background image

Measures of Associations and

Public Health Impact

Dr Faris Al Lami

MBChB MSc PhD FFPH

College of Medicine, Baghdad

University


background image

Objectives

•Describe measures of association (Relative

risk and odds ratio) and their use

•Describe measures of Public Health Impact

(attributable risk, attributable risk percent,
population attributable risk percent, and
vaccine efficacy) and their uses


background image

" Every epidemiologic study

can be summarized

in a 2-by-2 table."


background image

Standard Two-by-Two Table

Ill

Well

Total

Risk

Exposed

a

b

H

1

a /H

1

Unexposed

c

d

H

0

c / H

0

Total

V

1

V

0

T or N


background image

Measures of Association

• Quantify the relationship between an "exposure"

and outcome of interest

• Quantify the difference in occurrence of disease or

death between two groups of people who differ on
"exposure"

• Types of measures:

- RATIOS: relative risk, rate ratio, odds ratio
- DIFFERENCE: attributable risk

• Compare “

observed”to “

expected”


background image

COHORT STUDIES

Disease

Total

Presen

t

Absent

Exposure

present

a

b

a+b

absent

c

d

c+d

Total

a +c

b+d

N


background image

R elative R isk ( R R)

Incidence among exposed

Relative Risk (RR)=----------------------------------------

Incidence among non-exposed

a / a+ b

R R =-------------

c/ c+ d


background image

NHANES I Follow-up Study

•Original enrollment 1971- 1975

•Follow-up

1982 - 1984

•Complete follow-up on:

-

Enrolled

Alive at F/U

−Male diabetics

189

89

−Male nondiabetics

3151

2340

−Total

3340

2429

who were ages 40-77

years at enrollment

Ref: Kleinman J, et al.
Am J Epidemiol 1988; 128:389-401.


background image

NHANES I Follow-up Study

Dead Alive

Total

% Dead

Diabetic

100

89

189

52.9%

Nondiabetic

811

2340

3151

25.7%

Total

911

2429

3340

27.3%


background image

Risk Calculations from

NHANES Follow-up Study

§

Deaths in diabetic men

100 deaths
189 men at start of follow-up period

Risk = 100/189 = 0.529 = 52.9%

§

Deaths in nondiabetic men

811 deaths
3151 men at start of follow-up period

Risk = 811/3151 = 0.257 = 25.7%

Ref: Kleinman J, et al.
Am J Epidemiol 1988; 128:389-401.


background image

R isk R atio / Relative Risk

Risk in "exposed" group
Risk in "unexposed" group

EXAMPLE:
Relative risk of death among diabetic men vs.
nondiabetic men

RR = 100/189 =

0.529 =

2.1

811/3151

0.257


background image

Template for Describing Risk

Ratio

•The { exposed group} is { RR} times as likely

to have { the outcome} as the { unexposed
group}.

•Example:

{ Diabetic men} were { 2.1} times as likely to
{ die during the follow-up period} as were
{ non-diabetic men}.


background image

Questions about Risk Ratio

Risk in "exposed" group
Risk in "unexposed" group

§

What does RR > 1 mean?

§

What does RR = 1 mean?

§

What does RR < 1 mean?


background image

CASE-CONTR OL STUDIES

Disease

Total

Present

Absent

Exposure

Present

a

b

a+b

Absent

c

d

c+d

Total

a +c

b+d

N


background image

Measure of Association between Exposure and

Outcome in Case-Control –2-by-2 Table

Case

Exposed

a

Unexposed

c

V

1

Control

b

d

V

2

Odds R atio = ( a/c) / ( b/d) =

ad / bc


background image

Example

Cigarette
Smoking

Lung Cancer

Cases

Control

Yes

70

30

No

30

70

Total

100

100


background image

ad

70 x 70

Odds Ratio= ------------=-----------------= 5.4

bc

30 x 30

= OR

(1± z/√x2)

95% CI =5.4 1± 1.96/ √32

= 3.1- 9.6


background image

Template for Describing Odds Ratio?

From exposure to disease

The {exposed group} had {OR} times the odds
of having {the outcome} as the {unexposed
group}.

From disease to exposure

Cases had { OR} times the odds of being
exposed than did controls.

Do not use OR when you can calculate RR.


background image

Comments about Odds Ratio

§

Preferred measure of association for case-
control study (Risk Ratio, Rate Ratio cannot
be calculated from case-control study)

§

Approximates Risk Ratio when disease is
rare

§

Always further from 1.0 than risk ratio,
especially if disease is NOT rare


background image

Measures of

Public Health Impact


background image

Measures of Public Health Impact

•Places exposure–disease associations in public

health perspective

•Quantifies expected reduction in disease

occurrence if harmful exposure could be
eliminated,

OR

•Quantifies actual reduction in disease

occurrence attributable to beneficial
(protective) exposure


background image

Measures of Public Health Impact

For harmful exposures

- Risk difference (attributable risk, excess risk)
- Attributable risk percent
- Population attributable risk percent

For beneficial (protective) exposures

- Prevented fraction among the exposed

(vaccine efficacy)


background image

Measures of Association vs. Impact

§

Measures of association (RR, OR)
describe the strength of association
between exposure and disease (more
relevant for causality)

§

Measures of impact (AR% , PAR% ) put
the association in a public health
perspective


background image

NHANES Follow-up Study

Dead Alive

Total

% Dead

Diabetic

100

89

189

52.9%

Nondiabetic

811

2340

3151

25.7%

Total

911

2429

3340

27.3%

Ref: Kleinman J, et al.
Am J Epidemiol 1988; 128:389-401.


background image

NHANES Follow-up Study

Ref: Kleinman J, et al.
Am J Epidemiol 1988; 128:389-401.


background image

Risk Difference

= "Excess risk"
= Attributable risk

= Risk in exposed −Risk in unexposed

EXAMPLE:
Excess risk of death among diabetic men vs.

nondiabetic men

0.529 - 0.257 = 0.272=

27.2%


background image

NHANES Follow-up Study

Unexpected
Dead 27%


background image

Attributable R isk Percent

Also called

Attributable fraction (proportion) among the exposed

Etiologic fraction among the exposed

Risk in exposed –Risk in unexposed

Risk in exposed

EXAMPLE:
ARP for deaths among diabetic vs. nondiabetic men

= (0.529 - 0.257)/0.529 = 0.272/0.529 = 51.4%

"About half of the deaths among diabetic men may be attributed

to their diabetes."

ARP =

x 100


background image

NHANES Follow-up Study

Unexpected
Dead


background image

Population Attributable Risk Percent

Also called

- Population attributable fraction (proportion)
- Population etiologic fraction

Risk in population –Risk in unexposed

Risk in population

PARP =

x 100


background image

Population Attributable Risk Percent

EXAMPLE:
PARP for deaths attributable to diabetes in men

Risk in the Population = 911/3340 = 0.273 = 27.3%

Risk in the unexposed =811/3151= 0.257 = 25.7%

PARP = (0.273 - 0.257)/0.273 X 100%

= 0.016/0.273 X 100% =

5.9%

"About 6% of the deaths among all men in the
study may be attributed to diabetes."


background image

ARP vs. PARP

• Use

attributable risk percent

when your focus is

on those exposed

What proportion of lung cancer among smokers is
attributable to their smoking?”

• Use

population attributable risk percent

when

your focus is on the whole population

If we could eliminate smoking from the community, what
decline would we expect to see overall in lung cancer
occurrence?”


background image

Prevented Fraction in the Exposed

( Vaccine Efficacy)

R isk in unexposed group - R isk in exposed group

R isk in unexposed group

1 –risk ratio


background image

Measles by Vaccination Status, Texarkana,

1970

Measles

Well

Total

Risk (%)

Vaccinated

27

6,323

6,350

0.42

Not vaccinated

512

4,323

4,835

10.59

Total

539

10,646

11,185

4.82

R R =

0.040

, VE = 1 −R R =

0.960 = 96.0%

0.04

0.96 = 96.0%

Measles vaccination was associated with a 96% reduction in

cases of measles among children who had received measles
vaccine.”


background image

Measles by Vaccination Status, Texarkana, 1970

Vaccine-
attributable
Non-cases

Unvacc’

d

C ases

Vaccinated
C ases


background image

Linear correlation coefficient (r)

Measures the linear correlation between two

quantitative variables measured on an interval/ ratio

scale..

Useful in assessing the direction and strength of linear

association

Pearson’

s coefficient is used when both variables are

normally distributed

Spearman’

s coefficient is used when one of the variables

is non-normally distributed.

-

-

1

1

<

<

r

r

<

<

+

+

1

1


background image

Linear correlation coefficient (r)

Scatter diagram with fitted regression line (r=0.81)


background image

Regression coefficient

Measures the amount of variation expected in the

outcome (dependent) variable in response to an increase

of one unit of the independent variable.

R

R

e

e

g

g

r

r

e

e

s

s

s

s

i

i

o

o

n

n

e

e

q

q

u

u

a

a

t

t

i

i

o

o

n

n

:

:

Y

Y

=

=

a

a

+

+

β

β

X

X

Where

Y

Y

is the dependent variable,

a

a

is the intercept,

β

β

is

the regression coefficient and

X

X

is the independent

variable.

Both correlation and regression models complement the

picture for the strength of association between an

independent and dependent quantitative variable.


background image

Conclusion

§

Measures of association (RR, OR) describe the
strength of association between exposure and
disease (more relevant for causality)

§

Use risk ratio for standard cohort study

§

Use odds ratio for case-control study

§

Odds ratio only approximates risk ratio when
disease is rare

§

Measures of impact (AR% , PAR% ) put the
association in a public health perspective


background image

Q?




رفعت المحاضرة من قبل: Abdalmalik Abdullateef
المشاهدات: لقد قام 16 عضواً و 200 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل