background image

بسم هللا الرحمن الرحيم

Cell Injury &  Adaptations

Professor Dr. Wahda M.T.Al-Nueimy

Department of Pathology

College of Medicine
University of Mosul

2013


background image

Cellular response to injury 

Cellular adaptations

Atrophy, hypertrophy, hyperplasia, metaplasia.

Acute cell injury

• Reversible injury ( cell degeneration ).
• Irreversible injury (  Cell death ).

• Necrosis
• Apoptosis

• Sub cellular alterations in sub lethal and chronic injury.
• Intracellular accumulations.
• Calcification.
• Cell aging.


background image

What is the factors that determine  the 

fate of cells after injury?

1-Type of injury.

2-Severity of injury 

( mild , moderate or severe).

3-Duration of exposure ( 

short or long duration).

4-Type and state of cells.

5-Adaptability of the cell.

6-cellular metabolism, blood supply and 

nutritional status.


background image

According to capacity of cell to division it divided into

High capacity (labile cell

)          Nil capacity (permanent)cell

Epidermis                                      Neurons     

Gastrointestinal epithelium           Cardiac muscle

Respiratory epithelium                  Skeletal muscle

Bone marrow 

Low capacity (stable cell)

Hepatocytes 

Pancreas 

Kidney

Smooth muscle

Bone 

cartilage


background image

background image

Acute Cell Injury ( short duration)

Reversible cell injury: indicates that the cellular 
changes will 

regress and disappear when the 

injurious agent is removed; the cell will return 
to normal both  morphologically and 
functionally.

Irreversible cell injury: occurs when the injury 
persist or when it is severe from the start. 

Here the 

cell reaches the point of no return and 

progression to cell death is inevitable


background image

What is the causes of cell injury??

1-Hypoxia ( deficiency of oxygen)

Ischemia ( decreased blood supply to tissue due to impeded arterial 
flow or reduced venous drainage ) which is due to disease of blood 
vessels.

In  adequate oxygenation of blood due  to cardio-respiratory failure 
and in CO poisoning ( CO forms a stable complex with hemoglobin 
that prevents oxygen binding).

If there is loss or reduction in the O2 carrying capacity ( anemia).

2-Physical injury 

( extremes of temperature , radiation, 

electrical shock, trauma, change in atmospheric 
pressure )

3-Chemical agents,  salt,  glucose, oxygen, poisons, 

pollutants, insecticides, asbestos, ethanol & drugs

.

4-Microbial agents i.e. mean infectious agents 

(virus, 

bacterial, fungal ,parasitic…..etc)


background image

Chemical injury

There are  

general classes of chemical injury

1- Direct interaction 

with cellular component e.g., 

mercuric chloride cause membrane damage by binding 
to sulfhydryl  group of cell membrane.

2-Indirect interaction  

by converted in  the cell into 

toxic metabolite 

e.g., carbon tetrachloride change to 

carbon trichloride free radical result in either 

fatty 

change or lipid peroxidation 

.


background image

Microbial injury 

1-Direct induced injury  

e.g. poliovirus cause direct 

destruction of cell membrane of the host cell by  

insertion of the virus into the cell membrane.

2-Indirect induced injury 

e.g. hepatitis B virus 

cause destruction of cell membrane of the cell by 

stimulation of the immune system against the 
viral protein 

that exposed on the cell membrane. 


background image

5-Immunologic reactions  e.g. 

hypersensitivity 

reaction which is mean exaggerated response of 
the immune system , anaphylactic shock & 
autoimmune 
diseases which is mean breakdown 
of the normal tolerance mechanisms to self –
antigens. 

6-Genetic abnormalities  e.g. 

Down’s syndrome

( trisomy 21)  & sickle cell anemia

7-Nutritional imbalance 

(vitamin deficiency, 

protein deficiency, obesity , atherosclerosis, 
cancer,  alcoholism)

8-Aging.


background image

Mechanism of cell injury (pathogenesis)

The susceptible targets in cell are:

1-Cell membrane destructed by 

phospholipase

which secreted for example  by certain bacteria.

Increased permeability of cell membranes 

like 

plasma membrane , lysosomal membrane leads to 

necrosis.

2-ATP production lost by e.g., cyanide which inactivate 

cytochrome oxidase in mitochondria causing 

decrease 

ATP production.

3-Protein synthesis .
4-defects in genetic apparatus.


background image

5-

Accumulation of reactive oxygen species 

which causes modification of cellular proteins, 
lipids and nucleic acids.

6-

Accumulation of damaged DNA 

and 

misfolded  proteins triggers apoptosis.


background image

Cellular adaptations to stress

It is a state that lies intermediate between 

normal, unstressed cell & the injured , 
over stressed cell.

It could be physiological or pathological

The adaptive responses include

1-Atrophy

2-Hypertrophy.

3-Hyperplasia.

4-Metaplasia.


background image

Atrophy 

It refers to the decrease in the size the organ as a result of 
decrease in size of cells with  loss of cell substances.

Cells exhibit 

autophagy ( self eating) 

with increase in 

number of autophagic vacuoles & lipofuscin ( wear and tear 
pigment).

causes: Pathological & physiological atrophy :

1-Decrease in the workload  ( disuse).

2-Denervation: ( neuropathic) e.g. paralysis of limb due to 
nerve injury or poliomyelitis.

3-Under nutrition as in starvation.

4-Loss of endocrine stimulation e.g. atrophy of the gonads 
in hypopituitarism.

5-Aging it is called  senile atrophy.

6-Diminish blood supply.


background image

background image

Hypertrophy

Refer 

to increase in the size of organ as a 

consequence of the increase of cell size

. It is due to 

synthesis of more structural 

component 

as a result of 

either increased functional demand or by specific hormonal 
stimulation; occurs in tissue incapable of cell division.

It can be 

physiological or pathological 

e.g., 

Uterus in pregnancy  as a consequence of estrogen 
stimulate smooth muscle fibers.

skeletal m. in athletes, or manual workers in response to 

increased demand,    left ventricular hypertrophy 
(pathological),   Hepatocytes hypertrophy in barbiturate 
drug therapy,   Compensatory mechanism after 
nephrectomy .


background image

Hypertrophic cardiomyopathy

is an example of 

pathological hypertrophy due to increase demand, this 
ultimately results in increase in the size of the organ


background image

Hypertrophy of cardiac muscle in 
response to increased demand


background image

Hyperplasia:

It’s refer to the increase in the size of the organ as a result 

of increase in the 

number of cells, in response to 

hormones and other growth factors.

Cells that undergo hyperplasia are those capable of cell division  
(labile cells).

Hyperplasia is divided  into:

Physiological: which is 

either 

hormonal 

(proliferation of the breast glandular epithelium of 

female at puberty,  or during pregnancy) , nodular prostatic 
hyperplasia after age of 50. 

or 

compensatory 

(e.g. after partial hepatectomy).

Pathological:

Extensive hormonal stimulation 

(e.g. endometrial 

hyperplasia). Or 

effect of growth factors 

as in healing of wounds 

forming keloid Or certain viral infections e.g. papillomaviruses cause 
skin wart . 


background image

Uterus with endometrial hyperplasia.


background image

Endometrial hyperplasia is an example of hormone-
induced 

hyperplasia

due to hyperestrogenism.


background image

Endometrial hyperplasia-there is hyperplasia of the 

both glandular & stromal elements. 


background image

Nodular prostatic hyperplasia.


background image

Hyperplasia is due to  sensitivity to normal 

regulatory control mechanisms that distinguish 
benign pathologic hyperplasia from cancer, in which 
the growth control mechanisms become 
dysregulated or ineffective.

Nevertheless , 

pathologic hyperplasia constitutes 

a fertile soil in which cancerous proliferation 
may eventually a rise as in complex 
endometrial hyperplasia.


background image

Metaplasia

It’s refer to reversible , replacement of one mature cell type 
by another mature cell type, which could be either epithelial 
or mesenchymal , often a response to chronic irritation, 
usually induced by altered differentiation pathway of tissue 
stem cells; may result in reduced functions or increased 
propensity for malignant transformation.

It is 

an adaptive reversible process.

It may represents an adaptation of cells more sensitive to 
stress by other that are more resistant to the adverse 
environment. E.g.


background image

Squamous metaplasia of the bronchial 
respiratory epithelium due to habitual smoking.

Squamous metaplasia of the uterine cervix due 
to continuous irritation by infection and sexual 
intercourse.

Squamous metaplasia of urothelium of the 
bladder due to bilharziasis or stone. 

Columnar metaplasia of esophageal sq. 
epithelium. as a result of prolonged reflux 
esophagitis ( Barrett’s eosophagus).


background image

Squamous metaplasia of bronchial 
epithelium


background image

Columner metaplasia of the esophagus 
Barrtte’s esophagus.


background image

Metaplasia usually occurs as a result  of 

selective gene expression 

depending on the 

the site, need and environment. 

Metaplasia in mesenchymal tissue is less common 

and less important and 

not precancerous

.

e.g. osteiod metaplasia may be seen in calcified 

blood vessels, calcified hematoma, calcified colloid 
within thyroid gland ----ect.  


background image

What are the mechanisms of irreversible cell 

injury?

1-ATP depletion 

reduces the activity of Na pump at the 

cell membrane leading to gross changes in the intracellular 
Na & K concentrations,t he net result is an influx of water 

across the membranes causing the cell to 

swell. 

Continued  ATP depletion interferes with protein 
production.

2-Cell membrane damage.

Cell membrane damage play the 

Key factor 

in the 

pathogenesis of irreversible cell injury mediated by 

excessive influx of calcium into the cell . Ca activate 
cytosolic enzymes that could destroy cellular 
components. 


background image

What is the mechanism of cell membrane 

damage in irreversible cell injury??

Progressive loss of phospholipids.

Cytoskeletal alterations.

Lipid breakdown products.

- Free radical 

induced injury by interact with lipids in 

cell membrane  resulting in lipid peroxidation , cellular 
proteins, and DNA leading to breaks in its continuity . 
The imbalance between free radical generation and 
scavenging which occurs in injury is referred to as  

oxidative stress.

Mitochondrial dysfunctioning.


background image

background image

Free radical induced injury

FR :are chemical species with a single  unpaired electron in 
the outer shell.

These are highly reactive & autocatalytic.

What is the source of free radicals?

1-endogenous (leukocytes, macrophages & endothelial 
cells)

2-metabolites of drugs & chemicals.

3-Absorption of radiant energy.

Types  of free radicals

Superoxide, nitroxide , hydroxyl, hydrogen peroxide, 
carbontrichloride CCL3.


background image

Example of Free Radicals induced injury

Inflammation 

as a part of defense mechanism.

Reperfusion injury

( this occurs following restoration of 

blood flow in  ischaemic tissues), cause release of FR from 
leukocytes.

Aging process 

decrease ability to handle with FR. 

O2 toxicity 

e.g.   diffuse alveolar damage in lung. 

Radiation

Chemical & drug injury 

e.g., CCL3 cause severe injury in 

the liver. 


background image

What is the targets of FR injury in the cells?

1- Membrane damage through the process of 

lipid      

peroxidation.

2- Cross linking proteins forming 

disulfide bonds.

3- DNA:  Single strand break in DNA & induction of 

mutation

that interfere with cell growth leading to cell 

death or eventual malignant transformation of cells. 

4- Mitochondrail    DNA    is also affected.


background image

Morphology of reversible cell injury:

By Light Microscope 

Cellular swelling result in large pale cytoplasm.

Hydropic vaculation ( vacuolar degeneration).

Fatty change.

Clumping of chromatin.

By Electron Microscope

Endoplasmic reticulum dilatation, Mitochondrial 
dilatation , Cytoplasmic blebs & loss of microvilli , 
Detachment of ribosomes & dissociation of polysomes 
into monosomes , Myelin figures and whole cell 
swelling .


background image

Morphological changes in irreversible cell injury

By E.M.: 

Breaks in the cell & organelles membranes.

Amorphous large, bizarre form of calcification in 
mitochondria .

Rupture lysosomes

Fragmentation of endoplasmic reticulum. 

By L.M.:

Nuclear changes including

Pyknosis

(nuclear shrinkage + increase basophilia of 

the nucleus).

Karyorrhexis 

(fragmentation with nuclear dust).

Karyolysis (

nuclear loss).


background image

A nucleated cells

: have intensely eosinophilic 

cytoplasm due to

Loss of  RNA .

Glycogen depletion.

Increased binding of eosin to denatured 
intra-cytoplasmic protein.


background image

background image

Necrosis:

It is death of tissue or organ during 

life

associated with 

structural changes  and with reaction  from surrounding  
living tissue 

( inflammation) and initiation of a repair 

process.

Mechanism of necrosis:

Denaturation of proteins

Enzymatic digestion by 

Autolysis  by lysosomal enzyme of the cell itself.

Heterolysis by surrounding inflammatory cells (Neutrophils & 
Monocytes). 

It is passive process, it is  

a

ssociated with 

inflammation,  it r

andomly occurs .


background image

Involve a group of cells. 

Always pathologic.

Causes :  chemical injury or infarction

( cell death due to cut of blood supply), 

nutritional….etc

Types of necrosis:

Coagulative  necrosis , most common .

Liquefactive necrosis.

Caseous necrosis.

Gangrenous necrosis (Gangrene).

Fat necrosis.

Fibrinoid necrosis.

Gummatous necrosis (Gumma). 


background image

Coagulative  necrosis

The commonest type of necrosis.

Infarcts (ischemic necrosis) in all 

solid organs 

except 

the brain & spinal cord result in liquefactive necrosis.

Grossly:

Whitish-gray or red-hemorrhagic firm wedge shape area of 
infarction.

Histology: 

Preservation of the tissue architecture & cellular outline for 
sometime with loss of internal details including nuclei.

Result from denaturation of all proteins including enzyme as a 
result of ischemia & acidosis

Fate:  

after several days 

fragmentation & 

phagocytosis then healing .


background image

infarction

It is an ischemic necrosis caused by occlusion of 
either the arterial supply or the venous 
drainage.

Necrosis is of coagulative type as in myocardial 
infarction (except brain: liquifactive  CVA ).

The necrotic zone is an infarct area.


background image

classification

Infarcts are classified on the basis of their color 
into:

1-Red(haemorrhagic).

2-White(anemic).

and on the presence or absence of infection into:

1-Septic.

Is usually restricted to infarcts caused by 

septic embolus. 

The bacteria in the embolus invade 

the dead tissue and causes suppuration, initially at the 
margin, and then the infarct is converted to an 

abscess.

2-Sterile.


background image

Red infarct     
(haemorrhagic)                    

Venous occlusion   

(testis , ovary).

Loose tissue that allow the blood to collect in 
the infarcted zone  

(lungs).

Tissues with

dual 

circulation e.g. (lungs, 

small intestine).

Previously congested tissues  (from sluggish 
venous flow).

Reperfusion of previously ischemic tissue                      
(following angioplasty of an arterial 
obstruction).


background image

LUNG INFARCT

Grossly, 

red infarcts are 

sharply circumscribed, 
firm and dark red to 
purple. 

Over a period of 

several days, acute 
inflammatory cells infiltrate the 
necrotic area from the viable 
border. The cellular debris is 
phagocytosed and digested by 
polymorphonuclear leukocytes 
and later by macrophages. 
Granulation tissue eventually 
forms, to be replaced ultimately 
by a scar.


background image

Pulmonary infarction produced by a medium-sized thromboembolus 

to the lung. 

This infarction forms a wedge- shaped 

area 

& has begun to organize at the margins.


background image

White infarct   (anemic)

Occur in the arterial occlusion in solid organs with end-
arterial circulation 

(spleen, kidneys & heart).

Most infarcts tend to be wedge-shaped,with the 

occluded vessel at the apex 

and the periphery of the 

organ forming the base.

On gross examination, 1 or 2 days after the initial 
hyperemia, the infarct becomes soft, sharply delineated, and 
light yellow 

due to denaturated cellular proteins which 

resist digestion by proteiolytic enzymes

The border tends to be dark red, reflecting hemorrhage 
into surrounding viable tissue.

Microscopically, a pale infarct exhibits uniform coagulative 

necrosis.


background image

Splenic infarct

It’s conical and subcapsular ,  at first the infarcted 
tissue is dark red due to congestion, but after a few 
days it changes to pale yellow, before being slowly 
organized to leave a depressed scar. 

spleen has 

single circulation 

and the vasculature 

is subdivided into segmental and subsegmental 
arteries which supply wedge-shaped sectors that is 
why the area appears 

wedge in shape.


background image

background image

The effects of vascular occlusion can range from 
NO or 

minimal effect to causing the 

death 

of a tissue or person.

The major determinants of the eventual outcome are:

1-

Nature of the vascular supply

The availability of 

an alternative blood supply 

is the most important determinant of whether 
vessel occlusion will cause damage. The lungs, liver, 
hand and forearm
, have 

dual

blood supply so 

they are relatively resistant to infarction. In contrast
renal and splenic circulations are end-arterial 
and vascular obstruction generally causes tissue 
death.


background image

background image

2-

Rate of occlusion development

.

Slowly developing occlusions are less likely to cause 

infarction, because they provide time to develop 

alternate perfusion pathways.

3-

Vulnerability to hypoxia

. Neurons undergo 

irreversible damage when deprived of their blood 

supply for only 3 to 4 minutes. Myocardial cells are also 

quite sensitive and die after only 20 to 30 minutes of 

ischemia. In contrast, fibroblasts within myocardium 

remain viable even after many hours of ischemia.

4-

Oxygen content of blood

. A partial obstruction 

of a small vessel that could be without effect in an 

otherwise normal individual might cause infarction in 

an anemic or cyanotic patient.


background image

Liquefactive necrosis

Early softening & liquefaction of the necrotic 
tissue. 

Proteolytsis over protein denaturation.

Seen in 

Ischemic necrosis 

of CNS.

Abscess

formation in pyogenic or fungal infection.

Gross

Soft liquid like

Histology

Loss of original tissue . 


background image

background image

Liquefactive necrosis- Brain infarction


background image

Caseous necrosis

it is  a combination of coagulative and liquefactive 

necrosis.

Being soft & yellow white appears as 

cheese-like gross 

appearance

Histology:

Tissue architecture is completely loss.

Appears as a brightly eosinophilic & amorphous 

structureless material with nuclear dust.

Characteristic of 

Tuberculosis(TB)

:

Coagulative necrosis modified by 

capsule lipo-

polysaccharide of TB bacilli.

It could be seen in other lesions so it is not pathognomonic 
of TB    e.g. necrosis of tumor  & inspissated  pus.


background image

background image

Fat necrosis

Necrosis of adipose tissue, 

characterized by the formation 

of small quantities of calcium 

soaps when fat is hydrolyzed 

into glycerol and fatty acids. Also 
called 

steatonecrosis

A term for necrosis in fat, caused 

either by release of 

pancreatic 

enzymes 

from pancreas or gut 

(enzyme fat necrosis) or by 

trauma to fat

, either by a 

physical blow or by surgery 

(traumatic fat necrosis). 


background image

Fat necrosis

1-Enzymatic fat necrosis: 

In acute hemorrhagic pancreatitis cause activated lipase 
leading to adipose tissue destruction causing releasing of 
triglycerides & fatty acid.

Deposition of calcium ending in calcium soap, grossly 
visible chalky white areas.

2-Traumatic fat necrosis:

Trauma to the 

breast 

causing rupture of fat cells 

resulting in  foreign body granulomatous reaction

Ending in fibrosis & calcification causing stony hard 
lump which is easily misdiagnosed by carcinoma of 

breast clinically ,

definite diagnosis by biopsy.


background image

Fat necrosis of the mesentery: chalky white patches on the surface of 
mesentery due to enzymatic digestion of mesenteric fat secondary to 
acute pancreatitis


background image

On histological examination, the foci of necrosis 
contain shadowy outlines of necrotic fat cells with 
basophilic calcium deposits, surrounded by an 
inflammatory reaction.


background image

It’s caused by immune-mediated vascular damage.
It is marked by deposition of fibrin-like proteinaceous 
material in arterial walls e.g. polyarteritis nodosa , 
which appears  eosinophilic on light microscopy.

Artery,

fibrinoid necrosis 


background image

Fibrinoid necrosis 

By  Hematoxyline & eosin ( H&E ) it appears as 
intense eosinophilic staining of involved 
(necrotic) tissue, like fibrin. 

It’s characterized by platelet activation, fibrin deposition 
and usually cell death of the vascular smooth muscle.

Example:

Fibrinoid necrosis of blood vessels in 

malignant 

hypertension & vasculitis.

Fibrinoid necrosis of collagen tissue in connective tissue 

disease as in 

rheumatoid arthritis ( RA ) 

.


background image

Gangeren

It is coagulative necrosis plus 

putrefaction by saprophytes (anaerobic bacteria).


background image

background image

Gangrene

It can be classified into two types according to the 

cause 

of the tissue necrosis:

Primary gangrene: 

It is brought by infection with 

pathogenic bacteria which both kill the tissue by 
secreting  exotoxins & then invade & digest the dead 
tissue.

Secondary gangrene 


background image

Secondary gangrene

This type of gangrene is characterized by necrosis
due to some other causes , usually loss of blood 
supply from vascular obstruction or tissue laceration 
& saprophytic bacteria then digest the dead tissue , 
there are two types :

Dry gangrene

Wet gangrene


background image

It is a form of a necrosis of the tissue with 
superadded  putrefaction.  

Dry gangrene -Ischemia 

Wet gangrene –D.M


background image

Dry gangrene

There is  drying & mummification of dead tissue.

It is seen in distal parts of the lower limbs 

associated with peripheral vascular diseases 
(atherosclerosis, vasculitis).  

Due to gradual cut of blood supply.

The line of demarcation between dead and living tissue 
is 

clear.

The lesion remains

localized 

.


background image

Wet gangrene

The infected tissue are edematous due to  large 
amount of subcutaneous fluid.

The demarcation between dead and living is 

extend proximally 

beyond the site of infective.

Wet  gangrene is seen in the bowel due to 

mesenteric vascular occlusion and in diabetic 
limb.


background image

Gummatous necrosis

Derived its name from gumma , which is a 

necrotic lesion seen in the 

tertiary syphilis .

It is modified type of coagulative necrosis.


background image

Fate of necrotic tissue

Body treats necrotic tissue as 

a foreign materials.

It stimulates 

an inflammatory 

reaction that eventually 

removes the necrotic tissue & prepare the scene for the 

process of 

repair

by: 

Regeneration ( return to normal state).

Organization ( granulation tissue formation and 
fibrosis).

These required proliferation, migration, differentiation of 

cells & production of extracellular matrix.

Cyst formation like abscess.

Dystrophic calcification.


background image

Effects of necrosis depend on the

1- Organ affected.
2- The extend of necrosis.
3- The duration of necrosis.
Death of cells from certain organs associated with 
release of certain enzymes which could be used as 

a sign or indication of necrosis 

e.g.

SGPT

in death of liver cells.

SGOT & Troponin 

in death of heart muscles

( Myocardial infarction).


background image

Apoptosis ( falling off)

Death of single cell as a result of the activation of a 
genetically 

programmed (suicide) pathway 

through 

which the cell removed with minimal damage to the 
tissue containing them.

It is very important  part of the  turn –over mechanism. 

There are  3 major phases of apoptosis;

1- initiation or induction 2- execution 3- phagocytosis. 


background image

How the process of apoptosis is initiated?

Different types of stimuli causing activation of caspases
enzymes, which play the key role in the apoptosis, this activate 
cytoplasmic endonuclease, proteases transglutaminase.

Endonuclease

cleavage the DNA into fragments of double 

stranded DNA.

Protease

degrade cytoskeleton & nuclear proteins .

Transglutaminase 

cause cross linking of cytoplasmic

proteins causing shrinkage of the cells. 

After that the cytotoxic T – lymphocytes release compounds 
such as granzyme B which lead to the executioner phase 
without the involvement of a transmembrane death receptor 
complex or mitochondrial changes.


background image

Genetic basis of apoptosis:

bax, bcl-x & bad genes are 

apoptotic gene. 

P53 stimulate apoptosis by stimulating 
synthesis of bax gene.

bcl-2 is 

anti-apoptotic gene 

seen in 

B-cell follicular lymphoma . 


background image

Examples where apoptosis occurs include:

a-Physiological apoptosis 

mean elimination 

unwanted cells 

1-During embryogenesis; i.e. it is responsible for shaping 

various organs and structures .

2- Hormone- dependent involution. e.g. of endometrium 

during the menstrual cycle & lactating breast after 
weaning.

3-Proliferating cell populations: e.g. intestinal epithelium, 

skin & blood cells. 


background image

b-Pathological 

apoptosis it occurs after some forms of cell 

injury, especially DNA damage.

1-Atrophy of the prostate 

after castration

.

2-Virally infected cells attacked by 

cytotoxic T -

lymphocytes, as in 

acute viral hepatitis (Councilman body).

3- Neoplasia.

4-Radiation.

5-Cytotoxic drugs .

6-Some mature B & T lymphocytes cannot distinguish self from non 

self antigens, if that remain, will lead to destroy healthy body cells 
(autoimmune disease).

7-Dermatosis (Civette bodies). 

In apoptosis; nuclear chromatin condensation; formation of apoptotic 

bodies ( fragments of nuclei and cytoplasm)


background image

Apoptosis of a liver in viral hepatitis, the cell is 
reduced in size and contains eosinophilic cyt. and a 
condensed


background image

Apoptotic body appears as dense eosinophilic core


background image

So, failure of cells to undergo apoptosis may result in 

undesirable effects that includes:

1-Anomalous development of various organs and 

tissues.

2-Progrssive acceleration of tumor growth.

3-Autoimmune diseases e.g. SLE. , Rheumatoid 

arthritis ( RA ).


background image

Differences between apoptosis & 

necrosis

Apoptosis

Necrosis

Active process 

Occur in single cells

Physiological & pathological

No inflammatory reaction

Step-ladder appearance on gel-
electrophoresis for DNA 
material

Programmed process

Mechanism; 

Gene activation

Caspases activation causing 
activation of activate cytoplasmic 
endonuclease, proteases & 
transglutaminase  

Passive process

Affects mass of cells

Always pathological

Stimulate inflammation

Smudge pattern appearance of 
DNA material on gel-
electrophoresis 

Random process

Mechanism;

ATP depletion

Cell membrane injury


background image

Differences between apoptosis & 

necrosis

Apoptosis

Necrosis

Morphology:

Cell shrinkage 

Nuclear condensation & 
fragmentation

Formation of apoptotic 
bodies

Apoptotic bodies engulf 
by macrophages 

Morphology

Cell swelling

Nuclear changes 
(pyknosis, karyorrhexis 
& karyolysis)

Eosinophilic  cytoplasm

Necrotic area infiltrate  
& cleaned by 
inflammatory cells 


background image

Sub-cellular responses to injury

1/ Cytoskeletal alterations

Defect in cell function

e.g. defect in locomotion or 

intracellular translocations.

Accumulations of fibrillar material 

e.g. Mallory 

body in alcoholic consumption & neurofibrillary tangle in 
Alzheimer’s disease .

2/mitochondrial alterations

Increase number of mitochondria in hypertrophy.

decrease number of mitochondria in atrophy. 

Mega mitochondria of hepatocytes in alcoholic patient.


background image

Neurofibrillary tangles in Alzheimer’s disease


background image

3/Smooth endoplasmic reticulum 

Increase synthesis of SER in hepatocytes in patients taken 

barbiturates drugs 

this leads to increase tolerance to these 

drugs with time. Therefore; more drug is needed to reach 
the therapeutic level.

4/ Lysosomal catabolism

Lysosomes are involved in the breakdown of phagocytosed 
material in one of 2 ways:

Heterophagy

: material taken from external environment, 

e.g. uptake & digestion of bacteria by neutrophils & 
removal of necrotic debris. 

Autophagy

: removal of damaged organelles inside the 

cells. 


background image

Hyaline change

A descriptive term referring to any alteration within the 
cells or in the extracellular spaces or structures that gives a 

homogenous, glassy-pink appearance 

in routine 

histological sections stained with H & E. 

Example of 

intracellular hyaline

Hyaline droplets in PCT of kidney in proteinuria.

Russell bodies in plasma cells.

Alcoholic hyaline in hepatocytes.

Viral inclusion.

Example of 

extracellular hyaline

Hyaline arteriolosclerosis.

Amyloid.

Scar.


background image

Fatty changes ( Steatosis)

It’s abnormal accumulation of fat of  free 

triglyceride 

type 

within parenchymal cells i.e. in tissue other than  

adipose tissue.

Normally fat present in fat depots ( subcutaneous tissue, 
pericardium , omentum and mesentry). 

It is an example 

of reversible cell injury

seen often  in the 

liver

in which fat centrally 

metabolized

& to less extend in 

heart .


background image

What’s the causes of fatty change??

1-Toxins including alcohol  fatty change will appear in the 

liver after 

6 days 

of drinking any amount  of alcohol and 

disappear after 8 years.

2-Starvation , protein malnutrition & wasting disease 

like  cancer and tuberculosis.

3-Diabetes mellitus.

4-Oxygen lack (anemia & ischemia).

5-Drugs & chemicals e.g. CCL4 and phosphorus.

6-Obesity.

7- acute fatty liver in pregnancy and Reye’s  syndrome  

here the defect in mitochondrial oxidation.


background image

Morphology of Fatty liver

Gross features : In the liver mild fatty changes shows no 
changes, but with further accumulation the organ enlarges 

become increasingly yellow, soft & greasy to 

touch.

Microscopically : In the early stages there are small fat 
vacuoles around the nucleus 

(microvesicular steatosis). 

With progression the vacuoles fuse together creating large 
clear space that displaces the nucleus to the periphery 

(macrovesicular steatosis). 


background image

Fat Droplets


background image

The significant of fatty changes depend on

1- the cause.
2-the severity of the accumulation ( mild, moderate 
or severe).
Moreover fatty changes it’s 

reversible

when the 

cause is removed.  

Note; 

cholesterol deposition; result of 

defective catabolism and excessive intake; in 
macrophages and smooth muscle cells of vessel 
walls in 

atherosclerosis

.


background image

Calcifications

We are born with calcium in our

teeth and

bones .

Osteoblasts and odontoblasts fix

calcium and phosphorus , and then
precipitate the products into an organic
matrix ; this is the process of physiologic
biomineralization involving apatite minerals.


background image

As a result of “

ageing

” and disease 

states, typically disease states with an 
inflammatory component, we calcify 
our blood vessels and internal organs 
and this is called

“pathological calcification“


background image

Pathological Calcification

This refer to abnormal deposition of calcium salt in 
tissues other than bones

There are two forms of calcification;

1- Dystrophic calcification:

refer to deposition of calcium 

in non viable or dying 

tissues in the presence of normal serum level of  
calcium 

with normal calcium metabolism. E.g.

Areas of necrosis (caseous , coagulative or fat 
necrosis).

Wall of artery in atherosclerosis.

Aging or disease  of the heart valve.

Dead parasites & their ova.


background image

Of calcification

Pathogenesis

It is not well known, it could be due to one of the 
followings:
1-Increase in the pH of the tissue i.e. become 
alkaline.
2-Release of alkaline phosphatase which 
stimulates deposition of calcium.
3-The presence of cellular product which acts 
as a nucleus that stimulates the deposition of 
calcium around it.


background image

dystrophic calcification


background image

Dystrophic calcification of a vessel at 
the base of gastric ulcer


background image

Dystrophic calcification of dead 
parasite in the lung  


background image

2-Metastatic calcification: 

refer to deposition of calcium 

in viable tissue in the 

presence of high serum calcium level.

Causes of hypercalcaemia: 

Hyperparathyrodisum.

Vitamin D intoxication.

Sarcoidosis.

Metastatic cancer to the bone.

Some other non metastatic cancer.

Organ affected are:

kidneys, stomach, lungs , systemic and 

pulmonary arteries.


background image

metastatic calcification


background image

Colored substances (pigments)

A-Exogenous

e.g. Carbon (coal dust), accumulation of carbon pigment in 

the lung give it black color called 

(anthracosis).

Tattooing 

the pigment inoculated is taken by 

dermal 

macrophages.


background image

Carbon particles- Lung & LN  


background image

B-Endogenous pigments:

1-Lipofuscin (lipochrom pigment), is a yellow brown, 

intracytoplasmic pigment, which is seen in the cells 
undergoing slow atrophy. 

It represents 

residue of oxidized lipid derived from 

digested membrane of organelles

1-Particularly prominent in the cells of the liver & 
heart of the elderly (brown atrophy of the heart). 

It is called wear & tear pigment

2-Patein with sever malnutrition and cancer cachexia.


background image

Lipofuscin pigment-liver wear & tear 
pigments


background image

2-Melanin:

This is an endogenous non-hemoglobin-derived brown 

black pigment. 

The skin pigment is produced by the 

oxidation of tyrosine through the help of tyrosinase 
enzyme within the melanocytes.

Lesions associated with melanocytes are

Moles (nevi) …….benign lesion.

Melanoma………..Malignant.


background image

3-Bilirubin:

It is a normal major 

pigment of bile 

, which is derived 

from the 

heme portion of  hemoglobin

.

The conversion to bile occur in 

the liver

Jaundice: result from excess of bilirubin pigment.


background image

background image

background image

4-Hemosidrin:

It is 

a hemoglobin-derived, golden-yellow to 

brown granules. 

Excess iron in the body causes 

hemosiderin 

to 

accumulate within the cell. Excess deposition is termed as 

hemosiderosis

which is either localized or systemic.

Special stain for iron is 

Prussian blue or Perl’s stain. 

Localized hemosiderosis: result from local hemorrhage 
e.g. bruise, cerebral hemorrhage.


background image

Hemosiderin pigment in the alveolar 
macrophages


background image

Systemic hemosiderosis: 

occur whenever there is 

systemic iron overload, this is associated with

1-Increased iron absorption.

2-Impaired utilization of iron.

3-Hemolytic anemia.

4-Excessive blood transfusion.

In systemic hemosiderosis, hemosiderin accumulate 

first 

in the reteculoendothelial cells, 

with progression the 

accumulation cause tissue damage, by the deposition of the 
iron pigment in the main 

parenchymal cells 

in a disease 

called 

hemochromatosis.


background image

Hemochromatosis

Predominantly affects male

40-60 years

Idiopathic form transmitted as autosomal recessive trait

There is 0.5 gm of iron accumulated in the body /year

There is lack of regulation of iron absorption from GIT

Liver cirrhosis

Diabetes mellitus

Skin pigmentation causing bronzed diabetes 

Atrophy of the testes 

Liver cancer 


background image

Cellular Aging

It is the result of a progressive decline in the proliferative 
capacity and life span of cells and the effects of continuous 
exposure to exogenous factors that cause accumulation 
of cellular and      molecular damage .  

The mechanisms for cellular aging 

.

1- DNA damage
2-decreased cellular replication
3-reduced regenerative capacity of tissue stem cells.

4-Accumulation of metabolic damage. 


background image

Cellular aging

Cellular aging is 

multifactorial

1- an endogenous molecular program.
2- continuous exposure through out life to adverse 
exogenous influences.
It ‘s called 

wear and tear 

process, in cell aging 

molecular injury to cells exceeds their repair 
capacity thus accelerating the aging process.
Favored theory for cell aging is 

the progressive 

effects of free radicals through out life.


background image

Thank You




رفعت المحاضرة من قبل: Abduljabbar Al-Kazzaz
المشاهدات: لقد قام 63 عضواً و 394 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل