background image

 

1

 

 

NUTRITIONAL SUPPORT OF THE SURGICAL PATIENT 

 

DR. N P LATCHMANAN 

 
COMMENTATORS :  DR V. PADAYACHY, P REDDY 
 

MODERATOR : PROF. AA HAFFEJEE

 
 
 

INTRODUCTION 

 
 
While most patients undergoing elective operations easily tolerate a brief period of 
perioperative starvation, as many as 50 per cent of hospital patients may be nutritionally 
compromised, depending on the definition. Nutritional status directly impacts on patient 
care and adequate attention to nutritional issues can help to minimize morbidity and 
complications 
 
 
 

Steps to Optimal Nutrition Support

 

 

The five steps to optimal nutrition support are:   

1) Begin when the benefits are likely to exceed the risk,  
2)  Set protein and calorie goals
3)  Choose and establish a method for administering the nutrients, enteral (site and 

route) or parenteral (peripheral or central), 

4)  Choose or design a formula suitable for the particular patient, and  
5)  Monitor the patient for adequacy of nutrient intake and to avoid or minimize 

complications. 

 
 
 
 

NUTRITIONAL REQUIREMENTS  

 
 
Protein 

Protein is perhaps the most important nutrient. Although protein can be degraded and 
used for gluconeogenesis, this yields only one-fourth of the energy required for protein 
synthesis and is thus a wasteful process. A primary goal in nutritional support is to 
provide adequate non-protein sources of fuel so that protein catabolism is minimized. 


background image

 

2

Protein requirements 

The average normal protein requirement of 'high biologic value protein' is 0.8 g/kg or 56 
to 60 g/day. And may increase to 1-2g/kg/day in stressed patients. 

Assuming an adequate non-protein energy supply, most amino acids can be recycled. In 
this fashion, only small amounts of essential amino acids are needed in order to maintain 
nitrogen equilibrium. In adults, 19 to 20 per cent of protein intake should be essential 
amino acids. This percentage should increase with depletion or injury. 

Amino Acids 

Humans cannot synthesize the essential amino acids. Thus, they must be obtained from 
the diet. In addition, several other amino acids are conditionally indispensable, as their 
low synthetic rates may be exceeded by increased requirements, especially in infants..  

The semi-essential amino acid glutamine has recently received a great deal of attention. 
Glutamine is abundant in the circulation and serves as a precursor for other amino acids 
and proteins. Glutamine also serves as the major energy substrate for the intestinal 
mucosa, as a nitrogen transporter between organs, and as an important route of ammonia 
detoxification during acidemia. Enteral glutamine supplementation may promote small 
bowel adaptation and lead to increased intestinal mucosa villous height and enterocyte 
protein content, but this effect is not universally seen with parenteral glutamine 

Nitrogen losses and balance 

One gram of nitrogen equals 6.25 g of protein. 

Obligate nitrogen losses are 56 to 57 mg/kg per day.  

N

loss

 = 24 h urinary urea nitrogen + 4 g/day (fecal and non-urinaryloss) 

 
Calories 

There are three major sources of energy: protein, fat, and carbohydrates. Of normal daily 
energy expenditure, 85 per cent is from fat and carbohydrates, and 15 per cent from 
protein. 

Protein as an energy source 

Of the 15 per cent of normal daily energy expenditure supplied by protein, approximately 
50 per cent of this is through direct oxidation of branched chain amino acids to high-
energy phosphate. The remainder is via gluconeogenesis. Protein breakdown yields 
4 kcal/g 


background image

 

3

Carbohydrates as an energy source 

Glucose yields about 4 kcal/g through glycolysis and the tricarboxylic acid cycle. 
Glycogen breakdown yields only 1 to 2 kcal/g. Most carbohydrates in parenteral nutrition 
are supplied in the form of dextrose, which provides 3.4 kcal/g. 

Glycogen stores, however, are exhausted within 24 h of initiation of a fast, and the body 
then becomes dependent on gluconeogenesis as a source of glucose. 

At least 400 cal/day in the form of exogenously administered glucose are required to 
minimize proteolysis. 

Fat as an energy source 

Fat about 9 kcal/g. After lipolysis, free fatty acids are released into the circulation. Free 
fatty acids actually circulate bound non-covalently to albumin. Nearly all tissues, with the 
notable exception of the brain, can utilize fatty acids as an energy source 

 
Determination of caloric needs 

Caloric needs are related to the metabolic rate, which in turn is demonstrated by the 
formula: 

metabolic rate = 4.83 × Vo

2

 

where Vo

2

 is oxygen consumption in liters per unit of time. Furthermore, the respiratory 

quotient (RQ), a ratio of carbon dioxide produced to oxygen consumed, can be used to 
estimate utilization of the various caloric sources by the following formula: 

RQ =  Vco

2

/ Vo

2

 

An RQ of 1 is consistent with pure carbohydrate utilization.  

An RQ of 0.7 is consistent with utilization of fat.  

An RQ of less than 0.7 indicates ketogenesis. 

In clinical practice, and RQ of greater than 1 is uncommon, but this may indicate 
overfeeding.  

An RQ of between 0.8 and 1, indicating mixed substrate utilization, is desirable. 

 

The basal energy expenditure (BEE) can be estimated from the  


background image

 

4

Harris–Benedict equation

BEE (men) = 66.47 + [13.75 × W] + [5 × H] – [6.76 × A

BEE (women) = 655.1 + [9.56 × W] + [1.85 × H] – [4.68 × A

where W is weight in kilograms, H is height in centimetres, and A is age in years. 

 

 

The additional caloric needs due to illness or other metabolic stress can then be calculated 
by multiplying the BEE by an injury factor: 

minor operation = 1.2 (20 per cent increase) 

skeletal trauma = 1.35 (35 per cent increase) 

major sepsis = 1.6 (60 per cent increase) 

severe thermal injury = 2.10 (110 per cent increase) 

This estimate can be further refined to account for activity by multiplication by 1.2 if the 
patient is confined to bed and 1.3 if the patient is not confined to bed. Therefore, caloric 
needs equal: 

BEE × injury factor × activity factor 

Calorie to nitrogen ratio 
 
Non protein energy is usually required at 30-35 kcal/kg/day 
A non pretein energy : Nitrogen ratio of 100 – 200 is required to prevent protein 
breakdown for energy 

 

 
 
 
 
 
 
 
 
 
 


background image

 

5

 

NUTRITIONAL ASSESSMENT 

 
 
PARAMETERS 
 
1. Clinical

 General appearance (oedema, ascites, cahexia, obesity, skin changes)  

 
2. Anthropometry 

 
• Midarm muscle circumference
: <     23cm (male) & < 22cm (female) indicates 
malnutrition.  
• Triceps skinfold thickness: < 10mm (male) & < 13mm (female) indicates 
malnutrition. 
• Handgrip dynometry  . 

 

Body Mass Index (kg/m

2

18.5-25  

=  

 normal 

=  

< 15 

 

=  

 significant increase in morbidity 

= < 

18.5 

  =  

associated 

with longer hospital stay 

=  

> 30 

 

=  

 obesity, increased incidence of heart disease, 

 
 
3 Biochemical Markers 
 

i) Plasma 

Proteins 

 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

OPTICAL 
DENSITY 

MIGRATION DISTANCE 

Transferrin 
8 day ½ life

 

Albumin  
20 day ½ life

Transthyretin 
Pre albumin 
2 day ½ life


background image

 

6

 
 
Serum Albumin Concentration: Good Predictor of Outcome, Poor Marker for 
Nutrition Status 
 
Serum albumin is an exceedingly poor indicator of nutrition status because it is very 
insensitive and nonspecific.  Infections and other inflammatory conditions which elevate 
inflammatory cytokines cause a decrease in albumin synthesis and also cause capillary 
leak resulting in an increased volume of distribution of albumin. Consequently, in sepsis 
and burns, serum albumin concentration may decrease, more than 1 g/dl in 24 hours.  In 
contrast to its poor performance as an indicator of nutrition status, many studies have 
documented that serum albumin concentration is a good predictor of morbidity and 
mortality in many conditions.   
 
Serum Proteins and Nutrition Status 
 
Serum (visceral) proteins with a short half-life such as transferrin (8 days) and 
transthyretin (prealbumin) (2 days) respond more quickly to declining or improving 
nutrition status than does albumin, which has a half-life of 20 days.  However, all three 
are negative acute phase reactants, that is, the serum levels decrease rapidly when 
catabolic inflammatory cytokines are released by infection or trauma.  Also, the 
transferrin level is increased by iron deficiency while the transthyretin level is increased 
by renal failure and decreased by vitamin A deficiency.  If these confounding factors are 
kept in mind, transthyretin measurements and to a lesser extent transferrin measurements, 
can be useful tools for assessing nutrition status.  An undernourished patient with low 
serum transthyretin will show a significant increase in transthyretin concentration after as 
little as one week of adequate protein and calorie intake. Note: the quantity of 
transthyretin in normal serum is too small to produce a distinct protein peak on serum 
protein electrophoresis. 
 
Fibronectin:
 opsonic glycoprotein (mw 440 000). Depletion correlates with 
reticuloendothelial phagocyte clearance depression.  
 
Creatinine - Height Index: is the ratio of 24 hour urine creatinine excreted compared 
with height matched controls of the same sex. Expressed as a % and an index of 100% 
indicates normal muscle mass, provided there is normal excretion of creatinine. 
 
Immunological Markers: Total lymphocyte count < 1500 cells/pJ associated with 
severe malnutrition. Clinical trials suggest that impaired delayed cutaneous 
hypersensitivity is present in severe malnutrition and with poor clinical outcome.  
 
Indirect Calorimetry and body composition analysis: are helpful when nutritional 
requirements are difficult to estimate. Routine use cannot be advocated because they are 
expensive, technically demanding, and not demonstrated to effectively predict clinical 
outcome. 


background image

 

7

Multifactorial Prognostic Indices 
 
a. Prognostic Nutritional Index: uses serum albumin and transferrin levels TSF and 
delayed hypersensitivity skin test reactivity to predict the risk of operative morbidity and 
mortality in relation to nutrition status. PNI 50% indicates high risk patients. 
b. Prognostic Inflammatory & Nutritional Index: uses markers of inflammatory response 
ie a - 1 acid glycoprotein & c-reactive protein, in combination with nutrition assessment 
parameters (alb. & prealb.) to predict infectious complications and death. 
 
c. Nutritional risk index: used in Veterans - Administration - cooperative group study of 
preoperative morbidity and mortality using serum albumin and the ratio of current weight 
to usual weight.  
 
 
Dynamic Nutritional Assessment 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
Predictors of Poor Clinical Outcome 

 

 

A number of measures initially designed and used to assess nutrition status correlate with 
outcome for patients in acute hospitals and chronic healthcare institutions.  However, it 
remains unknown how much, if any, of the correlation between the measurements and 
outcomes is a result of nutrition status as opposed to severity of illness or other factors.   
 
The Prognostic Nutritional Index (PNI) % = 158 - 16.8 (ALB) - 0.78 (TSF)- 0.20 TFN - 
5.8 DH where PNI is an estimate of postoperative risk of complication, ALB is serum 
albumin concentration (g/100 ml), TSF is triceps skinfold thickness (mm), TFN is serum 
transferrin concentration (g/100 ml) and DH is delayed cutaneous hypersensitivity to any 
of three recall antigens (0, nonreactive: 
1, =5 mm induration: 2, > 5 mm induration). 

Major burn

Sepsis

Skeletal trauma

Elec. op

Starvation 

0

25 

50

Days 

Resting 

Energy 

Expenditure 

% of normal 

50%

200%


background image

 

8

NUTRITIONAL SUPPOR

 

 

ROUTES TO DELIVER  NUTRITIONAL SUPPORT 

           Nutrition assessment 

 
       Decision to initiate specialised nutrition support 
 

FUNCTIONAL GI TRACT 

 
 

YES                                                             NO (Obstruction, peritonitis,                  
                                                                           intractable vomiting, acute  
                                                                           pancreatitis, short bowel  
                                                                          syndrome, ileus) 

              ENTERAL NUTRITION                      PARENTERAL NUTRITION 
          Long term             Short term 
          Gastrostomy          Nasogastric 
           Jejunostomy          Nsoduodenal 
                                         Nasojejunal 
 
                            GI Function                                       Short term         Long term or  
                                                                                                                 fluid restriction. 
 
           Normal                       Compromised           Peripheral PN

*

          Central; PN

*

 

 
 
                   Intact                    Defined 
                   Nutrients

3

             formula

2

                                   GI function returns 

 
                                                                                             YES                             NO 
 
                          NUTRIENT 
   

 

TOLERANCE 

 
Adequate 

        Inadequate 

   Adequate 

Progress 

        PN 

 

   Progress to more 

to oral feedings       Supplementation    complex diet and oral 
      

 

 

Feedings 

as 

tolerated 

 
 

 

       Progress to total 

 

 

      Enteral feedings 

 
 
 
 


background image

 

9

Enteral vs. Parenteral 
 
Compared to parenteral nutrition, enteral nutrition is less costly and has a more complete 
nutrient profile.  The complication rate, including the likelihood of infection, is probably 
less for enteral than for parenteral nutrition although that is not well documented.  On the 
other hand, parenteral nutrition is easier to administer, better accepted by patients, and 
provides more reliable delivery of nutrients.  Taken together, the benefits of enteral 
nutrition outweigh those of parenteral when both are possible. 
 
 
 

ENTERAL NUTRITION 

 
 
ADVANTAGES 
1.  Maintains git integrity and positive effect on immunity of small intestine 
2.  Enhanced utilization of nutrients 
3.  More efficient plasma insulin response 
4.  Ease and safety of administration 
5.  Less cost than TPN 
6.  Mechanical, infectious and metabolic complications less severe than with TPN. 
 
INDICATIONS 
Any condition which requires nutritional support and in which the GIT is functional. 
 
CONTRAINDICATIONS 
1. Generalized 

peritonitis 

2. Shock 
3.  Complete intestinal obstruction 
4.  Intractable vomiting/severe diarrhoea 
5. Paralytic 

 

ileus 

6.  Severe git bleeding 
7. High 

output 

fistula 

8.  Early stages of short bowel syndrome 
9.  Acute severe pancreatitis. 
 
 
Short-term supplementation 

These are patients in whom the anticipated need for nutritional support is for a relatively 
short period, often less than 6 weeks. A variety of commercially available feeding tubes 
can be used to access the stomach or small intestine. For patient comfort, soft small bore 
(7 to 9 French) tubes should be used. These tubes may be placed nasogastrically if 
adequate gastric emptying and an intact gag reflex is present. They may also be placed 
nasoenterically in patients with a higher risk of aspiration 


background image

 

10

Long-term supplementation 

Patients in whom the anticipated need for nutritional support is greater than 6 weeks may 
benefit from more permanent enteral access. 

 Gastrostomy tubes may be placed either operatively or percutaneously with endoscopic 
guidance.  

This route of feeding requires that gastric emptying is present and is contraindicated by 
evidence of gastroesophageal reflux and absence of a gag reflex. One advantage of a 
gastrostomy tube is that feedings may be administered either continuously or as 
intermittent boluses, thus potentially simplifying care, especially in the outpatient setting. 

Jejunostomy tubes are commonly placed operatively, either via laparotomy or with 
laparoscopic assistance. They may either be permanent (end Roux-en-Y type) or 
temporary (Witzel). 

 In selected cases, a jejunostomy may be placed endoscopically or using the needle 
catheter technique. A small bore feeding tube may also be passed through an existing 
gastrostomy tube to create a functional jejunostomy. Jejunostomy feedings are given 
continuously, rather than as boluses. 

 
Complications Of Enteral Nutrition

17 

 
1.  Gastro-intestinal : diarrhoea, vomiting, bloating, abdominal cramps. 
2.  Metabolic            : glucose intolerance, excess CO

2

 production, electrolyte  

 

 

  imbalances 

3.  Mechanical          : Blocked tube, tube dislodgement, nasopharyngeal discomfort,  

 

 

 

 nasal erosions and necrosis (esp. children) 
 Complications of surgery ( gastrostomy; jejunostomy) 

 

  Perforation 

 

  Haemorrhage 

 

  Wound 

infection 

 

  Bowel 

obstruction/necrosis 

    Stomal 

leakage 

4.  Infections            :  Aspiration pneumonia,  

 contaminated feeds - gastroenteritis 

 

 
 
 
 
 
 
 


background image

 

11

Principles  Of Administration 
 
1.  Choosing  the appropriate feed.  
2.  Most patients tolerate a polymeric feed.   
3.  In the presence of malabsorption - semi elemental formula used.  Single nutrient 

deficiencies - modular feed used. 

4.  Rate of administration: start slowly (approx. 20ml/hr) and increase to 80ml/hr within 

48hrs.  If poorly tolerated, reduce rate  or discontinue feed and recommence slowly 
once mechanical obstruction excluded. 

5.  Early feeding ( 48 hrs) has shown to prevent gut mucosal atrophy, peserve mucosal 

integrity - reduced bacterial and endotoxin translocation, ensure maintenance of 
normal gut flora - reduces gram negative proliferation and improves the status of the 
gut immune system. 

 
 
Products 

Many formulas have been developed for enteral supplementation. These vary in 
osmolarity, caloric content, protein complexity and density, and fat content. Typical 
formulas contain 1 to 2 kcal/ml and between 30 and 60 g of protein per liter 

 
 
COMMERCIALLY AVAILABLE  PRODUCTS 
 
 
 

Formulae 
(1000ml) 

Kcal CHO 

(g) 

FAT  
(g) 

PROT 
(g) 

Kcal:
gN 

OSM 
mosmol/kg

USE 

Ensure 1100 

162 

37,2 

39,7 

150:1 

480 

 

Osmolite 1060 

145  37,6 37,2  178:1 

300 

 

Nutrison 1000 

122,5 

38,9 

40 

131:1 

290 

 

Alitraq 

1000  165 

15,5  52,5 

120:1  575 

Impaired GI function. Rich in 
Glutamine (27g/100g) 

Jevity 1060 

151,7 

35,9 

44,4 

150:1 

300 

 

Paediasure 1000 109,7  49,7  30 

208:1  310 

 

Peptison 1000 

187,5 

10  40 

131:1 

470 

 

Glucerna 1000 

33,3 50 16,7 150:1 

375 

 

Suplena 2000 

255,2 

95,6 

30  418:1 

600 

 

Advera 1280 

215,8 

22,8 

60  133:1 

680 

 

 
 
 
 
 


background image

 

12

 
 
 
 
 
Early Enteral Feeding 
 

A compelling clinical and scientific rationale appears to support the use of enteral feeding 
as opposed to bowel rest or total parenteral nutrition (TPN) in patients after trauma, 
including major surgery. 

1.  Aggressive early enteral feeding has been shown to decrease sepsis and improve 

outcome in critically ill patients after major trauma. 

2.  In individual studies and in meta-analysis, patients fed via total enteral nutrition 

(TEN) after abdominal surgery for trauma experienced fewer septic complications 
than patients fed via the parenteral route. 

3.  Third, the use of perioperative TPN in the perioperative period is highly 

controversial, with several studies reporting an increase in infective complications 
in subsets of patients.  

4.  The cost of TEN is considerably less than TPN.  

 
 
 
 
Immuno modulating drugs 
 
 
(Discussed later under Management of the critically ill patient) 
 
 
 
 
OXEPA 

OXEPA is a low-carbohydrate, calorically dense enteral nutrition product designed for 
the dietary management of critically ill patients on mechanical ventilation. It contains 
eicosapentaenoic acid (EPA) (from sardine oil), gamma-linolenic acid (GLA) (from 
borage oil), and antioxidants. OXEPA can be used as a sole source of nutrition for tube 
feeding. 

• 

For critically ill patients on mechanical ventilation  

• 

For critically ill patients with LUNG INJURY, such as: pneumonia; sepsis; chest 
injury; multiple trauma; burns; shock and hypoperfusion; aspiration or near-
drowning; cardiopulmonary bypass; or hyperfusion-associated lung injury.  


background image

 

13

Features : 

• 

Complete, balanced nutrition for tube-feeding patients  

• 

Unique patented oil blend-contains EPA from sardine oil and GLA from borage 
oil  

• 

Contains 25% of fat as MCTs for improved fat absorption  

• 

Fortified with elevated levels of the antioxidants all-natural vitamin E, beta-
carotene, and vitamin C  

• 

1.5 Cal/mL, 355 Cal/8 fl oz, and a moderate osmolality of 493 mosm/kg H20  

• 

Caloric density is high to minimize the volume required to meet energy needs  

• 

Meets 100% of RDI for 24 key vitamins and minerals in 1420 Calories 
(four 8-fl-oz cans)  

• 

Lactose- and gluten-free  

 
 

PARENTERAL NUTRITION 

 
 
If enteral nutrition is not possible in the malnourished or at-risk patient, the parenteral 
route must be utilized. Parenteral nutrition may be used for either primary or supportive 
therapy 
 
 
Indications for Parenteral Nutrition 
 
Primary therapy 

Gastrointestinal fistula 
Short bowel syndrome 
Acute renal failure 
Hepatic insufficiency 
Inflammatory bowel disease  Efficacy not established 
 

Secondary therapy 

Radiation enteritis/chemotherapy toxicity    
Hyperemesis gravidarum    
Prolonged ileus 

 

Preoperative therapy   

Efficacy not established 

Cardiac cachexia 

 

Efficacy not established 

Pancreatitis  insufficiency 

Efficacy not established 

  

Cancer  

Efficacy not established 

 

 

 

Sepsis  

Efficacy not established 

 
 


background image

 

14

TPN Formula Composition 
 
Components of TPN include dextrose; lipids; amino acids; electrolytes including 
phosphorus, potassium, sodium, magnesium, calcium, chloride, and acetate; vitamins and 
trace elements.  
 
Typical vitamin amounts administered daily in TPN are: 
 vitamin A 3,300 IU, vitamin D 200 IU, ascorbic acid 100 mg, folic acid 400 mcg, niacin 
40 mg, riboflavin  3.6 mg, thiamin 3 mg, pyridoxine 4 mg, cyanocobalamin  5 mcg, 
pantothenic acid 15 mg, biotin 60 mcg, and vitamin E 10 IU.  
 
These approximate amounts are present in commercial mixtures. Vitamin K 1 mg daily or 
5-10 mg weekly is often added separately.   
 
A typical trace element cocktail provides approximately the following per day:  zinc  
5 mg, copper 1 mg, manganese 500 mcg, chromium 10 mcg, and selenium 60 mcg. 
Molybdenum may also be included.   
 
 
NUTRIENT MIXTURES 
 
Standard solutions 
 

Peripheral -    Vamin 750 ml + 20 % intralipid + fluids 

Central      -    Synthamin 14 - 14g N2 

Intralipid 10% - soybean oil + egg yolk phospholipids + glycerol 500mls. 

Glucose 50% - 500mls. 

Maintelyte - 10% glucose + electrolytes - 1

Soluvit - water soluble vitamins 

Vitalipid - fat soluble vitamins 

Addamel - essential micronutrients. 

 
All mixed into 3

l bags. 

 
 
 
 
 
 
 
 
 
 
 
 
 


background image

 

15

 

Routes 

 
 
 
800 mOsm/L range 

 

 

 

 

 

 

2,000 mOsm/L range 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Peripheral 

Central 

1.  Needs good peripheral veins 
2.  Limited to 2 major veins 
3.  Sites have to be changed 

every 24 hrs. 

4.  Prone to phlebitis if 

osmolarity >900 mOsm/L 

5.  In order to provide adequate 

calories in a reasonable 
volume with a tolerable 
osmolality, lipid provides 
50% to 70% of the 
nonprotein calories in 
peripheral TPN 

1.  Usually via the infraclavicular route (subclavian 

vein) using a  silicone, double-lumen catheter.   

2.   strict aseptic  conditions.  
3. Occlusive 

hydrocolloie  dressings are most 

suitable.  The dressings and  administration set 
must be changed every third day.  

 

Risk minimized by:   
1. hydrocortisone to each litre of solution 
2. adding 1% sodium bicarbonate  
3. change site daily  
4. run fluids over 12-16 hours 

Complications Complications  

 

Catheter related 

(i) 

Mechanical : central vein thrombosis, catheter 
embolism, haemo-pneumo    

thorax, 

haemopericardium, air-embolism, tracheal 
puncture, arterial laceration, brachial plexus 
injury. 

(ii) 

Sepsis         :  Staphylococcus epidermidis, 
candida albicans 

(iii) 

Blockage    :  Use of heparin and choice of 
catheter (silicone/polyurethane) 

Metabolic   :   Hyperglycaemia, electrolyte and acid  

  base 

abnormalities, 

trace 

element 

 

and vitamin deficiencies. 
Electrolyte abnormalities  
Hypoglycaemia 

 Hepatic function changes: Cholestasis, elevated    
 

 

liver enzymes and hepatomegaly 

 GI changes

  

 

Atrophy of intestinal mucosa  

PREVENTING HYPERGLYCAEMIA  
 
Begin the infusion at 40 ml/h of 25 per 
cent glucose based solution and 
increasing the infusion rate by 20 ml/h 
every 24 h, depending on glucose 
tolerance. 

PREVENTING TPN ASSOCIATED 

LIVER DISEASE 

 
Decrease dextrose content < 40 kcal/kg/day
Decrease fat content < 1 g / kg / day 
Adequate protein intake < 1-1.5g/kg/day 

PICC 


background image

 

16

 
 

MANAGEMENT OF CATHETER RELATED SEPSIS 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

PICC  (Peripherally inserted central line) 
 
A cubital fossa PICC provides a safe effective means of administering intravenous 
therapy.  
A PICC can be expected to last two months without complication.  
Complications that do occur are most likely in the first week.  
The most common complication resulting in line removal was phlebitis.  
Line-related sepsis is a very rare event.  

Pyrexia > 38

°C / Swinging temperature

Does the patient still require nutritional support

Remove central line 
 catheter for culture 
If pyrexia persists –  
full septic screen. 

Is the patient stable? 

NO

YES 

Stop TPN.  
Resuscitate.  
Broad spectrum 
antibiotics.  
Full septic screen 

Check blood 
cultures. 

NO

YES 

Remove central line (MCS) 
Start PPN 
Appropriate antibiotic.   
Await 3 neg blood cultures before
reinserting CVP 

Clinical evaluation to  
exclude obvious source  
eg intra-abdominal      
sepsis (U/S or CT useful) 
Full septic screen:  Rail-road CVP – MCS 
Body fluids / secretions – MCS 

POSITIVE 

NEGATIVE 


background image

 

17

This means that the PICC compares favourably with any other means of venous access

4

 

and is the method of choice for most intermediate or longer term intravenous therapy. 

 
 

NUTRITIONAL SUPPORT IN CLINICALLY RELEVANT SITUATIONS

 

 
 
 

A.  BURNS 

•  Appropriate nutritional support contribute significantly to improve patients survival. 

•  Helps to maintain body weight, promote wound healing, combat infection, preserve 

body nutrient  reserves and replace visceral and somatic proteins  

•  Early enteral nutrition route unless non-functioning gut → then parenteral nutrition. 

•  Carbohydrates 50%, protein 20% and lipid 30%. 
•  Recent evidence that omega-3-fatty acids results in increased feeding tolerance. 

•  Arginine supplementation improves CMI and wound healing and is a conditionally 

indispensable a/acid for maintaining body protein homeostasis and nutrition in 
severely burned patients. 

 
 
B.  PANCREATITIS  

Estimating the severity of pancreatitis is important.   
Most acute pancreatitis is mild, self-limiting and resolves within 5-7 days, hence no 
need for nutritional support.   
Severe pancreatitis induces a hypercatabolic state resulting in rapid weight loss and 
increased morbidity and mortality.   
Chronic pancreatitis results in malnutrition.  Therefore the aim is to treat the 
malnutrition and to avoid the development of malnutrition.  
 In severe pancreatitis the best route of nutrition is the nasojejunal feeding with a 
semi-elemental low triglyceride diet.  The outcome s are similar than those patients 
receiving TPN.  If enteral feeding increases pain. Ascites or fistula output then 
discontinue. 

Pancreatic fistula: Low output ----enteral feed 

High output ---TPN 

 

      Pancreatic Ascites:  TPN + somatostatin 

 
 
 
 
 

C.   ENTEROCUTANEOUS  FISTULA 

TPN  has  been  shown  to  have  no  effect  on  mortality  but  does  influence  
closure  as  shown  in  local  studies. 

high  output > 500  ml  -  TPN + somatostatin 

definitive  closure  if  no  decrease  in  6  weeks , patient  afebrile. 

Low  output < 500  ml -  enteral  feed. 
 


background image

 

18

 
 
 

D. CRITICALLY ILL PATIENT 

Have increased metabolic demands (20-60% above basal needs).  Goal is to 
maintain and not to replete.  Initial /calorie delivery 25 Kcal/kg/day and 1.5-2.0g 
protein/kg/day. 
 

Associated complications 
1. Hepatic 

dysfunction 

Aetiology :  TPN, hepatic hypoperfusion, drug induced liver disease 
 
Appropriate nutrition ( prevention of hepatic encephalopathy)  
Reducing the gastro-intestinal protein load by restricting dietary protein 
intake, preventing gastrointestinal bleeding, and encouraging intestinal 
emptying with agents such as lactulose. In stage I and II encephalopathy, 
protein intake should be restricted to fewer than 40 g/day, and this should 
be further reduced to fewer than 20 g/day in patients with stage III and IV 
encephalopathy. Caloric intake, preferably as dextrose, should be 
maintained in excess of 2000 cal (8.4 kJ)/day. Patients with liver damage 
may be lipid intolerant, and the presence of lipaemic serum requires a 
reduction of lipid intake. 

            

 
2.  Acute pancreatitis  (discussed above) 
 
3.  Stress ulcer prophylaxis : Critically ill surgical patients are at risk from 

gastrointestinal stress ulceration. Ulcers are most often sited in the fundus of the 
stomach or the first part of the duodenum. They are small, multiple, superficial, 
well demarcated, and usually without surrounding oedema. Stress ulcer bleeding 
is less common in patients who are receiving enteral nutrition; this could reflect a 
lower severity of illness in view of the maintenance of gastrointestinal absorptive 
function or be a direct protective effect of nutrients in the stomach and 
gastrointestinal tract. 

 
 
Immunonutrition : 
 

Intended for critically ill patients at risk for infections and for use in the 
immediate postoperative period. They contain increased protein, 
immunostimulatory amino acids, and lipids, and may decrease infectious 
complications. 
Immune enhancing formulas include arginine, glutamine, nucleic acids and 
omega-3 fatty acids.   

 

 L-arginine 

and 

I-glutamine: - 

stimulates host defenses 

 

    - modulates 

tumour 

metabolism 


background image

 

19

 

    - increases 

wound 

healing 

 

    - decreases 

nitrogen 

losses 

after 

 

trauma 

L-Glutamine: - maintains integrity of intestinal barrier function in preventing 
translocation of bacteria and endotoxins from bowel lumen into systemic 
circulation.  Combination of nutrients have shown to enhance host defences 
significantly as reported by Cerr et al. Benefits of immunonutrition were 
reduction in hospital stay and decrease infections but has no effect on 
mortality as shown by Beale et al.  In another study by Galban et al. has 
shown a significant reduction in mortality in patients on Immunonutrition. 
 
Essential Fatty Acids:  Acts as an intracellular messenger and plays a 
regulatory role in the metabolic process.  Maintains cell structure and 
function.  Administered enterally or parenterally via central or peripheral vein. 
Eg: Omega – 3 and Omega 6 fatty acids: enhances cell- mediated immunity 
and has shown to improve histological appearance of IBD.  Improves 
immunocompetence, has antithrombotic effects which prolongs bleeding time. 
 
Long and Medium Chain Triglycerides: a 50:50 mixture of LCT & MCT 
has shown to have greater physiochemical stability.  Resulting in more oxygen 
radicals being produced LCT impairs the RES while MCT stimulates it.  Has a 
trophic effect on the bowel, reducing bile output and decrease the risk of 
hepatic dysfunction. 
 
Branched Chain Amino Acids:  Leucine, isoleucine and valine metabolized 
in skeletal muscle and are important oxidative fuels.  Leucine rich amino acid 
stimulates resting energy expendature and thermogenesis by up to 20%. 
 

 
INTENSIVE INSULIN THERAPY 

Hyperglycemia associated with insulin resistance is common

 

in critically ill patients, even 

those who have not previously

 

had diabetes.  

In diabetic patients

 

with acute myocardial infarction, therapy to maintain blood

 

glucose at 

a level below 215 mg per deciliter (11.9 mmol per

 

liter) improves the long-term outcome. 

In nondiabetic

 

patients with protracted critical illnesses, high serum levels

 

of insulin-like 

growth factor–binding protein 1, which

 

reflect an impaired response of hepatocytes to 

insulin, increase

 

the risk of death. 

 

In a study by 

Van den Berghe et al, 

2001 showed that intensive insulin therapy to 

maintain blood glucose at or below 110 mg per deciliter reduces morbidity and mortality 
among critically ill patients in the surgical intensive care unit. 

 


background image

 

20

1.  HEAD  INJURY  PATIENTS 
 

The  metabolic  response  to  trauma  is  usually  a  sustained  hypermetabolic  state  
with  a  peak  hormonometabolic  response  at  3 - 5  days. 

The  exact  mechanisms  involved  are  unknown  with  the  following  postulates : 

a.  Damage  to  the  cardioregulatory  pons  with  autonomic  hyperactivity  and   

increased  catecholamines  release. 

b.  Damage  to  the  blood  brain  barrier  with  resultant  catecholamine  accumulation. 
c.  Steroid  therapy . 
d.  Raised  intracranial  pressure  may  result  in  gastric  hypersecretion. 

 
This  effectively  leads  to  a  basal  metabolic  rate  that  may  be  up  to  140%  of  
normal.  Nitrogen  excretion  may  be  increased  up  to  7  times  which  depends  on  
intake , muscle  mass , muscle  use  and  steroid  therapy.  Hyperglycaemia  develops  due  
to  the  mechanisms  mentioned  and  the  overall  response  to  trauma.  This  tends  to  
produce  and  worsen  intracellular  lactic  acidosis , may  result  in  increased  pCO2  
with  further  increase  in  intracranial  pressure. 
Requirements : 
i) 

40 - 50 kcal/kg/day , indirect  calorimetry  is  the  standard  for  determining  the  
requirements. 

ii) 

protein  1,5 - 2,0 g/kg/day  although  levels  of  2 - 2,5 g/kg/day  are  now  being  
given. 

iii) 

The  caloric  needs  are  the  basal  energy  expenditure  multiplied  by  1,4 

iv) 

Non  protein  energy : nitrogen  is  80 : 1  initially  then  up  to  130 : 1. 

 
 Route :  enteral  feeds  should  be  aimed  for  early  on  ie  within  48 hrs. 
               Other  options  include  percutaneous  endoscopic  jejunstomy  or  gastrostomy   
               with  long  term  requirements. 

The  standard  indications  for  parentral  therapy  apply.     

 
 
SHORT BOWEL SYNDROME 
 
A number of conditions require surgical resection or bypass of intestine resulting in a 
short bowel.  The pathophysiologic consequence of  a short bowel is malabsorption.   
 
Malabsorption due to a short bowel and its clinical consequences is referred to as the 
short bowel syndrome.  Severity is determined by the amount of intestine resected, the 
site resected and the ability of the intestine to undergo adaptive hyperplasia.  A short 
bowel is one of the causes of intestinal failure.   
Other causes of intestinal failure include motility disorders (visceral myopathy, visceral 
neuropathy,  scleroderma, amyloidosis), refractory celiac disease and radiation enteritis. 
 
In adults, the length of the small intestine when measured at autopsies is on average 600 
cm (20 feet).  The length of the colon is about 150 cm (5 feet).  There is no anatomic 
distinction that demarcates jejunum from ileum.  The proximal 2/5 of small intestine is 


background image

 

21

usually accepted as jejunum and the distal 3/5 as ileum.  Most dietary carbohydrates, fats, 
proteins, vitamins, minerals, and trace elements are absorbed within the first     2/3 of the 
small intestine.   
 
Most iron is absorbed in the duodenum; folate in the proximal jejunum.  Vitamin B12 
(cobalamin) and bile salts are only absorbed in the distal ileum.  Water and electrolytes 
are absorbed throughout the small intestine and colon.  A small amount of carbohydrate 
escapes absorption in the small bowel and enters the colon.  This is important for colonic 
health.  Bacteria in the colon metabolize carbohydrate, soluble fiber and some 
unabsorbed fats to short chain fatty acids which are the preferred energy source for 
colonocytes.  Short chain fatty acids are absorbed in the colon along with sodium and 
water, thus promoting caloric salvage and fluid absorption. 
 
Small feedings should be started as soon as possible because nutrients are important in 
stimulating adaptive hyperplasia in the intestine.  Only a small amount of calories (about 
500-750 kcal of a soft normal diet) should be given orally to start and then increased as 
tolerated.  Oral fluids should be limited and given separately from food.  Feeding 
stimulates digestive juices and may increase intestinal fluid losses.  Intestinal fluid and 
electrolyte losses should be measured and replaced daily.       
 
There are a number of ways to enhance calorie absorption for optimal weight in those 
with a short bowel.  Frequent small meals and slowing transit enhances absorption by 
maximizing the contact time for nutrient absorption.  Medium chain triglycerides 
(MCTs)are water soluble and can diffuse across the epithelium intact or as medium chain 
fatty acids.  Administration of excess amounts of MCTs should be avoided because 
unabsorbed MCTs in the intestinal lumen cause an osmotic diarrhea.  In those with >100 
cm of ileum resected, exogenous bile salts (e.g. ox bile, cholylsarcosine) improves fat 
absorption; ursodeoxycholic acid does not.   
 
 
 
 

CONCLUSION 

 
Nutritional support of the surgical patient is an extremely important part of the total care 
of the patient, unfortunately in our hospital setting it is given little importance to the 
average patient and only reserved for the acutely ill patient. Early assessment of the 
patient and initiation of nutritional support will yield excellent results and reduce 
morbidity and mortality.  
 
 
 
 
 
 
 


background image

 

22

REFERENCES 

 
1.  Haffejee  AA .  Surgical  nutrition  in  Mieny  and  Mennen  eds.  Principles  of  

Surgical  Patient  care.  Pretoria  Academica  1990 : 1 - 16. 

2.  Van den Berghe M.D., Ph.D., Pieter Wouters, M.Sc., Frank Weekers, M.D., Charles 

Verwaest . Intensive insulin therapy in the critically ill patient. NEJM 2001; 345 : 
1359 – 67. 

3.  Downs  JH , Haffejee  AA . Nutritional  assessment  in  the  Critically  Ill . Curr  

Opinion  Clin.  Nutr.  Metabolic  Care  1990 ; 1 : 275 - 279. 

4.  Griffiths R D. Glutamine enriched TPN formula. Nutrition 1997; 13 : 295 – 302. 
5.  Bissetty T V. Nutritional  support  of  the  Surgical  patient.  Surgical  Seminar  2003. 
6.  Naidoo R .  Nutritional  support  of  the  Surgical  patient.  Surgical  Seminar  2001. 
7.  Alli  MO.  Nutritional  support  of  the  Surgical  patient.  Surgical  Seminar  1999. 
8.  Moodley  S.  Nutritional  support  of  the  Surgical  patient.  Surgical  seminar  1997. 
9.  Alan L. Miller, ND Therapeutic Considerations of L-Glutamine: A Review of the 

Literature. Glutamine physiology, biochemistry, and nutrition in critical illness. 
Austin, TX: R.G. Landes Co.; 1992. 

10. ASPEN  Board  of  Directors .  Rationale  of  Adult  nutritional  support  guidelines.  

JPEN  1993 ; 17 ( 4 ) :  58 - 68. 

11. Jeejeebhoy  K , Detsky  A .  Assessment  of  nutritional  status.  JPEN 1990 ;14 

(supplemental ) :193 -195. 

12. Klein  S , Kinney  J . Nutrition  support  in  clinical  practise  :  review  of  published  

data  and  recommendations  for  future  research  directions.  JPEN  1997 ; 21 ( 3 ) : 
133 - 155. 

13. Gibbs  J , Cull  W.  Pre - operative  albumin  as  a  predictor  of  operative  mortality  

and  morbidity.  Arch  Surg  1999 ; 134 : 36 - 42. 

14. Tellado - Rodrigues  J , Garcia  J.  Nae / Ke  Ratio  is  a  better  indicator  of  

nutritional  status  than  standard  anthropometric  and  biochemical  indices.  Surg  
Forum  1988 ; 38 : 56 - 58. 

15. Sacks  G , Poole  G.  Continuous  versus  intermittent  nasogastric  enteral  feeding  in  

trauma  patients.  JPEN  2000 ; 24 ( 1 ) : 15 - 20. 

16. Kealer  A , Swails  W.  Early  enteral  feeding  in  post  surgical  cancer  patients.  

Ann  Surg  1996 ; 223 ( 3 ) : 316 - 333. 

17. Ling  E , Caro  C.  Randomised  trial  of  safety  and  efficacy  of  immediate  post  

operative  enteral  feeding  in  patients  undergoing  gastrointestinal  resection.  BMJ  
1996 ; 312 ( 6 ) : 332 - 335. 

18. Payne  J , Whanwaya  H.  First  choice for  TPN : the  peripheral  route.  JPEN  1993 ; 

17 ( 5 ) : 468 -  478. 

19. Alexander  WJ.  Immunoenhancement  via  enteral  nutrition.  Arch  Surg  1993 ; 128 

: 1242 - 1244. 

20. Berard  MP , Zazzo  JF.  Total  parentral  nutrition  enriched  with  arginine  and  

glutamate  generates  glutamine  and  limits  protein  catabolism  in  surgical  patients  
hospitalized  in  intensive  care  units.  Crit  Care  Med  2000 ; 28 ( 11 ) : 3637 - 3644. 

21. Wu  Y , Fukatsu  K.  Glutamine  enriched  TPN  maintains  intestinal  IL 4 and  

mucosal  IgA.  JPEN  2000 ; 24 ( 1 ) : 46 - 52. 


background image

 

23

22. Loughran  S , Hataneka  T.  Leucine  rich  amino  acid  solution  prevents  operative  

hypothermia  under  general  anaesthesia.  JPEN  2000 ; 24 ( 1 ) : 67 - 69. 

23. Heys  SD , Gardner  E.  Nutrients  and  the  surgical  patient : current  and  potential  

therapeutic  applications  to  clinical  practise.  J  R  Coll  Surg  Edin  1999 ; 44 : 283 
- 293. 

24. Driscoll  DF , Bacon  MN.  Physicochemical  stability  of  2  types  of  IV  lipid  

emulsion  as  total  nutrient  admixture.  JPEN   2000 ; 24 ( 1 ) : 15 - 22. 

25. Naber  A , Kruimel  I.  With  MCT , higher  and  faster  oxygen  radical  production  

by  stimulated  polymorphs  occurs.  JPEN  2000 ; 24 ( 2 ) : 107 - 112. 

26. Rothstein  R , Rombeau  J.  Nutrient  pharmacotherapy  for  gut  mucosal  diseases.  

Gastroenterology  clinics  N  America  1998 ; 27 ( 22 ) : 387 - 399. 

27. Kalfarentzos  F , Kehagias  J.  Enteral  versus  parentral  nutrition  in  acute  

pancreatitis.  BJS  1997 ; 84 : 1665 - 1669. 

28. Lob  D , Naemon  A.  Evolution  of  nutritional  support  in  acute  pancreatitis.  BJS  

2000 ; 87 : 695 - 707. 

29. Madiba  TE , Haffejee  AA.  Nutritional  support  in  the  management  of  external  

pancreatic  fistulas.  SAJS  1995 ; 33 ( 2 ) : 81 - 84. 

30. Norton  J , Linda  G.  Intolerance  to  enteral  feeding  in  brain  injured  patients. J  

Neurosurg  1988 ; 68 : 62 - 66. 

31. Borzotta  A , Paxton  J.  Enteral  versus  parentral  nutrition  after  severe  closed  

head  injury.  J  Trauma  1994 ; 37 ( 3 ) : 459 - 468. 

32. Heyland DK, Dhaliwal R, Drover JW, Gramlich L, Dodek P, and the Canadian 

Critical Care Clinical Practice Guidelines Committee. Canadian clinical practice 
guidelines for nutrition support in mechanically ventilated, critically ill adult patients. 
JPEN. 2003;27:355-373. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


background image

 

24

APPENDIX  

KING EDWARD VIII HOSPITAL (ICU) ENTERAL FEEDING PROTOCOL 

 

Protocol 1 

Protocol 2 

Protocol 3 

Protocol 4 

 Haemodynamically 

stable 

Hypoalbinaemia Diarrhoea 

intolerance 

Diabetic/ 
glucose 
intolerance 

Day 1 

Jevity (500 ml) 20ml/hr 
Protein = 22,2g  
energy = 530Kcal 

Jevity (500ml) 
20ml/hr 
Protein = 22,2g 
Energy = 1060 Kcal 
 

Jevity (500ml) 
20ml/hr 
Protein = 22,2g 
Energy = 1060 
Kcal 
 

Jevity (500ml) 
20ml/hr 
Protein = 22,2g 
Energy = 1060 
Kcal 
 

Day 2 

Jevity (1000ml) 
40ml/hr 
Protein = 44,3g 
Energy 1060Kcal 

Jevity (1000ml) 
40ml/hr 
Protein = 44,3g 
Energy = 1060 Kcal 
 

Jevity (1000ml) 
40ml/hr 
Protein = 44,3g 
Energy = 1060 
Kcal 
 

Jevity 
(1000ml) 
40ml/hr 
Protein = 44,3g 
Energy = 1060 
Kcal 
 

Day 3 

Jevity (1500ml) 
60ml/hr  
Protein = 66,5g 
Energy 1590Kcal 

Jevity (1500ml) 
60ml/hr 
Protein = 66,5g 
Energy = 1590 Kcal 
 

Jevity (1500ml) 
60ml/hr 
Protein = 66,5g 
Energy = 1590 
Kcal 
 

Jevity 
(1500ml) 
60ml/hr 
Protein = 66,5g 
Energy = 1590 
Kcal 
 

Day 4 

Jevity (2000 ml) 80 ml / 
hr 
Protein – 88,6g  
Energy 2120Kcal 

IL Jevity + IL Jevity 
plus 80ml/hr 
Protein = 99,8g 
Energy = 2260 Kcal 
or for poor wound 
healing operative 60 
ml/hr  
Protein = 99,9g 
Energy = 1950 Kcal 
 

Jevity (2000 
ml) 80 ml / hr 
Protein – 88,6g  
Energy 
2120Kcal 

Jevity (2000 
ml) 80 ml / hr 
Protein – 88,6g 
Energy 
2120Kcal 

Long term 

As above 

Once nutritionally 
repleted, return to 
jevity 2L/day 
(80ml/hr) 

If still poor 
tolerance, try 
pepttsorb 
(semi-elemental 
feed) 

As above 

 
 

 
 
 
 


background image

 

25

 

 

PROTOCOL 5 

PROTOCOL 6 

PROTOCOL 7 

 

Renal failure 
(Acute/Chronic)  
On haemo-or peritoneal 
dialysis 

Renal failure 
(acute/chronic ) Not on 
haemo or peritoneal 
dialysis 

Hepatic failure (C) 
Encephalopathy 

Day 1 

Urine output> 1000ml/day 
= 2L osmolite (80ml/hr) 
Protein = 74g Energy = 
2124Kcal 
Urine output < 1000ml  
Suplena 1175 ml (40 
ml/hr = max rate) 

Suplena (1175ml/dy) 
40ml/hr (max rate) 
Protein = 35,3g 
Energy = 2350Kcal 

Osmolite (500 ml) 
20ml/hr 
Protein = 18,5g 
Energy = 531Kcal 

Day 2 

As Above 

As Above 

Osmolite (1000 
ml) 
40ml/hr 
Protein = 37g 
Energy = 
1062Kcal 

Day 3 

As Above 

As Above 

Osmolite (1500 
ml) 
60ml/hr 
Protein = 55,5g 
Energy = 
1593Kcal 

Day 4 

As Above 

As Above 

Osmolite (2000 
ml) 
80ml/hr 
Protein = 74g 
Energy = 
2124Kcal 

Long-

ter

m

As Above 

As Above 

 

 
NB 1.  Periative and Stresson Multifibre are contraindicated for hypotensive and severe 
head patients (both products are rich in arginine  which forms nitric oxide which is a 
vasodilator, however arginine is very good for wound healing. 
Ideally 80 ml/hr should be achieved in 3 days, but otherwise by day 5. if a patient does 
not tolerate > 40ml/hr, consider supplementing the nutritional intake with peripheral 
TPN. 
Peptic (semi-elemental feed) is very high in carbohydrate (carb = 352g) – need to monitor 
Dm and glucose intolerant pts. (2L Pepti = protein = 80g; Energy = 2000 Kcal) 
 
 


background image

 

26

 

COMMERCIALLY AVAILABLE PRODUCTS 

 
Formulae 
(1000 ml)  

Kcal   CHO 

(g) 

FAT 
(g) 

PROT 
(g) 

Kcal
: gN 

OSM 
mosmol/kg 


cost 

Use 

Ensure 1100 

162  37,2 39,7 150:1 480 

10,7

 

Osmolite 

1060 

145  37,6 37,2 178:1

300 

22,3

 

Nutrison 1000 

122,5  38,9  40 

131:1

290 

17,6

 

Alitraq 1000 

165  15,5 52,5 120:1 575 

18,5

Impaired GI 
function rich in 
glutamine 
(27g/100g) 

Jevity  1060 

151,7 

35,9 44,4 150:1

300 

24,6

 

Paediasure 1000  109,7 

49,7 

30 

208:1

310 

24,3

 

Peptison 

1000 

187,5 

10 40 131:1

470 

44,4

 

Glucerna 

1000 

33,3 50  16,7 150:1

375 

7,98 

 

Suplena 2000 

255,2 95,6  30 

418:1

600 

7,98 

 

Advera 1280 

215,8 22,8 60  133:1

680 

9,35 

 

 
 

Examples of immunofeeds 

 
 IMPACT 

IMMUNO-AID 

Calories (kcal) 

1000 

1000 

Protein (g) 

56 

37 

Arginine (g) 

12.5 

14 

Glutamine  

9.0 

Branch-chain amino acids (g) 

 

20 

Nucleic acids (g) 

1.23 

1.0 

Fat (g) 

27.8 

22.0 

Omega-3 polyunsaturated fatty acids 
(%) 

10.5 4.5 

Osmolality (mosm/kg) 

300 

460 

Vitamin C (mg) 

67 

60 

Iron (mg) 

12 

Zinc (mg) 

15 

26 

Selenium (

µg) 

46 100 

Copper (mg) 

1.7 


background image

 

27

 
 
 
 




رفعت المحاضرة من قبل: Mohammed Nehad
المشاهدات: لقد قام 12 عضواً و 220 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل