that relates to 
earlier diagnosis made possible by the Papanicolaou (Pap) smear. The downward trend in deaths from 
stomach cancer has been attributed to a decrease in some dietary carcinogens, as a consequence of better 
food preservation or changes in dietary habits. Unfortunately, between 1990–1991 and 2004, lung cancer 
death rates in women, and liver and intrahepatic bile duct cancer death rates in men, increased substantially, 
offsetting some of the improvement in survival from other cancers. Indeed, although in women carcinomas 
of the breast occur about 2.5 times more frequently than those of the lung, lung cancer has become the 
leading cause of cancer deaths in women. Deaths from primary liver cancers, which declined between 1930 
and 1970, have approximately doubled during the past 30 years. This number is expected to increase over 
the coming decades, as the large number of individuals infected with the hepatitis C virus (HCV) begin to 
develop hepatocellular carcinoma. 

Although race is not a strict biologic category, it can define groups at risk for certain cancers.

 

The disparity 

in cancer mortality rates between white and black Americans persists, but African Americans had the largest 
decline in cancer mortality during the past decade. Hispanics living in the United States have a lower 
frequency of the most common tumors than the white non-Hispanic population but a higher incidence of 
tumors of the stomach, liver, uterine cervix, and gallbladder, as well as certain childhood leukemias. 

GEOGRAPHIC AND ENVIRONMENTAL FACTORS

  

Although genetics and environmental triggers both play a role in the pathogenesis of cancer, environmental 
factors are thought to be the more significant contributors in most common sporadic cancers. In one large 
study the proportion of risk from environmental causes was found to be 65%, whereas heritable factors 
contributed 26% to 42% of cancer risk. Remarkable differences found in the incidence and death rates of 
specific forms of cancer around the world also suggest a role for environmental factors. For example, the 
death rate for stomach carcinoma in both men and women is seven to eight times higher in Japan than in the 
United States. In contrast, the death rate from carcinoma of the lung is slightly more than twice as great in 
the United States as in Japan. Although racial predispositions cannot be ruled out, it is generally believed 
that most of these geographic differences are the consequence of environmental influences. Indeed, 
comparing mortality rates for Japanese immigrants to the United States and Japanese born in the United 
States of immigrant parents (Nisei) with those of long-term residents of both countries shows that cancer 
mortality rates for first-generation Japanese immigrants are intermediate between those of natives of Japan 
and natives of California, and the two rates come closer with each passing generation . This points strongly 
to environmental and cultural factors rather than genetic predisposition.  

 

 

 

There is no paucity of carcinogenic environmental factors: they lurk in the ambient environment, in the 
workplace, in food, and in personal practices. Individuals may be exposed to carcinogenic factors when they 
go outside (ultraviolet [UV] rays, smog), in their medication (methotrexate), at work (asbestos, vinyl 
chloride; Table 7-3 ), or at home (high-fat diet, alcohol). Overall, mortality data indicate that the most 
overweight individuals in the U.S. population have a 52% (men) and 62% (women) higher death rate from 
cancer than do their slimmer counterparts. Indeed, obesity is associated with approximately 14% of cancer 
deaths in men and 20% in women.Alcohol abuse alone increases the risk of carcinomas of the oropharynx 
(excluding lip), larynx, and esophagus and, by the development of alcoholic cirrhosis, hepatocellular 


background image

carcinoma. Smoking, particularly of cigarettes, has been implicated in cancer of the mouth, pharynx, larynx, 
esophagus, pancreas, bladder, and most significantly, about 90% of lung cancer deaths. Cigarette smoking 
has been called the single most important environmental factor contributing to premature death in the United 
States. Alcohol and tobacco together synergistically increase the danger of incurring cancers in the upper 
aerodigestive tract. The risk of cervical cancer is linked to age at first intercourse and the number of sex 
partners, and it is now known that infection by venereally transmitted human papillomavirus (HPV) 
contributes to cervical dysplasia and cancer. It appears that almost everything one does to gain a livelihood 
or for pleasure is fattening, immoral, illegal, or, even worse, oncogenic.  

 
TABLE 7-3   -- Occupational Cancers 

Agents or 
Groups of 
Agents 

Human Cancer Site for 
Which Reasonable Evidence 
Is Available 

Typical Use or Occurrence 

Arsenic and 
arsenic 
compounds 

Lung, skin, hemangiosarcoma  Byproduct of metal smelting; component of alloys, 

electrical and semiconductor devices, medications and 
herbicides, fungicides, and animal dips 

Asbestos 

Lung, mesothelioma; 
gastrointestinal tract 
(esophagus, stomach, large 
intestine) 

Formerly used for many applications because of fire, heat, 
and friction resistance; still found in existing construction 
as well as fire-resistant textiles, friction materials (i.e., 
brake linings), underlayment and roofing papers, and floor 
tiles 

Benzene 

Leukemia, Hodgkin 
lymphoma 

Principal component of light oil; despite known risk, many 
applications exist in printing and lithography, paint, 
rubber, dry cleaning, adhesives and coatings, and 
detergents; formerly widely used as solvent and fumigant 

Beryllium and 
beryllium 
compounds 

Lung 

Missile fuel and space vehicles; hardener for lightweight 
metal alloys, particularly in aerospace applications and 
nuclear reactors 

Cadmium and 
cadmium 
compounds 

Prostate 

Uses include yellow pigments and phosphors; found in 
solders; used in batteries and as alloy and in metal platings 
and coatings 

Chromium 
compounds 

Lung 

Component of metal alloys, paints, pigments, and 
preservatives 

Nickel 
compounds 

Nose, lung 

Nickel plating; component of ferrous alloys, ceramics, and 
batteries; by-product of stainless-steel arc welding 

Radon and its 
decay products 

Lung 

From decay of minerals containing uranium; potentially 
serious hazard in quarries and underground mines 

Vinyl chloride 

Angiosarcoma, liver 

Refrigerant; monomer for vinyl polymers; adhesive for 
plastics; formerly inert aerosol propellant in pressurized 
containers 

Modified from Stellman JM, Stellman SD: Cancer and workplace. CA Cancer J Clin 46:70, 1996. 

 
 
 
 
 
 
 
 


background image

AGE

  

Age has an important influence on the likelihood of being afflicted with cancer. Most carcinomas occur in 
the later years of life (>55 years). Cancer is the main cause of death among women aged 40 to 79 and among 
men aged 60 to 79; the decline in deaths after age 80 is due to the lower number of individuals who reach 
this age. The rising incidence with age may be explained by the accumulation of somatic mutations 
associated with the emergence of malignant neoplasms (discussed later). The decline in immune competence 
that accompanies aging may also be a factor. 

However, children are not spared; cancer accounts for slightly more than 10% of all deaths in children under 
age 15 in the United States, second only to accidents. However, the types of cancers that predominate in 
children are significantly different from those seen in adults. Carcinomas, the most common general 
category of tumor in adults, are extraordinarily rare among children. Instead, acute leukemia and primitive 
neoplasms of the central nervous system are responsible for approximately 60% of childhood cancer deaths. 
The common neoplasms of infancy and childhood include the so-called small round blue cell tumors such as 
neuroblastoma, Wilms tumor, retinoblastoma, acute leukemias, and rhabdomyosarcomas. These are 
discussed in Chapter 10 and elsewhere in the text. 

GENETIC PREDISPOSITION TO CANCER

  

One frequently asked question is: “My mother and father both died of cancer. Does that mean I am doomed 
to get it?” Based on current knowledge, the answer must be carefully qualified.

[19,][20]

 Evidence now 

indicates that for a large number of cancer types, including the most common forms, there exist not only 
environmental influences but also hereditary predispositions. For example, lung cancer is in most instances 
clearly related to cigarette smoking, yet mortality from lung cancer has been shown to be four times greater 
among nonsmoking relatives (parents and siblings) of lung cancer patients than among nonsmoking relatives 
of controls (the effects of second-hand smoke may confound some of these results). Less than 10% of cancer 
patients have inherited mutations that predispose to cancer, and the frequency is even lower (around 0.1%) 
for certain types of tumors. Despite the low frequency, the recognition of inherited predisposition to cancer 
has had a major impact on the understanding of cancer pathogenesis. Moreover, genes that are causally 
associated with cancers that have a strong hereditary component are generally also involved in the much 
more common sporadic forms of the same tumor. Genetic predisposition to cancer can be divided into three 
categories ( Table 7-4 ).  

 
TABLE 7-4   -- Examples of Inherited Predisposition to Cancer 

INHERITED CANCER SYNDROMES (AUTOSOMAL DOMINANT) 

Gene 

Inherited Predisposition 

RB 

Retinoblastoma 

p53 

Li-Fraumeni syndrome (various tumors) 

p16/INK4A 

Melanoma 

APC 

Familial adenomatous polyposis/colon cancer 

NF1NF2 

Neurofibromatosis 1 and 2 

BRCA1BRCA2 

Breast and ovarian tumors 

MEN1RET 

Multiple endocrine neoplasia 1 and 2 

MSH2MLH1MSH6 

Hereditary nonpolyposis colon cancer 

PTCH 

Nevoid basal cell carcinoma syndrome 

PTEN 

Cowden syndrome (epithelial cancers) 

LKB1 

Peutz-Jegher syndrome (epithelial cancers) 


background image

INHERITED CANCER SYNDROMES (AUTOSOMAL DOMINANT) 

Gene 

Inherited Predisposition 

VHL 

Renal cell carcinomas 

INHERITED AUTOSOMAL RECESSIVE SYNDROMES OF DEFECTIVE DNA REPAIR 

Xeroderma pigmentosum 

Ataxia-telangiectasia 

Bloom syndrome 

Fanconi anemia 

FAMILIAL CANCERS 

Familial clustering of cases, but role of inherited predisposition not clear for each individual 

 Breast cancer 

 Ovarian cancer 

 Pancreatic cancer 

 

 

Autosomal Dominant Inherited Cancer Syndromes.

  

Inherited cancer syndromes include several well-defined cancers in which inheritance of a single autosomal 
dominant mutant gene greatly increases the risk of developing a tumor. The inherited mutation is usually a 
point mutation occurring in a single allele of a tumor suppressor gene. The silencing of the second allele 
occurs in somatic cells, generally as a consequence of deletion or recombination. Childhood retinoblastoma 
is the most striking example in this category. Approximately 40% of retinoblastomas are inherited. Carriers 
of a mutant of the RB tumor suppressor gene have a 10,000-fold increased risk of developing 
retinoblastoma, usually bilateral. They also have a greatly increased risk of developing a second cancer, 
particularly osteosarcoma. Familial adenomatous polyposis is an autosomal dominant hereditary disorder 
caused by mutation of the adenomatous polyposis coli (APC) tumor suppressor gene. Other autosomal 
dominant cancer syndromes include Li-Fraumeni syndrome resulting from germ-line mutations of the p53 
gene; multiple endocrine neoplasia types 1 and 2 (MEN-1 and MEN-2) caused by mutation in the genes that 
encode the menin transcription factor and the RET tyrosine kinase, respectively; hereditary nonpolyposis 
colon cancer (HNPCC), a condition caused by inactivation of a DNA mismatch repair gene (also listed 
below among repair defects); and several others listed in Table 7-4 . 

There are several features that characterize inherited cancer syndromes:  

   

      In each syndrome, tumors tend to arise in specific sites and tissues, although they may involve more 

than one site. There is no increase in predisposition to cancers in general. For example, in MEN-2, 
thyroid, parathyroid, and adrenals are involved, while in MEN-1, the pituitary, parathyroid, and 
pancreas are involved. Patients with familial adenomatous polyposis develop innumerable polypoid 
adenomas of the colon, and virtually 100% of those affected develop a colonic adenocarcinoma by 
age 50. The one exception to this tumor specific tissue involvement is Li-Fraumeni syndrome. 

   

      Tumors within this group are often associated with a specific marker phenotype. For example, there 

may be multiple benign tumors in the affected tissue, as occurs in familial polyposis of the colon and 
in MEN. Sometimes, there are abnormalities in tissue that are not the target of transformation (e.g., 
Lisch nodules and café-au-lait spots in neurofibromatosis type 1; see Chapter 27 ). 

As in other autosomal dominant conditions, both incomplete penetrance and variable expressivity occur. 

Defective DNA-Repair Syndromes.

  


background image

Besides the dominantly inherited precancerous conditions, a group of cancer-predisposing conditions is 
collectively characterized by defects in DNA repair and resultant DNA instability. These conditions 
generally have an autosomal recessive pattern of inheritance. Included in this group are xeroderma 
pigmentosum, ataxia-telangiectasia, and Bloom syndrome, all rare diseases characterized by genetic 
instability resulting from defects in DNA-repair genes. Also included here is HNPCC, an autosomal 
dominant condition caused by inactivation of a DNA mismatch repair gene.

[21]

 HNPCC is the most common 

cancer predisposition syndrome, increasing the susceptibility of cancer of the colon, the small intestine, 
endometrium, and ovary ( Chapter 17 ). 

Familial Cancers.

  

Besides the inherited syndromes of cancer susceptibility, cancer may occur at higher frequency in certain 
families without a clearly defined pattern of transmission. Virtually all the common types of cancers that 
occur sporadically have also been reported to occur in familial forms. Examples include carcinomas of 
colon, breast, ovary, and brain, as well as melanomas and lymphomas. Features that characterize familial 
cancers include early age at onset, tumors arising in two or more close relatives of the index case, and 
sometimes, multiple or bilateral tumors
. Familial cancers are not associated with specific marker 
phenotypes. For example, in contrast to the familial adenomatous polyp syndrome, familial colonic cancers 
do not arise in preexisting benign polyps. The transmission pattern of familial cancers is not clear. In 
general, siblings have a risk between two and three times greater than unrelated individuals. Segregation 
analyses of large families usually show that predisposition to the tumors is dominant, but multifactorial 
inheritance cannot be easily ruled out. It is likely that familial susceptibility to cancer may depend on 
multiple low-penetrance alleles, each contributing to only a small increase in the risk of tumor development. 
Genome-wide association studies show great promise in identifying such alleles ( Chapter 5 ). It has been 
estimated that 10% to 20% of patients with breast or ovarian cancer have a first- or second-degree relative 
with one of these tumors. Although two breast cancer susceptibility genes, named BRCA1 and BRCA2, have 
been identified, mutation of these genes occurs in no more than 3% of breast cancers. A similar situation 
occurs in familial melanomas, in which a mutation of the p16 tumor suppressor gene has been identified. 
However, mutation in this gene accounts for only about 20% of familial melanoma kindreds, suggesting that 
other factors are involved in the familial predisposition. 

Interactions between Genetic and Nongenetic Factors.

  

What can be said about the influence of heredity on the majority of malignant neoplasms? It could be argued 
that they are largely of environmental origin, but lack of family history does not preclude an inherited 
component. It is generally difficult to sort out the hereditary and acquired basis of a tumor, because these 
factors often interact closely. The interaction between genetic and nongenetic factors is particularly complex 
when tumor development depends on the action of multiple contributory genes. Even in tumors with a well-
defined inherited component, the risk of developing the tumor can be greatly influenced by nongenetic 
factors. For instance, breast cancer risk in female carriers of BRCA1 or BRCA2 mutations is almost threefold 
higher for women born after 1940, as compared with the risks for women born before that year.

[20]

 

Furthermore, the genotype can significantly influence the likelihood of developing environmentally induced 
cancers. Inherited variations (polymorphisms) of enzymes that metabolize procarcinogens to their active 
carcinogenic forms (see “Initiation of Carcinogenesis”) can influence the susceptibility to cancer. Of interest 
in this regard are genes that encode the cytochrome P-450 enzymes. As discussed later under “Chemical 
Carcinogenesis,” polymorphism at one of the P-450 loci confers inherited susceptibility to lung cancers in 
cigarette smokers. More such associations are likely to be found. 

 
 
 
 
 
 
 


background image

 
NONHEREDITARY PREDISPOSING CONDITIONS

  

The only certain way of avoiding cancer is not to be born; to live is to incur the risk. Certain predisposing 
influences, such as environment, behaviors, and clinical conditions, can increase that risk, however. For 
example, regenerative, metaplastic, hyperplastic, and dysplastic proliferations are fertile soil for the origin of 
a malignant tumor, because cell replication is involved in neoplastic transformation. Indeed, proliferation 
may be required for neoplastic transformation in some settings, since it is proliferating cells that accumulate 
the genetic lesions required for carcinogenesis. 

Chronic Inflammation and Cancer.

  

In 1863 Virchow proposed that cancer develops at sites of chronic inflammation, and the potential 
relationships between cancer and inflammation have been studied since then.

[24]

 This is exemplified by the 

increased risk of cancer in individuals affected by a variety of chronic inflammatory diseases of the 
gastrointestinal tract ( Table 7-5 ). These include ulcerative colitis, Helicobacter pylori gastritis, viral 
hepatitis, and chronic pancreatitis. Although the precise mechanisms that link inflammation and cancer 
development have not been established, recent work has demonstrated that in the setting of unresolved 
chronic inflammation, as occurs in viral hepatitis or chronic gastritis, the immune response may become 
maladaptive, promoting tumorigenesis.

[24]

 As with any cause of tissue injury, there is a compensatory 

proliferation of cells so as to repair the damage. This regenerative process is aided and abetted by a plethora 
of growth factors, cytokines, chemokines, and other bioactive substances produced by activated immune 
cells that promote cell survival, tissue remodeling, and angiogenesis. In some cases, chronic inflammation 
may increase the pool of tissue stem cells, which become subject to the effect of mutagens. These mediators 
also cause genomic stress and mutations; additionally the activated immune cells produce reactive oxygen 
species that are directly genotoxic. To add insult to injury, many of these mediators promote cell survival, 
even in the face of genomic damage. In the short term this can be adaptive; the organism must survive, and 
the damaged cells can be repaired or eliminated later. However, in chronic inflammation such behavior is 
maladaptive, since it allows the creation and fixation of such mutations, eventually leading to cancer. 
Whatever the precise mechanism, the link between chronic inflammation and cancer has practical 
implications. For instance, expression of the enzyme cyclooxygenase-2 (COX-2), which brings about the 
conversion of arachidonic acid into prostaglandins, is induced by inflammatory stimuli and is increased in 
colon cancers and other tumors. The development of COX-2 inhibitors for cancer treatment is an active area 
of research. 
TABLE 7-5   -- Chronic Inflammatory States and Cancer 

Pathologic Condition 

Associated Neoplasm(s) 

Etiologic Agent 

Asbestosis, silicosis 

Mesothelioma, lung carcinoma 

Asbestos fibers, silica particles 

Bronchitis 

Lung carcinoma 

Silica, asbestos, smoking 
(nitrosamines, peroxides) 

Cystitis, bladder 
inflammation 

Bladder carcinoma 

Chronic indwelling urinary 
catheters 

Gingivitis, lichen planus 

Oral squamous cell carcinoma 

Inflammatory bowel disease  Colorectal carcinoma 

Lichen sclerosis 

Vulvar squamous cell carcinoma 

Chronic pancreatitis 

Pancreatic carcinoma 

Alcoholism 

 Hereditary pancreatitis 

Pancreatic carcinoma 

Mutation in trypsinogen gene 

Reflux esophagitis, Barrett 
esophagus 

Esophageal carcinoma 

Gastric acids 

Sialadenitis 

Salivary gland carcinoma 


background image

Pathologic Condition 

Associated Neoplasm(s) 

Etiologic Agent 

Sjögren syndrome, 
Hashimoto thyroiditis 

MALT lymphoma 

CANCERS ASSOCIATED WITH INFECTIOUS AGENTS 

Opisthorchis, cholangitis 

Cholangiosarcoma, colon carcinoma 

Liver flukes (Opisthorchis 
viverrini

Bile acids 

Chronic cholecystitis 

Gallbladder cancer 

Bacteria, gallbladder stones 

Gastritis/ulcers 

Gastric adenocarcinoma, MALT 

Helicobacter pylori 

Hepatitis 

Hepatocellular carcinoma 

Hepatitis B and/or C virus 

Mononucleosis 

B-cell non-Hodgkin lymphoma and 
Hodgkin lymphoma 

Epstein-Barr virus 

AIDS 

Non-Hodgkin lymphoma, squamous cell 
carcinoma, Kaposi sarcoma 

Human immunodeficiency virus, 
human herpesvirus type 8 

Osteomyelitis 

Carcinoma in draining sinuses 

Bacterial infection 

Pelvic inflammatory disease, 
chronic cervicitis 

Ovrian carcinoma, cervical/anal 
carcinoma 

Gonorrhea, chlamydia, human 
papillomavirus 

Chronic cystitis 

Bladder, liver, rectal carcinoma 

Schistosomiasis 

Adapted from Tlsty TD, Coussens LM: Tumor stroma and regulation of cancer development. Ann Rev 
Pathol Mech Dis 1:119, 2006.
 

 

Precancerous Conditions.

  

Certain non-neoplastic disorders—the chronic atrophic gastritis of pernicious anemia, solar keratosis of the 
skin, chronic ulcerative colitis, and leukoplakia of the oral cavity, vulva, and penis
—have such a well-
defined association with cancer that they have been termed precancerous conditions. This designation is 
somewhat unfortunate, because in the great majority of these lesions no malignant neoplasm emerges. 
Nonetheless, the term persists because it calls attention to the increased risk. Certain forms of benign 
neoplasia also constitute precancerous conditions. The villous adenoma of the colon, as it increases in size, 
becomes malignant in up to 50% of cases. It might be asked: Is there not a risk with all benign neoplasms? 
Although some risk may be inherent, a large cumulative experience indicates that most benign neoplasms do 
not become cancerous. Nonetheless, numerous examples could be offered of cancers arising, albeit rarely, in 
benign tumors—for example, a leiomyosarcoma beginning in a leiomyoma, and carcinoma appearing in 
long-standing pleomorphic adenomas. Generalization is impossible, because each type of benign neoplasm 
is associated with a particular level of risk ranging from virtually never to frequently. Only follow-up studies 
of large series of each neoplasm can establish the level of risk, and always the question remains: Did the 
cancer arise from a nonmalignant cell in the benign tumor, or did the benign tumor contain, from the outset, 
a silent or indolent malignant focus? 

 
 
 
 
 
 
 
 
 


background image

Carcinogenic Agents and Their Cellular Interactions

  

More than 200 years ago the London surgeon Sir Percival Pott correctly attributed scrotal skin cancer in 
chimney sweeps to chronic exposure to soot. Based on this observation, the Danish Chimney Sweeps Guild 
ruled that its members must bathe daily. No public health measure since that time has achieved so much in 
the control of a form of cancer. Subsequently, hundreds of chemicals have been shown to be carcinogenic in 
animals. Some of the major agents are presented in Table 7-10 . A few comments are offered on a handful of 
these.  
TABLE 7-10   -- Major Chemical Carcinogens 

DIRECT-ACTING CARCINOGENS 

Alkylating Agents 

     

β-Propiolactone 

     

Dimethyl sulfate 

     

Diepoxybutane 

     

Anticancer drugs (cyclophosphamide, chlorambucil, nitrosoureas, and others) 

 

Acylating Agents 

      1-Acetyl-imidazole 

      Dimethylcarbamyl chloride 

 

PROCARCINOGENS THAT REQUIRE METABOLIC ACTIVATION 

Polycyclic and Heterocyclic Aromatic Hydrocarbons 

      Benz[a]anthracene 

      Benzo[a]pyrene 

      Dibenz[a,h]anthracene 

      3-Methylcholanthrene 

      7,12-Dimethylbenz[a]anthracene 

 

Aromatic Amines, Amides, Azo Dyes 

      2-Naphthylamine (β-naphthylamine) 

      Benzidine 

      2-Acetylaminofluorene 

      Dimethylaminoazobenzene (butter yellow) 

 

Natural Plant and Microbial Products 

Aflatoxin B

1

 

      Griseofulvin 

      Cycasin 

      Safrole 

      Betel nuts 

 

Others 


background image

      Nitrosamine and amides 

      Vinyl chloride, nickel, chromium 

      Insecticides, fungicides 

      Polychlorinated biphenyls 

 

 

 
 
Steps Involved in Chemical Carcinogenesis  

As discussed earlier, carcinogenesis is a multistep process. This is most readily demonstrated in 
experimental models of chemical carcinogenesis, in which the stages of initiation and progression during 
cancer development were first described. The classic experiments that allowed the distinction between 
initiation and promotion were performed on mouse skin and are outlined in Figure 7-41 . The following 
concepts relating to the initiation-promotion sequence have emerged from these experiments:  

   

      Initiation results from exposure of cells to a sufficient dose of a carcinogenic agent (initiator); an 

initiated cell is altered, making it potentially capable of giving rise to a tumor (groups 2 and 3). 
Initiation alone, however, is not sufficient for tumor formation (group 1). 

   

      Initiation causes permanent DNA damage (mutations). It is therefore rapid and irreversible and has 

“memory.” This is illustrated by group 3, in which tumors were produced even if the application of 
the promoting agent was delayed for several months after a single application of the initiator. 

   

      Promoters can induce tumors in initiated cells, but they are nontumorigenic by themselves (group 5). 

Furthermore, tumors do not result when the promoting agent is applied before, rather than after, the 
initiating agent (group 4). This indicates that, in contrast to the effects of initiators, the cellular 
changes resulting from the application of promoters do not affect DNA directly and are reversible

As discussed later, promoters enhance the proliferation of initiated cells, an effect that may contribute 
to the development of additional mutations in these cells. That the effects of promoters are reversible 
is further documented in group 6, in which tumors failed to develop in initiated cells if the time 
between multiple applications of the promoter was sufficiently extended. 

 

 

 

Although the concepts of initiation and promotion have been derived largely from experiments involving 
induction of skin cancer in mice, these stages are also discernible in the development of cancers of the liver, 
urinary bladder, breast, colon, and respiratory tract. With this brief overview of two major steps in 
carcinogenesis, we can examine initiation and promotion in more detail ( Fig. 7-42 ). All initiating chemical 
carcinogens are highly reactive electrophiles (have electron-deficient atoms) that can react with nucleophilic 
(electron-rich) sites in the cell. Their targets are DNA, RNA, and proteins, and in some cases these 
interactions cause cell death. Initiation, obviously, inflicts nonlethal damage on the DNA that cannot be 
repaired. The mutated cell then passes on the DNA lesions to its daughter cells. Chemicals that can cause 
initiation of carcinogenesis can be classified into two categories: direct acting and indirect acting.  

 

 

 
Direct-Acting Agents  

Direct-acting agents require no metabolic conversion to become carcinogenic. Most of them are weak 
carcinogens but are important because some are cancer chemotherapeutic drugs (e.g., alkylating agents) that 
have successfully cured, controlled, or delayed recurrence of certain types of cancer (e.g., leukemia, 


background image

lymphoma, and ovarian carcinoma), only to evoke later a second form of cancer, usually acute myeloid 
leukemia. The risk of induced cancer is low, but its existence dictates judicious use of such agents. 

Indirect-Acting Agents  

The designation indirect-acting agent refers to chemicals that require metabolic conversion to an ultimate 
carcinogen
 before they become active. Some of the most potent indirect chemical carcinogens—the 
polycyclic hydrocarbons—are present in fossil fuels. Others, for example, benzo[a]pyrene and other 
carcinogens, are formed in the high-temperature combustion of tobacco in cigarette smoking. These 
products are implicated in the causation of lung cancer in cigarette smokers
. Polycyclic hydrocarbons may 
also be produced from animal fats during the process of broiling meats and are present in smoked meats and 
fish. The principal active products in many hydrocarbons are epoxides, which form covalent adducts 
(addition products) with molecules in the cell, principally DNA, but also with RNA and proteins. 

The aromatic amines and azo dyes are another class of indirect-acting carcinogens that were widely used in 
the past in the aniline dye and rubber industrie 

Most chemical carcinogens require metabolic activation for conversion into ultimate carcinogens. Other 
metabolic pathways may lead to the inactivation (detoxification) of the procarcinogen or its derivatives. 
Thus, the carcinogenic potency of a chemical is determined not only by the inherent reactivity of its 
electrophilic derivative but also by the balance between metabolic activation and inactivation reactions

Most of the known carcinogens are metabolized by cytochrome P-450–dependent mono-oxygenases. The 
genes that encode these enzymes are quite polymorphic, and the activity and inducibility of these enzymes 
have been shown to vary among different individuals. Because these enzymes are essential for the activation 
of procarcinogens, the susceptibility to carcinogenesis is regulated in part by polymorphisms in the genes 
that encode these enzymes. Thus, it may be possible to assess cancer risk in a given individual by genetic 
analysis of such enzyme polymorphisms.

[147]

 

The metabolism of polycyclic aromatic hydrocarbons, such as benzo[a]pyrene by the product of the P-450 
gene, CYP1A1, provides an instructive example. Approximately 10% of the white population has a highly 
inducible form of this enzyme that is associated with an increased risk of lung cancer in smokers.

 

Light 

smokers with the susceptible genotype CYP1A1 have a sevenfold higher risk of developing lung cancer, 
compared with smokers without the permissive genotype. Not all variations in the activation or 
detoxification of carcinogens are genetically determined. Age, sex, and nutritional status also determine the 
internal dose of toxicants produced and hence influence the risk of cancer development in a particular 
individual. 

RADIATION CARCINOGENESIS

  

Radiant energy, whether in the form of the UV rays of sunlight or as ionizing electromagnetic and 
particulate radiation, is a well-established carcinogen. UV light is clearly implicated in the causation of skin 
cancers, and ionizing radiation exposure from medical or occupational exposure, nuclear plant accidents, 
and atomic bomb detonations has produced a variety of cancers. Although the contribution of radiation to 
the total human burden of cancer is probably small, the well-known latency of damage caused by radiant 
energy and its cumulative effect require extremely long periods of observation and make it difficult to 
ascertain its full significance. An increased incidence of breast cancer has become apparent decades later 
among women exposed during childhood to atomic bomb tests. The incidence peaked during 1988–1992 
and then declined. Moreover, radiation's possible additive or synergistic effects with other potential 
carcinogenic influences add another dimension to the picture. 

Ultraviolet Rays  

There is ample evidence from epidemiologic studies that UV rays derived from the sun cause an increased 
incidence of squamous cell carcinoma, basal cell carcinoma, and possibly melanoma of the skin.

[153]

 The 


background image

degree of risk depends on the type of UV rays, the intensity of exposure, and the quantity of the light-
absorbing “protective mantle” of melanin in the skin. Persons of European origin who have fair skin that 
repeatedly becomes sunburned but stalwartly refuses to tan and who live in locales receiving a great deal of 
sunlight (e.g., Queensland, Australia, close to the equator) have among the highest incidence of skin cancers 
(melanomas, squamous cell carcinomas, and basal cell carcinomas) in the world. Nonmelanoma skin cancers 
are associated with total cumulative exposure to UV radiation, whereas melanomas are associated with 
intense intermittent exposure—as occurs with sunbathing. The UV portion of the solar spectrum can be 
divided into three wavelength ranges: UVA (320–400 nm), UVB (280–320 nm), and UVC (200–280 nm). 
Of these, UVB is believed to be responsible for the induction of cutaneous cancers. UVC, although a potent 
mutagen, is not considered significant because it is filtered out by the ozone shield around the earth (hence 
the concern about ozone depletion). 

The carcinogenicity of UVB light is attributed to its formation of pyrimidine dimers in DNA. This type of 
DNA damage is repaired by the nucleotide excision repair pathway. There are five steps in nucleotide 
excision repair, and in mammalian cells the process may involve 30 or more proteins. It is postulated that 
with excessive sun exposure, the capacity of the nucleotide excision repair pathway is overwhelmed, and 
error-prone nontemplated DNA-repair mechanisms become operative that provide for the survival of the cell 
at the cost of genomic mutations that in some instances, lead to cancer. The importance of the nucleotide 
excision repair pathway of DNA repair is most graphically illustrated by the high frequency of cancers in 
individuals with the hereditary disorder xeroderma pigmentosum (discussed previously) 

Ionizing Radiation  

Electromagnetic (x-rays, γ rays) and particulate (α particles, β particles, protons, neutrons) radiations are all 
carcinogenic. The evidence is so voluminous that a few examples suffice. Many individuals pioneering the 
use of x-rays developed skin cancers. Miners of radioactive elements in central Europe and the Rocky 
Mountain region of the United States have a tenfold increased incidence of lung cancers compared to the 
rest of the population. Most telling is the follow-up of survivors of the atomic bombs dropped on Hiroshima 
and Nagasaki. Initially there was a marked increase in the incidence of leukemias—principally acute and 
chronic myelogenous leukemia—after an average latent period of about 7 years. Subsequently the incidence 
of many solid tumors with longer latent periods (e.g., breast, colon, thyroid, and lung) increased. 

MICROBIAL CARCINOGENESIS

  

Many RNA and DNA viruses have proved to be oncogenic in animals as disparate as frogs and primates. 
Despite intense scrutiny, however, only a few viruses have been linked with human cancer. Our discussion 
focuses on human oncogenic viruses as well as the emerging role of the bacterium Helicobacter pylori in 
gastric cancer. 

Oncogenic RNA Viruses  

Human T-Cell Leukemia Virus Type 1.

  

Although the study of animal retroviruses has provided spectacular insights into the molecular basis of 
cancer, only one human retrovirus, human T-cell leukemia virus type 1 (HTLV-1), is firmly implicated in 
the causation of cancer in humans. 

HTLV-1 causes a form of T-cell leukemia/lymphoma that is endemic in certain parts of Japan and the 
Caribbean basin but is found sporadically elsewhere, including the United States.

[155]

 Similar to the human 

immunodeficiency virus, which causes acquired immunodeficiency syndrome (AIDS), HTLV-1 has tropism 
for CD4+ T cells, and hence this subset of T cells is the major target for neoplastic transformation. Human 
infection requires transmission of infected T cells via sexual intercourse, blood products, or breastfeeding. 
Leukemia develops in only 3% to 5% of the infected individuals after a long latent period of 40 to 60 years. 

There is little doubt that HTLV-1 infection of T lymphocytes is necessary for leukemogenesis, but the 
molecular mechanisms of transformation are not entirely clear. In contrast to several murine retroviruses, 


background image

HTLV-1 does not contain an oncogene, and no consistent integration next to a proto-oncogene has been 
discovered. In leukemic cells, however, viral integration shows a clonal pattern. In other words, although the 
site of viral integration in host chromosomes is random (the viral DNA is found at different locations in 
different cancers), the site of integration is identical within all cells of a given cancer. This would not occur 
if HTLV-1 were merely a passenger that infects cells after transformation. The HTLV-1 genome contains 
the gagpolenv, and long-terminal-repeat regions typical of other retroviruses, but, in contrast to other 
leukemia viruses, it contains another region, referred to as tax. It seems that the secrets of its transforming 
activity are locked in the tax gene.

[156]

 The product of this gene is essential for viral replication, because it 

stimulates transcription of viral mRNA by acting on the 5′ long terminal repeat. It is now established that the 
Tax protein can also activate the transcription of several host cell genes involved in proliferation and 
differentiation of T cells. These include the immediate early gene FOS, genes encoding interleukin-2 (IL-2) 
and its receptor, and the gene for the myeloid growth factor granulocyte-macrophage colony-stimulating 
factor. In addition, Tax protein inactivates the cell cycle inhibitor p16/INK4a and enhances cyclin D 
activation, thus dysregulating the cell cycle. Tax also activates NF-κb, a transcription factor that regulates a 
host of genes, including pro-survival/anti-apoptotic genes. Another mechanism by which Tax may 
contribute to malignant transformation is through genomic instability. Recent data show that Tax interferes 
with DNA-repair functions and inhibits ATM-mediated cell cycle checkpoints activated by DNA damage. 

Oncogenic DNA Viruses  

As with RNA viruses, several oncogenic DNA viruses that cause tumors in animals have been identified. Of 
the various human DNA viruses, four—HPV, Epstein-Barr virus (EBV), hepatitis B virus (HBV), and 
Kaposi sarcoma herpesvirus, also called human herpesvirus 8—have been implicated in the causation of 
human cancer. A fifth virus, Merkel cell polyomavirus, has been identified in Merkel cell carcinomas and 
may soon join the rogue's gallery; it is described in Chapter 25 . Kaposi sarcoma herpesvirus is discussed in 
Chapters 6 and 11 . Though not a DNA virus, HCV is also associated with cancer and is discussed briefly 
here. 

Human Papillomavirus.

  

At least 70 genetically distinct types of HPV have been identified. Some types (e.g., 1, 2, 4, and 7) cause 
benign squamous papillomas (warts) in humans ( Chapters 19 and 22 . By contrast, high-risk HPVs (e.g., 
types 16 and 18) have been implicated in the genesis of several cancers, particularly squamous cell 
carcinoma of the cervix and anogenital region. Thus, cervical cancer is a sexually transmitted disease, 
caused by transmission of HPV. In addition, at least 20% of oropharyngeal cancers are associated with HPV. 
In contrast to cervical cancers, genital warts have low malignant potential and are associated with low-risk 
HPVs, predominantly HPV-6 and HPV-11. Interestingly, in benign warts the HPV genome is maintained in 
a nonintegrated episomal form, while in cancers the HPV genome is integrated into the host genome, 
suggesting that integration of viral DNA is important for malignant transformation. As with HTLV-1, the 
site of viral integration in host chromosomes is random, but the pattern of integration is clonal. Cells in 
which the viral genome has integrated show significantly more genomic instability. Furthermore, since the 
integration site is random there is no consistent association with a host proto-oncogene. Rather, integration 
interrupts the viral DNA within the E1/E2 open reading frame, leading to loss of the E2 viral repressor and 
overexpression of the oncoproteins E6 and E7. 

 

 

To summarize, high-risk HPV types express oncogenic proteins that inactivate tumor suppressors, activate 
cyclins, inhibit apoptosis, and combat cellular senescence
. Thus, it is evident that many of the hallmarks of 
cancer discussed earlier are driven by HPV proteins. The primacy of HPV infection in the causation of 
cervical cancer is confirmed by the effectiveness of anti-HPV vaccines in preventing cervical cancer. 
However, infection with HPV itself is not sufficient for carcinogenesis. For example, when human 
keratinocytes are transfected with DNA from HPV types 16, 18, or 31 in vitro, they are immortalized but do 
not form tumors in experimental animals. Co-transfection with a mutated RAS gene results in full malignant 
transformation. In addition to such genetic co-factors, HPV in all likelihood also acts in concert with 
environmental factors. These include cigarette smoking, coexisting microbial infections, dietary 


background image

deficiencies, and hormonal changes, all of which have been implicated in the pathogenesis of cervical 
cancers. A high proportion of women infected with HPV clear the infection by immunological mechanisms, 
but some do not for unknown reasons. 
 

Epstein-Barr Virus.

  

EBV, a member of the herpes family, has been implicated in the pathogenesis of several human tumors: the 
African form of Burkitt lymphoma; B-cell lymphomas in immunosuppressed individuals (particularly in 
those with HIV infection or undergoing immunosuppressive therapy after organ transplantation); a subset of 
Hodgkin lymphoma; nasopharyngeal and some gastric carcinomas and rare forms of T cell lymphomas and 
natural killer (NK) cell lymphomas. Except for nasopharyngeal carcinoma, all others are B-cell tumors.  

Burkitt lymphoma is a neoplasm of B lymphocytes that is the most common childhood tumor in central 
Africa and New Guinea. A morphologically identical lymphoma occurs sporadically throughout the world. 
The association between endemic Burkitt lymphoma and EBV is quite strong. 

          More than 90% of African tumors carry the EBV genome. 

          One hundred percent of the patients have elevated antibody titers against viral capsid antigens. 

   

      Serum antibody titers against viral capsid antigens are correlated with the risk of developing the 

tumor. 

 

 

Although EBV is intimately involved in the causation of Burkitt lymphoma, several observations suggest 
that additional factors must also be involved. (1) EBV infection is not limited to the geographic locales 
where Burkitt lymphoma is found, but it is a ubiquitous virus that asymptomatically infects almost all 
humans worldwide. (2) The EBV genome is found in only 15% to 20% of sufferers of Burkitt lymphoma 
outside Africa. (3) There are significant differences in the patterns of viral gene expression in EBV-
transformed (but not tumorigenic) B-cell lines and Burkitt lymphoma cells. Most notably, Burkitt lymphoma 
cells do not express LMP-1, EBNA2, and other EBV proteins that drive B-cell growth and immortalization. 

In summary, in the case of Burkitt lymphoma, it seems that EBV is not directly oncogenic, but by acting as a 
polyclonal B-cell mitogen, it sets the stage for the acquisition of the t(8;14) translocation and other 
mutations, which ultimately release the cells from normal growth regulation. In normal individuals, EBV 
infection is readily controlled by effective immune responses directed against viral antigens expressed on the 
cell membranes. Hence, the vast majority of infected individuals remain asymptomatic or develop self-
limited infectious mononucleosis. In regions of Africa where Burkitt lymphoma is endemic, poorly 
understood cofactors (e.g., chronic malaria) may favor the acquisition of genetic events (e.g., the t(8;14) 
translocation) that lead to transformation. 

The role played by EBV is more direct in B-cell lymphomas in immunosuppressed patients. Some persons 
with AIDS and those who receive long-term immunosuppressive therapy for preventing allograft rejection 
present with multifocal B-cell tumors within lymphoid tissue or in the central nervous system. These tumors 
are polyclonal at the outset but can develop into monoclonal neoplasms. In contrast to Burkitt lymphoma, 
the tumors in immunosuppressed patients uniformly express LMP-1 and EBNA2, that are recognized by 
cytotoxic T cells. These potentially lethal proliferations can be subdued if the immunological status of the 
host improves, as may occur with withdrawal of immunosuppressive drugs in transplant recipients. 

Nasopharyngeal carcinoma is also associated with EBV infection. This tumor is endemic in southern China, 
in some parts of Africa, and in the Inuit population of the Arctic. In contrast to Burkitt lymphoma, 100% of 
nasopharyngeal carcinomas obtained from all parts of the world contain EBV DNA.The viral integration in 
the host cells is clonal, thus ruling out the possibility that EBV infection occurred after tumor development. 
Antibody titers to viral capsid antigens are greatly elevated, and in endemic areas patients develop IgA 


background image

antibodies before the appearance of the tumor. The 100% correlation between EBV and nasopharyngeal 
carcinoma suggests that EBV plays a role in the genesis of this tumor, but (as with Burkitt tumor) the 
restricted geographic distribution indicates that genetic or environmental cofactors, or both, also contribute 
to tumor development. LMP-1 is expressed in epithelial cells as well. In these cells, as in B cells, LMP-1 
activates the NF-κB pathway. Furthermore, LMP-1 induces the expression of pro-angiogenic factors such as 
VEGF, FGF-2, MMP9, and COX2, which may contribute to oncogenesis. The relationship of EBV to the 
pathogenesis of Hodgkin lymphoma is discussed in Chapter 13 . 

Hepatitis B and C Viruses.

  

Epidemiologic studies strongly suggest a close association between HBV infection and the occurrence of 
liver cancer . It is estimated that 70% to 85% of hepatocellular carcinomas worldwide are due to infection 
with HBV or HCV.

 

HBV is endemic in countries of the Far East and Africa; correspondingly, these areas 

have the highest incidence of hepatocellular carcinoma. Despite compelling epidemiologic and experimental 
evidence, the mode of action of these viruses in liver tumorigenesis is not fully elucidated. The HBV and 
HCV genomes do not encode any viral oncoproteins, and although the HBV DNA is integrated within the 
human genome, there is no consistent pattern of integration in liver cells. Indeed, the oncogenic effects of 
HBV and HCV are multifactorial, but the dominant effect seems to be immunologically mediated chronic 
inflammation with hepatocyte death leading to regeneration and genomic damage. Although the immune 
system is generally thought to be protective, recent work has demonstrated that in the setting of unresolved 
chronic inflammation, as occurs in viral hepatitis or chronic gastritis caused by H. pylori (see below), the 
immune response may become maladaptive, promoting tumorigenesis. 

As with any cause of hepatocellular injury, chronic viral infection leads to the compensatory proliferation of 
hepatocytes. This regenerative process is aided and abetted by a plethora of growth factors, cytokines, 
chemokines, and other bioactive substances that are produced by activated immune cells and promote cell 
survival, tissue remodeling, and angiogenesis ( Chapter 3 ). The activated immune cells also produce other 
mediators, such as reactive oxygen species, that are genotoxic and mutagenic. One key molecular step seems 
to be activation of the NF-κB pathway in hepatocytes in response to mediators derived from the activated 
immune cells. Activation of the NF-κB pathway within hepatocytes blocks apoptosis, allowing the dividing 
hepatocytes to incur genotoxic stress and to accumulate mutations. Although this seems to be the dominant 
mechanism in the pathogenesis of viral-induced hepatocellular carcinoma, both HBV and HCV also contain 
proteins within their genomes that may more directly promote the development of cancer. The HBV genome 
contains a gene known as HBx that can directly or indirectly activate a variety of transcription factors and 
several signal transduction pathways. In addition, viral integration can cause secondary rearrangements of 
chromosomes, including multiple deletions that may harbor unknown tumor suppressor genes. 

Though not a DNA virus, HCV is also strongly linked to the pathogenesis of liver cancer. The molecular 
mechanisms used by HCV are less well defined than are those of HBV. In addition to chronic liver cell 
injury and compensatory regeneration, components of the HCV genome, such as the HCV core protein, may 
have a direct effect on tumorigenesis, possibly by activating a variety of growth-promoting signal 
transduction pathways. 

Helicobacter pylori

  

First incriminated as a cause of peptic ulcers, H. pylori now has acquired the dubious distinction of being the 
first bacterium classified as a carcinogen. Indeed, H. pylori infection is implicated in the genesis of both 
gastric adenocarcinomas and gastric lymphomas. 

H. pylori is associated with an increased risk for the development of gastric lymphomas as well. The gastric 
lymphomas are of B-cell origin, and because the tumors recapitulate some of the features of normal Peyer's 
patches, they are often called lymphomas of mucosa-associated lymphoid tissue, or MALTomas (also 
discussed in Chapters 13 and 17 . Their molecular pathogenesis is incompletely understood but seems to 
involve strain-specific H. pylori factors, as well as host genetic factors, such as polymorphisms in the 
promoters of inflammatory cytokines such as IL-1β and tumor necrosis factor (TNF). It is thought that H. 


background image

pylori infection leads to the appearance of H. pylori–reactive T cells, which in turn stimulate a polyclonal B-
cell proliferation. In chronic infections, currently unknown mutations may be acquired that give individual 
cells a growth advantage. These cells grow out into a monoclonal “MALToma” that nevertheless remains 
dependent on T-cell stimulation of B-cell pathways that activate the transcription factor NF-κB. At this 
stage, eradication of H. pylori by antibiotic therapy “cures” the lymphoma by removing the antigenic 
stimulus for T cells. At later stages, however, additional mutations may be acquired, such as an (11;18) 
translocation, that cause NF-κB to be activated constitutively. At this point, the MALToma no longer 
requires the antigenic stimulus of the bacterium for growth and survival and develops the capacity to spread 
beyond the stomach to other tissues. 

Host Defense against Tumors—Tumor Immunity

  

The idea that tumors are not entirely self and may be recognized by the immune system was conceived by 
Paul Ehrlich, who proposed that immune recognition of autologous tumor cells may be capable of 
eliminating tumors. Subsequently, Lewis Thomas and Macfarlane Burnet formalized this concept by coining 
the term immune surveillance, which implies that a normal function of the immune system is to survey the 
body for emerging malignant cells and destroy them. This idea has been supported by many observations—
the occurrence of lymphocytic infiltrates around tumors and in lymph nodes draining sites of cancer; 
experimental results, mostly with transplanted tumors; the increased incidence of some cancers in 
immunodeficient individuals; and the direct demonstration of tumor-specific T cells and antibodies in 
patients. The fact that cancers occur in immunocompetent individuals suggests that immune surveillance is 
imperfect; however, that some tumors escape such policing does not preclude the possibility that others may 
have been aborted. The concept of tumor immune surveillance has recently been expanded to encompass not 
only the protective role of the immune system in tumor development but also the effect of the immune 
system in selecting for tumor variants. These variants have reduced immunogenicity and can more easily 
escape immunological detection and rejection. The term cancer immunoediting is now being used to 
describe the effects of the immune system  

TUMOR ANTIGENS

  

Antigens that elicit an immune response have been demonstrated in many experimentally induced tumors 
and in some human cancers.Initially, they were broadly classified into two categories based on their patterns 
of expression: tumor-specific antigens, which are present only on tumor cells and not on any normal cells, 
and tumor-associated antigens, which are present on tumor cells and also on some normal cells. This 
classification, however, is imperfect because many antigens thought to be tumor-specific turned out to be 
expressed by some normal cells as well. The modern classification of tumor antigens is based on their 
molecular structure and source. 

The early attempts to purify and characterize tumor antigens relied on producing monoclonal antibodies 
specific for tumor cells and defining the antigens that these antibodies recognized. An important advance in 
the field was the development of techniques for identifying tumor antigens that were recognized by 
cytotoxic T lymphocytes (CTLs), because CTLs are the major immune defense mechanism against tumors. 
Recall that CTLs recognize peptides derived from cytoplasmic proteins that are displayed bound to class I 
major histocompatibility complex (MHC) molecules ( Chapter 6 ). Below we describe the main classes of 
tumor antigens.  

 

 

 

Overexpressed or Aberrantly Expressed Cellular Proteins.

  

Tumor antigens may be normal cellular proteins that are abnormally expressed in tumor cells and elicit 
immune responses. In a subset of human melanomas some tumor antigens are structurally normal proteins 
that are produced at low levels in normal cells and overexpressed in tumor cells. One such antigen is 
tyrosinase, an enzyme involved in melanin biosynthesis that is expressed only in normal melanocytes and 
melanomas.

[179]

 T cells from melanoma patients recognize peptides derived from tyrosinase, raising the 


background image

possibility that tyrosinase vaccines may stimulate such responses to melanomas; clinical trials with these 
vaccines are ongoing. It may be surprising that these patients are able to respond to a normal self-antigen. 
The probable explanation is that tyrosinase is normally produced in such small amounts and in so few cells 
that it is not recognized by the immune system and fails to induce tolerance. 

Another group, the “cancer-testis” antigens, are encoded by genes that are silent in all adult tissues except 
the testis—hence their name. Although the protein is present in the testis it is not expressed on the cell 
surface in an antigenic form, because sperm do not express MHC class I antigens. Thus, for all practical 
purposes these antigens are tumor specific. Prototypic of this group is the melanoma antigen gene (MAGE) 
family. Although originally described in melanomas, MAGE antigens are expressed by a variety of tumor 
types. For example, MAGE-1 is expressed on 37% of melanomas and a variable number of lung, liver, 
stomach, and esophageal carcinomas.

[180]

 Similar antigens called GAGE, BAGE, and RAGE have been 

detected in other tumors. 

Tumor Antigens Produced by Oncogenic Viruses.

  

As we have discussed, several viruses are associated with cancers. Not surprisingly, these viruses produce 
proteins that are recognized as foreign by the immune system. The most potent of these antigens are proteins 
produced by latent DNA viruses; examples in humans include HPV and EBV. There is abundant evidence 
that CTLs recognize antigens of these viruses and that a competent immune system plays a role in 
surveillance against virus-induced tumors because of its ability to recognize and kill virus-infected cells. In 
fact, the concept of immune surveillance against tumors is best established for DNA virus–induced tumors. 
Indeed, vaccines against HPV antigens are effective in preventing cervical cancers in young females. 

Oncofetal Antigens.

  

Oncofetal antigens are proteins that are expressed at high levels on cancer cells and in normal developing 
(fetal) but not adult tissues. It is believed that the genes encoding these proteins are silenced during 
development and are derepressed upon malignant transformation. Oncofetal antigens were identified with 
antibodies raised in other species, and their main importance is that they provide markers that aid in tumor 
diagnosis. As techniques for detecting these antigens have improved, it has become clear that their 
expression in adults is not limited to tumors. Amounts of these proteins are increased in tissues and in the 
circulation in various inflammatory conditions, and they are found in small quantities even in normal tissues. 
There is no evidence that oncofetal antigens are important inducers or targets of antitumor immunity. The 
two most thoroughly characterized oncofetal antigens are carcinoembryonic antigen (CEA) and α-
fetoprotein (AFP). These are discussed in the section on “Tumor Markers”. 

ANTITUMOR EFFECTOR MECHANISMS

  

Cell-mediated immunity is the dominant antitumor mechanism in vivo. Although antibodies can be made 
against tumors, there is no evidence that they play a protective role under physiologic conditions. The 
cellular effectors that mediate immunity were described in Chapter 6 , so it is necessary here only to 
characterize them briefly.  

   

      Cytotoxic T lymphocytes: The antitumor effect of cytotoxic T cells reacting against tumor antigens is 

well established in experimentally induced tumors. In humans, CD8+ CTLs play a protective role 
against virus-associated neoplasms (e.g., EBV- and HPV-induced tumors) and have been 
demonstrated in the blood and tumor infiltrates of cancer patients. In some cases, such CD8+ T cells 
do not develop spontaneously in vivo but can be generated by immunization with tumor antigen–
pulsed dendritic cells. 

   

      Natural killer cells: NK cells are lymphocytes that are capable of destroying tumor cells without 

prior sensitization and thus may provide the first line of defense against tumor cells.

[181]

 After 

activation with IL-2 and IL-15, NK cells can lyse a wide range of human tumors, including many that 
seem to be nonimmunogenic for T cells. T cells and NK cells seem to provide complementary 


background image

antitumor mechanisms. Tumors that fail to express MHC class I antigens cannot be recognized by T 
cells, but these tumors may trigger NK cells because the latter are inhibited by recognition of normal 
autologous class I molecules ( Chapter 6 ). The triggering receptors on NK cells are extremely 
diverse and belong to several gene families. NKG2D proteins expressed on NK cells and some T 
cells are important activating receptors. They recognize stress-induced antigens that are expressed on 
tumor cells and cells that have incurred DNA damage and are at risk for neoplastic transformation. 

   

      Macrophages: Activated macrophages exhibit cytotoxicity against tumor cells in vitro. T cells, NK 

cells, and macrophages may collaborate in antitumor reactivity, because interferon-γ, a cytokine 
secreted by T cells and NK cells, is a potent activator of macrophages. Activated macrophages may 
kill tumors by mechanisms similar to those used to kill microbes (e.g., production of reactive oxygen 
metabolites; Chapter 2 ) or by secretion of TNF. 

   

      Antibodies: Although there is no evidence for the protective effects of antitumor antibodies against 

spontaneous tumors, administration of monoclonal antibodies against tumor cells can be 
therapeutically effective. A monoclonal antibody against CD20, a B-cell surface antigen, is widely 
used for treatment of lymphomas. 

 

 

Clinical Aspects of Neoplasia

  

Ultimately the importance of neoplasms lies in their effects on patients. Although malignant tumors are of 
course more threatening than benign tumors, any tumor, even a benign one, may cause morbidity and 
mortality. Indeed, both malignant and benign tumors may cause problems because of (1) location and 
impingement on adjacent structures, (2) functional activity such as hormone synthesis or the development of 
paraneoplastic syndromes, (3) bleeding and infections when the tumor ulcerates through adjacent surfaces, 
(4) symptoms that result from rupture or infarction, and (5) cachexia or wasting. 

Local and Hormonal Effects  

Location is crucial in both benign and malignant tumors. A small (1-cm) pituitary adenoma, though benign 
and possibly nonfunctional, can compress and destroy the surrounding normal gland and thus lead to serious 
hypopituatarism. Cancers arising within or metastatic to an endocrine gland may cause an endocrine 
insufficiency by destroying the gland. Neoplasms in the gut, both benign and malignant, may cause 
obstruction as they enlarge. Infrequently, peristaltic movement telescopes the neoplasm and its affected 
segment into the downstream segment, producing an obstructing intussusception ( Chapter 17 ). 

Hormone production is seen with benign and malignant neoplasms arising in endocrine glands. Such 
functional activity is more typical of benign than of malignant tumors, which may be sufficiently 
undifferentiated to have lost such capability. A benign beta-cell adenoma of the pancreatic islets less than 1 
cm in diameter may produce sufficient insulin to cause fatal hypoglycemia. In addition, nonendocrine 
tumors may elaborate hormones or hormone-like products and give rise to paraneoplastic syndromes 
(discussed later). The erosive and destructive growth of cancers or the expansile pressure of a benign tumor 
on any natural surface, such as the skin or mucosa of the gut, may cause ulcerations, secondary infections, 
and bleeding. Melena (blood in the stool) and hematuria, for example, are characteristic of neoplasms of the 
gut and urinary tract. Neoplasms, benign as well as malignant, may cause problems in varied ways, but all 
are far less common than the cachexia of malignancy. 

Cancer Cachexia  

Individuals with cancer commonly suffer progressive loss of body fat and lean body mass accompanied by 
profound weakness, anorexia, and anemia, referred to as cachexia. Unlike starvation, the weight loss seen in 
cachexia results equally from loss of fat and lean muscle. There is some correlation between the tumor 
burden and the severity of the cachexia. However, cachexia is not caused by the nutritional demands of the 
tumor. In persons with cancer, the basal metabolic rate is increased, despite reduced food intake. This is in 
contrast to the lower metabolic rate that occurs as an adaptational response in starvation. Although patients 


background image

with cancer are often anorexic, cachexia probably results from the action of soluble factors such as cytokines 
produced by the tumor and the host rather than reduced food intake. The basis of these metabolic 
abnormalities is not fully understood. It is suspected that TNF produced by macrophages in response to 
tumor cells or by the tumor cells themselves mediates cachexia. TNF at high concentrations may mobilize 
fats from tissue stores and suppress appetite; both activities would contribute to cachexia. Other cytokines, 
such as IL-1, interferon-γ, and leukemia inhibitory factor, synergize with TNF. Additionally, other soluble 
factors produced by tumors, such as proteolysis-inducing factor and a lipid-mobilizing factor, increase the 
catabolism of muscle and adipose tissue. These factors reduce protein synthesis by decreasing m-RNA 
translation and by stimulating protein catabolism through the activation of the ATP-dependent ubiquitin-
proteasome pathway. It is now thought that there is a balance between factors that regulate muscle 
hypertrophy, such as IGF, and factors that regulate muscle catabolism. In cachexia these homeostatic 
mechanisms are disrupted, tilting the scales toward cachectic factors. There is currently no satisfactory 
treatment for cancer cachexia other than removal of the underlying cause, the tumor. However, cachexia 
clearly hampers effective chemotherapy, by reducing the dosages that can be given. Furthermore, it has been 
estimated that a third of deaths of cancer are attributable to cachexia, rather than directly due to the tumor 
burden itself. Identification of the molecular mechanisms involved in cancer cachexia may allow treatment 
of cachexia itself. 

Paraneoplastic Syndromes  

Symptom complexes in cancer-bearing individuals that cannot readily be explained, either by the local or 
distant spread of the tumor or by the elaboration of hormones indigenous to the tissue from which the tumor 
arose, are known as paraneoplastic syndromes.These occur in about 10% of persons with malignant disease. 
Despite their relative infrequency, paraneoplastic syndromes are important to recognize, for several reasons:  

          They may represent the earliest manifestation of an occult neoplasm. 

          In affected patients they may represent significant clinical problems and may even be lethal. 

          They may mimic metastatic disease and therefore confound treatment. 

A classification of paraneoplastic syndromes and their presumed origins is presented in Table 7-11 . A few 
comments on some of the more common and interesting syndromes follow.  

 
TABLE 7-11   -- Paraneoplastic Syndromes 

Clinical Syndromes 

Major Forms of Underlying 
Cancer 

Causal Mechanism 

ENDOCRINOPATHIES 

Cushing syndrome 

Small-cell carcinoma of lung 

ACTH or ACTH-like substance 

Pancreatic carcinoma 

Neural tumors 

Syndrome of inappropriate 
antidiuretic hormone secretion 

Small-cell carcinoma of lung; 
intracranial neoplasms 

Antidiuretic hormone or atrial 
natriuretic hormones 

Hypercalcemia 

Squamous cell carcinoma of lung  Parathyroid hormone–related protein 

(PTHRP), TGF-α, TNF, IL-1 

Breast carcinoma 

Renal carcinoma 

Adult T-cell leukemia/lymphoma 

Hypoglycemia 

Ovarian carcinoma 

  

Fibrosarcoma 

Insulin or insulin-like substance 


background image

Clinical Syndromes 

Major Forms of Underlying 
Cancer 

Causal Mechanism 

Other mesenchymal sarcomas 

Carcinoid syndrome 

Hepatocellular carcinoma 

  

Bronchial adenoma (carcinoid) 

Serotonin, bradykinin 

Pancreatic carcinoma 

Polycythemia 

Gastric carcinoma 

  

Renal carcinoma 

Erythropoietin 

Cerebellar hemangioma 

Hepatocellular carcinoma 

NERVE AND MUSCLE SYNDROMES 

Myasthenia 

Bronchogenic carcinoma 

Immunological 

Disorders of the central and 
peripheral nervous system 

Breast carcinoma 

  

DERMATOLOGIC DISORDERS 

Acanthosis nigricans 

Gastric carcinoma 

Immunological; secretion of 
epidermal growth factor 

Lung carcinoma 

Uterine carcinoma 

Dermatomyositis 

Bronchogenic, breast carcinoma  Immunological 

OSSEOUS, ARTICULAR, AND SOFT-TISSUE CHANGES 

Hypertrophic osteoarthropathy 
and clubbing of the fingers 

Bronchogenic carcinoma 

Unknown 

VASCULAR AND HEMATOLOGIC CHANGES 

Venous thrombosis (Trousseau 
phenomenon) 

Pancreatic carcinoma 

Tumor products (mucins that activate 
clotting) 

Bronchogenic carcinoma 

Other cancers 

Nonbacterial thrombotic 
endocarditis 

Advanced cancers 

Hypercoagulability 

Red cell aplasia 

Thymic neoplasms 

Unknown 

OTHERS 

Nephrotic syndrome 

Various cancers 

Tumor antigens, immune complexes 

ACTH, adrenocorticotropic hormone; IL, interleukin; TGF, transforming growth factor; TNF, tumor 
necrosis factor. 

 

The endocrinopathies are frequently encountered paraneoplastic syndromes. Because the cancer cells are not 
of endocrine origin, the functional activity is referred to as ectopic hormone production. Cushing syndrome 
is the most common endocrinopathy. Approximately 50% of individuals with this endocrinopathy have 
carcinoma of the lung, chiefly the small-cell type. It is caused by excessive production of corticotropin or 
corticotropin-like peptides. The precursor of corticotropin is a large molecule known as pro-
opiomelanocortin. Lung cancer patients with Cushing syndrome have elevated serum levels of pro-


background image

opiomelanocortin and of corticotropin. The former is not found in serum of patients with excess 
corticotropin produced by the pituitary. 

Hypercalcemia is probably the most common paraneoplastic syndrome; overtly symptomatic hypercalcemia 
is most often related to some form of cancer rather than to hyperparathyroidism. Two general processes are 
involved in cancer-associated hypercalcemia: (1) osteolysis induced by cancer, whether primary in bone, 
such as multiple myeloma, or metastatic to bone from any primary lesion, and (2) the production of calcemic 
humoral substances by extraosseous neoplasms. Hypercalcemia due to skeletal metastases is not a 
paraneoplastic syndrome

Several humoral factors have been associated with paraneoplastic hypercalcemia of malignancy. The most 
important, parathyroid hormone–related protein (PTHRP), is a molecule related to, but distinct from, 
parathyroid hormone (PTH). PTHRP resembles the native hormone only in its N terminus. It has some 
biologic actions similar to those of PTH, and both hormones share a G protein–coupled receptor, known as 
PTH/PTHRP receptor (often referred to as PTH-R or PTHRP-R). In contrast to PTH, PTHRP is produced in 
small amounts by many normal tissues, including keratinocytes, muscles, bone, and ovary. It regulates 
calcium transport in the lactating breast and across the placenta, and seems to regulate development and 
remodeling in the lung. Tumors most often associated with paraneoplastic hypercalcemia are carcinomas of 
the breast, lung, kidney, and ovary. In breast cancers, PTHRP production is associated with osteolytic bone 
disease, bone metastasis, and humoral hypercalcemia. The most common lung neoplasm associated with 
hypercalcemia is squamous cell bronchogenic carcinoma. In addition to PTHRP, several other factors, such 
as IL-1, TGF-α, TNF, and dihydroxyvitamin D, have also been implicated in causing the hypercalcemia of 
malignancy. 

The neuromyopathic paraneoplastic syndromes take diverse forms, such as peripheral neuropathies, cortical 
cerebellar degeneration, a polymyopathy resembling polymyositis, and a myasthenic syndrome similar to 
myasthenia gravis. The cause of these syndromes is poorly understood. In some cases, antibodies, 
presumably induced against tumor cell antigens ( Chapter 28 ) that cross-react with neuronal cell antigens, 
have been detected. It is postulated that some neural antigens are ectopically expressed by visceral cancers. 
For some unknown reason, the immune system recognizes these antigens as foreign and mounts an immune 
response. 

Acanthosis nigricans is characterized by gray-black patches of verrucous hyperkeratosis on the skin. This 
disorder occurs rarely as a genetically determined disease in juveniles or adults ( Chapter 25 ). In addition, in 
about 50% of the cases, particularly in those over age 40, the appearance of such lesions is associated with 
some form of cancer. Sometimes the skin changes appear before discovery of the cancer. 

Hypertrophic osteoarthropathy is encountered in 1% to 10% of patients with bronchogenic carcinomas. 
Rarely, other forms of cancer are involved. This disorder is characterized by (1) periosteal new bone 
formation, primarily at the distal ends of long bones, metatarsals, metacarpals, and proximal phalanges; (2) 
arthritis of the adjacent joints; and (3) clubbing of the digits. Although the osteoarthropathy is seldom seen 
in noncancer patients, clubbing of the fingertips may be encountered in liver diseases, diffuse lung disease, 
congenital cyanotic heart disease, ulcerative colitis, and other disorders. The cause of hypertrophic 
osteoarthropathy is unknown. 

Several vascular and hematologic manifestations may appear in association with a variety of forms of 
cancer. As mentioned in the discussion of thrombosis , migratory thrombophlebitis (Trousseau syndrome) 
may be encountered in association with deep-seated cancers, most often carcinomas of the pancreas or lung. 
Disseminated intravascular coagulation may complicate a diversity of clinical disorders ( Chapter 14 ). 
Acute disseminated intravascular coagulation is most commonly associated with acute promyelocytic 
leukemia and prostatic adenocarcinoma. Bland, small, nonbacterial fibrinous vegetations sometimes form on 
the cardiac valve leaflets (more often on left-sided valves), particularly in individuals with advanced mucin-
secreting adenocarcinomas. These lesions, called nonbacterial thrombotic endocarditis, are described 
further in Chapter 12 . The vegetations are potential sources of emboli that can further complicate the course 
of cancer. 


background image

 
 
GRADING AND STAGING OF TUMORS

  

Methods to quantify the probable clinical aggressiveness of a given neoplasm and its apparent extent and 
spread in the individual patient are necessary for making an accurate prognosis and for comparing end 
results of various treatment protocols. For instance, the results of treating well-differentiated thyroid 
adenocarcinoma that is localized to the thyroid gland will be different from those obtained from treating 
highly anaplastic thyroid cancers that have invaded the neck organs. Systems have been developed to 
express, at least in semiquantitative terms, the level of differentiation, or grade, and extent of spread of a 
cancer within the patient, or stage, as parameters of the clinical gravity of the disease. 

Grading of a cancer is based on the degree of differentiation of the tumor cells and, in some cancers, the 
number of mitoses or architectural features
. Grading schemes have evolved for each type of malignancy, 
and generally range from two categories (low grade and high grade) to four categories. Criteria for the 
individual grades vary with each form of neoplasia and so are not detailed here, but all attempt, in essence, 
to judge the extent to which the tumor cells resemble or fail to resemble their normal counterparts. Although 
histologic grading is useful, the correlation between histologic appearance and biologic behavior is less than 
perfect. In recognition of this problem and to avoid spurious quantification, it is common practice to 
characterize a particular neoplasm in descriptive terms, for example, well-differentiated, mucin-secreting 
adenocarcinoma of the stomach, or poorly differentiated pancreatic adenocarcinoma. In general, with a few 
exceptions, such as soft-tissue sarcomas, grading of cancers has proved of less clinical value than has 
staging. 

The staging of cancers is based on the size of the primary lesion, its extent of spread to regional lymph 
nodes, and the presence or absence of blood-borne metastases
. The major staging system currently in use is 
the American Joint Committee on Cancer Staging. This system uses a classification called the TNM 
system
T for primary tumor, N for regional lymph node involvement, and M for metastases. The TNM 
staging varies for each specific form of cancer, but there are general principles. With increasing size the 
primary lesion is characterized as T1 to T4. T0 is used to indicate an in situ lesion. N0 would mean no nodal 
involvement, whereas N1 to N3 would denote involvement of an increasing number and range of nodes. M0 
signifies no distant metastases, whereas M1 or sometimes M2 indicates the presence of metastases and some 
judgment as to their number. 

LABORATORY DIAGNOSIS OF CANCER

  

Every year the approach to laboratory diagnosis of cancer becomes more complex, more sophisticated, and 
more specialized. For virtually every neoplasm mentioned in this text, the experts have characterized several 
subcategories; we must walk, however, before we can run. Each of the following sections attempts to 
present the state of the art, avoiding details of method. 

Histologic and Cytologic Methods.

  

The laboratory diagnosis of cancer is, in most instances, not difficult. The two ends of the benign-malignant 
spectrum pose no problems; however, in the middle lies a gray zone that the novices dread and where 
experts tread cautiously. The focus here is on the roles of the clinician (often a surgeon) and the pathologist 
in facilitating the correct diagnosis. 

Clinical data are invaluable for optimal pathologic diagnosis, but often clinicians underestimate its value. 
Radiation changes in the skin or mucosa can be similar to those associated with cancer. Sections taken from 
a healing fracture can mimic an osteosarcoma. Moreover, the laboratory evaluation of a lesion can be only 
as good as the specimen made available for examination. It must be adequate, representative, and properly 
preserved. Several sampling approaches are available: (1) excision or biopsy, (2) needle aspiration, and (3) 
cytologic smears. When excision of a small lesion is not possible, selection of an appropriate site for biopsy 
of a large mass requires awareness that the periphery may not be representative and the center largely 


background image

necrotic. Appropriate preservation of the specimen is obvious, yet it involves such actions as prompt 
immersion in a usual fixative (commonly formalin solution, but other fluids can be used), preservation of a 
portion in a special fixative (e.g., glutaraldehyde) for electron microscopy, or prompt refrigeration to permit 
optimal hormone, receptor, or other types of molecular analysis. Requesting “quick-frozen section” 
diagnosis is sometimes desirable, for example, in determining the nature of a mass lesion or in evaluating 
the margins of an excised cancer to ascertain that the entire neoplasm has been removed. This method 
permits histologic evaluation within minutes. In experienced, competent hands, frozen-section diagnosis is 
highly accurate, but there are particular instances in which the better histologic detail provided by the more 
time-consuming routine methods is needed—for example, when extremely radical surgery, such as the 
amputation of an extremity, may be indicated. Better to wait a day or two despite the drawbacks, than to 
perform inadequate or unnecessary surgery. 

Fine-needle aspiration of tumors is another approach that is widely used. The procedure involves aspirating 
cells and attendant fluid with a small-bore needle, followed by cytologic examination of the stained smear. 
This method is used most commonly for the assessment of readily palpable lesions in sites such as the 
breast, thyroid, and lymph nodes. Modern imaging techniques permit extension of the method to lesions in 
deep-seated structures, such as pelvic lymph nodes and pancreas. Fine-needle aspiration is less invasive and 
more rapidly performed than are needle biopsies. It obviates surgery and its attendant risks. Although it 
entails some difficulties, such as small sample size and sampling errors, in experienced hands it is extremely 
reliable, rapid, and useful. 

Cytologic (Pap) smears provide yet another method for the detection of cancer. This approach is widely 
used to screen for carcinoma of the cervix, often at an in situ stage, but it is also used with many other forms 
of suspected malignancy, such as endometrial carcinoma, bronchogenic carcinoma, bladder and prostatic 
tumors, and gastric carcinomas; for the identification of tumor cells in abdominal, pleural, joint, and 
cerebrospinal fluids; and, less commonly, with other forms of neoplasia. 

As pointed out earlier, cancer cells have lowered cohesiveness and exhibit a range of morphologic changes 
encompassed by the term anaplasia. Thus, shed cells can be evaluated for the features of anaplasia 
indicative of their origin from a tumor ( Figs. 7-47 and 7-48 ). In contrast to the histologist's task, judgment 
here must be rendered based on the features of individual cells or, at most, a clump of cells, without the 
supporting evidence of loss of orientation of one cell to another, and (most importantly) evidence of 
invasion. This method permits differentiation among normal, dysplastic, and malignant cells and, in 
addition, permits the recognition of cellular changes characteristic of carcinoma in situ. The gratifying 
control of cervical cancer is the best testament to the value of the cytologic method.  

Although histology and exfoliative cytology remain the most commonly used methods in the diagnosis of 
cancer, new techniques are being constantly added to the tools of the surgical pathologist. Some, such as 
immunohistochemistry, are already well established and widely used; others, including molecular methods, 
are rapidly finding their way into the “routine” category. Only some highlights of these diagnostic 
modalities are presented. 

Immunohistochemistry.

  

The availability of specific antibodies has greatly facilitated the identification of cell products or surface 
markers. Some examples of the utility of immunohistochemistry in the diagnosis or management of 
malignant neoplasms follow.  

   

      Categorization of undifferentiated malignant tumors: In many cases malignant tumors of diverse 

origin resemble each other because of limited differentiation. These tumors are often quite difficult to 
distinguish on the basis of routine hematoxylin and eosin (H&E)–stained tissue sections. For 
example, certain anaplastic carcinomas, lymphomas, melanomas, and sarcomas may look quite 
similar, but they must be accurately identified because their treatment and prognosis are different. 


background image

Antibodies specific to intermediate filaments have proved to be of particular value in such cases, 
because solid tumor cells often contain intermediate filaments characteristic of their cell of origin. 
For example, the presence of cytokeratins, detected by immunohistochemistry, points to an epithelial 
origin (carcinoma), whereas desmin is specific for neoplasms of muscle cell origin. 

   

      Determination of site of origin of metastatic tumors: Many cancer patients present with metastases. 

In some the primary site is obvious or readily detected on the basis of clinical or radiologic features. 
In cases in which the origin of the tumor is obscure, immunohistochemical detection of tissue-
specific or organ-specific antigens in a biopsy specimen of the metastatic deposit can lead to the 
identification of the tumor source. For example, prostate-specific antigen (PSA) and thyroglobulin 
are markers of carcinomas of the prostate and thyroid, respectively. 

   

      Detection of molecules that have prognostic or therapeutic significance: Immunohistochemical 

detection of hormone (estrogen/progesterone) receptors in breast cancer cells is of prognostic and 
therapeutic value because these cancers are susceptible to anti-estrogen therapy ( Chapter 23 ). In 
general, receptor-positive breast cancers have a better prognosis. Protein products of oncogenes such 
as ERBB2 in breast cancers can also be detected by immunostaining. Breast cancers with 
overexpression of ERBB2 protein generally have a poor prognosis. In general practice, the 
overexpression of ERBB2 is confirmed by fluorescent in situ hybridization (FISH) to confirm 
amplification of the genomic region containing the ERBB2 gene. 

 

 

 
Flow Cytometry.

  

Flow cytometry can rapidly and quantitatively measure several individual cell characteristics, such as 
membrane antigens and the DNA content of tumor cells. Flow cytometry has also proved useful in the 
identification and classification of tumors arising from T and B lymphocytes and from mononuclear-
phagocytic cells. 

Molecular Diagnosis.

  

Several molecular techniques—some established, others emerging—have been used for diagnosis and, in 
some cases, for predicting behavior of tumors.  

   

      Diagnosis of malignant neoplasms: Although molecular methods are not the primary modality of 

cancer diagnosis, they are of considerable value in selected cases. Molecular techniques are useful in 
differentiating benign (polyclonal) proliferations of T or B cells from malignant (monoclonal) 
proliferations. Because each T and B cell has unique rearrangements of its antigen receptor genes ( 
Chapter 6 ), PCR–based detection of T-cell receptor or immunoglobulin genes allows distinction 
between monoclonal (neoplastic) and polyclonal (reactive) proliferations. Many hematopoietic 
neoplasms (leukemias and lymphomas) are associated with specific translocations that activate 
oncogenes. Detection of such translocations, usually by routine cytogenetic analysis or by FISH 
technique , is often extremely helpful in diagnosis.

[189]

 In some cases, molecular techniques, such as 

PCR, can detect residual disease in cases that appear negative by conventional analysis. Diagnosis of 
sarcomas ( Chapter 26 ) with characteristic translocations is also aided by molecular techniques, 
because chromosome preparations are often difficult to obtain from solid tumors. For example, many 
sarcomas of childhood, so-called round blue cell tumors ( Chapter 10 ), can be difficult to distinguish 
from each other on the basis of morphology. However, the presence of the characteristic 
[t(11;22)(q24;q12)] translocation, established by PCR, in one of these tumors confirms the diagnosis 
of Ewing sarcoma.A molecular cytogenetic technique called spectral karyotyping has great 
sensitivity and allows the examination of all chromosomes in a single experiment.This technique, 
which is based on 24-color chromosomal painting with a mixture of fluorochromes, can detect all 
types of chromosomal rearrangements in tumor cells, even small, cryptic translocations and 
insertions. It can also detect the origin of unidentified chromosomes, called marker chromosomes
seen in many hematopoietic malignancies. Another available technique is comparative genomic 


background image

hybridization, now more conveniently converted to microarray format, which allows the analysis of 
chromosomal gains and losses in tumor cells. The use of DNA microarrays (discussed later), either 
tiling arrays, which cover the entire human genome, or single-nucleotide polymorphism arrays (SNP 
chips), also allows analysis of genomic amplifications and deletions at very high resolution. 

   

      Prognosis of malignant neoplasms: Certain genetic alterations are associated with poor prognosis, 

and hence their detection allows stratification of patients for therapy. For example, amplification of 
the N-MYC gene and deletions of 1p bode poorly for patients with neuroblastoma, while 
amplification of HER-2/NEU in breast cancer is an indication that therapy with antibodies against the 
ERBB2 receptor may be effective. These can be detected by routine cytogenetics and also by FISH 
or PCR assays. Oligodendrogliomas in which the only genomic abnormality is the loss of 
chromosomes 1p and 19q respond well to therapy and are associated with long-term survival when 
compared to tumors with intact 1p and 19q but with EGF receptor amplification.

[192]

 

   

      Detection of minimal residual disease: After treatment of patients with leukemia or lymphoma, the 

presence of minimal disease or the onset of relapse can be monitored by PCR-based amplification of 
nucleic acid sequences unique to the malignant clone. For example, detection of BCR-ABL transcripts 
by PCR gives a measure of the residual leukemia cells in treated patients with CML. Similarly, 
detection of specific KRAS mutations in stool samples of persons previously treated for colon cancer 
can alert the clinician to the possible recurrence of the tumor. The prognostic importance of minimal 
disease has been established in acute lymphoblastic leukemia, and is being evaluated in other 
neoplasms. 

   

      Diagnosis of hereditary predisposition to cancer: As was discussed earlier, germ-line mutations in 

several tumor suppressor genes, including BRCA1BRCA2, and the RET proto-oncogene, are 
associated with a high risk of developing specific cancers. Thus, detection of these mutated alleles 
may allow the patient and physician to devise an aggressive screening program, consider the option 
of prophylactic surgery, and counseling of relatives at risk. Such analysis usually requires detection 
of a specific mutation (e.g., RET gene) or sequencing of the entire gene. The latter is necessitated 
when several different cancer-associated mutations are known to exist. Although the detection of 
mutations in such cases is relatively straightforward, the ethical issues surrounding such 
presymptomatic diagnosis are complex. 

 
 

Tumor Markers  

Biochemical assays for tumor-associated enzymes, hormones, and other tumor markers in the blood cannot 
be used for definitive diagnosis of cancer; however, they contribute to the detection of cancer and in some 
instances are useful in determining the effectiveness of therapy or the appearance of a recurrence. 

A host of tumor markers have been described, and new ones are identified every year. Only a few have 
stood the test of time and proved to have clinical usefulness. 

The application of several markers, listed in Table 7-12 , is considered in the discussion of specific forms of 
neoplasia in other chapters, so only a few widely used examples suffice here. PSA, used to screen for 
prostatic adenocarcinoma, may be one of the most used, and most successful, tumor markers in clinical 
practice. Prostatic carcinoma can be suspected when elevated levels of PSA are found in the blood. 
However, PSA screening also highlights problems encountered with virtually every tumor marker. Although 
PSA levels are often elevated in cancer, PSA levels also may be elevated in benign prostatic hyperplasia . 
Furthermore, there is no PSA level that ensures that a person does not have prostate cancer. Thus, the PSA 
test suffers from both low sensitivity and low specificity
. Other tumor markers occasionally used in clinical 
practice include CEA, which is elaborated by carcinomas of the colon, pancreas, stomach, and breast, and 
AFP, which is produced by hepatocellular carcinomas, yolk sac remnants in the gonads, and occasionally 
teratocarcinomas and embryonal cell carcinomas. Unfortunately, like PSA, both of these markers can be 
produced by a variety of non-neoplastic conditions as well. Thus, as with PSA levels, CEA and AFP assays 
lack both specificity and sensitivity required for the early detection of cancers. They are still useful in the 


background image

detection of recurrences after excision. With successful resection of the tumor, these markers disappear from 
the serum; their reappearance almost always signifies the beginning of the end.  

 
 
TABLE 7-12   -- Selected Tumor Markers 

HORMONES 

Human chorionic gonadotropin 

Trophoblastic tumors, nonseminomatous testicular 
tumors 

Calcitonin 

Medullary carcinoma of thyroid 

Catecholamine and metabolites 

Pheochromocytoma and related tumors 

Ectopic hormones 

See “Paraneoplastic Syndromes” ( Table 7-11 ) 

ONCOFETAL ANTIGENS 

α-Fetoprotein 

Liver cell cancer, nonseminomatous germ cell 
tumors of testis 

Carcinoembryonic antigen 

Carcinomas of the colon, pancreas, lung, stomach, 
and heart 

ISOENZYMES 

Prostatic acid phosphatase 

Prostate cancer 

Neuron-specific enolase 

Small-cell cancer of lung, neuroblastoma 

SPECIFIC PROTEINS 

Immunoglobulins 

Multiple myeloma and other gammopathies 

Prostate-specific antigen and prostate-specific 
membrane antigen 

Prostate cancer 

MUCINS AND OTHER GLYCOPROTEINS 

CA-125 

Ovarian cancer 

CA-19-9 

Colon cancer, pancreatic cancer 

CA-15-3 

Breast cancer 

NEW MOLECULAR MARKERS 

p53, APC, RAS mutants in stool and serum 

Colon cancer 

p53 and RAS mutants in stool and serum 

Pancreatic cancer 

p53 and RAS mutants in sputum and serum 

Lung cancer 

p53 mutants in urine 

Bladder cancer 

 

Other widely used markers include human chorionic gonadotropin for testicular tumors, CA-125 for ovarian 
tumors, and immunoglobulins in multiple myeloma and other secretory plasma cell tumors. The 
development of tests to detect cancer markers in blood and body fluids is an active area of research. Some of 
the markers being evaluated include the detection of mutated APC, p53, and RAS in the stool of individuals 
with colorectal carcinomas; the presence of mutated p53 and of hypermethylated genes in the sputum of 
persons with lung cancer and in the saliva of persons with head and neck cancers; and the detection of 
mutated p53 in the urine of patients with bladder cancer. 

 




رفعت المحاضرة من قبل: Abdalmalik Abdullateef
المشاهدات: لقد قام 31 عضواً و 437 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل